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Abstract

An acyclic edge colouring of a graph is an assignment of colours to its edges in such a
way that incident edges get distinct colours, and the edges of any cycle use at least three
distinct colours. The latter condition is equivalent to the requirement that the subgraph
induced by any pair of colour classes (set of edges receiving the same colour) is a forest.
The minimum number of colours sufficient to acyclically colour the edges of a graph G,
is called its acyclic chromatic index and is denoted by a'(G).

In this thesis we study a problem called the acyclic edge colouring of graphs. For
brevity, we often use the phrase “acyclic colouring”, instead of “acyclic edge colouring”.
This notion is a more restricted version of the standard edge colouring notion, which in
turn is the same as the standard vertex colouring notion on line graphs. This thesis studies
this notion in the context of two different aims. The first aim is to get tight estimates on
the minimum number of colours sufficient to achieve such colourings for any graph. The
second is to actually produce such colourings using as few colours as possible.

The acyclic colouring problem can thus be viewed from a combinatorial perspective
and also from an algorithmic perspective. It is interesting and challenging with respect to
both perspectives. It is noteworthy that no good estimates on a’(G) have been obtained
for even highly structured classes like the complete graphs, or restricted families like bi-
partite graphs. From the algorithmic point of view it is NP-Hard to determine &'(G) in
general, and even when restricted to subcubic, 2-degenerate graphs. Its close relationship
to standard vertex colourings indicates that it could be useful in modelling and solv-
ing problems involving conflict-free scheduling of activities. The acyclic edge colouring
problem is also closely related to star and oriented colourings of line graphs which have
applications in protocols for mobile communication.

In this thesis, we have contributed to improving the understanding of the acyclic
colouring problem from a combinatorial as well as an algorithmic perspective. Specifically

we have obtained the following results.

e We have improved the previously best known upper bound on o'(G) for all graphs
(16A) to 5.91A for graphs of girth at least 9. We get a further improvement to
4.52A when we restrict our attention to graphs of girth at least 220. Here, A(G)

represents the maximum degree of the graph.



(This result which is joint work, forms a part of the Ph.D. thesis of my collaborator

N. Narayanan, also.)

We obtain a general relationship between the girth, g(G) of a graph G and its
acyclic chromatic index, which gives progressively better upper bounds on a/'(G), as

the girth, g(G) of the graph increases.

We obtain exact estimates of a’(G) for the well known graph classes: hypercubes,
grids and tori. Also, we show that for each partial torus (a generalisation of grids
and tori), its a/(G) is always either A or A + 1. Our proof also suggests an efficient

algorithm to produce such colourings for these graphs.

We also prove that o (G) < a'(Gy) + - -+ + d/(Gy) where Gy, ..., Gy are the prime
factors of G' (with respect to cartesian product factorisation), provided o'(G;) > 1,
for some ¢. This generalises and extends the results we obtain for partial tori,
mentioned above. The graph G can be efficiently coloured using a/(G)+. . .4+d'(Gy)
colours, provided we have acyclic colourings of each G; using a disjoint set of a’(G;)

colours.

We prove that for the class of partial 2-trees, a/(G) < A+ 1. Our proof also yields a
polynomial time algorithm for constructing an acyclic colouring of any partial 2-tree

using A + 1 colours.
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Chapter 1
Introduction

Many problems of practical importance can be studied by modelling them in a graph theo-
retic framework. Deciding the locations of retail outlets to meet the conflicting constraints
of proximity to customers and minimising the total investment in setting-up costs is one
such problem. Scheduling the repair of roads in a city while ensuring that important city
centres are still accessible is another. Routing a cleaning vehicle through the roads of a
city minimising the travel distance is another problem which can be solved using graph
theoretic techniques. Graph theory is vast and each of these problems are modelled and

solved using different properties of graphs. For an excellent introduction to graph theory

and its applications see [Wes96],[Har69],[Rob33).

Graph colouring is an important problem in graph theory and combinatorics as well.
It arose famously in the context of the four colour theorem, which states that the regions
of a map can be coloured using four colours so that regions sharing a boundary get distinct
colours. A proper colouring of a graph assigns colours to its vertices in such a way that
no pair of adjacent vertices get the same colour. Equivalently, this may be viewed as an
assignment of colours to vertices such that the set of vertices receiving the same colour
is an independent set. When viewed in this way we can speak of a proper colouring
as a partition of the vertex set into independent sets. In general, graph colouring can
be thought of as a partition of the elements of a graph (vertices or edges), with the

requirement that the partition satisfies specified constraints.

Standard vertex colouring is used to schedule activities in a conflict-free manner. Sup-

pose we need to schedule meetings of several committees at various time slots. We model
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it by a graph with one vertex for each committee and an edge between two vertices if
the corresponding committees have a common member. A proper vertex colouring of
this graph, indicates a schedule where no two committees with a common member are
scheduled a meeting at the same time. Scheduling the allocation of processor registers to
program variables by a compiler, to enhance performance, is a very important real-time
application of proper vertex colourings. Proper edge colouring can be used in a similar
fashion to schedule matches between teams in a sports league, so that, no team is as-
signed two matches to be played at the same time. Colouring problems are good tools
for modelling scheduling problems of various types. In this thesis we consider an impor-
tant variant of graph colouring called acyclic edge colouring. More details are given in
Section [C2

1.1 Definitions and notations

Here, we present some definitions and notations which we use throughout the thesis. We
also state some well known results. Where we have used a notation, concept or result not
stated here, it can be taken to have its standard meaning in widespread use. We consider
only finite, simple, undirected graphs G = (V| E), where V is called the set of vertices
and E is called the set of edges. Throughout, we use n to denote |V|. Each edge is a
2-element subset of V. Sometimes, we use the short notation (u,v) to denote {u,v} € E.
If v € e, where e € E, then we say that v is an endpoint of e. Two vertices v; and v, are
said to be adjacent (or neighbours) if (v, v2) € E. A vertex v and an edge e are said to
be incident to each other if v € e. Two edges are said to be incident to each other if they
share an endpoint.

A path in G is a sequence of vertices vy, vy, . . ., Vk_1, Ug, such that the vis are all distinct
and for 0 < i < k, (v;,v;11) € E. The length of a path is the number of edges it contains.
A path starting at a vertex u and ending at a vertex v is called a u-v path. We denote a
path on n vertices by P,. G is connected if, for every pair of vertices u,v in V', there is a
u-v path.

A cyclein G is a sequence of vertices vy, vy, . . ., Ug_1, U, such that vy = vg, {vo, ..., vp_1}
are all distinct and for 0 < i < k, (v;,v;41) € E. The length of a cycle is the number of

edges it contains. We use C,, to denote a cycle on n vertices. The length of a shortest
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cycle and a longest cycle in a graph are called its girth and circumference respectively.
We will use girth frequently and for a graph G we denote it by g(G). G is 2-connected if,

for every pair of vertices u,v in V', there is cycle which passes through both u and v.

In general, the connectivity of a simple graph, is the smallest number of vertices which
need to be deleted to disconnect the graph. Analogously, the edge connectivity of a graph
is the minimum number of edges which need to be deleted to disconnect the graph.

Let G; = (V4, Eq) and Gy = (V3, E5) be two graphs. We say G is a subgraph of Gy if
Vo C Vi and Ey C Ey. If; in addition, for each vy, v € Vb, (v1,v9) € Ey iff (v, v5) € Ey,
we say Gq is an induced subgraph of G. The subgraph of a graph G = (V| E) induced by
the vertex set V' is denoted by G[V’]. A pair of graphs G; = (V, E;) and Gy = (V, E3) on
the same set of vertices V' are complementary if for all u,v € V| (u,v) € Ey iff (u,v) ¢ Es.
The complement of a graph G is denoted by G. G = (V, E) is said to be a complete graph
if for each u,v € V, (u,v) € E. The complete graph on n vertices is denoted by K,. A
graph and its complement constitute a partition of the edge set of the complete graph. A
maximal connected subgraph of a graph is called a component of the graph. Similarly, a

maximal 2-connected subgraph is called a block of the graph.

Two graphs G; = (Vi, Ey) and Gy = (Va, Ey) are isomorphic to each other if there
exists a bijective function f : Vi — V3 such that (u,v) € Ey iff (f(u), f(v)) € Ey. The
function f is said to be an isomorphism between the graphs. A pair of isomorphic graphs

have identical structural properties.

A graph G = (V| F) is said to be bipartite if V' can be partitioned into two non-empty
parts V; and V5 (called partite sets) such that each edge e € E joins a vertex of V] to
a vertex of V5. The concept of bipartite graphs can be extended naturally to r-partite
graphs for each r > 2. A complete bipartite graph is a bipartite graph in which there is
an edge joining each pair of vertices lying in different partite sets. A complete bipartite

graph with partite sets of size m and n is denoted by K,, .

The degree of a vertex v in G, denoted by dg(v), is the number of edges incident to
v. If G is clear from the context, we use the shorter notations d, or d(v). The mazimum
degree of a graph G, denoted by Ag or A(G), is the maximum degree of any vertex in
G. Similarly, the minimum degree of a graph G, denoted by dg or §(G), is the minimum
degree of any vertex in G. The average degree of a vertex in G, denoted by du.,(G), is
defined to be 2|E(G)|/|V(G)|. The symbol G is often dropped in these notations when
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the graph under consideration is clear from the context.

A subset M C F is a matching if no pair of edges in M are incident to each other and
its size is the number of edges in it. A mazimal matching of a graph G is a matching of
G which is not contained in any other matching of G. A mazimum matching of G is a
matching of maximum cardinality. The size of a maximum matching of GG is an important
parameter. It is denoted by o/(G).

The parameters A(G), ¢g(G) and o/ (G) have a strong bearing on acyclic edge colouring
and the acyclic chromatic index which is the focus of this thesis.

A clique in a graph G is a complete subgraph of G. A mazimal clique K of a graph
G is one which is not contained within any other clique of G. The size of a clique of G
is the number of vertices it contains; a clique on k vertices is also called a k-clique. A
mazximum clique of G is a clique whose size is at least as large as the size of any other
clique of G. The clique number of G, denoted w(G), is the size of a maximum clique in G.
Similarly, an independent set I in G is I C V such that there is no edge in G joining two
vertices in I. The independence number of G, denoted a(G), is the number of vertices in

a maximum independent set of G.

1.1.1 Graph colourings
First, we define vertex and edge colourings.

Definition 1.1.1. A proper vertex colouring of a graph G is a function f : V — C', where
C' is any finite set of labels (called colours) such that adjacent vertices are mapped to

different colours.

Definition 1.1.2. The chromatic number of a graph G, denoted by x(G), is the minimum

number of colours (i.e. |C]) sufficient to properly colour the vertices of G.

The set of vertices receiving the same colour in a colouring, is called a colour class.
Clearly, each colour class forms an independent set. Any proper vertex colouring of a
graph, partitions V' into independent sets.

It is clear that for any graph G, x(G) < A(G)+1. In fact, there is a very simple linear
time algorithm which, given an arbitrary ordering of V(G), iteratively produces a proper
colouring of V(G) using at most A(G) + 1 colours. Also, by Brooks” Theorem ([Bro4il),
X(G) < A(G) for any connected graph G unless G is a complete graph or an odd cycle.
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Definition 1.1.3. A proper edge colouring of a graph G is a function f : F — C, where

C is any finite set of colours such that incident edges are mapped to different colours.

Definition 1.1.4. The chromatic indez of a graph G, denoted by \'(G), is the minimum

number of colours (i.e. |C|) sufficient to properly edge colour G.

The set of edges receiving the same colour in an edge colouring, is called a colour
class. It follows that the edges in any colour class form a matching. We have \'(G) >
|E(G)|//(G). Any proper edge colouring of a graph partitions its edge set into matchings.

The study of edge parameters of a graph can be thought of as the study of the corre-
sponding vertex parameters of an associated graph, called its line graph. The line graphs

are defined below.

Definition 1.1.5. The line graph, denoted by L(G) = (V', E'), of a graph G = (V, F) is
the graph in which V' = F and (v}, v}) € E' if v] and v} are incident to each other in G.

The class of line graphs has been well characterised and there are very efficient algo-
rithms [Kra43| to determine whether a given input graph is a line graph.

In the light of this definition, it is clear that a proper edge colouring of any graph
G is a proper vertex colouring of L(G) and wice versa. Thus, x'(G) = x(L(G)). This
relationship does not, however, hold for all problems. For example, an eulerian tour of G
is a hamiltonian cycle in L(G), but the converse is not true. Since incident edges must
receive different colours, it is clear that x'(G) > A(G). Since A(L(G)) < 2A(G) —
follows that x(L(G)) < 2A(G) — 1. This trivial upper bound on the chromatic index was
significantly improved by Vizing [Viz64] and his result is stated in the theorem below.

Theorem (Vizing). For any graph G, A(G) < X'(G) < A(G) + 1.

Vizing’s proof is constructive and the resulting algorithm is an efficient one for produc-
ing an edge colouring of any graph G using at most A(G) 4 1 colours. The running time
of a straightforward implementation of Vizing’s idea is O(n*). There have subsequently
been several improvements and refined algorithms. See [GNKTRH] for better results.

We now define notions central to the problem which is addressed in this thesis.

Definition 1.1.6. An acyclic edge colouring of a graph G = (V| E) is a proper edge
colouring of G such that there is no two coloured cycle. Equivalently, the subgraph

induced by any pair of colour classes is a forest.
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Definition 1.1.7. The acyclic chromatic index (or acyclic edge chromatic number) of a
graph G, denoted by a'(G), is the least number of colours sufficient to acyclically colour
the edges of G.

The analogous notions with vertices are also defined and studied (see [AMRI]], [FGRO03],
[Gru73|, [Sku04]). An acyclic vertex colouring of a graph using % colours, is a proper
colouring of its vertices such that every cycle uses at least three colours. The acyclic
chromatic number, a(G), is the smallest k for which such a colouring exists.

In this thesis, we study the acyclic edge colouring problem which is the same as the
acyclic vertex colouring problem restricted to the class of line graphs. In Section [C2 we

look at some known trivial and non-trivial bounds on a'(G).

1.1.2 Graph classes

In this section, we define the graph classes we study. Some classes of graphs we study are
defined on the basis of an operator called the cartesian product which is used to generate
complicated graphs from simpler ones. We define this operation below as also some of the

graphs we consider.

Definition. Given two graphs G = (V3, Ey) and Gy = (Vs, Es), the cartesian product of
G1 and Gy, denoted by G105, is defined to be the graph G = (V, E) where V =V} x V,
and E contains the edge joining (u1,us) and (vy,v9) if and only if either u; = v, and

(ug,v2) € Ey or uy = vg and (uyg,vy) € E.

This operation is associative and commutative. Thus, the cartesian product operator
can be applied to any finite series of graphs in any order, without affecting the resultant
graph.

Below are defined some well known classes of graphs definable in terms of cartesian
product. We use PATHS and CYCLES to donote the set of all paths and all cycles on three
or more vertices respectively. We sometimes use the notation EDGE when talking about
the graph P.

Definition. A hypercube is any graph obtained as the cartesian product of a number of

Py’s. Its dimension is the number of P,’s in the product.
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Definition. A grid or mesh is any graph obtained as the product of graphs from PATHS.

Its dimension is the number of paths in the product.

Definition. A torus is any graph obtained as the cartesian product of graphs from Cy-

CLES. Its dimension is the number of cycles in the product.

The above three types of graphs are all special cases of the class of partial tori defined

below. We also refer to these graphs as grid-like graphs.

Definition. A d-dimensional partial torus is a connected graph GG, where G is of the form
G = G10G, - --0Gy, where GG; € EDGE U PATHS U CYCLES for each i < d.

Definition. A k-tree is any graph obtained from the complete graph K., by a sequence
of zero or more operations of adding a new vertex adjacent to the vertices of an existing

k-clique in the graph.

Definition. A partial k-tree is any subgraph of a k-tree.

1.1.3 Algorithms and complexity

Here, we give a brief introduction to algorithms and the complexity of problems. See
[CLRRY|, for an excellent and comprehensive introduction to the the theory of algorithm
design.

We define the efficiency of an algorithm as the number of elementary steps it uses
in order to solve a problem instance of a given size. For an algorithm A, we denote by
T4(n) the maximum running time (measured by the number of elementary operations)
taken by the algorithm on any input of size n. We compare the relative merits of two
algorithms for a problem on the basis of these functions, focussing on the function values
asymptotically, as the input size grows arbitrarily large.

We say an algorithm for a problem is efficient if its running time is bounded by some
polynomial function of its input size, n. A problem is said to be tractable, if it has an
efficient algorithm to solve it and otherwise it is said to be intractable. We also use the
notion of NP-hard optimisation problems. For an introduction to this notion, see [G.IT9.
An NP-hard optimisation problem is not likely to admit an efficient algorithm for solving it

exactly. In that case, we overcome the difficulty by designing an approximation algorithm.

7
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1.2 Acyclic edge colouring

The notions of acyclic vertex and edge colourings were introduced by Grunbaum in
[Gru73]. For the edge version, it was conjectured by Alon, Sudakov and Zaks (see
[ASZ01]), and independently by Fiamcik (see [Fia7g]), that o'(G) < A + 2 for every
G and they also provided examples of graphs (complete graphs on an even number of

vertices) requiring A + 2 colours in any acyclic edge colouring.
Conjecture 1.2.1. For any graph G, ¢/(G) < A(G) + 2.

As we have seen, many graph theoretic problems concerning edges can be viewed as
equivalent vertex problems in the corresponding line graph. Solutions to one problem yield
solutions to the other and vice versa. However, this statement is not true in general as
explained in Section [LTJl In the case of acyclic colouring though, the above observation
holds. An acyclic vertex colouring of L(G) yields an acyclic edge colouring of G' and
conversely also, an acyclic edge colouring of G yields an acyclic vertex colouring of L(G).
This is true even for the standard vertex and edge colouring problems. The number of
colours used in each case is identical.

We obtain bounds on a/(G) in terms of its maximum degree A. The reason for this
choice is that A is a lower bound and there exists a function f(A) such that ¢’(G) < f(A)
for all graphs. Here, the function has been shown to be linear. No other parameter better
satisfies both the criteria of being easily computable and closely tied to the value. This
is also a parameter commonly used to bound the chromatic number and chromatic index
of graphs.

We have seen that x(G) < A(G) + 1, while A(G) < X'(G) < A(G) + 1 for any graph.
However, A+ 1 is not always tight for x(G), as seen in the case of bipartite graphs, where
X(G) = 2, while A(G) is unbounded. We infer that in the case of ordinary vertex and edge
colourings, we could have A(G) significantly away from x(G), but A(G) and x/'(G) differ
by at most 1. A similar phenomenon holds for acyclic colouring as the following bounds
indicate. For any graph, y(G) < a(G) < O(A3), while d/(G) = 6(A) (see [ANRIT]).
Thus, for planar graphs a(G) < 5 always, but A(G) is unbounded. This phenomen of
the edge version being better concentrated is observed in list colouring problems also, in
addition to the standard proper colouring and several other problems as well.

In view of Conjecture [CZTl and the trivial lower bound of A(G) on o'(G), we often
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use the term gap to refer to the absolute difference in value between these two parameters

of a graph.

The acyclic edge colouring problem is interesting and challenging because an exact
estimate of a/(G) is not yet known even if G = K,,, while usually graph invariants are
easily determined for complete graphs. This also demonstrates the difficulty inherent in
estimating this parameter. Another class of graphs for which there are no good estimates
on a/ (@) are bipartite graphs. This gives further indication of the difficulty of the problem.
A possible explanation for the problem being difficult even on bipartite graphs could be
the fact that even cycles are in some sense are the core of the problem. Any proper

colouring automatically ensures that odd cycles receive at least three colours.

When considering the acyclic colouring problem, we can always assume without loss
of generality that the graph is connected, since the independent acyclic colourings of the
different components using the same sets of colours yield an acyclic edge colouring of the
whole graph. In fact, we often assume the graph is 2-connected, because there can never
be a cycle contained in more than one block. Thus independent colourings of each block
can be combined by renaming some of the colours and removing conflicts at cut vertices
to ensure the colouring is proper. Another property is that A-regular graphs (A > 1)
need at least A+ 1 colours for an acyclic colouring. To see this, observe that in any proper
colouring using exactly A colours, each colour class is a perfect matching and hence, the
union of any two colour classes is a 2-regular graph, which is always a collection of vertex

disjoint cycles.

From the point of view of applicability, the acyclic edge colouring problem is closely
related to standard versions of vertex colouring and edge colouring which are used to model
conflict-free scheduling of stand-alone activities and interactions respectively. Acyclic edge
colouring can be used in conflict-free scheduling of interactions in an environment where
cyclic deadlocks may arise. Acyclic chromatic index is also related to star chromatic
number and oriented chromatic number (see [KSZI7|,[GTMP07]|), both of which have
applications in protocols for mobile communication. Any improved estimate on the acyclic
chromatic index leads to an improvement in estimating the oriented chromatic number of

line graphs.
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1.3 Other/earlier results

While the acyclic edge colouring problem still provides a lot of scope for research, some
work has already been done in the area and interesting results have been obtained. We
now give below a survey of some of the prominent results already obtained in this area.
In addition to results elaborated below, see also [EGRO3), [Bur79],[MRIS] for further work
on this problem.

See [GP0O5] and [GGWO6| for work on a generalised form of the acyclic colouring
problem. In the afore-mentioned works, the authors define the r-acyclic edge colouring as
a colouring in which any cycle in the graph of length k uses at least min{r, k} colours.
They define the associated parameter r-acyclic chromatic indez, a..(G) for a graph G as
the minimum number of colours sufficient to obtain such a colouring. They obtain bounds
on the value for random regular regular graphs which hold asymptotically, and also tight
bounds for a.(G) for bounded degree graphs. Other types of generalisation should also
be possible.

1.3.1 Bounds on acyclic chromatic index

The following theorem (which apears in [AMRII]) is an existential proof that a'(G) is
linearly upper bounded by A. It gives an asymptotically tight value.

Theorem 1.3.1. For any graph G, d'(G) = O(A).

The next is a result confirming Conjecture [L2ZT] for graphs with high girth. The result
appears in [ASZ0T], and the proof is by the probabilistic method.

Theorem 1.3.2. There is a constant ¢ > 0, such that, if G is a graph with g(G) >
cA(G)log A(G), then o' (G) < A(G) + 2.

A weaker bound for a larger class of graphs (also appearing in [ASZ0T]) is given below.

Theorem 1.3.3. There is a constant ¢ > 0, such that, if G is a graph with g(G) > clog A,
then o/ (G) < 2A + 2.

The next result, due to Nesetril and Wormald (see [NW05|), shows the conjecture is

true for random regular graphs.



1.4. MAIN RESULTS OBTAINED HERE

Theorem 1.3.4. If G is a random d-regular graph on n vertices, then o' (G) = d + 1
with very high probability. Here, it is assumed that d is fized but arbitrary while n grows

arbitrarily large.

It is an improvement over an earlier result, where the upper bound was greater by 1,
for graphs on an odd number of vertices (see [ASZ0]).

1.3.2 Known algorithmic aspects of acyclic edge colouring

Very few results have been obtained in this area. This is probably because, it is hard to
prove bounds which are nearly tight even for highly structured classes of graphs. If we
do not impose a structure on the graph, then again we do not expect to get very tight
bounds. The result mentioned below is due to Skulrattankulchai (see [Sku(4]).

Theorem 1.3.5. If A(G) < 3, then o/(G) < 5. There is a linear time algorithm which

produces such a colouring.

The following proof due to Subramanian, is the best bound obtained, without using
the probabilistic method, on '(G) for all graphs (see [Sub06]). It is a constructive proof

which produces such a colouring in polynomial time.

Theorem 1.3.6. For any graph G, o'(G) = O(AlogA). Also, such a colouring can be

obtained in polynomial time. The colouring procedure is based on a greedy heuristic.

The next result indicates why it might be hard to obtain optimal or almost optimal

colourings even for very special classes of graphs (see [AZ02]).

Theorem 1.3.7. It is NP-hard to determine a/(G), where G is a 2-degenerate subcubic
graph.

This, of course, implies that the problem is NP-hard for general graphs also.

1.4 Main results obtained here

We obtain good estimates on the acyclic chromatic index of various classes of graphs and

often efficient algorithms which either produce colourings with the estimated number of
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colours or a close approximation. The results can be broadly classified into two parts.
First we mention bounds which we obtained using random colourings and probabilistic
analysis. These results use no structural properties of the graph, except assumptions
on its girth. We believe that the bounds obtained are unlikely to be tight to within an
additive constant factor. The second set of results give bounds which are very close to
the optimum value and apply to structured families of graphs. The proofs rely heavily on

structural properties of the graph and also yield efficient algorithms to produce colourings.

1.4.1 Improved upper bounds on d/'(G)

The following theorem is a result obtained by us, which gives an upper bound on the

acyclic chromatic index of graphs whose girths are lower bounded by a specified constant.

Theorem. For any graph G with girth, g(G) > 9, the acyclic chromatic index o' (G) <
5.91A(G).

The next theorem gets a better upper bound but the class of graphs to which it is
applicable is a strict subset of the class considered above. It applies only to graphs with

higher girth. The proofs of these results are quite similar.

Theorem. For any graph G with girth, g(G) > 220, the acyclic chromatic index o' (G) <
4.52A(G).

The next result gives a general upper bound on the acyclic chromatic index of a graph
as a function of its maximum degree and its girth. As we discussed earlier, the maximum
degree of a graph is a very natural parameter, in terms of which its acyclic chromatic index
can be bounded. Also, the girth of a graph is a measure of how easy it is to colour it
acyclically with a fixed set of colours. The higher its girth the easier it seems to colour the
graph, especially when we adopt a random colouring procedure. This result is interesting

because it gets an upper bound in terms of these two crucial parameters.

Theorem. There are absolute constants ¢y, co > 0 such that, for any G with g > ¢ log A

d(G)<A+1+ [CQ (Ak;gAﬂ

All these results appear in [MINS0O5],[MNSQO7H].

we have,

12
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1.4.2 Algorithmic bounds
Here, we state the results we obtained using constructive techniques.
Theorem. Let G be a simple graph with o'(G) =n. Then,

1. (GOPy) <n+1,ifn>2.

2. d(GOP) <n+2,ifn>2andl > 3.

3. d(GOC) <n+2,ifn>2andl > 3.

The next two theorems follow as corollaries and deal with more concretely defined

classes of graphs.

Theorem. The following is true for each d > 1.
e d(G)=A(G)+1=d+1, if G is a hypercube of dimension d > 2; a/(Py) = 1.
e d(G)=A(G) =2d, if G is a grid of dimension d.
e d(G)=A(G)+1=2d+1, if G is a torus of dimension d.

Theorem. When G has factors from at least 2 of the classes CYCLES, PATHS and EDGES,
d(G) € {A(G),A(G) + 1}, and its exact value depends on the specific combination of

factors.

The results of the preceeding two theorems are constructive leading to efficient algo-
rithms for obtaining almost optimal acyclic edge colourings. These theorems are stated

more precisely in Chapter Bl, where they are considered in greater detail. The preceeding

three results appear in [MNS06].
The next theorem (see [MSOT)]) gives a slightly weaker bound on a/(G) than the previ-

ous theorems, but it covers a far wider class of graphs. It relates a/(G) and the cartesian

product operation in a general setting.

Theorem. Let G = (Vg, E¢) and H = (Vy, Ey) be two connected non-trivial graphs such
that maz{a'(G),d'(H)} > 1. Then,

d(GOH) <d(G)+d(H)

13
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The following result (see [MNSOT7a|) on acyclic edge colouring was also obtained by

us, but forms a part of the Ph.D. thesis of my collaborator N. Narayanan.

Theorem 1.4.1. If G is an outerplanar graph then o/(G) < A(G)+1. A colouring using

this many colours can be obtained in O(nlogA) time.

The next result states good bounds obtained by us on a/(G) for the class of partial 2-
trees (see [MNSOS]). In this case also, the results translate directly into efficient algorithms

which produce acyclic edge colourings using the claimed number of colours.

Theorem. If G is a partial 2-tree then o' (G) < A(G) + 1.

1.5 Thesis outline

In Chapter B, we present the upper bounds on a/(G) for graphs with high girth. We also
present therein, a result connecting acyclic chromatic index to girth and maximum degree.
Chapter Bl gives an exposition of acyclic colouring of partial tori. The acyclic colouring
of the cartesian product of arbitrary graphs is presented in Chapter @l In Chapter B we
study acyclic colouring of partial 2-trees. Chapter Bl contains some concluding remarks

and outlines possible future directions for research.

14



Chapter 2

Acyclic edge colouring of high girth
graphs

In this chapter we present an upper bound on the acyclic chromatic index, a/(G), for
all graphs with girth, g(G), greater than a fixed constant. The proof is by probabilistic
arguments and improves the estimates on this parameter for a fairly large class of graphs.
We also obtain a general relationship between the girth of a graph and an upper bound
on its acyclic chromatic index. Some of the ideas in the proof are similar to those used in
earlier work by others, while other ideas are new.

After introducing the idea of attacking the acyclic edge colouring problem in Sec-
tion L1l we introduce the necessary probabilistic tools in Section A brief survey of
other work on acyclic colouring using the probabilistic method is presented in Section
Section contains our results and the proofs. We indicate open problems and present

some conclusions in Section

2.1 Introduction

The probabilistic method is a powerful tool to prove the existence of combinatorial struc-
tures having some desired property. It was pioneered by Erdés who applied it to various
combinatorial problems (see [ASO(]). It provides a proof of the existence of such structures
using probabilistic arguments. Also, it is sometimes possible to translate the existence

proof into an efficient algorithm which is significantly faster than the brute-force approach
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CHAPTER 2. ACYCLIC EDGE COLOURING OF HIGH GIRTH GRAPHS

of enumerating all possibilities.

In the context of acyclic edge colouring, it has been shown, originally by Alon, Mc-
Diarmid and Reed, that the number of colours sufficient is O(A) using the probabilistic
method (see [AMROII],[MRIS]), but to design an efficient algorithm which provably pro-
duces a colouring using o(A?) colours is non-trivial. Note that any proper edge colouring
of G which requires that each path P on three edges should use three colours is also an
acyclic edge colouring. It is easy to see that such a colouring can be obtained using 2A?
colours. This can be seen by noting that each such colouring is a proper vertex colouring
of the square of its line graph L(G), namely L(G)?, and that A(L(G)?) < 2A(G)?. This
colouring is also efficiently constructible. The best, and so far the only constructive bound
which is an improvement over this trivial bound is an algorithm, due to Subramanian,
which produces a colouring using O(Alog A) colours in polynomial time (see [Sub06]).

Thus, there is a large gap between what can be shown existentially and what can
be constructed systematically. Even if we ignore the issue of algorithms, the scenario is
bleak. There is no combinatorial or deterministic proof that o/(G) = O(A), to match
the bound proved using recourse to randomness. Most constructive results on acyclic
edge colouring have been obtained for highly structured classes of graphs where the extra

structural information and properties have been used as a handle to obtain the solution.

2.2 Tools and methods

For an introduction to probability theory and tools of the probabilistic method we refer
the reader to [Eel66],[ASO0],[MR0O2).

The basic approach to proving bounds on the acyclic chromatic index, using the prob-
abilistic method, is to randomly colour the edges of the graph with the specified number
of colours and show that the colouring thus obtained is an acyclic colouring with posi-
tive probability. Modification of this basic approach adds sophistication and, sometimes,
produces improvements. One possiblity is to combine the probabilistic method with a
deterministic method. In this approach one might relax the requirements of the colouring
produced by the random colouring and handle the defect by a deterministic method. On
the other hand one may produce a colouring with relaxed constraints using a deterministic

method and rectify it using a random procedure. It is also possible to interleave these
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methods an arbitrary number of times. Iterative random experiments have also provided
breakthroughs when a one pass method has failed in some problems.

Let us consider the basic approach mentioned above and colour each edge uniformly
at random and independently from a fixed set of colours. If we require that the random
colouring be proper, we observe that long cycles are less likely to receive exactly two
colours than their shorter counterparts. In fact, this statement holds even if we allow
the random colouring to be improper. It follows that any attempt to prove a bound by
this method is more likely to succeed if the class of graphs considered are assumed to
have high girth. This is reflected by the bounds obtained on a’(G) using the probabilistic
method.

Below we state some of the tools we use in proving the results in this chapter.

Lemma 2.2.1 (The Probabilistic Method). Let (Q2,p : Q — [0, 1]) be a finite probability
space. Let w € 2 be a random point chosen from this space. Let P C ) be an arbitrary
property. Then if Prob(w € P) > 0, then there exists a point w €  such that w € P.

The next lemma is a specialised tool which is a powerful weapon in the arsenal of
the probabilistic method. It helps in showing that with positive probability, none of a
collection of bad events occur. Suppose A, ..., A, is a collection of bad events which we
want to avoid and which are such that each A; fails to occur with positive probability.
If these are mutually independent, then it follows that with positive probability none of
them occurs. The following tool is very powerful because it is applicable even in scenarios

when there is limited interdependence between the events.

Lemma 2.2.2 (Lovasz Local Lemma). Let A = {A;,..., A,} be a set of events defined
over a probability space. For each i, let N; C A be such that A; is mutually independent

of all events in A\ N;. Suppose that for each event A;, there exists a real 0 < z; < 1,
such that Pr(A;) < a;[[;.aen (1 — ;). Then, Pr(AL, A;) > 0.

Given below is a simpler form of the local lemma, applicable under some assumptions.

Lemma 2.2.3 (Symmetric form of the local lemma). Let A;,..., A, be a set of events
defined over a probability space. Suppose for some p € (0, 1) and some integer d > 0, that
for each i, Pr(A;) < p, and also A; is mutually independent of all but at most d other
events A;. If ep(d + 1) < 1, then Pr(A}_, 4;) > 0.

17
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Typically, in proofs using various forms of the local lemma, we define a set of bad
events over a suitable probability space, such that their non-occurrence guarantees the
property we are trying to prove. We then use the local lemma to show that with positive
probability none of these events occur. It follows that the property we are trying to
prove holds with positive probability. The probability of a sample point meeting the
specifications, however, might be very small so that an efficient randomised algorithm

does not normally manifest itself.

2.3 Related results

In this section, we outline related results obtained by other researchers. That o'(G) =
O(A?) can be seen by observing that any colouring in which incident edges as well as edges
at distance two get distinct colours is an acyclic colouring. There are O(A?) edges within
distance at most two from any given edge. Thus a simple greedy procedure produces a
colouring with O(A?) colours. A linear O(A) upper bound for all graphs was proved using
a probabilistic method. Randomness has also been successfully utilised to prove a bound
tight within an additive factor of 2, for all graphs with suitably high girth in terms of the

maximum degree.
Theorem 2.3.1. For any graph G, d/(G) < 64A.

This result (appearing in [AMRIT]) was later improved to 16A, by Molloy and Reed
(see [MROS]), using essentially the same experiment and analysis, but making more careful
calculations. It can be shown that even with arbitrarily precise calculation, this experi-
ment cannot yield a bound significantly better than 12A. The problem is that, using the
probabilistic arguments of [AMRIT] and [MRIS], one requires almost 12A colours even for
proper colouring alone without acyclicity. Consider the random experiment, used there,
where each edge chooses a colour uniformly at random and independently from a set of
C = aA colours for some a > 1. Even if we ignore acyclicity and forbid only the events
corresponding to pairs of incident edges receiving the same colour, we can easily verify that
any proof (based on Lovasz Local Lemma with the same constant for all events) ensuring
properness of the random colouring with positive probability, requires that a > 4e.

We define a bad event as a pair of incident edges receiving the same colour. The

1

probability of this event is & = ﬁ. The number of other events on which any of these

18



2.3. RELATED RESULTS

events depend is at most 2 x 2(A — 1) < 4A. If we take the associated constant of the
local lemma (note that we follow their specification, that the same constant is used for

all events) to be ﬁ, the inequality which we get is

1 1 1\*
Sl S I [
alA T alA aA
A solution to this in the valid range of o does not yield a value of a < 4e. The above
arguments are based on the local lemma in its most general form. Thus, the proof of

d'(G) < 9A given in [MR02], based on applying a specialized version of Lovasz Local

Lemma, cannot be correct. For further details on these arguments, see Appendix A of

our paper [MNSO7D].

However, if we bring in girth assumptions, we get better bounds.

Theorem 2.3.2. Jc > 0, such that VG with girth, g(G) > cAlog A, o/ (G) < A+ 2.

This result, proved in [ASZ0I] using the probabilistic method, reflects the fact that

short cycles give rise to difficulties when getting good bounds on a/(G). The next result,
also appearing in [ASZ0T], is similar.
Theorem 2.3.3. Jc > 0, such that YG with girth, g(G) > clog A, d/(G) < 2A + 2.

As for constructive bounds, the following result was obtained in [Sub06].

Theorem 2.3.4. For any graph G, o'(G) = O(AlogA). There is a deterministic algo-
rithm running in time O(mnA?*(log A)?) that produces such a colouring with these many

colours.

This result is the first, and so far the only, o(A?) upper bound for all graphs, proved
by a constructive method. Also, tight bounds have been obtained for random regular
graphs by Alon et. al. in [ASZ01], and Nesetril and Wormald in [NW05|. The following

result is from [NWO5].
Theorem 2.3.5. If G is a random d-regular graph on n vertices (d is fized, n — 00),
then Pr(d'(G) = (A+1)) — 1.

There is no explicit assumption here on the girth of the graphs. In fact, in the case of

random d-regular graphs, there are short cycles but there is a guarantee that any pair of

short cycles are separted by a long path.
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2.4 Our results

In this section we present the results we obtained using the probabilistic method. Like the
earlier results, some assumptions are made about the girth of the graphs. There follows

an elaborate description of the proofs of the results.

Theorem 2.4.1. There are absolute constants ¢y, co > 0 such that, for any graph G with

d(G)<A+1+ [02 (Ak;gAﬂ

The above result generalises Theorems and Z33  The following results give

bounds on da/(G) for graphs with some assumptions on their girth.

g > c1log A we have,

Theorem 2.4.2. For any graph G with girth, g(G) > 9, the acyclic chromatic index
d(G) < 5.91A(G).

Theorem 2.4.3. For any graph G with girth, g(G) > 220, the acyclic chromatic index
d(G) < 4.52A(G).

First, we present the proofs of Theorems 242 and in Section EEATl After this,
we present the proof of Theorem 24Tl in Section ELA2

2.4.1 Proofs of improved upper bounds

We give a combined proof of Theorems and here. The colourings, that consti-
tute the proofs, are obtained by producing improper random colourings satisfying certain
constraints, which are then rectified. We define a measure of the improperness, and the
two proofs differ only in the value of this measure and are thus similar. In applying Lovasz
Local Lemma we have not optimised the constants. With a more meticulous calculation

it might be possible to improve the bound further.

Proof. 1t is known that, if A < 3, then o/(G) < A + 2 (see [Bur79|, [Sku04]). Hence
we may assume that A > 4 in our arguments. Our proof consists of two stages. In the
first stage, we show, by probabilistic arguments, the existence of a colouring C, using a
set C' of ¢A colours (where ¢ > 1 is a constant to be fixed later), such that C satisfies the

following properties for some positive integer n < 4.
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(i) every vertex has at most 7 incident edges of any single colour,
(i) there are no properly two-coloured cycles, and

(iii) there are no monochromatically coloured cycles.

n = 1 corresponds to the standard proper edge colouring. The earlier results (The-
orem ZZTl and its improved form in [MR9S]), was obtained without recourse to this
parameter 1. Thus, this is the main new idea which allows us to get a significantly better
bound, with a restriction to graphs of girth greater than a fixed constant. In apply-
ing the local lemma, the properness condition doesn’t allow a bound significantly better
than 12A, as stated earlier. Thus allowing limited improperness (every colour class is a
bounded degree forest, instead of just a matching), and then partitioning the edge set
of each forest, we obtain an acyclic colouring with a small multiplicative overhead in the
number of colours. Even with the overhead it is much smaller than 12A.

Note that in C, each colour class (set of edges receiving the same colour) is a forest of
maximum degree at most 7. In the second stage, we split each colour class into n parts
by recolouring the edges of each colour ¢; with the colours ¢}, ..., ¢! to get a colouring C’.
We claim that C’ is proper and acyclic. Since every forest of maximum degree at most d
is properly edge colourable using d colours, it is easy to see that properness holds. Any
bichromatic cycle in the colouring C’ should either come from an existing two-coloured
cycle in C, or from a monochromatic even length cycle in C being split into two. Both of
these possibilities are forbidden by properties (ii) and (iii) of the colouring, respectievely.
It follows that the colouring C’ is proper, acyclic and uses at most ¢nA colours.

To complete the proof, it is now sufficient to show that such a colouring C, described
above, exists. We do this probabilistically, using Lovasz Local Lemma. For this, we
do the following random experiment. Each edge chooses a colour uniformly at random
and independently, from the set C. For the resulting random colouring to satisfy (i)-(iii)
above, define the following three types of bad events. As explained below, in the absence

of these events, the colouring obtained satisfies the above properties.

be the

event that all of them receive the same colour. We call this an event of Type I.

1. For a set of n + 1 edges {e1,...,e,41} incident on a vertex u, let E, ., .,

2. Let Ec g, denote the event that an even cycle C' of length 2k is properly coloured
with 2 colours. We call this an event of Type II.
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3. Let Ecy denote the event that a cycle C' of length ¢ is coloured monochromatically.
We call this an event of Type III.

Suppose C be such that none of the above events hold. We claim that properties
(i)-(iii) above are satisfied. It is easy to see that the absence of events of type I implies
that (i) holds. Similarly, absence of type II, III events, respectively imply (ii) and (iii).

In order to apply the local lemma, we need estimates for the probabilities of each
event, and also for the number of other events of each type which can possibly influence
any given event. For the above random experiment, an event £ is mutually independent
of a set B of other events if the set of edges on which £ depends is disjoint from the set
of edges on which the events in B depend. Hence, we calculate the the number of events
of each type that depend on a given edge, and multiply by the number of edges defining
the event £ to get an upper bound on the number of events influencing £. The following
two lemmas present the estimated bounds.

The proof of Lemma is straightforward. It is based on the elementary fact that
the probability of an event in a probability space is the ratio of the number of favourable
cases to the total number of cases. This, combined with a bit of simplification of the
expressions obtained give us the claimed values. Lemma [Z2 2 is proved by computing the
number of subgraphs of a fixed type to which any given edge in the input graph belongs.
As we stated earlier, we use the number of events of any type influenced by an edge to
estimate the interdependence. These values are estimated using nothing more than the
fact that the graph has maximum degree A and therefore the upper bounds obtained
apply universally to all the graphs.

Lemma 2.4.1. The probabilities of events are as follows:

1. For each event E,, of type L, Pr(Ee,.. c,1) = 5

centl [Cn

2. For each event E¢ o of type II, where the length of C' is 2k, Pr(Ec¢a;) < \CIQ%

3. For each event E¢y of type III, where C is of length ¢, Pr(Ecy) = \C|1/f—1'

Lemma 2.4.2. The following is true for any given edge e:

1. Less than 2;# events of type I depend on e.

2. Less than A?*~2 events of type II depend on e.
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3. Less than A2 events of type III depend on e.

In order to apply Lovéasz Local Lemma, let xp = 1/(aA)", 2, = 1/(8A)?**72 and
ye = 1/(vA)!, be the values associated with events of Types I, II and III respectively,
where «a,3,7 > 1 are constants to be determined by calculation. Recall that we use g to

denote girth. We conclude that, with positive probability none of the above events occur,
provided Vk > [2],0 > g

< 79 (1 _ xo)(n+1) o (1 — xe)(n-i-l)AQ(’—Q H (1 B y)\)(n—i_l)AA_Q
62(%] A>g

1 247 20—2 A—2
(Cmm S Ty (1 o xO)Qk P H (1 _ xg)QkA H (1 o y)\)QkA

0>[4] A2g
1 gﬂ IA20—2 A2
Wﬁye(l—ﬁo) g (1 — o) H(l—yA)
0>145] A2g

Let f(z) = (1 — 2). It is well-known that (1 — 1) 1 L. Defining

A = min {f(xo_l), min f(xy""), min f(y{l)} , it follows that

9>[%] A>g
247 (aA)" n‘%
2 < 2
M—a)® = (1= )" I > A
— n! = — = _— nla .
o (@A) (@A) =
Similarly,
A20-2 1 A > A67(2072) > ASl
(=2 = ][ (1- NG > ] =
02151 0>141 0>14]

where

1 1
5= 2 e S oy

0>1%]

AN—2
H (1 - y)\)AA_Q = H (1 — W) > HAW—(A—D/A > AS2

A>g
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where

1 1
= < .
S Z AT = Ay2(y — 1)

A>yg
Thus, taking roots on both sides and simplifying, the three inequalities required by
local lemma are satisfied Yk > [2], £ > g, provided

< < -A%5T and < —ATY (2.1)

Q|

| =
= |~

where
2 1 1

nla’ - (52 — 1)p251-4 - Aya=2(y = 1)

Now we have to set specific values of o, 3, and 7. First we set n =2 and a = 3 =
v =2. Using g > 9 and A > 4, we have A > (1 — 6—14)64 > 0.3649. It can easily be verified
that that the above inequalities () are satisfied by setting ¢ = 2.951. It follows that
a'(G) < 5.91 < 6A for all graphs G with girth ¢ > 9. This proves Theorem 2222

Secondly, we set n =4, a = 1.02, § = 1.04 and v = 1.04. Using g > 220 and A > 4,
we have A > (1—51)?% > 0.3671. It follows that by setting ¢ = 1.13, ¢/(G) < 4x1.13A =

256
4.52A when girth g > 220. Hence Theorem O

Further improvements on a/(G), which can be obtained (with this experiment) by
strengthening the girth requirement are only marginal as long as we focus on constant

lower bounds on girth.

2.4.2 Girth and acyclic chromatic index

An even cycle is called half-monochromatic with respect to a colouring if one of its halves (a
set of alternate edges) is monochromatic. Notice that, this definition includes bichromatic

cycles also.

Proof. For the sake of simplicity in the analysis, we write ¢ in the form ¢; A®log A, where
¢ > 0 and where ¢; is mentioned in Theorem EZZTl We can, assume without loss of
generality, that € < 1, because when ¢ exceeds 1, by choosing a large value of ¢1, ¢'(G) <
A + 2 as in Theorem As before, we assume A > 4.

The proof consists of an initial deterministic phase followed by a random phase. We

begin by obtaining a proper edge colouring of G using A + 1 colours applying Vizing’s
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method. We, then randomly recolour some of the edges with a new set of o(A) colours,
and show that with positive probability, the colouring obtained is proper and acyclic. This
random experiment is a slight modification of the ones used in the proofs of Theorems
and 2232

The random colouring is obtained as follows:
1. Obtain a proper colouring C : E — S; = {1,..., A+ 1}.
2. In the second phase we do the following:

e Activate each edge with independent probability p = é.

e BEach activated edge chooses a new colour uniformly at random and indepen-
dently, from the set Sy = {1’,..., (aA'"¢)'}, where a > 1 is a constant to be

determined later.

Denote the resulting random colouring by C'. With respect to C’, we define the fol-

lowing bad events.

1. For a pair of incident edges e and f, let E, ; denote the event that they are both

recoloured with the same new colour. We call this an event of type I.

2. Let E¢ o denote the event that a bichromatic cycle C of length 2% in C is undisturbed

in the recolouring process. Call this a type I event.

3. Let Ec g denote the event that a half-monochromatic cycle C' of length 2¢ in C
becomes bichromatic by retaining the same colour on a half and receiving a common

new colour on the other half, a type /1] event.

4. Let Ec o, denote the type IV event where an even length cycle C' of length 2m

becomes properly bichromatic with 2 of the new colours.

We claim that the absence of type I-IV events imply that the colouring C’ is proper
and acyclic. Since C is proper, the absence of events of type I ensures that C’ is also
proper. The absence of events of type I1, 1] and IV ensure respectively, (i) the absence
of bichromatic cycles using both colours from Sj, (ii) one colour from each of S; and S,
and (iii) both colours from Ss. It is therefore sufficient to show the absence of the above

four types of events which we do by using Lovasz Local Lemma.
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To apply the local lemma we need estimates for the probabilities of each event, and
for the number of events of each type possibly influencing a given event. As before, we
calculate the number of events of each type that depend on a single edge and multiply by
the number of edges in any event to get an upper bound on the total dependence. The

following two lemmas present the estimated bounds.

Lemma 2.4.3. The probabilities of events are as follows: For each
1. event Ey, of type I, Pr(Ey,) = aAp—f_E = -
2. event Ecop of type I1, Pr(Ecax) = (1 —p)?F < o2

3. event Ecy of type I11, Pr(Ecy) < 25l < 280

a l1—e a 1—e)2
4. event E¢ oy, of type IV, Pr(Ecoy) = p2m( A2 )(aAﬁs)Zm < ((GAA)QW)L )

Lemma 2.4.4. The following is true for any given edge e:

1. Less than 2A events of type I depend on e.
2. Less than A events of type I depend on e.
3. Less than 2A‘"! events of type I1I depend on e, for each ¢ > 2.

4. Less than A?™=2 events of type IV depend on e, for each m > 2.

To apply Lovasz Local Lemma, let 2y = 1/(aA), 2y = 1/(BAY%), yp = (2aAY9) /(vA)*
and z,, = (aA'™)2/((6A)?™) be the values associated with events of type I, I, I1] and
1V, where the lengths of the cycles in Type /11 and IV events are 2¢ and 2m, respec-
tively. Here «, 3,7,0 > 1 are real values to be determined by calculation. We conclude

that with positive probability none of the above events occur, provided Yk, ¢, m > [£],

1 . _
m < (1 N 330)4A 2A H A9 1 H (1 . Z}\)QAQA 2
0>[4] A>[4]
A>[4]
2aA~¢ o N
e < vl — z0) A (1 — xp)*2 H DA T (1= 2p)2a™
(aA) Rt
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aAl—e 2 - B
W S Zm(l o $0)4mA(1 . $1)2mA H (1 B y€)4mA9 1 H (1 B Z}\)QmAm 2
6>[4] A>T
Setting @ = f = v = 6 = 1000 and @ = 4000 and using the fact that (1 — 2)* >
Vz > 2 we have,

1
4

1 (1)
H e (Z)
0>[4]
22—2 1 52
[[a-=02"" 2 (Z)
A>T4]
where,
4da 1 4a
Si= ) WA =2 Y 5 <
0214 A =N AnETy - 1)
and ) . )
a a
Sz = Z QAP = 2 Z o S 2 :
= A2eged2 (g2 _
A9 A% o721 (9) A25212172(52 — 1)

Let P;, N; and z; denote, respectively, the probabilities, number of edges and local
lemma constants associcated with events of type 7. We can see that, as in the previous

proof, the inequalities required by local lemma are satisfied provided

N\
P <z (Z) , Vi (2.2)

where
2 1 4a a?

T=—"—+ +— + .
als - BAZ A (y — 1) A2STE172(52 — 1)

By choosing ¢; suitably large, we can verify that AT < % and each of the inequalities

[Z2) are satisfied. As a result, the inequalities corresponding to local lemma are also

satisfied. Finally fixing ¢y = a - ¢1, the theorem is proved.
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2.5 Conclusions

The work presented in this chapter has been published by us. The references are [MINSO7D],
[NINSO3].

We obtained a reasonably significant improvement over 16A, by a new idea which
initially allows limited improperness in the colouring. To do this, we only require to
assume a constant lower bound on girth, which is not a very severe constraint. We tried to
get better bounds by modifying the ideas presented in this chapter. Some of the ideas tried
include non-uniform assignment of colours randomly, and also allowing different values of
the parameter 7 for different colours. The optimum values occurred when everything was
identical. It would be interesting to find something radically different which lowers the
bound closer to its conjectured value of (A +2). A probabilistic argument might yield an
improvement but it is naturally unlikely to give a bound which is very tight.

J. Beck has designed a method (see [Bec91]) for translating existential proofs us-
ing Lovasz Local Lemma into efficient randomised algorithms for constructing an object
guaranteed by the proof. It would be interesting to investigate the applicability of Beck’s
method in the context of our proof.

The result we obtained in Theorem ZZT] unifies the two results of Theorems 233 and
in a generalised framework. Theorem gives a very tight bound but the class
of graphs it applies to is quite restrictive. For example, Theorem 232 when applied
to graphs G with minimum degree, 6(G) > 3, requires that A = O(logn). This is
because it is well-known that graphs having 6 > 3 always have a cycle of length O(logn).
Theorem gives a weaker bound applicable for a wider class of graphs. Our result,
Theorem 24Tl shows these to be special extreme cases of a trend.

Theorem L34 represents the first step towards getting an asymptotic improvement
over the trivial O(A?) bound towards the known value of O(A) by constructive means. It

would be interesting to improve this constructive bound further, possibly to O(A) itself.
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Chapter 3
Acyclic edge colouring of partial tori

In this chapter we consider the problem of acyclic colouring of partial tori (a.k.a. grid-
like graphs). We obtain tight bounds on the number of colours required and also design
efficient algorithms to produce such colourings. We mention classes of graphs for which
good algorithms have been obtained for the acyclic colouring problem in Section Bl We
define partial tori in Section and also introduce the notation we use. Section states
our results and the proofs follow in Section B4l An algorithm to acyclically colour partial
tori is presented in Section BX These algorithms are a direct result of the preceeding

proofs. Section makes some concluding remarks.

3.1 Introduction

Determining a'(G) to great accuracy is a very difficult problem. Even for the highly
structured and simple class of complete graphs, the value of a/(G) is not yet determined.
First, we recall the following known facts about acyclic edge colouring. It is NP-Hard to
determine ¢'(G). Also, d/(G) > x/(G) > A for any graph G. Recall, that x'(G) denotes
the chromatic index of G.

Often, the gap between the trivial lower bound of A and the demonstrated upper
bound is at least a linear function of A. This is the case for the family of odd graphs

which are a generalisation of the Petersen graph. The odd graph Oy has as vertex set the

(2]4:]:—1

when the corresponding sets are disjoint. It can be shown quite easily that A(G) +1 <

), k-element subsets of [1,...,2k + 1], and an edge between two vertices precisely
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CHAPTER 3. ACYCLIC EDGE COLOURING OF PARTIAL TORI

d'(G) < 2A(G)—1, for the class of odd graphs. While we believe the actual value is closer
to the lower bound, the problem is still open. Thus, results which are off by an additive
constant are good, and all the more so if the constant is 1 or 2.

Most of the results obtained in Chapter Pl and also those mentioned therein, are exis-
tential in nature and are not constructive. In those cases, there is no known effecient way
of obtaining such colourings which is better than looking through all possible colourings
until one is found. In this chapter we present results obtained by us, which provide good
estimates on the acyclic chromatic index of partial tori. In most of the cases the values
we provide are exact, and in the few remaining cases the value is off by an additive factor
of at most 1. Our main result, which is on the acyclic chromatic index of partial tori, is
obtained by an application of a more general result, which we prove first.

These graphs can actually be coloured in polynomial time with these many colours.
The only other examples of graph families where such tight bounds have been proved
and are constructible efficiently are graphs with A(G) < 3, due to Skulrattankulchai
(see [Skul4]), our results on outer planar graphs (see [MNS(O7a]) and partial 2-trees (see
IMNSO8|) and a result on 2-degenerate graphs (JCMO7]) due to Manu and Chandran. The
methods used in our results here can be extended to give bounds on any graph expressed
as the cartesian product of other graphs (see [MSO7]) . The bounds are in terms of
corresponding values of the constituents of the product, and are not as tight as these

bounds. These results are presented in Chapter Fl

3.2 Definitions and notations

Some of the notations and definitions we use in this chapter have already been given in
Chapter [, but we provide them again for ready reference. We use P, to denote a simple
path on k vertices. Without loss of generality, we assume that V(P;) = {0,...,k—1} and
E(Py) ={(i,7) : |i — j| = 1}. Similarly, we use C}, to denote a cycle (0,...,k—1,0) on k
vertices. We use PATHS to denote the set { P, Py, ...} of all paths on 3 or more vertices.
Similarly, we use CYCLES to denote the set {C3,Cy, ...} of all cycles. We sometimes use
EDGE to denote P,. The standard notation [n] is used to denote the set {1,2,... ,n}.
Our definition of the class of partial tori is based on the so-called cartesian product of

graphs defined below.
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Definition 3.2.1. Given two graphs G; = (V4, Eq) and Gy = (V,, Ey), the cartesian
product of G; and Go, denoted by G10G,, is defined to be the graph G = (V| E) where
V = Vi x V5 and E contains the edge joining (uq,us) and (vy,vs) if and only if either

u; = vy and (ug, v9) € Ey or ug = vy and (uy,v1) € Ej.

Note that O is a binary operation on graphs which is commutative in the sense that
(G10G5 and G,0OG, are isomorphic. Similarly, it is also associative. Hence, the graph
Go0OG,0---0G, is unambiguously defined for any d. We use G to denote the d-fold
Cartesian product of G with itself. It was shown independently by Sabidussi, and Vizing,
and others (see [AHI9O2|,[TK00]) that any connected graph G can be expressed as a product
G = G0 --0G,, of prime factors GG;. Here, a graph is said to be prime with respect to
the O operation if it has at least two vertices and if it is not isomorphic to the product
of two non-trivial graphs (those having at least two vertices). Also, this factorisation (or
decomposition) is unique except for a re-ordering of the factors and will be referred to as
the Unique Prime Factorisation (UPF) of the graph. Since o'(G) is a graph invariant,
we assume, without loss of generality, that any G; from EDGE U PATHS U CYCLES has
as its vertex set {0,1}, {0,...,k — 1}, {0,...,k — 1} respectively, and the adjacency as
described above. This allows us to explicitly handle concrete example graphs of these

isomorphism classes.

Definition 3.2.2. A d-dimensional partial torus is a connected graph G whose unique
prime factorisation is of the form G = G10---0OG,; where GG; € EDGE U PATHS U CYCLES
for each ¢ < d. We denote the class of such graphs by P,.

Definition 3.2.3. If each prime factor of a graph G € P, is a P, then G is called the
d-dimensional hypercube. This graph is denoted by Pg.

Definition 3.2.4. If each prime factor of a graph G € P, is from PATHS, then G is called
a d-dimensional grid or mesh. The class of all such graphs is denoted by M.

Definition 3.2.5. If each prime factor of a graph G € P, is from CYCLES, then G is
called a d-dimentional torus. The class of all such graphs is denoted by 7.
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3.3 Results

The results we have obtained for grid-like graphs is stated in Theorem below. The
proofs (given in Section BZATl) are based on the following useful theorem whose proof is
given later in Section BZ2

Theorem 3.3.1. Let G be a simple graph with o/(G) =n. Then,
1. (GOPy) <n+1, if n>2.
2. d(GOR)<n+2, ifn>2 and 1> 3.
3. d(GOC) <n+2, if n>2 and | > 3.
As a corollary, we obtain the following results.
Theorem 3.3.2. The following s true for each d > 1.
o d(P{) = APH+1 =d+1ifd>2; d(P)=1.
e d(G) = A(G) = 2d for each G € M.
e d(G) = A(G)+1 = 2d+1 for each G € 7,.

o Let G € Py be any graph. Let e (respectively p and c) denote the number of prime
factors of G which are from EDGE (respectively from PATHS and CYCLES). Then,
- d(G) = A(G)+1=e+2c+1ifp=0.
— d(G) = A(G) =e+2p+2cifeither p>2, orp=1ande > 1.

- d(G) = A(G)=2+2c ifp=1, e=0 and if at least one prime factor of G
s an even cycle.

- d(G) € {A=2+2c,A+1=2+2c+1} ifp=1, e =0 and if all prime
factors of G (except the one path) are odd cycles. There are examples for both

values of d'(G).
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3.4 Proofs

We repeat here a fact about acyclic edge colouring which we have stated before. It can
be easily verified and would be used often in our proofs. We follow the statement of the

fact with a brief explanation as to why it is correct.
Fact 3.4.1. If a graph G is regular with A(G) > 2, then d/(G) > A(G) + 1.

This is because in any proper edge-colouring of G with A(G) colours, each colour is
used on some edge incident incident at any vertex. Hence, for each pair of distinct colours
a and b and for each vertex u, there is a unique cycle in G going through u and which is
coloured with a and b.

We first present the proof of Theorem In this proof, we assume the truth of
Theorem B3] and apply its various cases to complete the proof of Theorem B3

3.4.1 Proof of Theorem

Case 1 (G is the d-dimensional hypercube FY)

Clearly, a/(P;) = 1 and d'(P}) = d/(Cy) = 3. For d > 2, we start with G = P and
repeatedly and inductively apply Statement (1) of Theorem B3l to deduce that a'(P§) <
d + 1. Combining this with Fact BZT], we get o/(Py) =d + 1 for d > 2.

Case 2 (Case G is a d-dimensional mesh M,)

Again, we prove by induction on d. If d = 1, then G € PATHS and hence ¢'(G) = 2 = A(G).
For d > 1, repeatedly and inductively apply Statement (2) of Theorem B3l to deduce
that a’(G) < 2(d—1)+2 = 2d. Combining this with the trivial lower bound a'(G) > A(G),
we get a/(G) = 2d for each G € M, and each d > 1.

Case 3 (Case G is a d-dimensional torus 7;)

We prove by induction on d. If d = 1, then G € CYCLES and hence d/(G) = 3 = A(G) + 1.
For d > 1, repeatedly and inductively apply Statement (3) of Theorem B3l to deduce
that o/ (G) < 2(d—1)+1+42 = 2d+1. Combining this with Fact BZZT], we get o' (G) = 2d+1
for each G € 7; and each d > 1.

Case 4 (Case G is a d-dimensional partial torus P;)

Let e,p and ¢ be as defined in the statement of the theorem. If p = 0, then G is the
product of edges and cycles and hence G is regular and o/(G) > A(G) + 1 by Fact
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Also, we can assume that ¢ > 0. Otherwise, G = P¢ and this case has already been
established. Again, without loss of generality, we can assume that the first factor G of G
is from CYCLES and a/(G7) = 3. Now, as in the previous cases, we apply induction on d
and also repeatedly apply one of the Statements (1) and (3) of Theorem B3l to deduce
that a/(G) < A(G) + 1. This settles the case p = 0.

Now, suppose either p > 2, or p = 1 and e > 1. Order the d prime factors of G so
that G = G10---0G,; and the first p factors are from PATHS and the next e factors are
copies of P,. By the previously established cases and from Theorem B3] it follows that

d(G10---0G,4.) = A(G1O---0OG,4) =2p+e€ > 3.
As before, applying (3) of Theorem B3l inductively, it follows that
CI,/(G) = a,(GID e DGP-i—e-i—c) < A(G> - 2p +e+2c

Combining this with the trivial lower bound establishes this case also.

Suppose p = 1, e = 0 and at least one prime factor of GG is an even cycle. Let G; = P,
for some k£ > 3 and Gy = Cy for some [ > 2. We note that it is enough to show that
G' = GLOG is acyclically colourable with A(G’) = 4 colours. Extending this colouring
to an optimal colouring of G can be achieved by repeated applications of Statement (3)

of Theorem B3] as before. Hence we focus on showing o' (G') = 4.

Firstly, colour the cycle Go = Cy = (0,1,...,2] —1,0) acyclically as follows. For each
i,0 <i < 2] —2, colour the edge (i,7+ 1) with 1 if ¢ is even and with 2 if i is odd. Colour
the edge (2/—1,0) with 3. Now, use the same colouring on each of the &k isomorphic copies
(numbered with 0, ...k —1) of Gy. For each j,0 < j < k—1, the j* and (j+1)" copies of
G5 are joined by cross-edges which constitute a perfect matching between similar vertices
in the two copies. These cross-edges are coloured as follows. For every ¢ and j, the cross
edge joining (7,7) and (4,7 + 1) is coloured with 4 if (i + j) is even and is coloured with
the unique colour from {1,2, 3} which is missing at this vertex 7 in both copies if (i + j)

is odd. See Figure 3.1 for an illustration.

The colouring is such that in each perfect matching joining two adjacent copies of G,
the cross edges which are part of this matching are alternately coloured with 4 and a

colour from {1,2,3}. Note that there can be no bichromatic cycle within each copy of
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0,0/ /&1/ /&2/ 0,3 0,4
1 1 1 1 1
o 11 ZID) (1

G e ) e (D (D
2 2 2 2 2
Dt Lo ey 1 L5, 3

20— (2 D—"—(2 )23 (29

3 1 3 1 3 1 3 1 3 1
) B e N P N B e

(3046 D32 (3301
2 2 2 2 2
) B P N N B e

LO— (& D=8 )= (3 (34
1 1 1 1 1
N2 Gt Gy 2 \G 3y

5,0 @ @ 5,3 5,4

Figure 3.1: colouring of CsOP;5

Go. Hence, any bichromatic cycle (if it exists) should use cross edges.

First, we claim that there can be no (4, ¢)-coloured cycle for any ¢ € {1,2,3}. To see
this, note that no two successive edges of any such cycle can be from the same copy of G4
since there is no edge coloured 4 in any copy of Gs. In addition, to complete a cycle it is
necessary that there must be two adjacent copies, say the 5 and the (5 + 1), such that
the cycle passes from the j to the (j + 1) and back to j copy using exactly 3 edges.
This contradicts the fact that the cross edges between adjacent copies are alternately
coloured with 4 and a colour from {1,2, 3}.

In addition, there can be no (¢, ¢)-coloured cycle for any ¢, ¢ € {1,2,3}. To see this,
we first note that any maximal (c, c')-coloured path in the j* (for any j) copy of Gy is of
odd length (counted as the number of edges) and hence the first and last edge of such a
path are coloured the same, say with ¢. This means the ¢’-coloured edges incident at the
two end points u and v connect them to the different, namely the (j — 1) and (5 + 1),

copies (because of the way cross edges are coloured). Extending this further, we see that
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1 3 2 1
3 2 1 4 3
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Figure 3.2: colouring of P;0C5

any (c, c’)-coloured maximal path starts at either (u,0) or (v,0) and ends at (u, k—1) or
(v, k — 1) and does not complete to a cycle. This shows that a/(G") = 4 as desired.
Suppose p = 1, e = 0 and all prime factors of G (except the one path) are odd cycles. In
this case, a/(G) can take both values as the following examples show. If G = P;0C5, then
it can be easily verified that a’(G) =5 = A+ 1. Also, if G = Ps0Cj, then /(G) =4 = A

as shown by the colouring in Figure 3.2.
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3.4.2 proof of Theorem 3.3.1]

We now present the proof of Theorem B3T]
A restricted class of bijections (defined below) would play an important role in this

proof.

Definition 3.4.1. A bijection o from a set A to an equivalent set B is a non-fizing

bijection if o (i) # i for each i.

Since a’(G) = n, we can edge-colour G acyclically using colours from [n]. Fix one such
colouring Cy : E(G) — [n].

Define C; to be the colouring defined by C;(e) = o(Co(e)) where o : [n] — [n] is any
bijection which is non-fizing. For concreteness, define o(i) = (i mod n) + 1.

Case 1 (d/(GOP))

Let Gy, G be the two isomorphic copies of G induced respectively by the sets {(u,0) :
u € V(G)} and {(u,1) : u € V(G)}. Let Gy and G, be edge coloured respectively by
Co and C;. For each of the remaining edges (termed cross-edges and which constitute a
perfect matching between Gy and G;) of the form ((u,0), (u,1)), give a new colour «.
Denote by C, the resultant colouring of GOP,. We claim that C is proper and acyclic.

It is easy to see that C is proper. Also note that any bichromatic cycle in C should
necessarily use the colour « (since the colourings of Gy and G are acyclic).

Suppose that GOP, has a bichromatic cycle C' using the colours o and some other
colour, say i, from the set [n]. In C, Gy and G are both coloured a-free and hence any
proper «,i-coloured cycle should contain the a-coloured edges an even number of times.
Hence we have |C| = 0 mod 4. Fix a vertex (uy,0) as the starting point of C. Then C
looks like C' = ((u1,0) % (u1,1) - (uz, 1) = (un,0) - - (ug, 0) = (ug,0)).

Notice that k is of even parity (since |C| = 0mod 4). For each i-coloured edge
(uge41,1) = (ugere, 1) of Gy in C| its isomorphic copy in Gy, namely, the edge (ugp41,0) —
(U242, 0) is coloured with a colour j = o~ (i) # i (since o is a non-fixing bijection of [r]).
Now it can be seen that the cycle ((uq,0) EX (u2,0) 4 (us,0) ... EX (ug, 0) 4 (ug,0))
is an i, j-coloured cycle in Gy. This is a contradiction to the fact that Gy is acyclically
coloured. Hence the colouring C is acyclic.

Case 2 (d/(GOF))
Let the k isomorphic copies of G in GOP, be Gy, Gy, ...,Gr_1 where G; is induced by
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the set {(u,7) : u € V(G)}. Let oy and «; be two new colours which are not in [n]. Our
colouring is as follows.

For each i, colour the edges of copy G; with C; 04 2. Also, for each i, colour the edges
of the form ((u,%),(u,i+ 1)) with the new colour ;mea2. Denote by C the resultant
colouring of GOP;. It is easy to see that C is proper. We claim that C is also acyclic.

For each i (0 < i < k — 1) and for each edge e of G, notice that G; and G,
have different colours on their respective copies of e (since the colourings Cy and C; are
based on mutually non-fixing bijections over [n]). Hence bichromatic cycles between two
consecutive copies of G are ruled out by Case 1. So any bichromatic cycle C' should pass
through at least three consecutive copies of GG, thus fixing the colours of C' to be o and
aq. Since all the copies of G are free of both ag and a4, and the edges joining (u,4) and
(u,i + 1) between successive copies of G alone do not form a cycle, the colouring C is
acyclic.

Case 3 (d/(GOCY))

In this case, we have k isomorphic copies of G numbered G, G1, ..., Gg_o, Gi_1 such that
there is a perfect matching between successive copies G; and G (i11) mod & (see Figure 3.3).
Our colouring is as follows.

For each i, 1 <14 < k — 2, colour the edges of G; with C(i11) mod 2-

As before, let ag, a1 be two new colours which are not in [n]. Let Dy be a colouring of
Gy defined by Dy(e) = 7(Co(e)) where 7(i) =i+ 1,i <n, 7(n) = a.

In order to colour Gy_i, define a colouring Dy(e) = u(Co(e)) where p(i) = @ + 2,
i<n—1and u(n—1) = Akt1) mod 2, H(n) = 2.

Now, colour any edge of the form ((u,%), (u,i+1)), 0 <i < k—1 with the new colour
Qi mod 2. Colour the edges of the form ((u,k — 1), (u,0)) with the colour 1. Denote this
colouring of GOC), by C.

We claim that C is proper and acyclic. For each 7, the colouring C restricted to G; is
proper and acyclic by definition. Also note that, each cross-edge ((u, ), (u, (i+1) mod k))
is coloured with a colour v (say) which is not used in either of the copies G; and G, ;.
Hence C is proper.

Also, in C, any edge e € G; and its isomorphic copy €' € G(;41) mod r Teceive different
colours (since the colourings on successive copies of G are based on mutually non-fixing

bijections). Hence, as shown for the Case GOP;, there can be no bichromatic cycle in C
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restricted to two successive copies of G. Hence any such bichromatic cycle C' should pass
through at least 3 consecutive copies of GG, again fixing the two colours of C' to be those
used on two incident cross edges. Also, it is easy to see that there can be no bichromatic
cycle involving only cross-edges since any such cycle uses the three colours {ag, aq, 1}.

Note that each of G1,..., Gy_o are coloured free of both ay and a;. Hence any ag, -
bichromatic cycle C' should start from some vertex (u1,0) in Gy, then reach (up,k — 1)
using only cross edges, then go to some vertex (us, k—1) using an edge of G_1, then reach
(ug,0) using only cross edges and then some vertex (us, 0) using a a;-coloured edge of Gy
and continue this (possibly) again and again and finally reach a vertex (ug,0) (where k
is an even number) and then go to (u1,0) using a a;-coloured edge of Go. Here the only
non-cross edges used in C' are either from G (and coloured with ay) or from Gy_; (and
coloured with either o or o depending on the parity of k). From the definitions of D,
and Dy, it follows that for each edge (ug 1,k — 1) — (ug o,k — 1) from Gy used in C,
its isomorphic copy in Gg, namely (ug41,0) — (ug2,0), is coloured with 1. This implies
the existence of a aq, n-coloured bichromatic cycle in GGy and this is a contradiction.

Similarly, any ayg, 1-coloured bichromatic cycle should only visit vertices in the copies
G1,Go, Gi—1, Gi—2 (or G1, Gy, Gi_1) depending on whether k is even (or odd). As argued
before, this would imply the existence of a (1,7)-coloured cycle in Gy (or a (1,(n — 1))-
coloured cycle in Gy) contradicting our definition of C.

Also, if k is even, then any (1, aq)-coloured cycle should only visit vertices in Gy and
G—1 (which are consecutive) and hence cannot exist. If k is odd, then such a cycle can
only visit vertices in Go, Gp_1 and G_o and its existence would imply the existence of a

(2, aq)-coloured cycle in Gy which is again a contradiction. This shows that C is acyclic.

( «@Q i Ak mod 2 3

GO : Gl : Gg : s : Gk_g : Gk—l
'io Co C1 Clk—1) mod 2 D,
1, ap aQ, 1 aQ, aQ, a1 1, &k mod 2

Figure 3.3: colouring of GOC)
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3.5 Algorithmic aspects

There has been very little study of algorithmic aspects of acyclic edge colouring. In [AZ02],
Alon and Zaks prove that it is NP-complete to determine if a’(G) < 3 for an arbitrary
graph G. They also describe a deterministic polynomial time algorithm which obtains
an acyclic (A + 2)-edge-colouring for any graph G' whose girth g is at least cA? for some
large absolute constant c¢. Skulrattanakulchai [Sku(04] presents a linear time algorithm
to acyclically edge colour any graph with A < 3 using at most 5 colours. Apart from
this, and a few other results mentioned elsewhere in this thesis, no significant progress
has been made on the algorithmic aspects of acyclic edge colouring.

All of our proofs given in the previous section are constructive and readily translate
to efficient algorithms which find optimal (or almost optimal) acyclic edge colourings of

the partial tori. Formally,

Theorem 3.5.1. Let G € Py be a graph (on n vertices and m edges) specified by its
Unique Prime Factorisation. Then, an acyclic edge colouring of G using A or A + 1
colours can be obtained in O(n + m) time. Also, the colouring is optimal except when G

1s a product of a path and a number of odd cycles.

For the sake of completeness, we now present a brief and formal description of these
algorithms. Before we finish, we need to say a few words about how the input is presented
to the algorithm. It is known from the work of Aurenhammer, Hagauer and Imrich [AHI92]
that the UPF of a connected graph G (on n vertices and m edges) can be obtained in
O(mlogn) time. Hence we assume that our connected input G € Py is given by the list
of its prime factors G, ..., G4. Also, without loss of generality, we assume that the list
is such that

(i) G; € paTHs for i =1,...,p ;
(i) Gi=Pyfori=p+1,....p+e ;

(iii) G; € cyCLEs for i =p+e+1,...,d = p+ c+ e and all even cycles appear before
all odd cycles in the order.

Here p, e, ¢ denote respectively the number of prime factors which are from PATHS, EDGES
and CYCLES.
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Algorithmic Version of Theorem

Algorithm 1 AcycColPCGrid(Gy,...,Gy)

1. if d = 1, then output an optimal acyclic edge-colouring of G; using 2 (1 or 3) colours

depending on whether G; € PATHS (G = P, or G; € CYCLES) and exit.

2: if d =2 then

3:  if both G; = Gy = P, then output an optimal colouring of G;0G5 using 3 colours
and exit.

4. if either Gy = P, and Gy € CYCLES or (G; € PATHS and (5 is an even cycle, then
interchange GG; and Gy; Otherwise, let G; and G5 remain the same.

5. Let Cy be an optimal acyclic colouring of Gy (on [ vertices) defined as follows : For
each i, 0 < i < [ — 1, colour the edge (i,7 + 1) with ¢ mod 2. Colour the edge
(I —1,0) (if it exists) with 3.

6: Output the optimal acyclic edge colouring obtained by applying
Acycol2fac(Gq, G1,Cp) and exit.

7: end if

8: if d > 2 then

9:  Obtain an optimal colouring Cy of G = G;0---0G;; by applying
AcycColPCGrid(Gy, . .., Gg-1))-

10:  Obtain an optimal colouring of GOG, by applying Acycol2fac(G, G4, Co).

11:  Output the optimal colouring of G100 --0OG, thus obtained and exit.

12: end if
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Algorithmic Version of Theorem B3]

Algorithm 2 Acycol2fac(G, H, Cy)

1:

Let H be a path or a cycle on k > 2 vertices {0,...,k — 1}. Let Go, ..., Gr_1 be the
k isomorphic copies of G induced respectively by the sets {(u,7) : u € V(G)} for each
i.

if G is an even cycle Cy and H = Py, then colour each of the k£ isomorphic copies
of G by the same colouring Cy. For every j (0 < j <k —1)andi (0 <i <2l—1),
colour the edge joining (7, ) and (7,7 + 1) with 4 if ¢ 4+ j is even and colour it with
the unique colour from {1, 2,3} which is missing at both copies of i if i + j is odd and
exit.

Otherwise, suppose Cy uses colours from [n] = {1,...,n} for some n > 0. Let o, T,
be three permutations over [ + 2] = {1,...,n + 2} defined by

4: 0(i) = (imod n) + 1 for i € [n] and o (i) = ¢ for i > 7.
5:7(1)) =i+ 1fori<n, 7(n)=n+1,7(n+1)=1and 7(n+2) =n+2.

pi)=i+2fori<n—1,pun—1)=n+1+((k+1)mod?2), un) =2, u(n+1+
((k4+1)mod 2)) =1and pu(n+ 1+ (kmod 2)) =n+1+ (kmod 2).

Let Cy, Dy, Dy be three new colourings of G obtained respectively by colouring each
edge e of G by the colour o(Cy(e)), 7(Co(e)), 1(Co(e)).

if H = P, then colour each copy G; by the colouring C; 1,04 2. Also, for each 1 < k—1,
colour the cross-edges between GG; and GG;;1 with the common colour missing from both
of them. This missing colour is n + 1 + (¢ mod 2).

if H = C}, then, for each 7,0 < i < k — 1, colour G; by the colouring C(;41) mod 2-
Also, colour Gg by Dy and colour G_1 by D;. Also, for each 0 <17 < k—1, colour the
cross-edges between G; and G,y with the common colour, namely 7 + 1 + (i mod 2),
missing from both of them. In addition, the cross-edges between Gy and Gy, are
coloured with 1.
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3.6 Remarks

The work presented in this chapter has been published by us. The reference is [MNSO6].

If G is isomorphic to the product of a path and a number of odd cycles, it can take
either of the values in {A,; A 4 1}. It would be interesting to see if we can classify such
graphs for which ¢/(G) = A. It would also be nice to construct an optimal colouring
efficiently. Another direction is to extend this result and prove d/(G) < A(G) + 1, where
G is any subgraph of a hypercube. If such a result is obtained, it can be used to get
results for more complicated kinds of products.

A standard kind of product called strong product is another operation whose effect on
the acyclic chromatic index would be interesting to study and we are looking at this. The
strong product of two graphs G = (V, E)) and H = (V', E’) has as vertex set V' x V' and
edge set ((u1,v1), (u2,vq)) if (w1 = ug or (uy,uz) € E) and (vy = vg or (v1,v9) € E').

It is clear that the graph resulting from applying the strong product operator to a pair
of graphs is a supergraph, on the same vertex set, of the graph obtained by applying the

cartesian product operator to the same pair of graphs.
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Chapter 4

Cartesian product and acyclic edge

colouring

In this chapter, we extend and generalise the results obtained in Chapter Blto the cartesian
product of any two graphs. These graphs are more general than those considered in
Chapter B, since those graphs are all obtained by applying the cartesian product operator
to a collection of only edges, paths and cycles.

In Section BTl we introduce the idea of acyclically colouring the cartesian product
of graphs in a more general setting than grid-like graphs. We state useful properties of
the cartesian product operator in Section EE2. Section contains our result and also
a detailed proof. A few immediate consequences of this result are given as corollaries in

Section E4L Section contains some concluding remarks.

4.1 Introduction

The results in Chapter Bl involove graphs, all of whose factors, under the unique prime
factorisation with respect to the cartesian product, are from the family EDGES U PATHS U
CYCLES. The strongest requirement of the graph G in any of the cases of Theorem B3]
is that ¢’(G) > 2. Theorem follows as a consequence by iterative applications of
various cases of Theorem B3Il Here, we look at graphs which are the cartesian product
of any two graphs.

The factors of the graph being more general, the bounds we get on a/(G) are not as
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tight as for grid-like graphs. In the case of grid-like graphs, for each additional prime
factor incorporated we extend the colouring by introducing only as many new colours
as the increase in maximum degree. Here, we show that we can incorporate each prime
factor, say F, using an additional a/(F) colours. Even though these bounds may not be
tight, they can be used to obtain bounds for any graph if we know the o'(H) values for

each of its prime factors H.

4.2 Cartesian products

We have already defined the cartesian product formally (Definition BZZTl). As was stated
in Chapter Bl any non-prime graph with respect to this operator has a unique factorisation,
upto a reordering of the factors. Note that GOH can be thought of as being obtained
as follows. Take |V (H)| isomorphic copies of G and label them with vertices from V' (H).
For each edge (u,v) in E(H), introduce a perfect matching between G, and G, which
joins each vertex in V(G,) with its isomorphic image in V(G,). Equivalently, one can
also think of this as obtained by taking |V (G)| isomorphic copies of H and introducing a

perfect matching between corresponding copies of H for each edge in E(G).

The following facts are consequences of the definition of the cartesian product .

Fact 4.2.1. The cartesian product G;0Gy is commutative in the sense that G10Gy is
isomorphic to GoOG. Similarly, this operation is also associative. Hence the product
G,0G,0...0Gy, is well-defined for each k. For each G and k > 1, we define G* as
follows : G* = G and G* = GF10G for k > 1.

Fact 4.2.2. If G = G10G,0...0Gy, then G = (V, E) where V is the set of all k-
tuples of the form (uy, ..., ux) with each u; € V(G;) and the edge joining (uy, ..., uy) and
(v1,...,v,) is in E if and only if for some i, 1 <i <k, (i) u; = v; for all j # i and (ii)
the edge (u;,v;) is in E(G;).

Fact 4.2.3. G10G, is connected if and only if both G1 and Gy are connected.
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4.3 Our result and proof

In view of Fact 23 it is sufficient to consider only connected graphs. Also, if H is
trivial (that is, H is a graph on just one vertex), then GOH is isomorphic to G for any
G. Hence, we focus only on connected non-trivial graphs.

We obtain the following general statement relating a’(G) and the cartesian product

operator.

Theorem 4.3.1. Let G = (Vg, Eg) and H = (Vy, Ey) be two connected non-trivial
graphs such that max{d'(G),da’'(H)} > 1. Then,

d(GOH) < d'(G) +d'(H).

Note : If G and H are both connected and non-trivial with o'(G) = o/(H) = 1, then
each of G and H is a P,. In that case, GOH = C, where Cj is a cycle on 4 vertices. Only
in this case, we have a/(GOH) = 3 whereas a'(G) + d/(H) = 2.

The proof is presented in two stages. We first describe a colouring in Section E3J]. In
Section 32 we prove that the colouring we obtain is proper and acyclic, thus completing

the proof.

4.3.1 The colouring

Let a/(G) = n and o/(H) = B. Without loss of generality, assume that n > 5. Let A
denote the maximum degree of H. Set d to be A+ 1 if H is either a complete graph or an
odd cycle and to be A otherwise. In either case, by Brooks’ Theorem, H can be properly
vertez coloured using colours from the set [d] = {0,...d — 1}.

We know that § = o/(H) > A always. If H = Kayq or Cogyq, then (since H is
A-regular) a/(H) > A + 1 (except when H = K5). In both cases, n > 5 > d. If H = Ko,
then d = A+ 1 =2 and n > 2 by assumption. In any case, we have n > d.

Let Xg: Eqg — [n]={0,...,n—1}and Xy : Eyg — [#] ={0,...,(8—1)"} be acyclic
edge colourings of G and H respectively, using disjoint sets of colours.

Each edge in GOH is either (i) an edge joining (u1,v) and (ug,v) for some e =
{uy,us} € Eg and v € Vy or (ii) an edge joining (u,v;) and (u,vy) for some f =
{v1,v2} € Ey and u € V. We denote the former edges by e, (where e € Eg,v € Vi) and
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the latter edges by f, (where f € Ey,u € Vg). Note that each edge of GOH lies either
in some isomorphic copy H, of H or in some isomorphic copy G, of G.
For each i € {0,...,d — 1}, let 0; : [§] — [n] be a bijection defined by

0i(j) = (5 +1) mod 7, Vj & n].

Since nn > 3 > d, we notice that the bijections o;(i € [d]) are mutually non-fixing, that
is, for all 4,k € {0,...,d — 1} such that i # k, and for each j € [n], 0;(j) # or(7).

Let Yy : Vg — {0,...,d—1} be a proper vertex colouring of V;. We define a colouring
of the edges of GOH based on the colourings X, Xy and Yy as follows.

For each edge in E of the form f,, where f € Fy and u € Vi, we colour f, using the
colour Xy (f). Now consider any arbitrary edge of the form e, where e € Eg and v € V.
Let i = Yy (v) be the colour used by Yy on v. Colour e, using the colour o;(Xg(e)).

In other words, edges f, in each isomorphic copy H, is coloured the same way as f
in H is coloured by Xpy. But edges e, in each isomorphic copy G, is coloured essentially
(ignoring the labels of colours) the same way as G is coloured but the colour labels
are rotated by mutually non-fixing permutations. The permutation that is used for a
G, is decided by the vertex colour assigned to v by Yy. As a result, for each edge
f = (v1,v9) € Ey and for each edge e = (uy,us) € Eg, €, and e, get different colours

but always from [n)].

4.3.2 Correctness of the colouring

Let X : E(GOH) — {0,...,n =1} U{0,...,(8 — 1)’} be the colouring defined in the

previous section. We will show that X is proper and acyclic.
Claim. X is proper.

Proof. Consider any vertex (u,v). The set of edges in GOH which are incident on (u,v)
can be partitioned into two subsets A, = {f,:v € f € Eg}and A, = {e, :u € e € Eg}.
Since edges in these two sets are coloured using colours from disjoint sets, namely from
[n] and ['], there is no conflict between these two sets. Now, let us focus on edges in
A,. Since f,’s are coloured in the same way as f’s are coloured in H, there is no conflict
among edges in A,. Similarly, the edges e,’s in A, are coloured with distinct colours,

there is no conflict among members of A, also. Hence X is proper. O
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It is only left to prove the acyclicity of X. We prove by contradiction. Suppose there

is a bichromatic cycle C' in G, with respect to the colouring X. First, we note that
Claim. C cannot lie entirely within any isomorphic copy G, or H, of G or H respectively.

Proof. Note that X restricted to H, (or G,) is basically either Xy (or X¢ except for
renaming of the colours). Hence if C' lies within such an isomorphic copy, it implies that

either Xz or X4 has a bichromatic cycle, which is a contradiction. O

By the above claim, it follows that C' should visit vertices in at least two different
copies G, and G,. But different copies are only joined by edges of type f, for some
f € Eg and u € V. Thus, it follows that C has at least one edge each of the two types
ey (e € Eg, v e Vy)and f, (f € Ey, u € Vi) which are coloured with respectively, say,
a € [n] and b € [F'].

Claim. Let (uy,vy) be some arbitrary vertex in C. Let (uy,vs) for some vy € Vi be the
other end point of the unique b-coloured edge in C' incident at (uy,vy). C lies entirely

within G, and G,,.

Proof. The proof is by induction on the distance [ in C from (uy,v1) along the direction
specified by the edge {v1,v2},,. For I = 0, it is clearly true. Suppose it is true for vertices
whose above-defined distance is at most I’. Let (uy,vy) be the vertex at distance . By
inductive hypothesis, vy is either vy or ve. Let ¢ € {a, b} be the colour of the edge joining
(wy,vp) and (upyq,vp41). If ¢ = a, then vy = vy and hence the hypothesis is clearly
true for [ = '+ 1. If ¢ = b (hence up; = uy) and if vy = vy, then vy = vy. This follows
from (i) the b-coloured edge incident at the copy of u; in G, joins it to the copy of u; in
G, and hence (i) all edges of the perfect matching joining isomorphic copies of vertices
in G,, and G,, are coloured with b. In particular, the b-coloured edge incident at (uy,v;)
joins it to (uy,v,). Similarly, one can argue that if ¢ = b and if vy = vy, then vy = vy.

In any case, vy 1 € {v1,v2}, there by proving that C' lies entirely within G, and G,,. O

Since the edges in G,, and G,, are coloured without using colour b and since every

alternate edge of C is coloured with b, we see that b is used an even number of times in
C'. This implies |C| = 0 (mod 4). Thus, C looks like

C = ( (ug,v1), (u1,v2), (ug,ve), (ug, v1), ..., (ugk_1,va), (uak, V2), (tog, v1), (u1,v1) ).
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For each of the a-coloured edges in G,, joining (ug_1,vs) and (ugy, v9), its isomorphic
copy in G, joins (ug_1,v1) and (ug, v1) and is coloured with the colour ¢ = ai(aj_l(a)) #+a
where i = Yy (v1) and j = Yy (ve). These isomorphic copies in G, of a-coloured edges of

C in G,, together a-coloured edges of C' in GG,, constitute the following bichromatic cycle

D = ( (uy,vy1), (ug,v1), (us,v1), ..., (g, v1), (u1,v1) ).

This is a contradiction to the fact that X restricted to G, is acyclic. This shows that
X admits no bichromatic cycle and hence X is proper and acyclic. Since X uses only
colours from [n] U [#'], we get o/ (GOH) < d'(G) + d (H).

4.4 Consequences

The following results for certain special families of graphs, are immediate consequences

of the result of the previous section.

Corollary 4.4.1. Let G1,...,Gy be k connected non-trivial graph such that for each i,
1<i<k, d(G;) = A(G;) and max{d'(G1),...,d (Gy)} > 1. Then,

a'(Glﬂ c. DGk) = A(Gllj . DGk)

Proof. Follows from

(1) d'(G) > A(G) for any G,

(i1) A(G1O...0Gy) = A(Gy) + ...+ A(Gy),

(17i) Theorem O

Corollary 4.4.2. Let G be a connected non-trivial graphs such that o' (G) = A(G) > 1.
Then, for each d > 1,
d (G = dA(G).

Even though the following corollary has already been presented in Chapter B, we

present it here for the sake of completeness.

Corollary 4.4.3. Let G = P{ = P,0---0P, be the d-dimensional hypercube for some
d > 1. Then,
d(P)=1 and d(PY)=d+1 for d>1.
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Proof. Suppose d > 1. Since G = Py is d-regular, we need at least d + 1 colours in any
acyclic edge colouring of P§ and hence o/(G) > d+1. Also, a/(P?) = a’(C,) = 3. Starting
with G = P} and applying Theorem EZ31] repeatedly by setting H = P each time, we
get d/(PY) < d'(P})+ (d —2) < d+ 1. Combining both the lower and upper bounds, we
get the result. O

4.5 Conclusions

The work presented in this chapter has been submitted to a journal. The reference is
IS,

It is quite possible that Conjecture [L2Jlis true. Under this assumption, we know that
the gap between the maximum degree of a graph and its acyclic chromatic index is at most
2. Note that for any A-regular graph (A > 1), the gap is at least 1. Thus, by applying
Theorem 3 T repeatedly on such graphs, the difference between the bound obtained and
the maximum degree increases for each additional factor added. Thus if the conjecture
is true, the bounds obtained by applying our result cannot be optimal. Nevertheless, it
is not possible to make an unqualified claim of the type o/(GOH) < d/(G) + A(H). It is
well-known that A(GOH) = A(G) + A(H). Therefore, if the gap is 0 for G but positive
for GOH, then this will violate a claim of the form made previously. We conclude that,
if the conjecture is true, then a statement of the form o/(GOH) < d/(G) + A(H) can be
made, only if the gap is 2 for G.

From an algorithmic point of view, our proof immediately yields an efficient algorithm
to obtain a colouring of GOH using o' (G) 4 a'(H) colours, provided colourings for G and
H are available using disjoint sets of a/(G) and a/(H) colours, respectively. Its strength
as an algorithmic result, however, is undermined by the fact that optimal colourings of

the prime factors themselves are not always easily computable.
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Chapter 5

Acyclic edge colouring of partial

2-trees

In this chapter we consider the problem of acyclically edge colouring the class of partial
2-trees. These are precisely the graphs of treewidth at most 2. More generally, for
k > 0, the partial k-trees are precisely the class of all graphs with treewidth at most
k. The partial k-trees are a strict subclass of the class of all k-degenerate graphs. We
define these closely related classes of graphs and describe a hierarchy among them, in
Section We elaborate some properties of these graphs in Section Bl which facilitate
the acyclic edge colouring problem on partial 2-trees. Section states the results we
have obtained and the proofs follow in subsequent sections. Closely related results are
mentioned in Section B3 A brief description of the algorithm corresponding to the proof
is given in Section B Section incorporates a few concluding remarks and outlines

possible future directions for research.

5.1 Introduction

As the reader is familiar, the acyclic edge colouring problem is about colouring the edges
of a graph properly while simultaneously avoiding bichromatic cycles. It stands to reason
that the more cyclic structure a graph has the more difficult it is to acyclically colour it.
As always, the difficulty is present because the number of colours to be used is stringently

restricted. In order to understand this better, a rigourous quantitative notion of the cyclic
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structure of a graph is needed.

The treewidth of a graph is indirectly a measure of its cyclic structure and indicates
how close the graph is to a tree. The treewidth, defined formally below, is 1 for the class
of trees while it is n — 1 for the complete graph K,,. These are the ends of the spectrum
and every conected graph has treewidth in this range. The acyclic chromatic index a’ of
a tree is its maximum degree A. Further, it is absolutely straightforward to obtain an
acyclic edge colouring of trees using a’ colours. In sharp contrast, it has proved extremely
difficult to obtain tight estimates on o’ for complete graphs, inspite of their simple and
symmetric structure.

This suggests that it might be easier to get tighter bounds on the acyclic chromatic
index when we focus on classes of graphs with small treewidth. Motivated by this, we

study the acyclic edge colouring problem for such graphs.

5.2 Definitions

The treewidth of a graph is defined in terms of a notion called tree decomposition of the

graph. We make these notions precise in the following definitions.

Definition 5.2.1. Given a graph G = (V, E), a tree decomposition of G is any tree T'
whose nodes are labelled by subsets of V', such that:

e cvery vertex v € V appears in the label of at least one node of T’

e for every edge e = (u,v) € E, there is at least one node of 7" whose label contains
both v and v

e for any vertex v € V the set of nodes whose labels contain v induces a connected

subgraph of T'

In a tree decomposition the number of vertices of the original graph used to label a
node of the tree is called the label size of that node. The width of the tree decomposition

is the largest label size of any node in that decomposition.

Definition 5.2.2. The treewidth of a graph G, denoted by tw(G), is exactly one less

than the minimum width of any tree decomposition of G.
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Treewidth is a monotonic property, in the sense that the treewidth of a subgraph is
at most the treewidth of the original graph.

We now define k-trees which are the basis of the definition of partial k-trees.

Definition 5.2.3. A k-tree is any graph obtained from the complete graph K., by a
sequence of zero or more operations of adding a new vertex adjacent to the vertices of an

existing k-clique in the graph.
Definition 5.2.4. A partial k-tree is any subgraph of a k-tree.

[t can be seen that k-trees have treewidth exactly k. The monotonicity of the treewidth
property implies that partial k-trees also have treewidth at most k. In fact, it is well-
known that they are exactly the class of graphs of treewidth at most k. A closely related

notion is the class of k-degenerate graphs defined below.

Definition 5.2.5. A k-degenerate graph is any graph obtained from the graph on a single
vertex, K, by a sequence of zero or more operations of adding a new vertex adjacent to

at most k existing vertices in the graph.

Note that every partial k-tree is also k-degenerate. These classes, though their defini-
tions appear similar, differ strongly. It is known that all planar graphs are 5-degenerate,
but planar graphs have unbounded treewidth. An infinite family of such examples is the
family of square grids, P,0PF,. All these graphs are planar but have treewidth at least n.

A property of any k-degenerate G, is that its minimum degree 6(G) < k. Additionally,
for every subgraph, H C G, 6(H) < k. This is an alternative, equivalent characterisation

of k-degenerate graphs which often proves useful.

5.3 Related results

As we mentioned earlier, partial 2-trees are a subclass of 2-degenerate graphs. We state
here some results on acyclic edge colouring of 2-degenerate graphs. The earliest result
on acyclic edge colouring of 2-degenerate graphs was by Card and Roditty [CR94], where
they proved that o/(G) < A+ k — 1, where k is the maximum edge-connectivity, defined
as k = maxyvev(q) A(u, v), where A(u,v) is the edge-connectivity of the pair u,v. Note
that, here, k can be as high as A.

55



CHAPTER 5. ACYCLIC EDGE COLOURING OF PARTIAL 2-TREES

Alon and Zaks show that it is NP-Hard to determine a’ for subcubic graphs (see [AZ02]).
It follows, from the reduction they use, that the problem is hard even for 2-degenerate
graphs. It is possible that the problem is hard for many non-trivial subclasses of 2-
degenerate graphs. In this context, it is significant that there have been a few results
which give bounds on a' which differ from the optimum by at most one or two, and also
provide efficient algorithms to produce such colourings. Recently, it has been shown by
Muthu, Narayanan and Subramanian, that if G is an outerplanar graph then o’(G) < A+1
IMNSOTal]. Subsequently, a weaker bound of a/(G) < A + 2 has been obtained by Manu
and Chandran for the larger class of all 2-degenerate graphs [CM0O7]. More recent infor-
mation indicates that Manu and Chandran have proved a better upper bound of A + 1

for the class of 2-degenerate graphs also.

5.4 QOur results

Here, we formally state the results we obtain. By setting k& = 2 in Definitions 23 and 24

we obtain the following definitions.

Definition 5.4.1. A 2-tree is any graph obtained from the triangle K3, by a sequence of
zero or more operations of adding a new vertex adjacent to the endpoints of an existing

edge in the graph.
Definition 5.4.2. A partial 2-tree is any subgraph of a 2-tree.

The main contribution of this chapter is the following result.
Theorem 5.4.1. If G is a 2-tree or a partial 2-tree, then o/ (G) < A+ 1.

Since every series-parallel graph (defined below) is a partial 2-tree (see [Grad9]), we

obtain the following corollary.
Corollary. If G is a series-parallel graph, o' (G) < A+ 1.

Definition 5.4.3. A series-parallel graph is any simple graph obtained starting from K,
and performing any sequence of the following two operations:

(1) subdivide an edge

(77) add edges parallel to existing edges.

Finally all multiple edges are eliminated to render the graph simple.
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An independent proof of this result has been obtained in [CM0O7]. That proof uses
ideas similar to the proof that ¢’(G) < A + 2 for 2-degenerate graphs G, given in the
same paper.

We first prove the bound for 2-trees in Section and then extend the arguments to

work for the more general partial 2-trees in Section B.G.

5.5 Bound for 2-trees

First, we define the term 2-ear. The process of adding a new vertex w adjacent to two
existing vertices u and v (not necessarily adjacent) in a graph G, is called adding a 2-ear to
G. In the case of 2-trees, the vertices v and v must be adjacent. The path added through
the new vertex w, described above is called a 2-ear of the graph. Note, that 2-trees can
be constructed starting from a triangle and repeateding the procedure of adding 2-ears
to the endpoints of an edge.

From Definition BZT] it is easily seen that 2-trees are triangulated (chordal), planar
and 2-degenerate. With respect to that definition of 2-trees, we introduce the following
terms and notations. The triangle with which the construction is initiated is called the
initial triangle or base triangle. For a given edge (u,v), the set of all ears added between
its endpoints, is denoted by ext(u,v). (u,v) is called the base edge for each of these ears.

We colour the graph incrementally by adding more edges to a partial colouring in
batches. The incrementation used here is different from other incremental procedures
where only a single edge is introduced at a time. Here, in each stage, we introduce a set
of all 2-ears having the same base edge. The edge order is described in greater detail

later.

5.5.1 Assumptions

At any intermediate stage the number of colours used is one more than the current mazx-
imum degree, A. Here, a stage refers to the addition of all 2-ears having the same base
edge, and the current mazimum degree refers to the mazimum degree after the introduction
of this entire batch of 2-ears.

We use L, to denote the subset of colours not seen by the vertex v in the current partial

colouring of G (prior to colouring the current batch of edges). Note that |L,| > U, + 1
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(since we use A + 1 colours), where U, is the number of uncoloured edges incident to
v. d(v) denotes the degree of the vertex v. The above described notation is used in the

description of all our colouring procedures.

5.5.2 Acyclic colouring of K

Now, we describe how to acyclically edge colour any member of a special class of graphs.
In the colouring of 2-trees, the graphs induced by the edges added in a batch as described
above, all belong to this special family. This colouring procedure is, thus, a subroutine
used in our colouring of 2-trees. The special class we refer to is the family of complete
bipartite graphs (/3;), where one of the partite sets has exactly two vertices. We describe
one normal acyclic edge colouring of this class of graphs and another acyclic edge colouring
based on [ists associated with each edge.

The following lemma describes an acyclic edge colouring for the complete bipartite

graph, Ky, using ¢ colours if ¢ > 3, and using ¢ + 1 colours otherwise.

Lemma 5.5.1. For the complete bipartite graph, Ky,

t ift>3
a,(KQ’t) = { B

t+1 otherwise.

Proof. Let A = {u,v} be the partite set of size two, and let B = {wy,...,w;} be the
partite set of size t. If t = 1 or 2, the colouring is straightforward. If ¢ > 3, colour (u, w;)
with colour ¢, for ¢ € {1,...,t} and colour (v, w;) with colour i + 1, fori € {1,...,t — 1}
and colour (v, w;) with colour 1. It is easy to observe that the subgraph induced by any
pair of colour classes is either a path on 4 edges, or a collection of two vertex disjoint
paths on 2 edges each (see Figure 5.1). In each case, the subgraph is acyclic and hence
the colouring is proper and acyclic. Further, if ¢ > 3, the endpoints of these paths both
lie in B. Even if ¢ = 2, one endpoint of any maximal bichromatic path lies in B. We
call this scheme colouring by shifting and use it as a subroutine in the colouring of partial
2-trees. 0

We use the above-mentioned procedure in our colouring of 2-trees, when the two
endpoints u and v of a base edge e = (u,v), such that |ext(e)| =k (k > 3), have at least

k common free colours.
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Figure 5.1: acyclic colouring of K,

We now describe a generalised version of the previous lemma which describes an acyclic
edge colouring of the same graph when the colours allowed for any edge is restricted to

an associated list.

Lemma 5.5.2. Consider the complete bipartite graph H = (A, B, F) with A = {u, v}
and B = {wy,...,w}. Let L, denote a set of ¢ colours which are permitted for edges
incident at u. L, is defined similarly. Then, there is an acyclic edge colouring of H using

only colours from L, and L, for edges incident at u and v respectively.

Proof. Without loss of generality, assume that I = L, N L, = {1,...,i} is the set of i > 0
colours available for edges incident at both u and v and also that L, \I = {i+1,...,t} and
also that L, \ I = {t+1,...2t—i}. Then, colour the edges (u,w), ... (u,w;) with 1,... ¢
respectively. Colour the edges (v,w1),. .., (v, w;_1) with 2,... i respectively. Colour the
edges (v,w;) ..., (v,w;—q) with ¢t +1,...,2t — i respectively and (v, w;) with colour 1 (see
Figure 5.2). It can be seen that this colouring is proper and acyclic. We call this scheme

also colouring by shifting and use it as a subroutine in the colouring of partial 2-trees. [

We use this procedure (described in the proof of Lemma B52) in our colouring of
2-trees, when the two endpoints u and v of a base edge e = (u,v), such that |ext(e)| = k

(k > 2), do not necessarily have k common free colours. Note that the colouring which
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results from applying Lemma B.5.2 when ¢t < 2 and the lists L, and L, are identical is
not acyclic. The colouring scheme described in the proof produces a proper and acyclic

colouring only if either the lists are distinct or ¢t > 3.

Figure 5.2: list acyclic colouring of Ky,

5.5.3 The colouring procedure

We may assume that the given graph is biconnected, since an acyclic colouring of any
graph can be obtained from the acyclic colourings of its biconnected components using
a'(G) colours. First we prove the result for the class 7 of 2-trees and then extend it, in
the next section, to include all of P, the partial 2-trees. We use the following easy to

verify fact repeatedly in our proofs.

Observation 1. If G is a 2-tree, one can construct G from any arbitrary triangle of G

by repeatedly adding 2-ears according to Definition [5.7.1]

We obtain a (A + 1)-acyclic edge colouring of any 2-tree by an iterative colouring
procedure which incorporates more edges at each stage into an existing partial colouring
until the graph is fully coloured. There is in general more than one way in which a 2-
tree can be constructed according to Definition We fix one such construction, and

with respect to it, define a notion of level to classify edges. The edges are introduced in
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increasing order of level number and coloured immediately. The procedure never alters
the colour of an edge once it has been assigned.

We reconstruct the graph G by starting from any triangle 7' = {a, b, ¢} as mentioned
in Observation [[I and building the graph ear by ear. We call this the base triangle or
initial triangle. Recall that ext(u,v) denotes the set of all 2-ears having (u,v) as its base
edge.

We also assign a nonnegative integer value to each edge e and call it the level of e and
denote it by level(e). Initially, the three edges of T are assigned level 0. The level number
is defined inductively. If e = (u, v) is any edge already added such that level(e) = i, then
for each 2-ear (u,w,v) € ext(u,v), we assign level(u,w) = level(w,v) = i+ 1 and add
this 2-ear. In addition, we we follow the convention that:

(a) edges are added in increasing order of their level numbers and

(b) if (u,w,v) is a level i ear, then all (i + 1)-level ears of ext(u,w) appear contiguously
(the same holds for ext(w, v) also) with 2-ears of one set appearing immediately before or
after the 2-ears of the other set.

This is the order in which the edges are introduced and coloured. Figure 5.3 indicates
how the graph looks just prior to the addition of a set of level(i + 1) edges.

In the following, we use A to denote, always, the maximum degree of the current
graph (after adding the edges to be coloured at this step). The colouring procedure can

be summarised as follows.
1. Colour the base triangle T' = {ab, bc, ac} with the colours 1,2, 3, respectively.

2. Colour the level 1 edges in the order ext(a,b), followed by ext(b,c), and finally
ext(a,c). We assume, without loss of generality, that |ext(a,b)| < |ext(b,c)| <
lext(a, c)|, where the notation |ext(u,v)| represents the number of ears having the

edge (u,v) as its base edge.

o If |ext(a,b)| = 1, then colour the new edge incident to vertex a with colour 2
(which is free there) and the edge incident to b with the newly available colour
(due to the increase in A). If |ext(a,b)| = 2 colour according to Lemma
where L, = {2,4} and L, = {3,4}. If |ext(a,b)] > 3 colour according to
Lemma BT using colours from {4, ..., |ext(a,b)| 4+ 3}.
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o If |ext(b,c)| = 1, then colour the new edge incident to b with the newly avail-
able colour (again due to increase in A), and the edge incident to ¢ with any
missing colour. If |ext(b, c)| = 2, A increases by 2. Let the two new colours
be ny; and ny. Let o be some original colour missing at b. Colour ext(b, c)
using Lemma B52, with L, = {ny,a} and L. = {ny,na}. If |ext(b,c)| > 3,
then colour ext(b, ¢) using Lemma B5T], since there are |ext(b, ¢)| common free

colours (the set of new colours due to increase in A).

o If |ext(a,c)| = 1, then, we know that |ext(a,b)| < 1 and |ext(b,c)| < 1. The
reader can verify that the colouring can be extended using the stipulated A +
1 < 5 colours. If |ext(a,c)| = 2, then either |ext(a,b)| = 2 and |ext(b,c)| = 2
or A increases on account of adding ext(a,c). In the former case, there exist
non-identical lists of two colours each, missing at @ and c¢. Colour ext(a,c)
using Lemma with these lists. In the latter case, colour ext(a,c) using
Lemma where L, = {a,n} and L, = {#,n}. Here, a and g are distinct
colours missing at a and b respectively, while n is the new colour. If |ext(a, ¢)| >
3, colour ext(a,c) using Lemma BE3XT provided there is a list of |ext(a, c)|

common free colours at a and ¢, and using Lemma B.5.2] otherwise.

3. For ¢ > 1, the procedure for colouring level-(i + 1) edges is as follows. Assume
that all edges up to level-i have already been added and coloured acyclically (using
A + 1 colours). Assume that for some level i 2-ear, (u,w,v), we add the edges in
ext(u,w) followed by those in ext(w,v) in incrementally building the graph. We
refer to (u,w,v) as the base ear. Refer to Figure 5.3. Let the number of 2-ears
in ext(u,w) and ext(w,v) be, respectively, k1 and ky. We assume, without loss of
generality, that k& < ky. Colour the new edges as described below, under colour

extension.

5.5.3.1 Colour extension

We describe below how to extend the colouring C to the newly added ears. The procedure
falls under a number of cases according to the values of k; and ky. We colour the ears in
ext(u, w) first and then those in ext(v,w). Let C(uw) = = and C(vw) = y and C(uv) =
a. Notice that since we use A + 1 colours, we have |L,| > k3 + 1,|L,| > ko + 1 and
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Figure 5.3: colour extension

|Lw| > k1 + ko + 1. One should also note that |£, N L,| > k; at the point of beginning
the colouring of ext(u,w) (because we colour ext(u,w) before colouring ext(v,w)). Recall
that k; < ko as assumed before.

In the colouring scheme below, we always colour the ky ears in ext(u,w) by applying
Lemma BESTl Tt is worth recalling from the proof of Lemma B35l that any maximal
bichromatic path in ext(u,w) has at least one endpoint distinct from u and w. As a
result, the subsequent colouring of ears in ext(v,w) cannot create any bichromatic cycle

passing through ext(u,w).

e Case k; =0:
If ko = 1, colour the edge of the ear incident to w using C(uv) = a and other edge
with any colour from £, \ {z}. Similarly if k; = 2, colour one ear with 2 colours
from £, \ {z} and the other ear with one of these colours and colour a. Otherwise,
the ko ears based on edge (v,w) are coloured using ko colours from £, \ {z}, as

given in Lemma 571

e Case k; =1:
In this case, we color the single ear based on (u,w) with the colours a and some
colour from £, \ {y}. If ko = 1, we colour the ear based on (v, w) properly, avoiding
the colour x. If ky = 2, we colour the ears based on (v, w), using nonidentical list of
colours, avoiding the colour z. If ks > 3, we pick a subset of ky colours from £, \ {z}

and a set of same size from £,. Note that these sets might be identical or distinct.
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We accordingly use the colouring procedure in Lemma BE5Tl or Lemma BE5J to

extend the partial colouring.

e Case k| = 2:
In this case, one of the ears based on (u,w) is coloured using 2 colours from £, \
{y} while the other is coloured using a and one of these colours. If ky = 2, we
pick non-identical lists of colours and colour ext(v,w) using these lists according to
Lemma b5 If ky > 3, for the ears based on (v, w), we pick a subset of ky colours
from £,\ {z} and a set of the same size from L£,,. If these sets are identical we extend

the colouring according to Lemma B3], and otherwise according to Lemma B0

e Case k| > 3:
In this case, the ears based on (u,w) are coloured using k; colours from £, \ {y}.
Observe that here, L, C L, \ {y}, so the selected set of colours are free at both
endpoints of the ear set, thus enabling the application of Lemma BTl For the
ears based on (v, w), we pick a subset of colours from £, \ {x} of cardinality ks and
a set of same size from L£,,. We colour according to Lemma B2 or Lemma B2

depending on whether these lists are identical or distinct.

We now need to argue that the new partial colouring obtained as a result of the colour
extension procedure is proper and acyclic, in each of the four cases. However, we argue in
detail only for the case k1 > 3. The arguments for the other cases are of a similar nature
and are simpler.

Prior to colouring ext(u, w) and ext(v, w), the graph is assumed to be coloured properly
and acyclically. Observe that the colouring procedure of Lemma BTl never creates
bichromatic cycles in the graph induced by the edges of ext(u,w). From that lemma, it is
also clear that there is no maximal bichromatic path involving the edges of ext(u, w) with
endpoints as v and w. It follows that there is no bichromatic cycle using a combination
of the old and new edges. Thus the colouring is proper and acyclic after the addition of
ext(u,w).

Now, ext(v,w) is coloured according to Lemma B2 since the list of available colours
available at v and w need not necessarily have ky common colours. From the lemma, we
know that the edges of ext(v,w) do not induce any bichromatic cycles. We do not use

the colour z in ext(v,w), so any bichromatic cycle using edges of ext(v, w) must also use
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edges of ext(u,w). However, that is not possible, since any bichromatic path starting at
w and entering ext(u,w) terminates at a vertex in ext(u,w) distinct from u and w. Thus

there is no bichromatic cycle using a combination of old and new edges.

5.6 Partial 2-trees

Here, we extend the proof given above to partial 2-trees.

Given any partial 2-tree T, we consider any 2-tree G which contains 7" as a subgraph.
We mark all the edges of G which are not in 7" as imaginary edges. We use the imaginary
edges only to classify the level of edges for the further addition of ears. They do not
contribute to the degree of a vertex in G. They are never coloured. The important point
to notice is that, again we need only A(T) 4+ 1 colours to extend the partial colouring
at any stage. As before, A(T') refers to the maximum degree of the partial 2-tree at the
current stage. An ear consisting of two real edges is called a full ear, while ears with
one real edge and one imaginary edge are called half ears. Observe that empty ears (both
edges are imaginary) are inconsequential, since we do not colour them at all, and only use
their endpoints for the addition of higher level ears.

Suppose, at any point, we are to colour k;, ko pairs of ears (some of them could be
half ears). We notice that if there are k uncoloured real edges at an endpoint, then we
have at least k& + 1 available colours for the edges incident at the endpoint.

Here, the ears having the same base edge (real or imaginary) are ordered with all the
full ears first followed by the half ears and finally by the empty ears. Colour the full ears
as mentioned earlier for 2-trees and extend the colouring to half ears in a proper fashion.
It follows that such a colouring is proper and acyclic. It is identical to the case of 2-trees,
except for the half ears. However, half ears only give rise to pendant edges and cannot
create bichromatic cycles, so any proper colouring is sufficient. This completes the proof
of Thorem BTl for partial 2-trees.

5.7 Algorithmic aspects

Our proof that a partial 2-tree can be acyclically coloured using A + 1 colours, can be

made constructive yielding an efficient algorithm to produce such a colouring.
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The proof consists of a colouring procedure which colours the set of edges considered
in a specific order. This naturally divides the procedure into two phases. In the first
phase, the order of the edges is computed. In the second phase the edges are coloured
considering them in this order. Strictly speaking, the edge order is a partial order, and
not a total order, since we introduce them in batches rather than one by one.

By observation [, we can construct the graph starting from any triangle. Finding a
triangle in a graph can be done using a standard graph searching algorithm like Breadth
First Search (BFS). Subsequent computation of the edge order consists of finding the set
of all common neighbours of the endpoints of each base edge considered in increasing
order of levels. This can be accomplished by a modification of the basic BF'S procedure.

Our colouring of 2-trees begins with the colouring of the base triangle. At each sub-
sequent stage, a bipartite graph is coloured either in a very simple way or using one of
Lemmas b5l and B3

The colouring of the initial triangle takes constant time. The colouring is then ex-
tended to include at each stage the edges extending a fixed base edge. In order to perform
this step, we need to compute the list of available colours at each of the endpoints of the
base edge. Prior to colouring an extension, comparison between these lists needs to be
made in order to determine the set of common colours and also the symmetric difference
of these lists. After these lists are computed, we order the edges of the extension and
assign colours to each of the edges. The extension procedure can be performed at a cost
of O(A?) to the running time.

A simple calculation then reveals that the entire graph can be coloured within O(n?)
time. This is also an upper bound on the time taken to compute the edge order of the

whole graph.

5.8 Future directions

The work presented in this chapter has been submitted to a conference. The reference is
[MNSOS]. It would be interesting to extend these ideas and see if similar or even weakened
results can be obtained for the partial k-trees for higher values of k. The results obtained
by similar methods is likely to yield bounds as a function of both A and k, rather than
only A.
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Chapter 6

Conclusions

6.1 Summary

In this thesis, we studied the problem of acyclic edge colouring of graphs. We introduced
a new colouring idea and proved that a/(G) < 4.52A for all graphs of girth ¢(G) > 220.
This improves the previous best bound of 16A for graphs with girth at least 220. This is
a step towards obtaining tight bounds on d'(G).

We also illustrated a general relationship between the girth of a graph and its acyclic
chromatic index, which highlights the fact that acyclically colouring a graph seems harder
for graphs with small cycles.

We obtained optimal or nearly optimal estimates on the acyclic chromatic index of
some structured classes of graphs. For these classes, we also provided efficient algorithms
to construct the corresponding optimal colourings. The classes of graphs for which we
have obtained near optimal estimates on the acyclic chromatic index are grid-like graphs,
partial 2-trees and outerplanar graphs (not in this thesis). This is interesting considering
that for other structured clases like complete graphs no optimal or near optimal estimate
is known at present.

We also correlate a'(G) to the corresponding values of its prime factors under the
cartesian product operation. Thus, tight bounds on the a’ of the prime factors of a graph
G, lead to reasonably tight bounds on a’(G) as well. Also, if the actual colourings of the
prime factors can be computed efficiently, then a colouring of the resultant graph can also

be computed efficiently by our method of proof.
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6.2 Future directions

It is easy to see that a/(K,) < p, where p is the smallest prime greater than or equal to
n. But the gap between p and n could be as large as y/n for certain values of n. So, it
would be interesting to obtain a A + O(1) bound for K.

It would also be interesting to obtain improved bounds for general classes of graphs.

If G is a partial torus isomorphic to the product of a path and a number of odd cycles,
a'(G) can take either of the values in {A, A +1}. It would be interesting to see if we can
classify such graphs for which a/(G) = A and also construct optimal colourings efficiently.

It is quite possible that Conjecture [LZT] is true. Under this assumption, we know
that the gap between the maximum degree of a graph and its acyclic chromatic index
is at most 2. Note that for any A-regular graph (A > 1), the gap is at least 1. Thus,
by applying Theorem repeatedly on such graphs, the difference between the bound
obtained and the maximum degree of the resultant graph increases for each additional
factor.

Thus, assuming the truth of the conjecture, it is not possible to make a statement of
the form ¢ (GOH) < d'(G) + A(H). It would be interesting to find conditions on G and
H which would enable us to make such a statement.

It is a challenge to obtain constructive bounds better than the currently best known
O(AlogA), for all graphs. It would be nice to improve the best known bound of 16A for
all graphs.
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