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Abstra
tAn a
y
li
 edge 
olouring of a graph is an assignment of 
olours to its edges in su
h away that in
ident edges get distin
t 
olours, and the edges of any 
y
le use at least threedistin
t 
olours. The latter 
ondition is equivalent to the requirement that the subgraphindu
ed by any pair of 
olour 
lasses (set of edges re
eiving the same 
olour) is a forest.The minimum number of 
olours su�
ient to a
y
li
ally 
olour the edges of a graph G,is 
alled its a
y
li
 
hromati
 index and is denoted by a′(G).In this thesis we study a problem 
alled the a
y
li
 edge 
olouring of graphs. Forbrevity, we often use the phrase �a
y
li
 
olouring�, instead of �a
y
li
 edge 
olouring�.This notion is a more restri
ted version of the standard edge 
olouring notion, whi
h inturn is the same as the standard vertex 
olouring notion on line graphs. This thesis studiesthis notion in the 
ontext of two di�erent aims. The �rst aim is to get tight estimates onthe minimum number of 
olours su�
ient to a
hieve su
h 
olourings for any graph. These
ond is to a
tually produ
e su
h 
olourings using as few 
olours as possible.The a
y
li
 
olouring problem 
an thus be viewed from a 
ombinatorial perspe
tiveand also from an algorithmi
 perspe
tive. It is interesting and 
hallenging with respe
t toboth perspe
tives. It is noteworthy that no good estimates on a′(G) have been obtainedfor even highly stru
tured 
lasses like the 
omplete graphs, or restri
ted families like bi-partite graphs. From the algorithmi
 point of view it is np-hard to determine a′(G) ingeneral, and even when restri
ted to sub
ubi
, 2-degenerate graphs. Its 
lose relationshipto standard vertex 
olourings indi
ates that it 
ould be useful in modelling and solv-ing problems involving 
on�i
t-free s
heduling of a
tivities. The a
y
li
 edge 
olouringproblem is also 
losely related to star and oriented 
olourings of line graphs whi
h haveappli
ations in proto
ols for mobile 
ommuni
ation.In this thesis, we have 
ontributed to improving the understanding of the a
y
li

olouring problem from a 
ombinatorial as well as an algorithmi
 perspe
tive. Spe
i�
allywe have obtained the following results.
• We have improved the previously best known upper bound on a′(G) for all graphs(16∆) to 5.91∆ for graphs of girth at least 9. We get a further improvement to

4.52∆ when we restri
t our attention to graphs of girth at least 220. Here, ∆(G)represents the maximum degree of the graph. 6



(This result whi
h is joint work, forms a part of the Ph.D. thesis of my 
ollaboratorN. Narayanan, also.)
• We obtain a general relationship between the girth, g(G) of a graph G and itsa
y
li
 
hromati
 index, whi
h gives progressively better upper bounds on a′(G), asthe girth, g(G) of the graph in
reases.
• We obtain exa
t estimates of a′(G) for the well known graph 
lasses: hyper
ubes,grids and tori. Also, we show that for ea
h partial torus (a generalisation of gridsand tori), its a′(G) is always either ∆ or ∆ + 1. Our proof also suggests an e�
ientalgorithm to produ
e su
h 
olourings for these graphs.
• We also prove that a′(G) ≤ a′(G1) + · · · + a′(Gk) where G1, . . . , Gk are the primefa
tors of G (with respe
t to 
artesian produ
t fa
torisation), provided a′(Gi) > 1,for some i. This generalises and extends the results we obtain for partial tori,mentioned above. The graph G 
an be e�
iently 
oloured using a′(G1)+. . .+a′(Gk)
olours, provided we have a
y
li
 
olourings of ea
h Gi using a disjoint set of a′(Gi)
olours.
• We prove that for the 
lass of partial 2-trees, a′(G) ≤ ∆+1. Our proof also yields apolynomial time algorithm for 
onstru
ting an a
y
li
 
olouring of any partial 2-treeusing ∆ + 1 
olours.
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Chapter 1Introdu
tionMany problems of pra
ti
al importan
e 
an be studied by modelling them in a graph theo-reti
 framework. De
iding the lo
ations of retail outlets to meet the 
on�i
ting 
onstraintsof proximity to 
ustomers and minimising the total investment in setting-up 
osts is onesu
h problem. S
heduling the repair of roads in a 
ity while ensuring that important 
ity
entres are still a

essible is another. Routing a 
leaning vehi
le through the roads of a
ity minimising the travel distan
e is another problem whi
h 
an be solved using graphtheoreti
 te
hniques. Graph theory is vast and ea
h of these problems are modelled andsolved using di�erent properties of graphs. For an ex
ellent introdu
tion to graph theoryand its appli
ations see [Wes96℄,[Har69℄,[Rob93℄.Graph 
olouring is an important problem in graph theory and 
ombinatori
s as well.It arose famously in the 
ontext of the four 
olour theorem, whi
h states that the regionsof a map 
an be 
oloured using four 
olours so that regions sharing a boundary get distin
t
olours. A proper 
olouring of a graph assigns 
olours to its verti
es in su
h a way thatno pair of adja
ent verti
es get the same 
olour. Equivalently, this may be viewed as anassignment of 
olours to verti
es su
h that the set of verti
es re
eiving the same 
olouris an independent set. When viewed in this way we 
an speak of a proper 
olouringas a partition of the vertex set into independent sets. In general, graph 
olouring 
anbe thought of as a partition of the elements of a graph (verti
es or edges), with therequirement that the partition satis�es spe
i�ed 
onstraints.Standard vertex 
olouring is used to s
hedule a
tivities in a 
on�i
t-free manner. Sup-pose we need to s
hedule meetings of several 
ommittees at various time slots. We model1



CHAPTER 1. INTRODUCTIONit by a graph with one vertex for ea
h 
ommittee and an edge between two verti
es ifthe 
orresponding 
ommittees have a 
ommon member. A proper vertex 
olouring ofthis graph, indi
ates a s
hedule where no two 
ommittees with a 
ommon member ares
heduled a meeting at the same time. S
heduling the allo
ation of pro
essor registers toprogram variables by a 
ompiler, to enhan
e performan
e, is a very important real-timeappli
ation of proper vertex 
olourings. Proper edge 
olouring 
an be used in a similarfashion to s
hedule mat
hes between teams in a sports league, so that, no team is as-signed two mat
hes to be played at the same time. Colouring problems are good toolsfor modelling s
heduling problems of various types. In this thesis we 
onsider an impor-tant variant of graph 
olouring 
alled a
y
li
 edge 
olouring. More details are given inSe
tion 1.2.1.1 De�nitions and notationsHere, we present some de�nitions and notations whi
h we use throughout the thesis. Wealso state some well known results. Where we have used a notation, 
on
ept or result notstated here, it 
an be taken to have its standard meaning in widespread use. We 
onsideronly �nite, simple, undire
ted graphs G = (V, E), where V is 
alled the set of verti
esand E is 
alled the set of edges. Throughout, we use n to denote |V |. Ea
h edge is a
2-element subset of V . Sometimes, we use the short notation (u, v) to denote {u, v} ∈ E.If v ∈ e, where e ∈ E, then we say that v is an endpoint of e. Two verti
es v1 and v2 aresaid to be adja
ent (or neighbours) if (v1, v2) ∈ E. A vertex v and an edge e are said tobe in
ident to ea
h other if v ∈ e. Two edges are said to be in
ident to ea
h other if theyshare an endpoint.A path in G is a sequen
e of verti
es v0, v1, . . . , vk−1, vk, su
h that the v′

is are all distin
tand for 0 ≤ i < k, (vi, vi+1) ∈ E. The length of a path is the number of edges it 
ontains.A path starting at a vertex u and ending at a vertex v is 
alled a u-v path. We denote apath on n verti
es by Pn. G is 
onne
ted if, for every pair of verti
es u, v in V , there is a
u-v path.A 
y
le inG is a sequen
e of verti
es v0, v1, . . . , vk−1, vk, su
h that v0 = vk, {v0, . . . , vk−1}are all distin
t and for 0 ≤ i < k, (vi, vi+1) ∈ E. The length of a 
y
le is the number ofedges it 
ontains. We use Cn to denote a 
y
le on n verti
es. The length of a shortest2



1.1. DEFINITIONS AND NOTATIONS
y
le and a longest 
y
le in a graph are 
alled its girth and 
ir
umferen
e respe
tively.We will use girth frequently and for a graph G we denote it by g(G). G is 2-
onne
ted if,for every pair of verti
es u, v in V , there is 
y
le whi
h passes through both u and v.In general, the 
onne
tivity of a simple graph, is the smallest number of verti
es whi
hneed to be deleted to dis
onne
t the graph. Analogously, the edge 
onne
tivity of a graphis the minimum number of edges whi
h need to be deleted to dis
onne
t the graph.Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. We say G2 is a subgraph of G1 if
V2 ⊆ V1 and E2 ⊆ E1. If, in addition, for ea
h v1, v2 ∈ V2, (v1, v2) ∈ E2 i� (v1, v2) ∈ E1,we say G2 is an indu
ed subgraph of G1. The subgraph of a graph G = (V, E) indu
ed bythe vertex set V ′ is denoted by G[V ′]. A pair of graphs G1 = (V, E1) and G2 = (V, E2) onthe same set of verti
es V are 
omplementary if for all u, v ∈ V , (u, v) ∈ E1 i� (u, v) /∈ E2.The 
omplement of a graph G is denoted by G. G = (V, E) is said to be a 
omplete graphif for ea
h u, v ∈ V , (u, v) ∈ E. The 
omplete graph on n verti
es is denoted by Kn. Agraph and its 
omplement 
onstitute a partition of the edge set of the 
omplete graph. Amaximal 
onne
ted subgraph of a graph is 
alled a 
omponent of the graph. Similarly, amaximal 2-
onne
ted subgraph is 
alled a blo
k of the graph.Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphi
 to ea
h other if thereexists a bije
tive fun
tion f : V1 → V2 su
h that (u, v) ∈ E1 i� (f(u), f(v)) ∈ E2. Thefun
tion f is said to be an isomorphism between the graphs. A pair of isomorphi
 graphshave identi
al stru
tural properties.A graph G = (V, E) is said to be bipartite if V 
an be partitioned into two non-emptyparts V1 and V2 (
alled partite sets) su
h that ea
h edge e ∈ E joins a vertex of V1 toa vertex of V2. The 
on
ept of bipartite graphs 
an be extended naturally to r-partitegraphs for ea
h r ≥ 2. A 
omplete bipartite graph is a bipartite graph in whi
h there isan edge joining ea
h pair of verti
es lying in di�erent partite sets. A 
omplete bipartitegraph with partite sets of size m and n is denoted by Km,n.The degree of a vertex v in G, denoted by dG(v), is the number of edges in
ident to
v. If G is 
lear from the 
ontext, we use the shorter notations dv or d(v). The maximumdegree of a graph G, denoted by ∆G or ∆(G), is the maximum degree of any vertex in
G. Similarly, the minimum degree of a graph G, denoted by δG or δ(G), is the minimumdegree of any vertex in G. The average degree of a vertex in G, denoted by davg(G), isde�ned to be 2|E(G)|/|V (G)|. The symbol G is often dropped in these notations when3



CHAPTER 1. INTRODUCTIONthe graph under 
onsideration is 
lear from the 
ontext.A subset M ⊆ E is a mat
hing if no pair of edges in M are in
ident to ea
h other andits size is the number of edges in it. A maximal mat
hing of a graph G is a mat
hing of
G whi
h is not 
ontained in any other mat
hing of G. A maximum mat
hing of G is amat
hing of maximum 
ardinality. The size of a maximum mat
hing of G is an importantparameter. It is denoted by α′(G).The parameters ∆(G), g(G) and α′(G) have a strong bearing on a
y
li
 edge 
olouringand the a
y
li
 
hromati
 index whi
h is the fo
us of this thesis.A 
lique in a graph G is a 
omplete subgraph of G. A maximal 
lique K of a graph
G is one whi
h is not 
ontained within any other 
lique of G. The size of a 
lique of Gis the number of verti
es it 
ontains; a 
lique on k verti
es is also 
alled a k-
lique. Amaximum 
lique of G is a 
lique whose size is at least as large as the size of any other
lique of G. The 
lique number of G, denoted ω(G), is the size of a maximum 
lique in G.Similarly, an independent set I in G is I ⊆ V su
h that there is no edge in G joining twoverti
es in I. The independen
e number of G, denoted α(G), is the number of verti
es ina maximum independent set of G.1.1.1 Graph 
olouringsFirst, we de�ne vertex and edge 
olourings.De�nition 1.1.1. A proper vertex 
olouring of a graph G is a fun
tion f : V → C, where
C is any �nite set of labels (
alled 
olours) su
h that adja
ent verti
es are mapped todi�erent 
olours.De�nition 1.1.2. The 
hromati
 number of a graph G, denoted by χ(G), is the minimumnumber of 
olours (i.e. |C|) su�
ient to properly 
olour the verti
es of G.The set of verti
es re
eiving the same 
olour in a 
olouring, is 
alled a 
olour 
lass.Clearly, ea
h 
olour 
lass forms an independent set. Any proper vertex 
olouring of agraph, partitions V into independent sets.It is 
lear that for any graph G, χ(G) ≤ ∆(G)+1. In fa
t, there is a very simple lineartime algorithm whi
h, given an arbitrary ordering of V (G), iteratively produ
es a proper
olouring of V (G) using at most ∆(G) + 1 
olours. Also, by Brooks' Theorem ([Bro41℄),
χ(G) ≤ ∆(G) for any 
onne
ted graph G unless G is a 
omplete graph or an odd 
y
le. 4



1.1. DEFINITIONS AND NOTATIONSDe�nition 1.1.3. A proper edge 
olouring of a graph G is a fun
tion f : E → C, where
C is any �nite set of 
olours su
h that in
ident edges are mapped to di�erent 
olours.De�nition 1.1.4. The 
hromati
 index of a graph G, denoted by χ′(G), is the minimumnumber of 
olours (i.e. |C|) su�
ient to properly edge 
olour G.The set of edges re
eiving the same 
olour in an edge 
olouring, is 
alled a 
olour
lass. It follows that the edges in any 
olour 
lass form a mat
hing. We have χ′(G) ≥
|E(G)|/α′(G). Any proper edge 
olouring of a graph partitions its edge set into mat
hings.The study of edge parameters of a graph 
an be thought of as the study of the 
orre-sponding vertex parameters of an asso
iated graph, 
alled its line graph. The line graphsare de�ned below.De�nition 1.1.5. The line graph, denoted by L(G) = (V ′, E ′), of a graph G = (V, E) isthe graph in whi
h V ′ = E and (v′

1, v
′
2) ∈ E ′ if v′

1 and v′
2 are in
ident to ea
h other in G.The 
lass of line graphs has been well 
hara
terised and there are very e�
ient algo-rithms [Kra43℄ to determine whether a given input graph is a line graph.In the light of this de�nition, it is 
lear that a proper edge 
olouring of any graph

G is a proper vertex 
olouring of L(G) and vi
e versa. Thus, χ′(G) = χ(L(G)). Thisrelationship does not, however, hold for all problems. For example, an eulerian tour of Gis a hamiltonian 
y
le in L(G), but the 
onverse is not true. Sin
e in
ident edges mustre
eive di�erent 
olours, it is 
lear that χ′(G) ≥ ∆(G). Sin
e ∆(L(G)) ≤ 2∆(G) − 2, itfollows that χ(L(G)) ≤ 2∆(G)− 1. This trivial upper bound on the 
hromati
 index wassigni�
antly improved by Vizing [Viz64℄ and his result is stated in the theorem below.Theorem (Vizing). For any graph G, ∆(G) ≤ χ′(G) ≤ ∆(G) + 1.Vizing's proof is 
onstru
tive and the resulting algorithm is an e�
ient one for produ
-ing an edge 
olouring of any graph G using at most ∆(G) + 1 
olours. The running timeof a straightforward implementation of Vizing's idea is O(n4). There have subsequentlybeen several improvements and re�ned algorithms. See [GNK+85℄ for better results.We now de�ne notions 
entral to the problem whi
h is addressed in this thesis.De�nition 1.1.6. An a
y
li
 edge 
olouring of a graph G = (V, E) is a proper edge
olouring of G su
h that there is no two 
oloured 
y
le. Equivalently, the subgraphindu
ed by any pair of 
olour 
lasses is a forest. 5



CHAPTER 1. INTRODUCTIONDe�nition 1.1.7. The a
y
li
 
hromati
 index (or a
y
li
 edge 
hromati
 number) of agraph G, denoted by a′(G), is the least number of 
olours su�
ient to a
y
li
ally 
olourthe edges of G.The analogous notions with verti
es are also de�ned and studied (see [AMR91℄, [FGR03℄,[Gru73℄, [Sku04℄). An a
y
li
 vertex 
olouring of a graph using k 
olours, is a proper
olouring of its verti
es su
h that every 
y
le uses at least three 
olours. The a
y
li

hromati
 number, a(G), is the smallest k for whi
h su
h a 
olouring exists.In this thesis, we study the a
y
li
 edge 
olouring problem whi
h is the same as thea
y
li
 vertex 
olouring problem restri
ted to the 
lass of line graphs. In Se
tion 1.2, welook at some known trivial and non-trivial bounds on a′(G).1.1.2 Graph 
lassesIn this se
tion, we de�ne the graph 
lasses we study. Some 
lasses of graphs we study arede�ned on the basis of an operator 
alled the 
artesian produ
t whi
h is used to generate
ompli
ated graphs from simpler ones. We de�ne this operation below as also some of thegraphs we 
onsider.De�nition. Given two graphs G1 = (V1, E1) and G2 = (V2, E2), the 
artesian produ
t of
G1 and G2, denoted by G12G2, is de�ned to be the graph G = (V, E) where V = V1 × V2and E 
ontains the edge joining (u1, u2) and (v1, v2) if and only if either u1 = v1 and
(u2, v2) ∈ E2 or u2 = v2 and (u1, v1) ∈ E1.This operation is asso
iative and 
ommutative. Thus, the 
artesian produ
t operator
an be applied to any �nite series of graphs in any order, without a�e
ting the resultantgraph.Below are de�ned some well known 
lasses of graphs de�nable in terms of 
artesianprodu
t. We use paths and 
y
les to donote the set of all paths and all 
y
les on threeor more verti
es respe
tively. We sometimes use the notation edge when talking aboutthe graph P2.De�nition. A hyper
ube is any graph obtained as the 
artesian produ
t of a number of
P2's. Its dimension is the number of P2's in the produ
t. 6



1.1. DEFINITIONS AND NOTATIONSDe�nition. A grid or mesh is any graph obtained as the produ
t of graphs from paths.Its dimension is the number of paths in the produ
t.De�nition. A torus is any graph obtained as the 
artesian produ
t of graphs from 
y-
les. Its dimension is the number of 
y
les in the produ
t.The above three types of graphs are all spe
ial 
ases of the 
lass of partial tori de�nedbelow. We also refer to these graphs as grid-like graphs.De�nition. A d-dimensional partial torus is a 
onne
ted graph G, where G is of the form
G ∼= G12G2 · · ·2Gd, where Gi ∈ edge ∪ paths ∪ 
y
les for ea
h i ≤ d.De�nition. A k-tree is any graph obtained from the 
omplete graph Kk+1, by a sequen
eof zero or more operations of adding a new vertex adja
ent to the verti
es of an existing
k-
lique in the graph.De�nition. A partial k-tree is any subgraph of a k-tree.1.1.3 Algorithms and 
omplexityHere, we give a brief introdu
tion to algorithms and the 
omplexity of problems. See[CLR89℄, for an ex
ellent and 
omprehensive introdu
tion to the the theory of algorithmdesign.We de�ne the e�
ien
y of an algorithm as the number of elementary steps it usesin order to solve a problem instan
e of a given size. For an algorithm A, we denote by
TA(n) the maximum running time (measured by the number of elementary operations)taken by the algorithm on any input of size n. We 
ompare the relative merits of twoalgorithms for a problem on the basis of these fun
tions, fo
ussing on the fun
tion valuesasymptoti
ally, as the input size grows arbitrarily large.We say an algorithm for a problem is e�
ient if its running time is bounded by somepolynomial fun
tion of its input size, n. A problem is said to be tra
table, if it has ane�
ient algorithm to solve it and otherwise it is said to be intra
table. We also use thenotion of np-hard optimisation problems. For an introdu
tion to this notion, see [GJ79℄.An np-hard optimisation problem is not likely to admit an e�
ient algorithm for solving itexa
tly. In that 
ase, we over
ome the di�
ulty by designing an approximation algorithm.7



CHAPTER 1. INTRODUCTION1.2 A
y
li
 edge 
olouringThe notions of a
y
li
 vertex and edge 
olourings were introdu
ed by Grunbaum in[Gru73℄. For the edge version, it was 
onje
tured by Alon, Sudakov and Zaks (see[ASZ01℄), and independently by Fiam
ik (see [Fia78℄), that a′(G) ≤ ∆ + 2 for every
G and they also provided examples of graphs (
omplete graphs on an even number ofverti
es) requiring ∆ + 2 
olours in any a
y
li
 edge 
olouring.Conje
ture 1.2.1. For any graph G, a′(G) ≤ ∆(G) + 2.As we have seen, many graph theoreti
 problems 
on
erning edges 
an be viewed asequivalent vertex problems in the 
orresponding line graph. Solutions to one problem yieldsolutions to the other and vi
e versa. However, this statement is not true in general asexplained in Se
tion 1.1.1. In the 
ase of a
y
li
 
olouring though, the above observationholds. An a
y
li
 vertex 
olouring of L(G) yields an a
y
li
 edge 
olouring of G and
onversely also, an a
y
li
 edge 
olouring of G yields an a
y
li
 vertex 
olouring of L(G).This is true even for the standard vertex and edge 
olouring problems. The number of
olours used in ea
h 
ase is identi
al.We obtain bounds on a′(G) in terms of its maximum degree ∆. The reason for this
hoi
e is that ∆ is a lower bound and there exists a fun
tion f(∆) su
h that a′(G) ≤ f(∆)for all graphs. Here, the fun
tion has been shown to be linear. No other parameter bettersatis�es both the 
riteria of being easily 
omputable and 
losely tied to the value. Thisis also a parameter 
ommonly used to bound the 
hromati
 number and 
hromati
 indexof graphs.We have seen that χ(G) ≤ ∆(G) + 1, while ∆(G) ≤ χ′(G) ≤ ∆(G) + 1 for any graph.However, ∆+1 is not always tight for χ(G), as seen in the 
ase of bipartite graphs, where
χ(G) = 2, while ∆(G) is unbounded. We infer that in the 
ase of ordinary vertex and edge
olourings, we 
ould have ∆(G) signi�
antly away from χ(G), but ∆(G) and χ′(G) di�erby at most 1. A similar phenomenon holds for a
y
li
 
olouring as the following boundsindi
ate. For any graph, χ(G) ≤ a(G) ≤ O(∆

4
3 ), while a′(G) = θ(∆) (see [AMR91℄).Thus, for planar graphs a(G) ≤ 5 always, but ∆(G) is unbounded. This phenomen ofthe edge version being better 
on
entrated is observed in list 
olouring problems also, inaddition to the standard proper 
olouring and several other problems as well.In view of Conje
ture 1.2.1 and the trivial lower bound of ∆(G) on a′(G), we often8



1.2. ACYCLIC EDGE COLOURINGuse the term gap to refer to the absolute di�eren
e in value between these two parametersof a graph.The a
y
li
 edge 
olouring problem is interesting and 
hallenging be
ause an exa
testimate of a′(G) is not yet known even if G = Kn, while usually graph invariants areeasily determined for 
omplete graphs. This also demonstrates the di�
ulty inherent inestimating this parameter. Another 
lass of graphs for whi
h there are no good estimateson a′(G) are bipartite graphs. This gives further indi
ation of the di�
ulty of the problem.A possible explanation for the problem being di�
ult even on bipartite graphs 
ould bethe fa
t that even 
y
les are in some sense are the 
ore of the problem. Any proper
olouring automati
ally ensures that odd 
y
les re
eive at least three 
olours.When 
onsidering the a
y
li
 
olouring problem, we 
an always assume without lossof generality that the graph is 
onne
ted, sin
e the independent a
y
li
 
olourings of thedi�erent 
omponents using the same sets of 
olours yield an a
y
li
 edge 
olouring of thewhole graph. In fa
t, we often assume the graph is 2-
onne
ted, be
ause there 
an neverbe a 
y
le 
ontained in more than one blo
k. Thus independent 
olourings of ea
h blo
k
an be 
ombined by renaming some of the 
olours and removing 
on�i
ts at 
ut verti
esto ensure the 
olouring is proper. Another property is that ∆-regular graphs (∆ > 1)need at least ∆+1 
olours for an a
y
li
 
olouring. To see this, observe that in any proper
olouring using exa
tly ∆ 
olours, ea
h 
olour 
lass is a perfe
t mat
hing and hen
e, theunion of any two 
olour 
lasses is a 2-regular graph, whi
h is always a 
olle
tion of vertexdisjoint 
y
les.From the point of view of appli
ability, the a
y
li
 edge 
olouring problem is 
loselyrelated to standard versions of vertex 
olouring and edge 
olouring whi
h are used to model
on�i
t-free s
heduling of stand-alone a
tivities and intera
tions respe
tively. A
y
li
 edge
olouring 
an be used in 
on�i
t-free s
heduling of intera
tions in an environment where
y
li
 deadlo
ks may arise. A
y
li
 
hromati
 index is also related to star 
hromati
number and oriented 
hromati
 number (see [KSZ97℄,[GTMP07℄), both of whi
h haveappli
ations in proto
ols for mobile 
ommuni
ation. Any improved estimate on the a
y
li

hromati
 index leads to an improvement in estimating the oriented 
hromati
 number ofline graphs. 9



CHAPTER 1. INTRODUCTION1.3 Other/earlier resultsWhile the a
y
li
 edge 
olouring problem still provides a lot of s
ope for resear
h, somework has already been done in the area and interesting results have been obtained. Wenow give below a survey of some of the prominent results already obtained in this area.In addition to results elaborated below, see also [FGR03℄,[Bur79℄,[MR98℄ for further workon this problem.See [GP05℄ and [GGW06℄ for work on a generalised form of the a
y
li
 
olouringproblem. In the afore-mentioned works, the authors de�ne the r-a
y
li
 edge 
olouring asa 
olouring in whi
h any 
y
le in the graph of length k uses at least min{r, k} 
olours.They de�ne the asso
iated parameter r-a
y
li
 
hromati
 index, a′
r(G) for a graph G asthe minimum number of 
olours su�
ient to obtain su
h a 
olouring. They obtain boundson the value for random regular regular graphs whi
h hold asymptoti
ally, and also tightbounds for a′

r(G) for bounded degree graphs. Other types of generalisation should alsobe possible.1.3.1 Bounds on a
y
li
 
hromati
 indexThe following theorem (whi
h apears in [AMR91℄) is an existential proof that a′(G) islinearly upper bounded by ∆. It gives an asymptoti
ally tight value.Theorem 1.3.1. For any graph G, a′(G) = O(∆).The next is a result 
on�rming Conje
ture 1.2.1 for graphs with high girth. The resultappears in [ASZ01℄, and the proof is by the probabilisti
 method.Theorem 1.3.2. There is a 
onstant c > 0, su
h that, if G is a graph with g(G) ≥
c∆(G) log ∆(G), then a′(G) ≤ ∆(G) + 2.A weaker bound for a larger 
lass of graphs (also appearing in [ASZ01℄) is given below.Theorem 1.3.3. There is a 
onstant c > 0, su
h that, if G is a graph with g(G) ≥ c log ∆,then a′(G) ≤ 2∆ + 2.The next result, due to Nesetril and Wormald (see [NW05℄), shows the 
onje
ture istrue for random regular graphs. 10



1.4. MAIN RESULTS OBTAINED HERETheorem 1.3.4. If G is a random d-regular graph on n verti
es, then a′(G) = d + 1with very high probability. Here, it is assumed that d is �xed but arbitrary while n growsarbitrarily large.It is an improvement over an earlier result, where the upper bound was greater by 1,for graphs on an odd number of verti
es (see [ASZ01℄).1.3.2 Known algorithmi
 aspe
ts of a
y
li
 edge 
olouringVery few results have been obtained in this area. This is probably be
ause, it is hard toprove bounds whi
h are nearly tight even for highly stru
tured 
lasses of graphs. If wedo not impose a stru
ture on the graph, then again we do not expe
t to get very tightbounds. The result mentioned below is due to Skulrattankul
hai (see [Sku04℄).Theorem 1.3.5. If ∆(G) ≤ 3, then a′(G) ≤ 5. There is a linear time algorithm whi
hprodu
es su
h a 
olouring.The following proof due to Subramanian, is the best bound obtained, without usingthe probabilisti
 method, on a′(G) for all graphs (see [Sub06℄). It is a 
onstru
tive proofwhi
h produ
es su
h a 
olouring in polynomial time.Theorem 1.3.6. For any graph G, a′(G) = O(∆ log ∆). Also, su
h a 
olouring 
an beobtained in polynomial time. The 
olouring pro
edure is based on a greedy heuristi
.The next result indi
ates why it might be hard to obtain optimal or almost optimal
olourings even for very spe
ial 
lasses of graphs (see [AZ02℄).Theorem 1.3.7. It is NP-hard to determine a′(G), where G is a 2-degenerate sub
ubi
graph.This, of 
ourse, implies that the problem is NP-hard for general graphs also.1.4 Main results obtained hereWe obtain good estimates on the a
y
li
 
hromati
 index of various 
lasses of graphs andoften e�
ient algorithms whi
h either produ
e 
olourings with the estimated number of11



CHAPTER 1. INTRODUCTION
olours or a 
lose approximation. The results 
an be broadly 
lassi�ed into two parts.First we mention bounds whi
h we obtained using random 
olourings and probabilisti
analysis. These results use no stru
tural properties of the graph, ex
ept assumptionson its girth. We believe that the bounds obtained are unlikely to be tight to within anadditive 
onstant fa
tor. The se
ond set of results give bounds whi
h are very 
lose tothe optimum value and apply to stru
tured families of graphs. The proofs rely heavily onstru
tural properties of the graph and also yield e�
ient algorithms to produ
e 
olourings.1.4.1 Improved upper bounds on a′(G)The following theorem is a result obtained by us, whi
h gives an upper bound on thea
y
li
 
hromati
 index of graphs whose girths are lower bounded by a spe
i�ed 
onstant.Theorem. For any graph G with girth, g(G) ≥ 9, the a
y
li
 
hromati
 index a′(G) ≤
5.91∆(G).The next theorem gets a better upper bound but the 
lass of graphs to whi
h it isappli
able is a stri
t subset of the 
lass 
onsidered above. It applies only to graphs withhigher girth. The proofs of these results are quite similar.Theorem. For any graph G with girth, g(G) ≥ 220, the a
y
li
 
hromati
 index a′(G) ≤
4.52∆(G).The next result gives a general upper bound on the a
y
li
 
hromati
 index of a graphas a fun
tion of its maximum degree and its girth. As we dis
ussed earlier, the maximumdegree of a graph is a very natural parameter, in terms of whi
h its a
y
li
 
hromati
 index
an be bounded. Also, the girth of a graph is a measure of how easy it is to 
olour ita
y
li
ally with a �xed set of 
olours. The higher its girth the easier it seems to 
olour thegraph, espe
ially when we adopt a random 
olouring pro
edure. This result is interestingbe
ause it gets an upper bound in terms of these two 
ru
ial parameters.Theorem. There are absolute 
onstants c1, c2 > 0 su
h that, for any G with g ≥ c1 log ∆we have,

a′(G) ≤ ∆ + 1 +

⌈

c2

(

∆ log ∆

g

)⌉All these results appear in [MNS05℄,[MNS07b℄. 12



1.4. MAIN RESULTS OBTAINED HERE1.4.2 Algorithmi
 boundsHere, we state the results we obtained using 
onstru
tive te
hniques.Theorem. Let G be a simple graph with a′(G) = η. Then,1. a′(G2P2) ≤ η + 1, if η ≥ 2.2. a′(G2Pl) ≤ η + 2, if η ≥ 2 and l ≥ 3.3. a′(G2Cl) ≤ η + 2, if η > 2 and l ≥ 3.The next two theorems follow as 
orollaries and deal with more 
on
retely de�ned
lasses of graphs.Theorem. The following is true for ea
h d ≥ 1.
• a′(G) = ∆(G) + 1 = d + 1, if G is a hyper
ube of dimension d ≥ 2; a′(P2) = 1.
• a′(G) = ∆(G) = 2d, if G is a grid of dimension d.
• a′(G) = ∆(G) + 1 = 2d + 1, if G is a torus of dimension d.Theorem. When G has fa
tors from at least 2 of the 
lasses 
y
les, paths and edges,

a′(G) ∈ {∆(G), ∆(G) + 1}, and its exa
t value depends on the spe
i�
 
ombination offa
tors.The results of the pre
eeding two theorems are 
onstru
tive leading to e�
ient algo-rithms for obtaining almost optimal a
y
li
 edge 
olourings. These theorems are statedmore pre
isely in Chapter 3, where they are 
onsidered in greater detail. The pre
eedingthree results appear in [MNS06℄.The next theorem (see [MS07℄) gives a slightly weaker bound on a′(G) than the previ-ous theorems, but it 
overs a far wider 
lass of graphs. It relates a′(G) and the 
artesianprodu
t operation in a general setting.Theorem. Let G = (VG, EG) and H = (VH , EH) be two 
onne
ted non-trivial graphs su
hthat max{a′(G), a′(H)} > 1. Then,
a′(G2H) ≤ a′(G) + a′(H) 13



CHAPTER 1. INTRODUCTIONThe following result (see [MNS07a℄) on a
y
li
 edge 
olouring was also obtained byus, but forms a part of the Ph.D. thesis of my 
ollaborator N. Narayanan.Theorem 1.4.1. If G is an outerplanar graph then a′(G) ≤ ∆(G)+1. A 
olouring usingthis many 
olours 
an be obtained in O(n log ∆) time.The next result states good bounds obtained by us on a′(G) for the 
lass of partial 2-trees (see [MNS08℄). In this 
ase also, the results translate dire
tly into e�
ient algorithmswhi
h produ
e a
y
li
 edge 
olourings using the 
laimed number of 
olours.Theorem. If G is a partial 2-tree then a′(G) ≤ ∆(G) + 1.1.5 Thesis outlineIn Chapter 2, we present the upper bounds on a′(G) for graphs with high girth. We alsopresent therein, a result 
onne
ting a
y
li
 
hromati
 index to girth and maximum degree.Chapter 3 gives an exposition of a
y
li
 
olouring of partial tori. The a
y
li
 
olouringof the 
artesian produ
t of arbitrary graphs is presented in Chapter 4. In Chapter 5, westudy a
y
li
 
olouring of partial 2-trees. Chapter 6 
ontains some 
on
luding remarksand outlines possible future dire
tions for resear
h.

14



Chapter 2A
y
li
 edge 
olouring of high girthgraphsIn this 
hapter we present an upper bound on the a
y
li
 
hromati
 index, a′(G), forall graphs with girth, g(G), greater than a �xed 
onstant. The proof is by probabilisti
arguments and improves the estimates on this parameter for a fairly large 
lass of graphs.We also obtain a general relationship between the girth of a graph and an upper boundon its a
y
li
 
hromati
 index. Some of the ideas in the proof are similar to those used inearlier work by others, while other ideas are new.After introdu
ing the idea of atta
king the a
y
li
 edge 
olouring problem in Se
-tion 2.1 we introdu
e the ne
essary probabilisti
 tools in Se
tion 2.2. A brief survey ofother work on a
y
li
 
olouring using the probabilisti
 method is presented in Se
tion 2.3.Se
tion 2.4 
ontains our results and the proofs. We indi
ate open problems and presentsome 
on
lusions in Se
tion 2.5.2.1 Introdu
tionThe probabilisti
 method is a powerful tool to prove the existen
e of 
ombinatorial stru
-tures having some desired property. It was pioneered by Erdös who applied it to various
ombinatorial problems (see [AS00℄). It provides a proof of the existen
e of su
h stru
turesusing probabilisti
 arguments. Also, it is sometimes possible to translate the existen
eproof into an e�
ient algorithm whi
h is signi�
antly faster than the brute-for
e approa
h15



CHAPTER 2. ACYCLIC EDGE COLOURING OF HIGH GIRTH GRAPHSof enumerating all possibilities.In the 
ontext of a
y
li
 edge 
olouring, it has been shown, originally by Alon, M
-Diarmid and Reed, that the number of 
olours su�
ient is O(∆) using the probabilisti
method (see [AMR91℄,[MR98℄), but to design an e�
ient algorithm whi
h provably pro-du
es a 
olouring using o(∆2) 
olours is non-trivial. Note that any proper edge 
olouringof G whi
h requires that ea
h path P on three edges should use three 
olours is also ana
y
li
 edge 
olouring. It is easy to see that su
h a 
olouring 
an be obtained using 2∆2
olours. This 
an be seen by noting that ea
h su
h 
olouring is a proper vertex 
olouringof the square of its line graph L(G), namely L(G)2, and that ∆(L(G)2) ≤ 2∆(G)2. This
olouring is also e�
iently 
onstru
tible. The best, and so far the only 
onstru
tive boundwhi
h is an improvement over this trivial bound is an algorithm, due to Subramanian,whi
h produ
es a 
olouring using O(∆ log ∆) 
olours in polynomial time (see [Sub06℄).Thus, there is a large gap between what 
an be shown existentially and what 
anbe 
onstru
ted systemati
ally. Even if we ignore the issue of algorithms, the s
enario isbleak. There is no 
ombinatorial or deterministi
 proof that a′(G) = O(∆), to mat
hthe bound proved using re
ourse to randomness. Most 
onstru
tive results on a
y
li
edge 
olouring have been obtained for highly stru
tured 
lasses of graphs where the extrastru
tural information and properties have been used as a handle to obtain the solution.2.2 Tools and methodsFor an introdu
tion to probability theory and tools of the probabilisti
 method we referthe reader to [Fel66℄,[AS00℄,[MR02℄.The basi
 approa
h to proving bounds on the a
y
li
 
hromati
 index, using the prob-abilisti
 method, is to randomly 
olour the edges of the graph with the spe
i�ed numberof 
olours and show that the 
olouring thus obtained is an a
y
li
 
olouring with posi-tive probability. Modi�
ation of this basi
 approa
h adds sophisti
ation and, sometimes,produ
es improvements. One possiblity is to 
ombine the probabilisti
 method with adeterministi
 method. In this approa
h one might relax the requirements of the 
olouringprodu
ed by the random 
olouring and handle the defe
t by a deterministi
 method. Onthe other hand one may produ
e a 
olouring with relaxed 
onstraints using a deterministi
method and re
tify it using a random pro
edure. It is also possible to interleave these16



2.2. TOOLS AND METHODSmethods an arbitrary number of times. Iterative random experiments have also providedbreakthroughs when a one pass method has failed in some problems.Let us 
onsider the basi
 approa
h mentioned above and 
olour ea
h edge uniformlyat random and independently from a �xed set of 
olours. If we require that the random
olouring be proper, we observe that long 
y
les are less likely to re
eive exa
tly two
olours than their shorter 
ounterparts. In fa
t, this statement holds even if we allowthe random 
olouring to be improper. It follows that any attempt to prove a bound bythis method is more likely to su

eed if the 
lass of graphs 
onsidered are assumed tohave high girth. This is re�e
ted by the bounds obtained on a′(G) using the probabilisti
method.Below we state some of the tools we use in proving the results in this 
hapter.Lemma 2.2.1 (The Probabilisti
 Method). Let (Ω, p : Ω → [0, 1]) be a �nite probabilityspa
e. Let ω ∈ Ω be a random point 
hosen from this spa
e. Let P ⊆ Ω be an arbitraryproperty. Then if Prob(ω ∈ P) > 0, then there exists a point ω ∈ Ω su
h that ω ∈ P.The next lemma is a spe
ialised tool whi
h is a powerful weapon in the arsenal ofthe probabilisti
 method. It helps in showing that with positive probability, none of a
olle
tion of bad events o

ur. Suppose A1, . . . , An is a 
olle
tion of bad events whi
h wewant to avoid and whi
h are su
h that ea
h Ai fails to o

ur with positive probability.If these are mutually independent, then it follows that with positive probability none ofthem o

urs. The following tool is very powerful be
ause it is appli
able even in s
enarioswhen there is limited interdependen
e between the events.Lemma 2.2.2 (Lova±z Lo
al Lemma). Let A = {A1, . . . , An} be a set of events de�nedover a probability spa
e. For ea
h i, let Ni ⊆ A be su
h that Ai is mutually independentof all events in A \ Ni. Suppose that for ea
h event Ai, there exists a real 0 < xi < 1,su
h that Pr(Ai) ≤ xi

∏

j:Aj∈Ni
(1 − xj). Then, Pr(

∧n
i=1 Ai) > 0.Given below is a simpler form of the lo
al lemma, appli
able under some assumptions.Lemma 2.2.3 (Symmetri
 form of the lo
al lemma). Let A1, . . . , An be a set of eventsde�ned over a probability spa
e. Suppose for some p ∈ (0, 1) and some integer d ≥ 0, thatfor ea
h i, Pr(Ai) ≤ p, and also Ai is mutually independent of all but at most d otherevents Aj . If ep(d + 1) < 1, then Pr(

∧n
i=1 Ai) > 0. 17



CHAPTER 2. ACYCLIC EDGE COLOURING OF HIGH GIRTH GRAPHSTypi
ally, in proofs using various forms of the lo
al lemma, we de�ne a set of badevents over a suitable probability spa
e, su
h that their non-o

urren
e guarantees theproperty we are trying to prove. We then use the lo
al lemma to show that with positiveprobability none of these events o

ur. It follows that the property we are trying toprove holds with positive probability. The probability of a sample point meeting thespe
i�
ations, however, might be very small so that an e�
ient randomised algorithmdoes not normally manifest itself.2.3 Related resultsIn this se
tion, we outline related results obtained by other resear
hers. That a′(G) =

O(∆2) 
an be seen by observing that any 
olouring in whi
h in
ident edges as well as edgesat distan
e two get distin
t 
olours is an a
y
li
 
olouring. There are O(∆2) edges withindistan
e at most two from any given edge. Thus a simple greedy pro
edure produ
es a
olouring with O(∆2) 
olours. A linear O(∆) upper bound for all graphs was proved usinga probabilisti
 method. Randomness has also been su

essfully utilised to prove a boundtight within an additive fa
tor of 2, for all graphs with suitably high girth in terms of themaximum degree.Theorem 2.3.1. For any graph G, a′(G) ≤ 64∆.This result (appearing in [AMR91℄) was later improved to 16∆, by Molloy and Reed(see [MR98℄), using essentially the same experiment and analysis, but making more 
areful
al
ulations. It 
an be shown that even with arbitrarily pre
ise 
al
ulation, this experi-ment 
annot yield a bound signi�
antly better than 12∆. The problem is that, using theprobabilisti
 arguments of [AMR91℄ and [MR98℄, one requires almost 12∆ 
olours even forproper 
olouring alone without a
y
li
ity. Consider the random experiment, used there,where ea
h edge 
hooses a 
olour uniformly at random and independently from a set of
C = a∆ 
olours for some a > 1. Even if we ignore a
y
li
ity and forbid only the events
orresponding to pairs of in
ident edges re
eiving the same 
olour, we 
an easily verify thatany proof (based on Lovász Lo
al Lemma with the same 
onstant for all events) ensuringproperness of the random 
olouring with positive probability, requires that a ≥ 4e.We de�ne a bad event as a pair of in
ident edges re
eiving the same 
olour. Theprobability of this event is 1

C
= 1

a∆
. The number of other events on whi
h any of these18



2.3. RELATED RESULTSevents depend is at most 2 × 2(∆ − 1) ≤ 4∆. If we take the asso
iated 
onstant of thelo
al lemma (note that we follow their spe
i�
ation, that the same 
onstant is used forall events) to be 1
α∆

, the inequality whi
h we get is
1

a∆
≤ 1

α∆

(

1 − 1

α∆

)4∆A solution to this in the valid range of α does not yield a value of a < 4e. The abovearguments are based on the lo
al lemma in its most general form. Thus, the proof of
a′(G) ≤ 9∆ given in [MR02℄, based on applying a spe
ialized version of Lovász Lo
alLemma, 
annot be 
orre
t. For further details on these arguments, see Appendix A ofour paper [MNS07b℄.However, if we bring in girth assumptions, we get better bounds.Theorem 2.3.2. ∃c > 0, su
h that ∀G with girth, g(G) ≥ c∆ log ∆, a′(G) ≤ ∆ + 2.This result, proved in [ASZ01℄ using the probabilisti
 method, re�e
ts the fa
t thatshort 
y
les give rise to di�
ulties when getting good bounds on a′(G). The next result,also appearing in [ASZ01℄, is similar.Theorem 2.3.3. ∃c > 0, su
h that ∀G with girth, g(G) ≥ c log ∆, a′(G) ≤ 2∆ + 2.As for 
onstru
tive bounds, the following result was obtained in [Sub06℄.Theorem 2.3.4. For any graph G, a′(G) = O(∆ log ∆). There is a deterministi
 algo-rithm running in time O(mn∆2(log ∆)2) that produ
es su
h a 
olouring with these many
olours.This result is the �rst, and so far the only, o(∆2) upper bound for all graphs, provedby a 
onstru
tive method. Also, tight bounds have been obtained for random regulargraphs by Alon et. al. in [ASZ01℄, and Nesetril and Wormald in [NW05℄. The followingresult is from [NW05℄.Theorem 2.3.5. If G is a random d-regular graph on n verti
es (d is �xed, n → ∞),then Pr (a′(G) = (∆ + 1)) → 1.There is no expli
it assumption here on the girth of the graphs. In fa
t, in the 
ase ofrandom d-regular graphs, there are short 
y
les but there is a guarantee that any pair ofshort 
y
les are separted by a long path. 19



CHAPTER 2. ACYCLIC EDGE COLOURING OF HIGH GIRTH GRAPHS2.4 Our resultsIn this se
tion we present the results we obtained using the probabilisti
 method. Like theearlier results, some assumptions are made about the girth of the graphs. There followsan elaborate des
ription of the proofs of the results.Theorem 2.4.1. There are absolute 
onstants c1, c2 > 0 su
h that, for any graph G with
g ≥ c1 log ∆ we have,

a′(G) ≤ ∆ + 1 +

⌈

c2

(

∆ log ∆

g

)⌉The above result generalises Theorems 2.3.2 and 2.3.3. The following results givebounds on a′(G) for graphs with some assumptions on their girth.Theorem 2.4.2. For any graph G with girth, g(G) ≥ 9, the a
y
li
 
hromati
 index
a′(G) ≤ 5.91∆(G).Theorem 2.4.3. For any graph G with girth, g(G) ≥ 220, the a
y
li
 
hromati
 index
a′(G) ≤ 4.52∆(G).First, we present the proofs of Theorems 2.4.2 and 2.4.3 in Se
tion 2.4.1. After this,we present the proof of Theorem 2.4.1 in Se
tion 2.4.2.2.4.1 Proofs of improved upper boundsWe give a 
ombined proof of Theorems 2.4.2 and 2.4.3 here. The 
olourings, that 
onsti-tute the proofs, are obtained by produ
ing improper random 
olourings satisfying 
ertain
onstraints, whi
h are then re
ti�ed. We de�ne a measure of the improperness, and thetwo proofs di�er only in the value of this measure and are thus similar. In applying LovàszLo
al Lemma we have not optimised the 
onstants. With a more meti
ulous 
al
ulationit might be possible to improve the bound further.Proof. It is known that, if ∆ ≤ 3, then a′(G) ≤ ∆ + 2 (see [Bur79℄, [Sku04℄). Hen
ewe may assume that ∆ ≥ 4 in our arguments. Our proof 
onsists of two stages. In the�rst stage, we show, by probabilisti
 arguments, the existen
e of a 
olouring C, using aset C of c∆ 
olours (where c > 1 is a 
onstant to be �xed later), su
h that C satis�es thefollowing properties for some positive integer η ≤ 4. 20



2.4. OUR RESULTS(i) every vertex has at most η in
ident edges of any single 
olour,(ii) there are no properly two-
oloured 
y
les, and(iii) there are no mono
hromati
ally 
oloured 
y
les.
η = 1 
orresponds to the standard proper edge 
olouring. The earlier results (The-orem 2.3.1 and its improved form in [MR98℄), was obtained without re
ourse to thisparameter η. Thus, this is the main new idea whi
h allows us to get a signi�
antly betterbound, with a restri
tion to graphs of girth greater than a �xed 
onstant. In apply-ing the lo
al lemma, the properness 
ondition doesn't allow a bound signi�
antly betterthan 12∆, as stated earlier. Thus allowing limited improperness (every 
olour 
lass is abounded degree forest, instead of just a mat
hing), and then partitioning the edge setof ea
h forest, we obtain an a
y
li
 
olouring with a small multipli
ative overhead in thenumber of 
olours. Even with the overhead it is mu
h smaller than 12∆.Note that in C, ea
h 
olour 
lass (set of edges re
eiving the same 
olour) is a forest ofmaximum degree at most η. In the se
ond stage, we split ea
h 
olour 
lass into η partsby re
olouring the edges of ea
h 
olour ci with the 
olours c1

i , . . . , c
η
i to get a 
olouring C′.We 
laim that C′ is proper and a
y
li
. Sin
e every forest of maximum degree at most dis properly edge 
olourable using d 
olours, it is easy to see that properness holds. Anybi
hromati
 
y
le in the 
olouring C′ should either 
ome from an existing two-
oloured
y
le in C, or from a mono
hromati
 even length 
y
le in C being split into two. Both ofthese possibilities are forbidden by properties (ii) and (iii) of the 
olouring, respe
tievely.It follows that the 
olouring C′ is proper, a
y
li
 and uses at most cη∆ 
olours.To 
omplete the proof, it is now su�
ient to show that su
h a 
olouring C, des
ribedabove, exists. We do this probabilisti
ally, using Lovàsz Lo
al Lemma. For this, wedo the following random experiment. Ea
h edge 
hooses a 
olour uniformly at randomand independently, from the set C. For the resulting random 
olouring to satisfy (i)-(iii)above, de�ne the following three types of bad events. As explained below, in the absen
eof these events, the 
olouring obtained satis�es the above properties.1. For a set of η + 1 edges {e1, . . . , eη+1} in
ident on a vertex u, let Ee1,...,eη+1 be theevent that all of them re
eive the same 
olour. We 
all this an event of Type I.2. Let EC,2k denote the event that an even 
y
le C of length 2k is properly 
olouredwith 2 
olours. We 
all this an event of Type II. 21



CHAPTER 2. ACYCLIC EDGE COLOURING OF HIGH GIRTH GRAPHS3. Let EC,ℓ denote the event that a 
y
le C of length ℓ is 
oloured mono
hromati
ally.We 
all this an event of Type III.Suppose C be su
h that none of the above events hold. We 
laim that properties(i)-(iii) above are satis�ed. It is easy to see that the absen
e of events of type I impliesthat (i) holds. Similarly, absen
e of type II, III events, respe
tively imply (ii) and (iii).In order to apply the lo
al lemma, we need estimates for the probabilities of ea
hevent, and also for the number of other events of ea
h type whi
h 
an possibly in�uen
eany given event. For the above random experiment, an event E is mutually independentof a set B of other events if the set of edges on whi
h E depends is disjoint from the setof edges on whi
h the events in B depend. Hen
e, we 
al
ulate the the number of eventsof ea
h type that depend on a given edge, and multiply by the number of edges de�ningthe event E to get an upper bound on the number of events in�uen
ing E . The followingtwo lemmas present the estimated bounds.The proof of Lemma 2.4.1 is straightforward. It is based on the elementary fa
t thatthe probability of an event in a probability spa
e is the ratio of the number of favourable
ases to the total number of 
ases. This, 
ombined with a bit of simpli�
ation of theexpressions obtained give us the 
laimed values. Lemma 2.4.2 is proved by 
omputing thenumber of subgraphs of a �xed type to whi
h any given edge in the input graph belongs.As we stated earlier, we use the number of events of any type in�uen
ed by an edge toestimate the interdependen
e. These values are estimated using nothing more than thefa
t that the graph has maximum degree ∆ and therefore the upper bounds obtainedapply universally to all the graphs.Lemma 2.4.1. The probabilities of events are as follows:1. For ea
h event Ee1,...,eη+1 of type I, Pr(Ee1,...,eη+1) = 1
|C|η .2. For ea
h event EC,2k of type II, where the length of C is 2k, Pr(EC,2k) ≤ 1

|C|2k−23. For ea
h event EC,ℓ of type III, where C is of length ℓ, Pr(EC,ℓ) = 1
|C|ℓ−1 .Lemma 2.4.2. The following is true for any given edge e:1. Less than 2∆η

η!
events of type I depend on e.2. Less than ∆2k−2 events of type II depend on e. 22



2.4. OUR RESULTS3. Less than ∆ℓ−2 events of type III depend on e.In order to apply Lovász Lo
al Lemma, let x0 = 1/(α∆)η, xk = 1/(β∆)2k−2 and
yℓ = 1/(γ∆)ℓ−1, be the values asso
iated with events of Types I, II and III respe
tively,where α,β,γ > 1 are 
onstants to be determined by 
al
ulation. Re
all that we use g todenote girth. We 
on
lude that, with positive probability none of the above events o

ur,provided ∀k ≥ ⌈g

2
⌉, ℓ ≥ g

1

(c∆)η
≤ x0 (1 − x0)

(η+1) 2∆η

η!

∏

θ≥⌈ g
2
⌉

(1 − xθ)
(η+1)∆2θ−2 ∏

λ≥g

(1 − yλ)
(η+1)∆λ−2

1

(c∆)2k−2
≤ xk (1 − x0)

2k 2∆η

η!

∏

θ≥⌈ g
2
⌉

(1 − xθ)
2k∆2θ−2 ∏

λ≥g

(1 − yλ)
2k∆λ−2

1

(c∆)ℓ−1
≤ yℓ (1 − x0)

ℓ 2∆η

η!

∏

θ≥⌈ g
2
⌉

(1 − xθ)
ℓ∆2θ−2 ∏

λ≥g

(1 − yλ)
ℓ∆λ−2Let f(z) = (1 − 1

z
)z. It is well-known that (1 − 1

z
)z ↑ 1

e
. De�ning

Λ = min

{

f(x0
−1), min

θ≥⌈ g
2
⌉
f(xθ

−1), min
λ≥g

f(yλ
−1)

} , it follows that
(1 − x0)

2∆η

η! =

(

1 − 1

(α∆)η

)
2∆η

η!

=

(

(

1 − 1

(α∆)η

)(α∆)η
)

2
η!αη

≥ Λ
2

η!αη .Similarly,
∏

θ≥⌈ g
2
⌉

(1 − xθ)
∆2θ−2

=
∏

θ≥⌈ g
2
⌉

(

1 − 1

(β∆)2θ−2

)∆2θ−2

≥
∏

θ≥⌈ g
2
⌉

Λβ−(2θ−2) ≥ ΛS1where
S1 =

∑

θ≥⌈ g
2
⌉

1

β2θ−2
≤ 1

(β2 − 1)β2⌈ g
2
⌉−4

, and
∏

λ≥g

(1 − yλ)
∆λ−2

=
∏

λ≥g

(

1 − 1

(γ∆)λ−1

)∆λ−2

≥
∏

λ≥g

Λγ−(λ−1)/∆ ≥ ΛS2 23



CHAPTER 2. ACYCLIC EDGE COLOURING OF HIGH GIRTH GRAPHSwhere
S2 =

∑

λ≥g

1

∆γλ−1
≤ 1

∆γg−2(γ − 1)
.Thus, taking roots on both sides and simplifying, the three inequalities required bylo
al lemma are satis�ed ∀k ≥ ⌈g

2
⌉, ℓ ≥ g, provided

1

c
≤ 1

α
Λ

η+1
η

Υ , 1

c
≤ 1

β
Λ

2k
2k−2

Υ and 1

c
≤ 1

γ
Λ

ℓ
ℓ−1

Υ (2.1)where
Υ =

2

η!αη
+

1

(β2 − 1)β2⌈ g
2
⌉−4

+
1

∆γg−2(γ − 1)
.Now we have to set spe
i�
 values of α, β, γ and η. First we set η = 2 and α = β =

γ = 2. Using g ≥ 9 and ∆ ≥ 4, we have Λ ≥ (1− 1
64

)64 ≥ 0.3649. It 
an easily be veri�edthat that the above inequalities (2.1) are satis�ed by setting c = 2.951. It follows that
a′(G) ≤ 5.91 < 6∆ for all graphs G with girth g ≥ 9. This proves Theorem 2.4.2.Se
ondly, we set η = 4, α = 1.02, β = 1.04 and γ = 1.04. Using g ≥ 220 and ∆ ≥ 4,we have Λ ≥ (1− 1

256
)256 ≥ 0.3671. It follows that by setting c = 1.13, a′(G) ≤ 4×1.13∆ =

4.52∆ when girth g ≥ 220. Hen
e Theorem 2.4.3.Further improvements on a′(G), whi
h 
an be obtained (with this experiment) bystrengthening the girth requirement are only marginal as long as we fo
us on 
onstantlower bounds on girth.2.4.2 Girth and a
y
li
 
hromati
 indexAn even 
y
le is 
alled half-mono
hromati
 with respe
t to a 
olouring if one of its halves (aset of alternate edges) is mono
hromati
. Noti
e that, this de�nition in
ludes bi
hromati

y
les also.Proof. For the sake of simpli
ity in the analysis, we write g in the form c1∆
ε log ∆, where

ε ≥ 0 and where c1 is mentioned in Theorem 2.4.1. We 
an, assume without loss ofgenerality, that ε ≤ 1, be
ause when ε ex
eeds 1, by 
hoosing a large value of c1, a′(G) ≤
∆ + 2 as in Theorem 2.3.2. As before, we assume ∆ ≥ 4.The proof 
onsists of an initial deterministi
 phase followed by a random phase. Webegin by obtaining a proper edge 
olouring of G using ∆ + 1 
olours applying Vizing's24



2.4. OUR RESULTSmethod. We, then randomly re
olour some of the edges with a new set of o(∆) 
olours,and show that with positive probability, the 
olouring obtained is proper and a
y
li
. Thisrandom experiment is a slight modi�
ation of the ones used in the proofs of Theorems2.3.3 and 2.3.2.The random 
olouring is obtained as follows:1. Obtain a proper 
olouring C : E → S1 = {1, . . . , ∆ + 1}.2. In the se
ond phase we do the following:
• A
tivate ea
h edge with independent probability p = 1

∆ε .
• Ea
h a
tivated edge 
hooses a new 
olour uniformly at random and indepen-dently, from the set S2 = {1′, . . . , (a∆1−ε)′}, where a > 1 is a 
onstant to bedetermined later.Denote the resulting random 
olouring by C′. With respe
t to C′, we de�ne the fol-lowing bad events.1. For a pair of in
ident edges e and f , let Ee,f denote the event that they are bothre
oloured with the same new 
olour. We 
all this an event of type I.2. Let EC,2k denote the event that a bi
hromati
 
y
le C of length 2k in C is undisturbedin the re
olouring pro
ess. Call this a type II event.3. Let EC,2ℓ denote the event that a half-mono
hromati
 
y
le C of length 2ℓ in Cbe
omes bi
hromati
 by retaining the same 
olour on a half and re
eiving a 
ommonnew 
olour on the other half, a type III event.4. Let EC,2m denote the type IV event where an even length 
y
le C of length 2mbe
omes properly bi
hromati
 with 2 of the new 
olours.We 
laim that the absen
e of type I-IV events imply that the 
olouring C′ is properand a
y
li
. Sin
e C is proper, the absen
e of events of type I ensures that C′ is alsoproper. The absen
e of events of type II, III and IV ensure respe
tively, (i) the absen
eof bi
hromati
 
y
les using both 
olours from S1, (ii) one 
olour from ea
h of S1 and S2and (iii) both 
olours from S2. It is therefore su�
ient to show the absen
e of the abovefour types of events whi
h we do by using Lovász Lo
al Lemma. 25



CHAPTER 2. ACYCLIC EDGE COLOURING OF HIGH GIRTH GRAPHSTo apply the lo
al lemma we need estimates for the probabilities of ea
h event, andfor the number of events of ea
h type possibly in�uen
ing a given event. As before, we
al
ulate the number of events of ea
h type that depend on a single edge and multiply bythe number of edges in any event to get an upper bound on the total dependen
e. Thefollowing two lemmas present the estimated bounds.Lemma 2.4.3. The probabilities of events are as follows: For ea
h1. event Ef,g of type I, Pr(Ef,g) = p2

a∆1−ε = 1
a∆1+ε .2. event EC,2k of type II, Pr(EC,2k) = (1 − p)2k ≤ e

−2k
∆ε .3. event EC,2ℓ of type III, Pr(EC,2ℓ) ≤ 2pℓ(1−p)ℓ

(a∆1−ε)ℓ−1 < 2a∆1−ε

(a∆)ℓ .4. event EC,2m of type IV , Pr(EC,2m) = p2m
(

a∆1−ε

2

)

2
(a∆1−ε)2m < (a∆1−ε)2

(a∆)2m .Lemma 2.4.4. The following is true for any given edge e:1. Less than 2∆ events of type I depend on e.2. Less than ∆ events of type II depend on e.3. Less than 2∆ℓ−1 events of type III depend on e, for ea
h ℓ ≥ 2.4. Less than ∆2m−2 events of type IV depend on e, for ea
h m ≥ 2.To apply Lovász Lo
al Lemma, let x0 = 1/(α∆1+ε), x1 = 1/(β∆1+2ε), yℓ = (2a∆1−ε)/(γ∆)ℓand zm = (a∆1−ε)2/((δ∆)2m) be the values asso
iated with events of type I, II, III and
IV , where the lengths of the 
y
les in Type III and IV events are 2ℓ and 2m, respe
-tively. Here α, β, γ, δ > 1 are real values to be determined by 
al
ulation. We 
on
ludethat with positive probability none of the above events o

ur, provided ∀k, ℓ, m ≥ ⌈g

2
⌉,

1

a∆1+ε
≤ x0(1 − x0)

4∆(1 − x1)
2∆
∏

θ≥⌈ g
2
⌉

(1 − yθ)
4∆θ−1

∏

λ≥⌈ g
2
⌉

(1 − zλ)
2∆2λ−2

e
−2k
∆ε ≤ x1(1 − x0)

4k∆(1 − x1)
2k∆

∏

θ≥⌈ g
2
⌉

(1 − yθ)
4k∆θ−1

∏

λ≥⌈ g
2
⌉

(1 − zλ)
2k∆2λ−2

2a∆1−ε

(a∆)ℓ
≤ yℓ(1 − x0)

4ℓ∆(1 − x1)
2ℓ∆

∏

θ≥⌈ g
2
⌉

(1 − yθ)
4ℓ∆θ−1

∏

λ≥⌈ g
2
⌉

(1 − zλ)
2ℓ∆2λ−2 26



2.4. OUR RESULTS
(a∆1−ε)2

(a∆)2m
≤ zm(1 − x0)

4m∆(1 − x1)
2m∆

∏

θ≥⌈ g
2
⌉

(1 − yθ)
4m∆θ−1

∏

λ≥⌈ g
2
⌉

(1 − zλ)
2m∆2λ−2Setting α = β = γ = δ = 1000 and a = 4000 and using the fa
t that (1 − 1

z
)z ≥ 1

4

∀z ≥ 2 we have,
(1 − x0)

2∆ ≥
(

1

4

)2∆x0

=

(

1

4

)
2

α∆ε

(1 − x1)
∆ ≥

(

1

4

)∆x1

=

(

1

4

)
1

β∆2ε

∏

θ≥⌈ g
2
⌉

(1 − yθ)
2∆θ−1 ≥

(

1

4

)S1

∏

λ≥⌈ g
2
⌉

(1 − zλ)
∆2λ−2 ≥

(

1

4

)S2where,
S1 =

∑

θ≥⌈ g
2
⌉

2yθ∆
θ−1 =

4a

∆ε

∑

θ≥⌈ g
2
⌉

1

γθ
≤ 4a

∆εγ⌈ g
2
⌉−1(γ − 1)and

S2 =
∑

λ≥⌈ g
2
⌉

zλ∆
2λ−2 =

a2

∆2ε

∑

λ≥⌈ g
2
⌉

1

(δ)2λ
≤ a2

∆2εδ2⌈ g
2
⌉−2(δ2 − 1)

.Let Pi, Ni and xi denote, respe
tively, the probabilities, number of edges and lo
allemma 
onstants asso
i
ated with events of type i. We 
an see that, as in the previousproof, the inequalities required by lo
al lemma are satis�ed provided
Pi ≤ xi

(

1

4

)NiΥ , ∀i (2.2)where
Υ =

2

α∆ε
+

1

β∆2ε
+

4a

∆εγ⌈ g
2
⌉−1(γ − 1)

+
a2

∆2εδ⌈
g
2
⌉−2(δ2 − 1)By 
hoosing c1 suitably large, we 
an verify that ∆εΥ ≤ 1

125
and ea
h of the inequalities(2.2) are satis�ed. As a result, the inequalities 
orresponding to lo
al lemma are alsosatis�ed. Finally �xing c2 = a · c1, the theorem is proved. 27



CHAPTER 2. ACYCLIC EDGE COLOURING OF HIGH GIRTH GRAPHS
2.5 Con
lusionsThe work presented in this 
hapter has been published by us. The referen
es are [MNS07b℄,[MNS05℄.We obtained a reasonably signi�
ant improvement over 16∆, by a new idea whi
hinitially allows limited improperness in the 
olouring. To do this, we only require toassume a 
onstant lower bound on girth, whi
h is not a very severe 
onstraint. We tried toget better bounds by modifying the ideas presented in this 
hapter. Some of the ideas triedin
lude non-uniform assignment of 
olours randomly, and also allowing di�erent values ofthe parameter η for di�erent 
olours. The optimum values o

urred when everything wasidenti
al. It would be interesting to �nd something radi
ally di�erent whi
h lowers thebound 
loser to its 
onje
tured value of (∆+2). A probabilisti
 argument might yield animprovement but it is naturally unlikely to give a bound whi
h is very tight.J. Be
k has designed a method (see [Be
91℄) for translating existential proofs us-ing Lovász Lo
al Lemma into e�
ient randomised algorithms for 
onstru
ting an obje
tguaranteed by the proof. It would be interesting to investigate the appli
ability of Be
k'smethod in the 
ontext of our proof.The result we obtained in Theorem 2.4.1, uni�es the two results of Theorems 2.3.3 and2.3.2 in a generalised framework. Theorem 2.3.2 gives a very tight bound but the 
lassof graphs it applies to is quite restri
tive. For example, Theorem 2.3.2, when appliedto graphs G with minimum degree, δ(G) ≥ 3, requires that ∆ = O(log n). This isbe
ause it is well-known that graphs having δ ≥ 3 always have a 
y
le of length O(log n).Theorem 2.3.3 gives a weaker bound appli
able for a wider 
lass of graphs. Our result,Theorem 2.4.1, shows these to be spe
ial extreme 
ases of a trend.Theorem 2.3.4 represents the �rst step towards getting an asymptoti
 improvementover the trivial O(∆2) bound towards the known value of O(∆) by 
onstru
tive means. Itwould be interesting to improve this 
onstru
tive bound further, possibly to O(∆) itself.

28



Chapter 3A
y
li
 edge 
olouring of partial toriIn this 
hapter we 
onsider the problem of a
y
li
 
olouring of partial tori (a.k.a. grid-like graphs). We obtain tight bounds on the number of 
olours required and also designe�
ient algorithms to produ
e su
h 
olourings. We mention 
lasses of graphs for whi
hgood algorithms have been obtained for the a
y
li
 
olouring problem in Se
tion 3.1. Wede�ne partial tori in Se
tion 3.2 and also introdu
e the notation we use. Se
tion 3.3 statesour results and the proofs follow in Se
tion 3.4. An algorithm to a
y
li
ally 
olour partialtori is presented in Se
tion 3.5. These algorithms are a dire
t result of the pre
eedingproofs. Se
tion 3.6 makes some 
on
luding remarks.3.1 Introdu
tionDetermining a′(G) to great a

ura
y is a very di�
ult problem. Even for the highlystru
tured and simple 
lass of 
omplete graphs, the value of a′(G) is not yet determined.First, we re
all the following known fa
ts about a
y
li
 edge 
olouring. It is NP-Hard todetermine a′(G). Also, a′(G) ≥ χ′(G) ≥ ∆ for any graph G. Re
all, that χ′(G) denotesthe 
hromati
 index of G.Often, the gap between the trivial lower bound of ∆ and the demonstrated upperbound is at least a linear fun
tion of ∆. This is the 
ase for the family of odd graphswhi
h are a generalisation of the Petersen graph. The odd graph Ok has as vertex set the
(

2k+1
k

), k-element subsets of [1, . . . , 2k + 1], and an edge between two verti
es pre
iselywhen the 
orresponding sets are disjoint. It 
an be shown quite easily that ∆(G) + 1 ≤29



CHAPTER 3. ACYCLIC EDGE COLOURING OF PARTIAL TORI
a′(G) ≤ 2∆(G)−1, for the 
lass of odd graphs. While we believe the a
tual value is 
loserto the lower bound, the problem is still open. Thus, results whi
h are o� by an additive
onstant are good, and all the more so if the 
onstant is 1 or 2.Most of the results obtained in Chapter 2 and also those mentioned therein, are exis-tential in nature and are not 
onstru
tive. In those 
ases, there is no known e�e
ient wayof obtaining su
h 
olourings whi
h is better than looking through all possible 
olouringsuntil one is found. In this 
hapter we present results obtained by us, whi
h provide goodestimates on the a
y
li
 
hromati
 index of partial tori. In most of the 
ases the valueswe provide are exa
t, and in the few remaining 
ases the value is o� by an additive fa
torof at most 1. Our main result, whi
h is on the a
y
li
 
hromati
 index of partial tori, isobtained by an appli
ation of a more general result, whi
h we prove �rst.These graphs 
an a
tually be 
oloured in polynomial time with these many 
olours.The only other examples of graph families where su
h tight bounds have been provedand are 
onstru
tible e�
iently are graphs with ∆(G) ≤ 3, due to Skulrattankul
hai(see [Sku04℄), our results on outer planar graphs (see [MNS07a℄) and partial 2-trees (see[MNS08℄) and a result on 2-degenerate graphs ([CM07℄) due to Manu and Chandran. Themethods used in our results here 
an be extended to give bounds on any graph expressedas the 
artesian produ
t of other graphs (see [MS07℄) . The bounds are in terms of
orresponding values of the 
onstituents of the produ
t, and are not as tight as thesebounds. These results are presented in Chapter 4.3.2 De�nitions and notationsSome of the notations and de�nitions we use in this 
hapter have already been given inChapter 1, but we provide them again for ready referen
e. We use Pk to denote a simplepath on k verti
es. Without loss of generality, we assume that V (Pk) = {0, . . . , k−1} and
E(Pk) = {(i, j) : |i− j| = 1}. Similarly, we use Ck to denote a 
y
le (0, . . . , k − 1, 0) on kverti
es. We use paths to denote the set {P3, P4, . . .} of all paths on 3 or more verti
es.Similarly, we use 
y
les to denote the set {C3, C4, . . .} of all 
y
les. We sometimes useedge to denote P2. The standard notation [n] is used to denote the set {1, 2, . . . , n}.Our de�nition of the 
lass of partial tori is based on the so-
alled 
artesian produ
t ofgraphs de�ned below. 30



3.2. DEFINITIONS AND NOTATIONSDe�nition 3.2.1. Given two graphs G1 = (V1, E1) and G2 = (V2, E2), the 
artesianprodu
t of G1 and G2, denoted by G12G2, is de�ned to be the graph G = (V, E) where
V = V1 × V2 and E 
ontains the edge joining (u1, u2) and (v1, v2) if and only if either
u1 = v1 and (u2, v2) ∈ E2 or u2 = v2 and (u1, v1) ∈ E1.Note that 2 is a binary operation on graphs whi
h is 
ommutative in the sense that
G12G2 and G22G1 are isomorphi
. Similarly, it is also asso
iative. Hen
e, the graph
G02G12 · · ·2Gd is unambiguously de�ned for any d. We use Gd to denote the d-foldCartesian produ
t of G with itself. It was shown independently by Sabidussi, and Vizing,and others (see [AHI92℄,[IK00℄) that any 
onne
ted graph G 
an be expressed as a produ
t
G ∼= G12 · · ·2Gk of prime fa
tors Gi. Here, a graph is said to be prime with respe
t tothe 2 operation if it has at least two verti
es and if it is not isomorphi
 to the produ
tof two non-trivial graphs (those having at least two verti
es). Also, this fa
torisation (orde
omposition) is unique ex
ept for a re-ordering of the fa
tors and will be referred to asthe Unique Prime Fa
torisation (UPF) of the graph. Sin
e a′(G) is a graph invariant,we assume, without loss of generality, that any Gi from edge ∪ paths ∪ 
y
les hasas its vertex set {0, 1}, {0, . . . , k − 1}, {0, . . . , k − 1} respe
tively, and the adja
en
y asdes
ribed above. This allows us to expli
itly handle 
on
rete example graphs of theseisomorphism 
lasses.De�nition 3.2.2. A d-dimensional partial torus is a 
onne
ted graph G whose uniqueprime fa
torisation is of the form G ∼= G12 · · ·2Gd where Gi ∈ edge ∪ paths ∪ 
y
lesfor ea
h i ≤ d. We denote the 
lass of su
h graphs by Pd.De�nition 3.2.3. If ea
h prime fa
tor of a graph G ∈ Pd is a P2, then G is 
alled the
d-dimensional hyper
ube. This graph is denoted by P d

2 .De�nition 3.2.4. If ea
h prime fa
tor of a graph G ∈ Pd is from paths, then G is 
alleda d-dimensional grid or mesh. The 
lass of all su
h graphs is denoted by Md.De�nition 3.2.5. If ea
h prime fa
tor of a graph G ∈ Pd is from 
y
les, then G is
alled a d-dimentional torus. The 
lass of all su
h graphs is denoted by Td. 31



CHAPTER 3. ACYCLIC EDGE COLOURING OF PARTIAL TORI3.3 ResultsThe results we have obtained for grid-like graphs is stated in Theorem 3.3.2 below. Theproofs (given in Se
tion 3.4.1) are based on the following useful theorem whose proof isgiven later in Se
tion 3.4.2.Theorem 3.3.1. Let G be a simple graph with a′(G) = η. Then,1. a′(G2P2) ≤ η + 1, if η ≥ 2.2. a′(G2Pl) ≤ η + 2, if η ≥ 2 and l ≥ 3.3. a′(G2Cl) ≤ η + 2, if η > 2 and l ≥ 3.As a 
orollary, we obtain the following results.Theorem 3.3.2. The following is true for ea
h d ≥ 1.
• a′(P d

2 ) = ∆(P d
2 ) + 1 = d + 1 if d ≥ 2; a′(P2) = 1.

• a′(G) = ∆(G) = 2d for ea
h G ∈ Md.
• a′(G) = ∆(G) + 1 = 2d + 1 for ea
h G ∈ Td.
• Let G ∈ Pd be any graph. Let e (respe
tively p and c) denote the number of primefa
tors of G whi
h are from edge (respe
tively from paths and 
y
les). Then,� a′(G) = ∆(G) + 1 = e + 2c + 1 if p = 0.� a′(G) = ∆(G) = e + 2p + 2c if either p ≥ 2, or p = 1 and e ≥ 1.� a′(G) = ∆(G) = 2 + 2c if p = 1, e = 0 and if at least one prime fa
tor of Gis an even 
y
le.� a′(G) ∈ {∆ = 2 + 2c, ∆ + 1 = 2 + 2c + 1} if p = 1, e = 0 and if all primefa
tors of G (ex
ept the one path) are odd 
y
les. There are examples for bothvalues of a′(G). 32



3.4. PROOFS3.4 ProofsWe repeat here a fa
t about a
y
li
 edge 
olouring whi
h we have stated before. It 
anbe easily veri�ed and would be used often in our proofs. We follow the statement of thefa
t with a brief explanation as to why it is 
orre
t.Fa
t 3.4.1. If a graph G is regular with ∆(G) ≥ 2, then a′(G) ≥ ∆(G) + 1.This is be
ause in any proper edge-
olouring of G with ∆(G) 
olours, ea
h 
olour isused on some edge in
ident in
ident at any vertex. Hen
e, for ea
h pair of distin
t 
olours
a and b and for ea
h vertex u, there is a unique 
y
le in G going through u and whi
h is
oloured with a and b.We �rst present the proof of Theorem 3.3.2. In this proof, we assume the truth ofTheorem 3.3.1, and apply its various 
ases to 
omplete the proof of Theorem 3.3.2.3.4.1 Proof of Theorem 3.3.2Case 1 (G is the d-dimensional hyper
ube P d

2 )Clearly, a′(P2) = 1 and a′(P 2
2 ) = a′(C4) = 3. For d > 2, we start with G = P 2

2 andrepeatedly and indu
tively apply Statement (1) of Theorem 3.3.1 to dedu
e that a′(P d
2 ) ≤

d + 1. Combining this with Fa
t 3.4.1, we get a′(P d
2 ) = d + 1 for d ≥ 2.Case 2 (Case G is a d-dimensional mesh Md)Again, we prove by indu
tion on d. If d = 1, then G ∈ paths and hen
e a′(G) = 2 = ∆(G).For d > 1, repeatedly and indu
tively apply Statement (2) of Theorem 3.3.1 to dedu
ethat a′(G) ≤ 2(d−1)+2 = 2d. Combining this with the trivial lower bound a′(G) ≥ ∆(G),we get a′(G) = 2d for ea
h G ∈ Md and ea
h d ≥ 1.Case 3 (Case G is a d-dimensional torus Td)We prove by indu
tion on d. If d = 1, then G ∈ 
y
les and hen
e a′(G) = 3 = ∆(G)+1.For d > 1, repeatedly and indu
tively apply Statement (3) of Theorem 3.3.1 to dedu
ethat a′(G) ≤ 2(d−1)+1+2 = 2d+1. Combining this with Fa
t 3.4.1, we get a′(G) = 2d+1for ea
h G ∈ Td and ea
h d ≥ 1.Case 4 (Case G is a d-dimensional partial torus Pd)Let e, p and c be as de�ned in the statement of the theorem. If p = 0, then G is theprodu
t of edges and 
y
les and hen
e G is regular and a′(G) ≥ ∆(G) + 1 by Fa
t 3.4.1.33



CHAPTER 3. ACYCLIC EDGE COLOURING OF PARTIAL TORIAlso, we 
an assume that c > 0. Otherwise, G = P d
2 and this 
ase has already beenestablished. Again, without loss of generality, we 
an assume that the �rst fa
tor G1 of Gis from 
y
les and a′(G1) = 3. Now, as in the previous 
ases, we apply indu
tion on dand also repeatedly apply one of the Statements (1) and (3) of Theorem 3.3.1 to dedu
ethat a′(G) ≤ ∆(G) + 1. This settles the 
ase p = 0.Now, suppose either p ≥ 2, or p = 1 and e ≥ 1. Order the d prime fa
tors of G sothat G ∼= G12 · · ·2Gd and the �rst p fa
tors are from paths and the next e fa
tors are
opies of P2. By the previously established 
ases and from Theorem 3.3.1, it follows that

a′(G12 · · ·2Gp+e) = ∆(G12 · · ·2Gp+e) = 2p + e ≥ 3.As before, applying (3) of Theorem 3.3.1 indu
tively, it follows that
a′(G) = a′(G12 · · ·2Gp+e+c) ≤ ∆(G) = 2p + e + 2c.Combining this with the trivial lower bound establishes this 
ase also.Suppose p = 1, e = 0 and at least one prime fa
tor of G is an even 
y
le. Let G1 = Pkfor some k ≥ 3 and G2 = C2l for some l ≥ 2. We note that it is enough to show that

G′ = G22G1 is a
y
li
ally 
olourable with ∆(G′) = 4 
olours. Extending this 
olouringto an optimal 
olouring of G 
an be a
hieved by repeated appli
ations of Statement (3)of Theorem 3.3.1 as before. Hen
e we fo
us on showing a′(G′) = 4.Firstly, 
olour the 
y
le G2 = C2l = 〈0, 1, . . . , 2l− 1, 0〉 a
y
li
ally as follows. For ea
h
i, 0 ≤ i ≤ 2l− 2, 
olour the edge (i, i +1) with 1 if i is even and with 2 if i is odd. Colourthe edge (2l−1, 0) with 3. Now, use the same 
olouring on ea
h of the k isomorphi
 
opies(numbered with 0, . . . k−1) of G2. For ea
h j, 0 ≤ j < k−1, the jth and (j+1)th 
opies of
G2 are joined by 
ross-edges whi
h 
onstitute a perfe
t mat
hing between similar verti
esin the two 
opies. These 
ross-edges are 
oloured as follows. For every i and j, the 
rossedge joining (i, j) and (i, j + 1) is 
oloured with 4 if (i + j) is even and is 
oloured withthe unique 
olour from {1, 2, 3} whi
h is missing at this vertex i in both 
opies if (i + j)is odd. See Figure 3.1 for an illustration.The 
olouring is su
h that in ea
h perfe
t mat
hing joining two adja
ent 
opies of G2,the 
ross edges whi
h are part of this mat
hing are alternately 
oloured with 4 and a
olour from {1, 2, 3}. Note that there 
an be no bi
hromati
 
y
le within ea
h 
opy of34



3.4. PROOFS
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5, 0 2 5, 1 4 5, 2 2 5, 3 4 5, 4Figure 3.1: 
olouring of C62P5

G2. Hen
e, any bi
hromati
 
y
le (if it exists) should use 
ross edges.First, we 
laim that there 
an be no (4, c)-
oloured 
y
le for any c ∈ {1, 2, 3}. To seethis, note that no two su

essive edges of any su
h 
y
le 
an be from the same 
opy of G2sin
e there is no edge 
oloured 4 in any 
opy of G2. In addition, to 
omplete a 
y
le it isne
essary that there must be two adja
ent 
opies, say the jth and the (j + 1)th, su
h thatthe 
y
le passes from the jth to the (j + 1)th and ba
k to jth 
opy using exa
tly 3 edges.This 
ontradi
ts the fa
t that the 
ross edges between adja
ent 
opies are alternately
oloured with 4 and a 
olour from {1, 2, 3}.In addition, there 
an be no (c, c′)-
oloured 
y
le for any c, c′ ∈ {1, 2, 3}. To see this,we �rst note that any maximal (c, c′)-
oloured path in the jth (for any j) 
opy of G2 is ofodd length (
ounted as the number of edges) and hen
e the �rst and last edge of su
h apath are 
oloured the same, say with c. This means the c′-
oloured edges in
ident at thetwo end points u and v 
onne
t them to the di�erent, namely the (j − 1)th and (j + 1)th,
opies (be
ause of the way 
ross edges are 
oloured). Extending this further, we see that35
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◦
3 Figure 3.2: 
olouring of P32C5any (c, c′)-
oloured maximal path starts at either (u, 0) or (v, 0) and ends at (u, k − 1) or

(v, k − 1) and does not 
omplete to a 
y
le. This shows that a′(G′) = 4 as desired.Suppose p = 1, e = 0 and all prime fa
tors of G (ex
ept the one path) are odd 
y
les. Inthis 
ase, a′(G) 
an take both values as the following examples show. If G = P32C3, thenit 
an be easily veri�ed that a′(G) = 5 = ∆+1. Also, if G = P32C5, then a′(G) = 4 = ∆as shown by the 
olouring in Figure 3.2.

36



3.4. PROOFS3.4.2 proof of Theorem 3.3.1We now present the proof of Theorem 3.3.1.A restri
ted 
lass of bije
tions (de�ned below) would play an important role in thisproof.De�nition 3.4.1. A bije
tion σ from a set A to an equivalent set B is a non-�xingbije
tion if σ(i) 6= i for ea
h i.Sin
e a′(G) = η, we 
an edge-
olour G a
y
li
ally using 
olours from [η]. Fix one su
h
olouring C0 : E(G) → [η].De�ne C1 to be the 
olouring de�ned by C1(e) = σ(C0(e)) where σ : [η] → [η] is anybije
tion whi
h is non-�xing. For 
on
reteness, de�ne σ(i) = (i mod η) + 1.Case 1 (a′(G2P2))Let G0, G1 be the two isomorphi
 
opies of G indu
ed respe
tively by the sets {(u, 0) :

u ∈ V (G)} and {(u, 1) : u ∈ V (G)}. Let G0 and G1 be edge 
oloured respe
tively by
C0 and C1. For ea
h of the remaining edges (termed 
ross-edges and whi
h 
onstitute aperfe
t mat
hing between G0 and G1) of the form ((u, 0), (u, 1)), give a new 
olour α.Denote by C, the resultant 
olouring of G2P2. We 
laim that C is proper and a
y
li
.It is easy to see that C is proper. Also note that any bi
hromati
 
y
le in C shouldne
essarily use the 
olour α (sin
e the 
olourings of G0 and G1 are a
y
li
).Suppose that G2P2 has a bi
hromati
 
y
le C using the 
olours α and some other
olour, say i, from the set [η]. In C, G0 and G1 are both 
oloured α-free and hen
e anyproper α, i-
oloured 
y
le should 
ontain the α-
oloured edges an even number of times.Hen
e we have |C| ≡ 0 mod 4. Fix a vertex (u1, 0) as the starting point of C. Then Clooks like C = 〈(u1, 0)

α→ (u1, 1)
i→ (u2, 1)

α→ (u2, 0) · · · (uk, 0)
i→ (u1, 0)〉.Noti
e that k is of even parity (sin
e |C| ≡ 0 mod 4). For ea
h i-
oloured edge

(u2ℓ+1, 1) → (u2ℓ+2, 1) of G1 in C, its isomorphi
 
opy in G0, namely, the edge (u2ℓ+1, 0) →
(u2ℓ+2, 0) is 
oloured with a 
olour j = σ−1(i) 6= i (sin
e σ is a non-�xing bije
tion of [η]).Now it 
an be seen that the 
y
le 〈(u1, 0)

j→ (u2, 0)
i→ (u3, 0) . . .

j→ (uk, 0)
i→ (u1, 0)〉is an i, j-
oloured 
y
le in G0. This is a 
ontradi
tion to the fa
t that G0 is a
y
li
ally
oloured. Hen
e the 
olouring C is a
y
li
.Case 2 (a′(G2Pk))Let the k isomorphi
 
opies of G in G2Pk be G0, G1, . . . , Gk−1 where Gi is indu
ed by37



CHAPTER 3. ACYCLIC EDGE COLOURING OF PARTIAL TORIthe set {(u, i) : u ∈ V (G)}. Let α0 and α1 be two new 
olours whi
h are not in [η]. Our
olouring is as follows.For ea
h i, 
olour the edges of 
opy Gi with Ci mod 2. Also, for ea
h i, 
olour the edgesof the form ((u, i), (u, i + 1)) with the new 
olour αi mod 2. Denote by C the resultant
olouring of G2Pk. It is easy to see that C is proper. We 
laim that C is also a
y
li
.For ea
h i (0 ≤ i < k − 1) and for ea
h edge e of G, noti
e that Gi and Gi+1have di�erent 
olours on their respe
tive 
opies of e (sin
e the 
olourings C0 and C1 arebased on mutually non-�xing bije
tions over [η]). Hen
e bi
hromati
 
y
les between two
onse
utive 
opies of G are ruled out by Case 1. So any bi
hromati
 
y
le C should passthrough at least three 
onse
utive 
opies of G, thus �xing the 
olours of C to be α0 and
α1. Sin
e all the 
opies of G are free of both α0 and α1, and the edges joining (u, i) and
(u, i + 1) between su

essive 
opies of G alone do not form a 
y
le, the 
olouring C isa
y
li
.Case 3 (a′(G2Ck))In this 
ase, we have k isomorphi
 
opies of G numbered G0, G1, . . . , Gk−2, Gk−1 su
h thatthere is a perfe
t mat
hing between su

essive 
opies Gi and G(i+1) mod k (see Figure 3.3).Our 
olouring is as follows.For ea
h i, 1 ≤ i ≤ k − 2, 
olour the edges of Gi with C(i+1) mod 2.As before, let α0, α1 be two new 
olours whi
h are not in [η]. Let D0 be a 
olouring of
G0 de�ned by D0(e) = τ(C0(e)) where τ(i) = i + 1, i < η, τ(η) = α1.In order to 
olour Gk−1, de�ne a 
olouring D1(e) = µ(C0(e)) where µ(i) = i + 2,
i < η − 1 and µ(η − 1) = α(k+1) mod 2, µ(η) = 2.Now, 
olour any edge of the form ((u, i), (u, i+1)), 0 ≤ i < k− 1 with the new 
olour
αi mod 2. Colour the edges of the form ((u, k − 1), (u, 0)) with the 
olour 1. Denote this
olouring of G2Ck by C.We 
laim that C is proper and a
y
li
. For ea
h i, the 
olouring C restri
ted to Gi isproper and a
y
li
 by de�nition. Also note that, ea
h 
ross-edge ((u, i), (u, (i+1) mod k))is 
oloured with a 
olour γ (say) whi
h is not used in either of the 
opies Gi and Gi+1.Hen
e C is proper.Also, in C, any edge e ∈ Gi and its isomorphi
 
opy e′ ∈ G(i+1) mod k re
eive di�erent
olours (sin
e the 
olourings on su

essive 
opies of G are based on mutually non-�xingbije
tions). Hen
e, as shown for the Case G2P2, there 
an be no bi
hromati
 
y
le in C38



3.4. PROOFSrestri
ted to two su

essive 
opies of G. Hen
e any su
h bi
hromati
 
y
le C should passthrough at least 3 
onse
utive 
opies of G, again �xing the two 
olours of C to be thoseused on two in
ident 
ross edges. Also, it is easy to see that there 
an be no bi
hromati

y
le involving only 
ross-edges sin
e any su
h 
y
le uses the three 
olours {α0, α1, 1}.Note that ea
h of G1, . . . , Gk−2 are 
oloured free of both α0 and α1. Hen
e any α0, α1-bi
hromati
 
y
le C should start from some vertex (u1, 0) in G0, then rea
h (u1, k − 1)using only 
ross edges, then go to some vertex (u2, k−1) using an edge of Gk−1, then rea
h
(u2, 0) using only 
ross edges and then some vertex (u3, 0) using a α1-
oloured edge of G0and 
ontinue this (possibly) again and again and �nally rea
h a vertex (uk, 0) (where kis an even number) and then go to (u1, 0) using a α1-
oloured edge of G0. Here the onlynon-
ross edges used in C are either from G0 (and 
oloured with α1) or from Gk−1 (and
oloured with either α0 or α1 depending on the parity of k). From the de�nitions of D0and D1, it follows that for ea
h edge (u2l+1, k − 1) → (u2l+2, k − 1) from Gk−1 used in C,its isomorphi
 
opy in G0, namely (u2l+1, 0) → (u2l+2, 0), is 
oloured with η. This impliesthe existen
e of a α1, η-
oloured bi
hromati
 
y
le in G0 and this is a 
ontradi
tion.Similarly, any α0, 1-
oloured bi
hromati
 
y
le should only visit verti
es in the 
opies
G1, G0, Gk−1, Gk−2 (or G1, G0, Gk−1) depending on whether k is even (or odd). As arguedbefore, this would imply the existen
e of a (1, η)-
oloured 
y
le in G0 (or a (1, (η − 1))-
oloured 
y
le in G0) 
ontradi
ting our de�nition of C.Also, if k is even, then any (1, α1)-
oloured 
y
le should only visit verti
es in G0 and
Gk−1 (whi
h are 
onse
utive) and hen
e 
annot exist. If k is odd, then su
h a 
y
le 
anonly visit verti
es in G0, Gk−1 and Gk−2 and its existen
e would imply the existen
e of a
(2, α1)-
oloured 
y
le in G0 whi
h is again a 
ontradi
tion. This shows that C is a
y
li
.

G0 ··
·

α0

G1

α1

··
· G2 ··

· . . . ··
· Gk−2

αk mod 2

··
· Gk−1

1

D0

1, α0

C0

α0, α1

C1

α0, α1

C(k−1) mod 2

α0, α1

D1

1, αk mod 2Figure 3.3: 
olouring of G2Ck 39



CHAPTER 3. ACYCLIC EDGE COLOURING OF PARTIAL TORI3.5 Algorithmi
 aspe
tsThere has been very little study of algorithmi
 aspe
ts of a
y
li
 edge 
olouring. In [AZ02℄,Alon and Zaks prove that it is NP-
omplete to determine if a′(G) ≤ 3 for an arbitrarygraph G. They also des
ribe a deterministi
 polynomial time algorithm whi
h obtainsan a
y
li
 (∆ + 2)-edge-
olouring for any graph G whose girth g is at least c∆3 for somelarge absolute 
onstant c. Skulrattanakul
hai [Sku04℄ presents a linear time algorithmto a
y
li
ally edge 
olour any graph with ∆ ≤ 3 using at most 5 
olours. Apart fromthis, and a few other results mentioned elsewhere in this thesis, no signi�
ant progresshas been made on the algorithmi
 aspe
ts of a
y
li
 edge 
olouring.All of our proofs given in the previous se
tion are 
onstru
tive and readily translateto e�
ient algorithms whi
h �nd optimal (or almost optimal) a
y
li
 edge 
olourings ofthe partial tori. Formally,Theorem 3.5.1. Let G ∈ Pd be a graph (on n verti
es and m edges) spe
i�ed by itsUnique Prime Fa
torisation. Then, an a
y
li
 edge 
olouring of G using ∆ or ∆ + 1
olours 
an be obtained in O(n + m) time. Also, the 
olouring is optimal ex
ept when Gis a produ
t of a path and a number of odd 
y
les.For the sake of 
ompleteness, we now present a brief and formal des
ription of thesealgorithms. Before we �nish, we need to say a few words about how the input is presentedto the algorithm. It is known from the work of Aurenhammer, Hagauer and Imri
h [AHI92℄that the UPF of a 
onne
ted graph G (on n verti
es and m edges) 
an be obtained in
O(m logn) time. Hen
e we assume that our 
onne
ted input G ∈ Pd is given by the listof its prime fa
tors G1, . . . , Gd. Also, without loss of generality, we assume that the listis su
h that(i) Gi ∈ paths for i = 1, . . . , p ;(ii) Gi = P2 for i = p + 1, . . . , p + e ;(iii) Gi ∈ 
y
les for i = p + e + 1, . . . , d = p + c + e and all even 
y
les appear beforeall odd 
y
les in the order.Here p, e, c denote respe
tively the number of prime fa
tors whi
h are from paths, edgesand 
y
les. 40



3.5. ALGORITHMIC ASPECTSAlgorithmi
 Version of Theorem 3.3.2Algorithm 1 A
y
ColPCGrid(G1, . . . , Gd)1: if d = 1, then output an optimal a
y
li
 edge-
olouring of G1 using 2 (1 or 3) 
oloursdepending on whether G1 ∈ paths (G1 = P2 or G1 ∈ 
y
les) and exit.2: if d = 2 then3: if both G1 = G2 = P2, then output an optimal 
olouring of G12G2 using 3 
oloursand exit.4: if either G1 = P2 and G2 ∈ 
y
les or G1 ∈ paths and G2 is an even 
y
le, theninter
hange G1 and G2; Otherwise, let G1 and G2 remain the same.5: Let C0 be an optimal a
y
li
 
olouring of G1 (on l verti
es) de�ned as follows : Forea
h i, 0 ≤ i < l − 1, 
olour the edge (i, i + 1) with i mod 2. Colour the edge
(l − 1, 0) (if it exists) with 3.6: Output the optimal a
y
li
 edge 
olouring obtained by applyingA
y
ol2fa
(G2, G1, C0) and exit.7: end if8: if d > 2 then9: Obtain an optimal 
olouring C0 of G = G12 · · ·2Gd−1 by applyingA
y
ColPCGrid(G1, . . . , G(d−1)).10: Obtain an optimal 
olouring of G2Gd by applying A
y
ol2fa
(G, Gd, C0).11: Output the optimal 
olouring of G12 · · ·2Gd thus obtained and exit.12: end if
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CHAPTER 3. ACYCLIC EDGE COLOURING OF PARTIAL TORIAlgorithmi
 Version of Theorem 3.3.1Algorithm 2 A
y
ol2fa
(G, H, C0)1: Let H be a path or a 
y
le on k ≥ 2 verti
es {0, . . . , k − 1}. Let G0, . . . , Gk−1 be the
k isomorphi
 
opies of G indu
ed respe
tively by the sets {(u, i) : u ∈ V (G)} for ea
h
i.2: if G is an even 
y
le C2l and H = Pk, then 
olour ea
h of the k isomorphi
 
opiesof G by the same 
olouring C0. For every j (0 ≤ j < k − 1) and i (0 ≤ i ≤ 2l − 1),
olour the edge joining (i, j) and (i, j + 1) with 4 if i + j is even and 
olour it withthe unique 
olour from {1, 2, 3} whi
h is missing at both 
opies of i if i+ j is odd andexit.3: Otherwise, suppose C0 uses 
olours from [η] = {1, . . . , η} for some η > 0. Let σ, τ, µbe three permutations over [η + 2] = {1, . . . , η + 2} de�ned by4: σ(i) = (i mod η) + 1 for i ∈ [η] and σ(i) = i for i > η.5: τ(i) = i + 1 for i < η, τ(η) = η + 1, τ(η + 1) = 1 and τ(η + 2) = η + 2.6: µ(i) = i + 2 for i < η − 1, µ(η − 1) = η + 1 + ((k + 1) mod 2), µ(η) = 2, µ(η + 1 +
((k + 1) mod 2)) = 1 and µ(η + 1 + (k mod 2)) = η + 1 + (k mod 2).7: Let C1,D0,D1 be three new 
olourings of G obtained respe
tively by 
olouring ea
hedge e of G by the 
olour σ(C0(e)), τ(C0(e)), µ(C0(e)).8: if H = Pk, then 
olour ea
h 
opy Gi by the 
olouring Ci mod 2. Also, for ea
h i < k−1,
olour the 
ross-edges between Gi and Gi+1 with the 
ommon 
olour missing from bothof them. This missing 
olour is η + 1 + (i mod 2).9: if H = Ck, then, for ea
h i, 0 < i < k − 1, 
olour Gi by the 
olouring C(i+1) mod 2.Also, 
olour G0 by D0 and 
olour Gk−1 by D1. Also, for ea
h 0 ≤ i < k−1, 
olour the
ross-edges between Gi and Gi+1 with the 
ommon 
olour, namely η + 1 + (i mod 2),missing from both of them. In addition, the 
ross-edges between G0 and Gk−1 are
oloured with 1.
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3.6. REMARKS3.6 RemarksThe work presented in this 
hapter has been published by us. The referen
e is [MNS06℄.If G is isomorphi
 to the produ
t of a path and a number of odd 
y
les, it 
an takeeither of the values in {∆, ∆ + 1}. It would be interesting to see if we 
an 
lassify su
hgraphs for whi
h a′(G) = ∆. It would also be ni
e to 
onstru
t an optimal 
olouringe�
iently. Another dire
tion is to extend this result and prove a′(G) ≤ ∆(G) + 1, where
G is any subgraph of a hyper
ube. If su
h a result is obtained, it 
an be used to getresults for more 
ompli
ated kinds of produ
ts.A standard kind of produ
t 
alled strong produ
t is another operation whose e�e
t onthe a
y
li
 
hromati
 index would be interesting to study and we are looking at this. Thestrong produ
t of two graphs G = (V, E) and H = (V ′, E ′) has as vertex set V × V ′ andedge set ((u1, v1), (u2, v2)) if (u1 = u2 or (u1, u2) ∈ E) and (v1 = v2 or (v1, v2) ∈ E ′).It is 
lear that the graph resulting from applying the strong produ
t operator to a pairof graphs is a supergraph, on the same vertex set, of the graph obtained by applying the
artesian produ
t operator to the same pair of graphs.
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Chapter 4Cartesian produ
t and a
y
li
 edge
olouringIn this 
hapter, we extend and generalise the results obtained in Chapter 3 to the 
artesianprodu
t of any two graphs. These graphs are more general than those 
onsidered inChapter 3, sin
e those graphs are all obtained by applying the 
artesian produ
t operatorto a 
olle
tion of only edges, paths and 
y
les.In Se
tion 4.1 we introdu
e the idea of a
y
li
ally 
olouring the 
artesian produ
tof graphs in a more general setting than grid-like graphs. We state useful properties ofthe 
artesian produ
t operator in Se
tion 4.2. Se
tion 4.3 
ontains our result and alsoa detailed proof. A few immediate 
onsequen
es of this result are given as 
orollaries inSe
tion 4.4. Se
tion 4.5 
ontains some 
on
luding remarks.4.1 Introdu
tionThe results in Chapter 3 involove graphs, all of whose fa
tors, under the unique primefa
torisation with respe
t to the 
artesian produ
t, are from the family edges ∪ paths ∪
y
les. The strongest requirement of the graph G in any of the 
ases of Theorem 3.3.1is that a′(G) > 2. Theorem 3.3.2 follows as a 
onsequen
e by iterative appli
ations ofvarious 
ases of Theorem 3.3.1. Here, we look at graphs whi
h are the 
artesian produ
tof any two graphs.The fa
tors of the graph being more general, the bounds we get on a′(G) are not as45



CHAPTER 4. CARTESIAN PRODUCT AND ACYCLIC EDGE COLOURINGtight as for grid-like graphs. In the 
ase of grid-like graphs, for ea
h additional primefa
tor in
orporated we extend the 
olouring by introdu
ing only as many new 
oloursas the in
rease in maximum degree. Here, we show that we 
an in
orporate ea
h primefa
tor, say F , using an additional a′(F) 
olours. Even though these bounds may not betight, they 
an be used to obtain bounds for any graph if we know the a′(H) values forea
h of its prime fa
tors H .
4.2 Cartesian produ
tsWe have already de�ned the 
artesian produ
t formally (De�nition 3.2.1). As was statedin Chapter 3, any non-prime graph with respe
t to this operator has a unique fa
torisation,upto a reordering of the fa
tors. Note that G2H 
an be thought of as being obtainedas follows. Take |V (H)| isomorphi
 
opies of G and label them with verti
es from V (H).For ea
h edge (u, v) in E(H), introdu
e a perfe
t mat
hing between Gu and Gv whi
hjoins ea
h vertex in V (Gu) with its isomorphi
 image in V (Gv). Equivalently, one 
analso think of this as obtained by taking |V (G)| isomorphi
 
opies of H and introdu
ing aperfe
t mat
hing between 
orresponding 
opies of H for ea
h edge in E(G).The following fa
ts are 
onsequen
es of the de�nition of the 
artesian produ
t .Fa
t 4.2.1. The 
artesian produ
t G12G2 is 
ommutative in the sense that G12G2 isisomorphi
 to G22G1. Similarly, this operation is also asso
iative. Hen
e the produ
t
G12G22 . . .2Gk is well-de�ned for ea
h k. For ea
h G and k ≥ 1, we de�ne Gk asfollows : G1 ∼= G and Gk ∼= Gk−1

2G for k > 1.Fa
t 4.2.2. If G = G12G22 . . .2Gk, then G = (V, E) where V is the set of all k-tuples of the form (u1, . . . , uk) with ea
h ui ∈ V (Gi) and the edge joining (u1, . . . , uk) and
(v1, . . . , vk) is in E if and only if for some i, 1 ≤ i ≤ k, (i) uj = vj for all j 6= i and (ii)the edge (ui, vi) is in E(Gi).Fa
t 4.2.3. G12G2 is 
onne
ted if and only if both G1 and G2 are 
onne
ted. 46



4.3. OUR RESULT AND PROOF4.3 Our result and proofIn view of Fa
t 4.2.3, it is su�
ient to 
onsider only 
onne
ted graphs. Also, if H istrivial (that is, H is a graph on just one vertex), then G2H is isomorphi
 to G for any
G. Hen
e, we fo
us only on 
onne
ted non-trivial graphs.We obtain the following general statement relating a′(G) and the 
artesian produ
toperator.Theorem 4.3.1. Let G = (VG, EG) and H = (VH , EH) be two 
onne
ted non-trivialgraphs su
h that max{a′(G), a′(H)} > 1. Then,

a′(G2H) ≤ a′(G) + a′(H).Note : If G and H are both 
onne
ted and non-trivial with a′(G) = a′(H) = 1, thenea
h of G and H is a P2. In that 
ase, G2H ∼= C4 where C4 is a 
y
le on 4 verti
es. Onlyin this 
ase, we have a′(G2H) = 3 whereas a′(G) + a′(H) = 2.The proof is presented in two stages. We �rst des
ribe a 
olouring in Se
tion 4.3.1. InSe
tion 4.3.2, we prove that the 
olouring we obtain is proper and a
y
li
, thus 
ompletingthe proof.4.3.1 The 
olouringLet a′(G) = η and a′(H) = β. Without loss of generality, assume that η ≥ β. Let ∆denote the maximum degree of H . Set d to be ∆+1 if H is either a 
omplete graph or anodd 
y
le and to be ∆ otherwise. In either 
ase, by Brooks' Theorem, H 
an be properlyvertex 
oloured using 
olours from the set [d] = {0, . . . d − 1}.We know that β = a′(H) ≥ ∆ always. If H = K∆+1 or C2k+1, then (sin
e H is
∆-regular) a′(H) ≥ ∆ + 1 (ex
ept when H = K2). In both 
ases, η ≥ β ≥ d. If H = K2,then d = ∆ + 1 = 2 and η ≥ 2 by assumption. In any 
ase, we have η ≥ d.Let XG : EG → [η] = {0, . . . , η−1} and XH : EH → [β ′] = {0′, . . . , (β−1)′} be a
y
li
edge 
olourings of G and H respe
tively, using disjoint sets of 
olours.Ea
h edge in G2H is either (i) an edge joining (u1, v) and (u2, v) for some e =

{u1, u2} ∈ EG and v ∈ VH or (ii) an edge joining (u, v1) and (u, v2) for some f =

{v1, v2} ∈ EH and u ∈ VG. We denote the former edges by ev (where e ∈ EG, v ∈ VH) and47



CHAPTER 4. CARTESIAN PRODUCT AND ACYCLIC EDGE COLOURINGthe latter edges by fu (where f ∈ EH , u ∈ VG). Note that ea
h edge of G2H lies eitherin some isomorphi
 
opy Hu of H or in some isomorphi
 
opy Gv of G.For ea
h i ∈ {0, . . . , d − 1}, let σi : [η] → [η] be a bije
tion de�ned by
σi(j) = (j + i) mod η, ∀j ∈ [η].Sin
e η ≥ β ≥ d, we noti
e that the bije
tions σi(i ∈ [d]) are mutually non-�xing, thatis, for all i, k ∈ {0, . . . , d − 1} su
h that i 6= k, and for ea
h j ∈ [η], σi(j) 6= σk(j).Let YH : VH → {0, . . . , d−1} be a proper vertex 
olouring of VH . We de�ne a 
olouringof the edges of G2H based on the 
olourings XG, XH and YH as follows.For ea
h edge in E of the form fu, where f ∈ EH and u ∈ VG, we 
olour fu using the
olour XH(f). Now 
onsider any arbitrary edge of the form ev where e ∈ EG and v ∈ VH .Let i = YH(v) be the 
olour used by YH on v. Colour ev using the 
olour σi(XG(e)).In other words, edges fu in ea
h isomorphi
 
opy Hu is 
oloured the same way as fin H is 
oloured by XH . But edges ev in ea
h isomorphi
 
opy Gv is 
oloured essentially(ignoring the labels of 
olours) the same way as G is 
oloured but the 
olour labelsare rotated by mutually non-�xing permutations. The permutation that is used for a

Gv is de
ided by the vertex 
olour assigned to v by YH . As a result, for ea
h edge
f = (v1, v2) ∈ EH and for ea
h edge e = (u1, u2) ∈ EG, ev1 and ev2 get di�erent 
oloursbut always from [η].4.3.2 Corre
tness of the 
olouringLet X : E(G2H) → {0, . . . , η − 1} ∪ {0′, . . . , (β − 1)′} be the 
olouring de�ned in theprevious se
tion. We will show that X is proper and a
y
li
.Claim. X is proper.Proof. Consider any vertex (u, v). The set of edges in G2H whi
h are in
ident on (u, v)
an be partitioned into two subsets Au = {fu : v ∈ f ∈ EH} and Av = {ev : u ∈ e ∈ EG}.Sin
e edges in these two sets are 
oloured using 
olours from disjoint sets, namely from
[η] and [β ′], there is no 
on�i
t between these two sets. Now, let us fo
us on edges in
Au. Sin
e fu's are 
oloured in the same way as f 's are 
oloured in H , there is no 
on�i
tamong edges in Au. Similarly, the edges ev's in Av are 
oloured with distin
t 
olours,there is no 
on�i
t among members of Av also. Hen
e X is proper. 48



4.3. OUR RESULT AND PROOFIt is only left to prove the a
y
li
ity of X. We prove by 
ontradi
tion. Suppose thereis a bi
hromati
 
y
le C in G, with respe
t to the 
olouring X. First, we note thatClaim. C 
annot lie entirely within any isomorphi
 
opy Gv or Hu of G or H respe
tively.Proof. Note that X restri
ted to Hu (or Gv) is basi
ally either XH (or XG ex
ept forrenaming of the 
olours). Hen
e if C lies within su
h an isomorphi
 
opy, it implies thateither XH or XG has a bi
hromati
 
y
le, whi
h is a 
ontradi
tion.By the above 
laim, it follows that C should visit verti
es in at least two di�erent
opies Gv and Gv′ . But di�erent 
opies are only joined by edges of type fu for some
f ∈ EH and u ∈ VG. Thus, it follows that C has at least one edge ea
h of the two types
ev (e ∈ EG, v ∈ VH) and fu (f ∈ EH , u ∈ VG) whi
h are 
oloured with respe
tively, say,
a ∈ [η] and b ∈ [β ′].Claim. Let (u1, v1) be some arbitrary vertex in C. Let (u1, v2) for some v2 ∈ VH be theother end point of the unique b-
oloured edge in C in
ident at (u1, v1). C lies entirelywithin Gv1 and Gv2.Proof. The proof is by indu
tion on the distan
e l in C from (u1, v1) along the dire
tionspe
i�ed by the edge {v1, v2}u1. For l = 0, it is 
learly true. Suppose it is true for verti
eswhose above-de�ned distan
e is at most l′. Let (ul′, vl′) be the vertex at distan
e l′. Byindu
tive hypothesis, vl′ is either v1 or v2. Let c ∈ {a, b} be the 
olour of the edge joining
(ul′, vl′) and (ul′+1, vl′+1). If c = a, then vl′+1 = vl′ and hen
e the hypothesis is 
learlytrue for l = l′ + 1. If c = b (hen
e ul′+1 = ul′) and if vl′ = v1, then vl′+1 = v2. This followsfrom (i) the b-
oloured edge in
ident at the 
opy of u1 in Gv1 joins it to the 
opy of u1 in
Gv2 and hen
e (ii) all edges of the perfe
t mat
hing joining isomorphi
 
opies of verti
esin Gv1 and Gv2 are 
oloured with b. In parti
ular, the b-
oloured edge in
ident at (ul′, v1)joins it to (ul′, v2). Similarly, one 
an argue that if c = b and if vl′ = v2, then vl′+1 = v1.In any 
ase, vl′+1 ∈ {v1, v2}, there by proving that C lies entirely within Gv1 and Gv2 .Sin
e the edges in Gv1 and Gv2 are 
oloured without using 
olour b and sin
e everyalternate edge of C is 
oloured with b, we see that b is used an even number of times in
C. This implies |C| = 0 (mod 4). Thus, C looks like

C = 〈 (u1, v1), (u1, v2), (u2, v2), (u2, v1), . . . , (u2k−1, v2), (u2k, v2), (u2k, v1), (u1, v1) 〉. 49



CHAPTER 4. CARTESIAN PRODUCT AND ACYCLIC EDGE COLOURINGFor ea
h of the a-
oloured edges in Gv2 joining (u2l−1, v2) and (u2l, v2), its isomorphi

opy in Gv1 joins (u2l−1, v1) and (u2l, v1) and is 
oloured with the 
olour c = σi(σ
−1
j (a)) 6= awhere i = YH(v1) and j = YH(v2). These isomorphi
 
opies in Gv1 of a-
oloured edges of

C in Gv2 together a-
oloured edges of C in Gv1 
onstitute the following bi
hromati
 
y
le
D = 〈 (u1, v1), (u2, v1), (u3, v1), . . . , (u2k, v1), (u1, v1) 〉.This is a 
ontradi
tion to the fa
t that X restri
ted to Gv1 is a
y
li
. This shows that

X admits no bi
hromati
 
y
le and hen
e X is proper and a
y
li
. Sin
e X uses only
olours from [η] ∪ [β ′], we get a′(G2H) ≤ a′(G) + a′(H).4.4 Consequen
esThe following results for 
ertain spe
ial families of graphs, are immediate 
onsequen
esof the result of the previous se
tion.Corollary 4.4.1. Let G1, . . . , Gk be k 
onne
ted non-trivial graph su
h that for ea
h i,
1 ≤ i ≤ k, a′(Gi) = ∆(Gi) and max{a′(G1), . . . , a

′(Gk)} > 1. Then,
a′(G12 . . .2Gk) = ∆(G12 . . .2Gk).Proof. Follows from

(i) a′(G) ≥ ∆(G) for any G,
(ii) ∆(G12 . . .2Gk) = ∆(G1) + . . . + ∆(Gk),
(iii) Theorem 4.3.1.Corollary 4.4.2. Let G be a 
onne
ted non-trivial graphs su
h that a′(G) = ∆(G) > 1.Then, for ea
h d ≥ 1,

a′(Gd) = d∆(G).Even though the following 
orollary has already been presented in Chapter 3, wepresent it here for the sake of 
ompleteness.Corollary 4.4.3. Let G = P d
2 = P22 · · ·2P2 be the d-dimensional hyper
ube for some

d ≥ 1. Then,
a′(P2) = 1 and a′(P d

2 ) = d + 1 for d > 1. 50



4.5. CONCLUSIONSProof. Suppose d > 1. Sin
e G = P d
2 is d-regular, we need at least d + 1 
olours in anya
y
li
 edge 
olouring of P d

2 and hen
e a′(G) ≥ d+1. Also, a′(P 2
2 ) = a′(C4) = 3. Startingwith G = P 2

2 and applying Theorem 4.3.1 repeatedly by setting H = P2 ea
h time, weget a′(P d
2 ) ≤ a′(P 2

2 ) + (d − 2) ≤ d + 1. Combining both the lower and upper bounds, weget the result.4.5 Con
lusionsThe work presented in this 
hapter has been submitted to a journal. The referen
e is[MS07℄.It is quite possible that Conje
ture 1.2.1 is true. Under this assumption, we know thatthe gap between the maximum degree of a graph and its a
y
li
 
hromati
 index is at most2. Note that for any ∆-regular graph (∆ > 1), the gap is at least 1. Thus, by applyingTheorem 4.3.1 repeatedly on su
h graphs, the di�eren
e between the bound obtained andthe maximum degree in
reases for ea
h additional fa
tor added. Thus if the 
onje
tureis true, the bounds obtained by applying our result 
annot be optimal. Nevertheless, itis not possible to make an unquali�ed 
laim of the type a′(G2H) ≤ a′(G) + ∆(H). It iswell-known that ∆(G2H) = ∆(G) + ∆(H). Therefore, if the gap is 0 for G but positivefor G2H , then this will violate a 
laim of the form made previously. We 
on
lude that,if the 
onje
ture is true, then a statement of the form a′(G2H) ≤ a′(G) + ∆(H) 
an bemade, only if the gap is 2 for G.From an algorithmi
 point of view, our proof immediately yields an e�
ient algorithmto obtain a 
olouring of G2H using a′(G) + a′(H) 
olours, provided 
olourings for G and
H are available using disjoint sets of a′(G) and a′(H) 
olours, respe
tively. Its strengthas an algorithmi
 result, however, is undermined by the fa
t that optimal 
olourings ofthe prime fa
tors themselves are not always easily 
omputable.

51





Chapter 5A
y
li
 edge 
olouring of partial2-treesIn this 
hapter we 
onsider the problem of a
y
li
ally edge 
olouring the 
lass of partial
2-trees. These are pre
isely the graphs of treewidth at most 2. More generally, for
k ≥ 0, the partial k-trees are pre
isely the 
lass of all graphs with treewidth at most
k. The partial k-trees are a stri
t sub
lass of the 
lass of all k-degenerate graphs. Wede�ne these 
losely related 
lasses of graphs and des
ribe a hierar
hy among them, inSe
tion 5.2. We elaborate some properties of these graphs in Se
tion 5.1, whi
h fa
ilitatethe a
y
li
 edge 
olouring problem on partial 2-trees. Se
tion 5.4 states the results wehave obtained and the proofs follow in subsequent se
tions. Closely related results arementioned in Se
tion 5.3. A brief des
ription of the algorithm 
orresponding to the proofis given in Se
tion 5.7. Se
tion 5.8 in
orporates a few 
on
luding remarks and outlinespossible future dire
tions for resear
h.5.1 Introdu
tionAs the reader is familiar, the a
y
li
 edge 
olouring problem is about 
olouring the edgesof a graph properly while simultaneously avoiding bi
hromati
 
y
les. It stands to reasonthat the more 
y
li
 stru
ture a graph has the more di�
ult it is to a
y
li
ally 
olour it.As always, the di�
ulty is present be
ause the number of 
olours to be used is stringentlyrestri
ted. In order to understand this better, a rigourous quantitative notion of the 
y
li
53



CHAPTER 5. ACYCLIC EDGE COLOURING OF PARTIAL 2-TREESstru
ture of a graph is needed.The treewidth of a graph is indire
tly a measure of its 
y
li
 stru
ture and indi
ateshow 
lose the graph is to a tree. The treewidth, de�ned formally below, is 1 for the 
lassof trees while it is n − 1 for the 
omplete graph Kn. These are the ends of the spe
trumand every 
one
ted graph has treewidth in this range. The a
y
li
 
hromati
 index a′ ofa tree is its maximum degree ∆. Further, it is absolutely straightforward to obtain ana
y
li
 edge 
olouring of trees using a′ 
olours. In sharp 
ontrast, it has proved extremelydi�
ult to obtain tight estimates on a′ for 
omplete graphs, inspite of their simple andsymmetri
 stru
ture.This suggests that it might be easier to get tighter bounds on the a
y
li
 
hromati
index when we fo
us on 
lasses of graphs with small treewidth. Motivated by this, westudy the a
y
li
 edge 
olouring problem for su
h graphs.5.2 De�nitionsThe treewidth of a graph is de�ned in terms of a notion 
alled tree de
omposition of thegraph. We make these notions pre
ise in the following de�nitions.De�nition 5.2.1. Given a graph G = (V, E), a tree de
omposition of G is any tree Twhose nodes are labelled by subsets of V , su
h that:
• every vertex v ∈ V appears in the label of at least one node of T

• for every edge e = (u, v) ∈ E, there is at least one node of T whose label 
ontainsboth u and v

• for any vertex v ∈ V the set of nodes whose labels 
ontain v indu
es a 
onne
tedsubgraph of TIn a tree de
omposition the number of verti
es of the original graph used to label anode of the tree is 
alled the label size of that node. The width of the tree de
ompositionis the largest label size of any node in that de
omposition.De�nition 5.2.2. The treewidth of a graph G, denoted by tw(G), is exa
tly one lessthan the minimum width of any tree de
omposition of G. 54



5.3. RELATED RESULTSTreewidth is a monotoni
 property, in the sense that the treewidth of a subgraph isat most the treewidth of the original graph.We now de�ne k-trees whi
h are the basis of the de�nition of partial k-trees.De�nition 5.2.3. A k-tree is any graph obtained from the 
omplete graph Kk+1, by asequen
e of zero or more operations of adding a new vertex adja
ent to the verti
es of anexisting k-
lique in the graph.De�nition 5.2.4. A partial k-tree is any subgraph of a k-tree.It 
an be seen that k-trees have treewidth exa
tly k. The monotoni
ity of the treewidthproperty implies that partial k-trees also have treewidth at most k. In fa
t, it is well-known that they are exa
tly the 
lass of graphs of treewidth at most k. A 
losely relatednotion is the 
lass of k-degenerate graphs de�ned below.De�nition 5.2.5. A k-degenerate graph is any graph obtained from the graph on a singlevertex, K1, by a sequen
e of zero or more operations of adding a new vertex adja
ent toat most k existing verti
es in the graph.Note that every partial k-tree is also k-degenerate. These 
lasses, though their de�ni-tions appear similar, di�er strongly. It is known that all planar graphs are 5-degenerate,but planar graphs have unbounded treewidth. An in�nite family of su
h examples is thefamily of square grids, Pn2Pn. All these graphs are planar but have treewidth at least n.A property of any k-degenerate G, is that its minimum degree δ(G) ≤ k. Additionally,for every subgraph, H ⊆ G, δ(H) ≤ k. This is an alternative, equivalent 
hara
terisationof k-degenerate graphs whi
h often proves useful.5.3 Related resultsAs we mentioned earlier, partial 2-trees are a sub
lass of 2-degenerate graphs. We statehere some results on a
y
li
 edge 
olouring of 2-degenerate graphs. The earliest resulton a
y
li
 edge 
olouring of 2-degenerate graphs was by Card and Roditty [CR94℄, wherethey proved that a′(G) ≤ ∆ + k − 1, where k is the maximum edge-
onne
tivity, de�nedas k = maxu,v∈V (G) λ(u, v), where λ(u, v) is the edge-
onne
tivity of the pair u, v. Notethat, here, k 
an be as high as ∆. 55



CHAPTER 5. ACYCLIC EDGE COLOURING OF PARTIAL 2-TREESAlon and Zaks show that it is NP-Hard to determine a′ for sub
ubi
 graphs (see [AZ02℄).It follows, from the redu
tion they use, that the problem is hard even for 2-degenerategraphs. It is possible that the problem is hard for many non-trivial sub
lasses of 2-degenerate graphs. In this 
ontext, it is signi�
ant that there have been a few resultswhi
h give bounds on a′ whi
h di�er from the optimum by at most one or two, and alsoprovide e�
ient algorithms to produ
e su
h 
olourings. Re
ently, it has been shown byMuthu, Narayanan and Subramanian, that if G is an outerplanar graph then a′(G) ≤ ∆+1[MNS07a℄. Subsequently, a weaker bound of a′(G) ≤ ∆ + 2 has been obtained by Manuand Chandran for the larger 
lass of all 2-degenerate graphs [CM07℄. More re
ent infor-mation indi
ates that Manu and Chandran have proved a better upper bound of ∆ + 1for the 
lass of 2-degenerate graphs also.5.4 Our resultsHere, we formally state the results we obtain. By setting k = 2 in De�nitions 5.2.3 and 5.2.4we obtain the following de�nitions.De�nition 5.4.1. A 2-tree is any graph obtained from the triangle K3, by a sequen
e ofzero or more operations of adding a new vertex adja
ent to the endpoints of an existingedge in the graph.De�nition 5.4.2. A partial 2-tree is any subgraph of a 2-tree.The main 
ontribution of this 
hapter is the following result.Theorem 5.4.1. If G is a 2-tree or a partial 2-tree, then a′(G) ≤ ∆ + 1.Sin
e every series-parallel graph (de�ned below) is a partial 2-tree (see [Gra99℄), weobtain the following 
orollary.Corollary. If G is a series-parallel graph, a′(G) ≤ ∆ + 1.De�nition 5.4.3. A series-parallel graph is any simple graph obtained starting from K2and performing any sequen
e of the following two operations:
(i) subdivide an edge
(ii) add edges parallel to existing edges.Finally all multiple edges are eliminated to render the graph simple. 56



5.5. BOUND FOR 2-TREESAn independent proof of this result has been obtained in [CM07℄. That proof usesideas similar to the proof that a′(G) ≤ ∆ + 2 for 2-degenerate graphs G, given in thesame paper.We �rst prove the bound for 2-trees in Se
tion 5.5 and then extend the arguments towork for the more general partial 2-trees in Se
tion 5.6.5.5 Bound for 2-treesFirst, we de�ne the term 2-ear. The pro
ess of adding a new vertex w adja
ent to twoexisting verti
es u and v (not ne
essarily adja
ent) in a graph G, is 
alled adding a 2-ear to
G. In the 
ase of 2-trees, the verti
es u and v must be adja
ent. The path added throughthe new vertex w, des
ribed above is 
alled a 2-ear of the graph. Note, that 2-trees 
anbe 
onstru
ted starting from a triangle and repeateding the pro
edure of adding 2-earsto the endpoints of an edge.From De�nition 5.4.1, it is easily seen that 2-trees are triangulated (
hordal), planarand 2-degenerate. With respe
t to that de�nition of 2-trees, we introdu
e the followingterms and notations. The triangle with whi
h the 
onstru
tion is initiated is 
alled theinitial triangle or base triangle. For a given edge (u, v), the set of all ears added betweenits endpoints, is denoted by ext(u, v). (u, v) is 
alled the base edge for ea
h of these ears.We 
olour the graph in
rementally by adding more edges to a partial 
olouring inbat
hes. The in
rementation used here is di�erent from other in
remental pro
edureswhere only a single edge is introdu
ed at a time. Here, in ea
h stage, we introdu
e a setof all 2-ears having the same base edge. The edge order is des
ribed in greater detaillater.5.5.1 AssumptionsAt any intermediate stage the number of 
olours used is one more than the 
urrent max-imum degree, ∆. Here, a stage refers to the addition of all 2-ears having the same baseedge, and the 
urrent maximum degree refers to the maximum degree after the introdu
tionof this entire bat
h of 2-ears.We use Lv to denote the subset of 
olours not seen by the vertex v in the 
urrent partial
olouring of G (prior to 
olouring the 
urrent bat
h of edges). Note that |Lv| ≥ Uv + 157



CHAPTER 5. ACYCLIC EDGE COLOURING OF PARTIAL 2-TREES(sin
e we use ∆ + 1 
olours), where Uv is the number of un
oloured edges in
ident to
v. d(v) denotes the degree of the vertex v. The above des
ribed notation is used in thedes
ription of all our 
olouring pro
edures.5.5.2 A
y
li
 
olouring of K2,tNow, we des
ribe how to a
y
li
ally edge 
olour any member of a spe
ial 
lass of graphs.In the 
olouring of 2-trees, the graphs indu
ed by the edges added in a bat
h as des
ribedabove, all belong to this spe
ial family. This 
olouring pro
edure is, thus, a subroutineused in our 
olouring of 2-trees. The spe
ial 
lass we refer to is the family of 
ompletebipartite graphs (K2,t), where one of the partite sets has exa
tly two verti
es. We des
ribeone normal a
y
li
 edge 
olouring of this 
lass of graphs and another a
y
li
 edge 
olouringbased on lists asso
iated with ea
h edge.The following lemma des
ribes an a
y
li
 edge 
olouring for the 
omplete bipartitegraph, K2,t, using t 
olours if t ≥ 3, and using t + 1 
olours otherwise.Lemma 5.5.1. For the 
omplete bipartite graph, K2,t,

a′(K2,t) =

{

t if t ≥ 3

t + 1 otherwise.Proof. Let A = {u, v} be the partite set of size two, and let B = {w1, . . . , wt} be thepartite set of size t. If t = 1 or 2, the 
olouring is straightforward. If t ≥ 3, 
olour (u, wi)with 
olour i, for i ∈ {1, . . . , t} and 
olour (v, wi) with 
olour i + 1, for i ∈ {1, . . . , t − 1}and 
olour (v, wt) with 
olour 1. It is easy to observe that the subgraph indu
ed by anypair of 
olour 
lasses is either a path on 4 edges, or a 
olle
tion of two vertex disjointpaths on 2 edges ea
h (see Figure 5.1). In ea
h 
ase, the subgraph is a
y
li
 and hen
ethe 
olouring is proper and a
y
li
. Further, if t ≥ 3, the endpoints of these paths bothlie in B. Even if t = 2, one endpoint of any maximal bi
hromati
 path lies in B. We
all this s
heme 
olouring by shifting and use it as a subroutine in the 
olouring of partial2-trees.We use the above-mentioned pro
edure in our 
olouring of 2-trees, when the twoendpoints u and v of a base edge e = (u, v), su
h that |ext(e)| = k (k ≥ 3), have at least
k 
ommon free 
olours. 58
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u v

w1

w2

wt

1
2

t

2
3

1

Figure 5.1: a
y
li
 
olouring of K2,tWe now des
ribe a generalised version of the previous lemma whi
h des
ribes an a
y
li
edge 
olouring of the same graph when the 
olours allowed for any edge is restri
ted toan asso
iated list.Lemma 5.5.2. Consider the 
omplete bipartite graph H = (A,B, F ) with A = {u, v}and B = {w1, . . . , wt}. Let Lu denote a set of t 
olours whi
h are permitted for edgesin
ident at u. Lv is de�ned similarly. Then, there is an a
y
li
 edge 
olouring of H usingonly 
olours from Lu and Lv for edges in
ident at u and v respe
tively.Proof. Without loss of generality, assume that I = Lu ∩Lv = {1, . . . , i} is the set of i ≥ 0
olours available for edges in
ident at both u and v and also that Lu\I = {i+1, . . . , t} andalso that Lv \ I = {t+1, . . . 2t− i}. Then, 
olour the edges (u, w1), . . . (u, wt) with 1, . . . , trespe
tively. Colour the edges (v, w1), . . . , (v, wi−1) with 2, . . . , i respe
tively. Colour theedges (v, wi) . . . , (v, wt−1) with t + 1, . . . , 2t− i respe
tively and (v, wt) with 
olour 1 (seeFigure 5.2). It 
an be seen that this 
olouring is proper and a
y
li
. We 
all this s
hemealso 
olouring by shifting and use it as a subroutine in the 
olouring of partial 2-trees.We use this pro
edure (des
ribed in the proof of Lemma 5.5.2) in our 
olouring of2-trees, when the two endpoints u and v of a base edge e = (u, v), su
h that |ext(e)| = k(k ≥ 2), do not ne
essarily have k 
ommon free 
olours. Note that the 
olouring whi
h59



CHAPTER 5. ACYCLIC EDGE COLOURING OF PARTIAL 2-TREESresults from applying Lemma 5.5.2, when t ≤ 2 and the lists Lu and Lv are identi
al isnot a
y
li
. The 
olouring s
heme des
ribed in the proof produ
es a proper and a
y
li

olouring only if either the lists are distin
t or t ≥ 3.
u v
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wt
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i
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3

1

Figure 5.2: list a
y
li
 
olouring of K2,t5.5.3 The 
olouring pro
edureWe may assume that the given graph is bi
onne
ted, sin
e an a
y
li
 
olouring of anygraph 
an be obtained from the a
y
li
 
olourings of its bi
onne
ted 
omponents using
a′(G) 
olours. First we prove the result for the 
lass T of 2-trees and then extend it, inthe next se
tion, to in
lude all of P, the partial 2-trees. We use the following easy toverify fa
t repeatedly in our proofs.Observation 1. If G is a 2-tree, one 
an 
onstru
t G from any arbitrary triangle of Gby repeatedly adding 2-ears a

ording to De�nition 5.4.1.We obtain a (∆ + 1)-a
y
li
 edge 
olouring of any 2-tree by an iterative 
olouringpro
edure whi
h in
orporates more edges at ea
h stage into an existing partial 
olouringuntil the graph is fully 
oloured. There is in general more than one way in whi
h a 2-tree 
an be 
onstru
ted a

ording to De�nition 5.4.1. We �x one su
h 
onstru
tion, andwith respe
t to it, de�ne a notion of level to 
lassify edges. The edges are introdu
ed in60



5.5. BOUND FOR 2-TREESin
reasing order of level number and 
oloured immediately. The pro
edure never altersthe 
olour of an edge on
e it has been assigned.We re
onstru
t the graph G by starting from any triangle T = {a, b, c} as mentionedin Observation 1, and building the graph ear by ear. We 
all this the base triangle orinitial triangle. Re
all that ext(u, v) denotes the set of all 2-ears having (u, v) as its baseedge.We also assign a nonnegative integer value to ea
h edge e and 
all it the level of e anddenote it by level(e). Initially, the three edges of T are assigned level 0. The level numberis de�ned indu
tively. If e = (u, v) is any edge already added su
h that level(e) = i, thenfor ea
h 2-ear (u, w, v) ∈ ext(u, v), we assign level(u, w) = level(w, v) = i + 1 and addthis 2-ear. In addition, we we follow the 
onvention that:
(a) edges are added in in
reasing order of their level numbers and
(b) if (u, w, v) is a level i ear, then all (i + 1)-level ears of ext(u, w) appear 
ontiguously(the same holds for ext(w, v) also) with 2-ears of one set appearing immediately before orafter the 2-ears of the other set.This is the order in whi
h the edges are introdu
ed and 
oloured. Figure 5.3 indi
ateshow the graph looks just prior to the addition of a set of level(i + 1) edges.In the following, we use ∆ to denote, always, the maximum degree of the 
urrentgraph (after adding the edges to be 
oloured at this step). The 
olouring pro
edure 
anbe summarised as follows.1. Colour the base triangle T = {ab, bc, ac} with the 
olours 1, 2, 3, respe
tively.2. Colour the level 1 edges in the order ext(a, b), followed by ext(b, c), and �nally

ext(a, c). We assume, without loss of generality, that |ext(a, b)| ≤ |ext(b, c)| ≤
|ext(a, c)|, where the notation |ext(u, v)| represents the number of ears having theedge (u, v) as its base edge.

• If |ext(a, b)| = 1, then 
olour the new edge in
ident to vertex a with 
olour 2(whi
h is free there) and the edge in
ident to b with the newly available 
olour(due to the in
rease in ∆). If |ext(a, b)| = 2 
olour a

ording to Lemma 5.5.2where La = {2, 4} and Lb = {3, 4}. If |ext(a, b)| ≥ 3 
olour a

ording toLemma 5.5.1 using 
olours from {4, . . . , |ext(a, b)| + 3}. 61



CHAPTER 5. ACYCLIC EDGE COLOURING OF PARTIAL 2-TREES
• If |ext(b, c)| = 1, then 
olour the new edge in
ident to b with the newly avail-able 
olour (again due to in
rease in ∆), and the edge in
ident to c with anymissing 
olour. If |ext(b, c)| = 2, ∆ in
reases by 2. Let the two new 
oloursbe n1 and n2. Let α be some original 
olour missing at b. Colour ext(b, c)using Lemma 5.5.2, with Lb = {n1, α} and Lc = {n1, n2}. If |ext(b, c)| ≥ 3,then 
olour ext(b, c) using Lemma 5.5.1, sin
e there are |ext(b, c)| 
ommon free
olours (the set of new 
olours due to in
rease in ∆).
• If |ext(a, c)| = 1, then, we know that |ext(a, b)| ≤ 1 and |ext(b, c)| ≤ 1. Thereader 
an verify that the 
olouring 
an be extended using the stipulated ∆ +

1 ≤ 5 
olours. If |ext(a, c)| = 2, then either |ext(a, b)| = 2 and |ext(b, c)| = 2or ∆ in
reases on a

ount of adding ext(a, c). In the former 
ase, there existnon-identi
al lists of two 
olours ea
h, missing at a and c. Colour ext(a, c)using Lemma 5.5.2 with these lists. In the latter 
ase, 
olour ext(a, c) usingLemma 5.5.2 where La = {α, n} and Lb = {β, n}. Here, α and β are distin
t
olours missing at a and b respe
tively, while n is the new 
olour. If |ext(a, c)| ≥
3, 
olour ext(a, c) using Lemma 5.5.1 provided there is a list of |ext(a, c)|
ommon free 
olours at a and c, and using Lemma 5.5.2 otherwise.3. For i ≥ 1, the pro
edure for 
olouring level-(i + 1) edges is as follows. Assumethat all edges up to level-i have already been added and 
oloured a
y
li
ally (using

∆ + 1 
olours). Assume that for some level i 2-ear, (u, w, v), we add the edges in
ext(u, w) followed by those in ext(w, v) in in
rementally building the graph. Werefer to (u, w, v) as the base ear. Refer to Figure 5.3. Let the number of 2-earsin ext(u, w) and ext(w, v) be, respe
tively, k1 and k2. We assume, without loss ofgenerality, that k1 ≤ k2. Colour the new edges as des
ribed below, under 
olourextension.5.5.3.1 Colour extensionWe des
ribe below how to extend the 
olouring C to the newly added ears. The pro
edurefalls under a number of 
ases a

ording to the values of k1 and k2. We 
olour the ears in

ext(u, w) �rst and then those in ext(v, w). Let C(uw) = x and C(vw) = y and C(uv) =

a. Noti
e that sin
e we use ∆ + 1 
olours, we have |Lu| ≥ k1 + 1, |Lv| ≥ k2 + 1 and62
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k1 ears
k2 ears
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Figure 5.3: 
olour extension
|Lw| ≥ k1 + k2 + 1. One should also note that |Lu ∩ Lw| ≥ k1 at the point of beginningthe 
olouring of ext(u, w) (be
ause we 
olour ext(u, w) before 
olouring ext(v, w)). Re
allthat k1 ≤ k2 as assumed before.In the 
olouring s
heme below, we always 
olour the k1 ears in ext(u, w) by applyingLemma 5.5.1. It is worth re
alling from the proof of Lemma 5.5.1 that any maximalbi
hromati
 path in ext(u, w) has at least one endpoint distin
t from u and w. As aresult, the subsequent 
olouring of ears in ext(v, w) 
annot 
reate any bi
hromati
 
y
lepassing through ext(u, w).

• Case k1 = 0:If k2 = 1, 
olour the edge of the ear in
ident to w using C(uv) = a and other edgewith any 
olour from Lv \ {x}. Similarly if k2 = 2, 
olour one ear with 2 
oloursfrom Lv \ {x} and the other ear with one of these 
olours and 
olour a. Otherwise,the k2 ears based on edge (v, w) are 
oloured using k2 
olours from Lv \ {x}, asgiven in Lemma 5.5.1.
• Case k1 = 1:In this 
ase, we 
olor the single ear based on (u, w) with the 
olours a and some
olour from Lu \ {y}. If k2 = 1, we 
olour the ear based on (v, w) properly, avoidingthe 
olour x. If k2 = 2, we 
olour the ears based on (v, w), using nonidenti
al list of
olours, avoiding the 
olour x. If k2 ≥ 3, we pi
k a subset of k2 
olours from Lv \{x}and a set of same size from Lw. Note that these sets might be identi
al or distin
t.63



CHAPTER 5. ACYCLIC EDGE COLOURING OF PARTIAL 2-TREESWe a

ordingly use the 
olouring pro
edure in Lemma 5.5.1 or Lemma 5.5.2 toextend the partial 
olouring.
• Case k1 = 2:In this 
ase, one of the ears based on (u, w) is 
oloured using 2 
olours from Lu \
{y} while the other is 
oloured using a and one of these 
olours. If k2 = 2, wepi
k non-identi
al lists of 
olours and 
olour ext(v, w) using these lists a

ording toLemma 5.5.2. If k2 ≥ 3, for the ears based on (v, w), we pi
k a subset of k2 
oloursfrom Lv\{x} and a set of the same size from Lw. If these sets are identi
al we extendthe 
olouring a

ording to Lemma 5.5.1, and otherwise a

ording to Lemma 5.5.2.

• Case k1 ≥ 3:In this 
ase, the ears based on (u, w) are 
oloured using k1 
olours from Lu \ {y}.Observe that here, Lw ⊂ Lu \ {y}, so the sele
ted set of 
olours are free at bothendpoints of the ear set, thus enabling the appli
ation of Lemma 5.5.1. For the
ears based on (v, w), we pi
k a subset of 
olours from Lv \ {x} of 
ardinality k2 anda set of same size from Lw. We 
olour a

ording to Lemma 5.5.1 or Lemma 5.5.2,depending on whether these lists are identi
al or distin
t.We now need to argue that the new partial 
olouring obtained as a result of the 
olourextension pro
edure is proper and a
y
li
, in ea
h of the four 
ases. However, we argue indetail only for the 
ase k1 ≥ 3. The arguments for the other 
ases are of a similar natureand are simpler.Prior to 
olouring ext(u, w) and ext(v, w), the graph is assumed to be 
oloured properlyand a
y
li
ally. Observe that the 
olouring pro
edure of Lemma 5.5.1, never 
reatesbi
hromati
 
y
les in the graph indu
ed by the edges of ext(u, w). From that lemma, it isalso 
lear that there is no maximal bi
hromati
 path involving the edges of ext(u, w) withendpoints as u and w. It follows that there is no bi
hromati
 
y
le using a 
ombinationof the old and new edges. Thus the 
olouring is proper and a
y
li
 after the addition of

ext(u, w).Now, ext(v, w) is 
oloured a

ording to Lemma 5.5.2, sin
e the list of available 
oloursavailable at v and w need not ne
essarily have k2 
ommon 
olours. From the lemma, weknow that the edges of ext(v, w) do not indu
e any bi
hromati
 
y
les. We do not usethe 
olour x in ext(v, w), so any bi
hromati
 
y
le using edges of ext(v, w) must also use64



5.6. PARTIAL 2-TREESedges of ext(u, w). However, that is not possible, sin
e any bi
hromati
 path starting at
w and entering ext(u, w) terminates at a vertex in ext(u, w) distin
t from u and w. Thusthere is no bi
hromati
 
y
le using a 
ombination of old and new edges.5.6 Partial 2-treesHere, we extend the proof given above to partial 2-trees.Given any partial 2-tree T , we 
onsider any 2-tree G whi
h 
ontains T as a subgraph.We mark all the edges of G whi
h are not in T as imaginary edges. We use the imaginaryedges only to 
lassify the level of edges for the further addition of ears. They do not
ontribute to the degree of a vertex in G. They are never 
oloured. The important pointto noti
e is that, again we need only ∆(T ) + 1 
olours to extend the partial 
olouringat any stage. As before, ∆(T ) refers to the maximum degree of the partial 2-tree at the
urrent stage. An ear 
onsisting of two real edges is 
alled a full ear, while ears withone real edge and one imaginary edge are 
alled half ears. Observe that empty ears (bothedges are imaginary) are in
onsequential, sin
e we do not 
olour them at all, and only usetheir endpoints for the addition of higher level ears.Suppose, at any point, we are to 
olour k1, k2 pairs of ears (some of them 
ould behalf ears). We noti
e that if there are k un
oloured real edges at an endpoint, then wehave at least k + 1 available 
olours for the edges in
ident at the endpoint.Here, the ears having the same base edge (real or imaginary) are ordered with all thefull ears �rst followed by the half ears and �nally by the empty ears. Colour the full earsas mentioned earlier for 2-trees and extend the 
olouring to half ears in a proper fashion.It follows that su
h a 
olouring is proper and a
y
li
. It is identi
al to the 
ase of 2-trees,ex
ept for the half ears. However, half ears only give rise to pendant edges and 
annot
reate bi
hromati
 
y
les, so any proper 
olouring is su�
ient. This 
ompletes the proofof Thorem 5.4.1 for partial 2-trees.5.7 Algorithmi
 aspe
tsOur proof that a partial 2-tree 
an be a
y
li
ally 
oloured using ∆ + 1 
olours, 
an bemade 
onstru
tive yielding an e�
ient algorithm to produ
e su
h a 
olouring. 65



CHAPTER 5. ACYCLIC EDGE COLOURING OF PARTIAL 2-TREESThe proof 
onsists of a 
olouring pro
edure whi
h 
olours the set of edges 
onsideredin a spe
i�
 order. This naturally divides the pro
edure into two phases. In the �rstphase, the order of the edges is 
omputed. In the se
ond phase the edges are 
oloured
onsidering them in this order. Stri
tly speaking, the edge order is a partial order, andnot a total order, sin
e we introdu
e them in bat
hes rather than one by one.By observation 1, we 
an 
onstru
t the graph starting from any triangle. Finding atriangle in a graph 
an be done using a standard graph sear
hing algorithm like BreadthFirst Sear
h (BFS). Subsequent 
omputation of the edge order 
onsists of �nding the setof all 
ommon neighbours of the endpoints of ea
h base edge 
onsidered in in
reasingorder of levels. This 
an be a

omplished by a modi�
ation of the basi
 BFS pro
edure.Our 
olouring of 2-trees begins with the 
olouring of the base triangle. At ea
h sub-sequent stage, a bipartite graph is 
oloured either in a very simple way or using one ofLemmas 5.5.1 and 5.5.2.The 
olouring of the initial triangle takes 
onstant time. The 
olouring is then ex-tended to in
lude at ea
h stage the edges extending a �xed base edge. In order to performthis step, we need to 
ompute the list of available 
olours at ea
h of the endpoints of thebase edge. Prior to 
olouring an extension, 
omparison between these lists needs to bemade in order to determine the set of 
ommon 
olours and also the symmetri
 di�eren
eof these lists. After these lists are 
omputed, we order the edges of the extension andassign 
olours to ea
h of the edges. The extension pro
edure 
an be performed at a 
ostof O(∆2) to the running time.A simple 
al
ulation then reveals that the entire graph 
an be 
oloured within O(n2)time. This is also an upper bound on the time taken to 
ompute the edge order of thewhole graph.5.8 Future dire
tionsThe work presented in this 
hapter has been submitted to a 
onferen
e. The referen
e is[MNS08℄. It would be interesting to extend these ideas and see if similar or even weakenedresults 
an be obtained for the partial k-trees for higher values of k. The results obtainedby similar methods is likely to yield bounds as a fun
tion of both ∆ and k, rather thanonly ∆. 66



Chapter 6Con
lusions
6.1 SummaryIn this thesis, we studied the problem of a
y
li
 edge 
olouring of graphs. We introdu
eda new 
olouring idea and proved that a′(G) ≤ 4.52∆ for all graphs of girth g(G) ≥ 220.This improves the previous best bound of 16∆ for graphs with girth at least 220. This isa step towards obtaining tight bounds on a′(G).We also illustrated a general relationship between the girth of a graph and its a
y
li

hromati
 index, whi
h highlights the fa
t that a
y
li
ally 
olouring a graph seems harderfor graphs with small 
y
les.We obtained optimal or nearly optimal estimates on the a
y
li
 
hromati
 index ofsome stru
tured 
lasses of graphs. For these 
lasses, we also provided e�
ient algorithmsto 
onstru
t the 
orresponding optimal 
olourings. The 
lasses of graphs for whi
h wehave obtained near optimal estimates on the a
y
li
 
hromati
 index are grid-like graphs,partial 2-trees and outerplanar graphs (not in this thesis). This is interesting 
onsideringthat for other stru
tured 
lases like 
omplete graphs no optimal or near optimal estimateis known at present.We also 
orrelate a′(G) to the 
orresponding values of its prime fa
tors under the
artesian produ
t operation. Thus, tight bounds on the a′ of the prime fa
tors of a graph
G, lead to reasonably tight bounds on a′(G) as well. Also, if the a
tual 
olourings of theprime fa
tors 
an be 
omputed e�
iently, then a 
olouring of the resultant graph 
an alsobe 
omputed e�
iently by our method of proof. 67



CHAPTER 6. CONCLUSIONS6.2 Future dire
tionsIt is easy to see that a′(Kn) ≤ p, where p is the smallest prime greater than or equal to
n. But the gap between p and n 
ould be as large as √n for 
ertain values of n. So, itwould be interesting to obtain a ∆ + O(1) bound for Kn.It would also be interesting to obtain improved bounds for general 
lasses of graphs.If G is a partial torus isomorphi
 to the produ
t of a path and a number of odd 
y
les,
a′(G) 
an take either of the values in {∆, ∆ + 1}. It would be interesting to see if we 
an
lassify su
h graphs for whi
h a′(G) = ∆ and also 
onstru
t optimal 
olourings e�
iently.It is quite possible that Conje
ture 1.2.1 is true. Under this assumption, we knowthat the gap between the maximum degree of a graph and its a
y
li
 
hromati
 indexis at most 2. Note that for any ∆-regular graph (∆ > 1), the gap is at least 1. Thus,by applying Theorem 4.3.1 repeatedly on su
h graphs, the di�eren
e between the boundobtained and the maximum degree of the resultant graph in
reases for ea
h additionalfa
tor.Thus, assuming the truth of the 
onje
ture, it is not possible to make a statement ofthe form a′(G2H) ≤ a′(G) + ∆(H). It would be interesting to �nd 
onditions on G and
H whi
h would enable us to make su
h a statement.It is a 
hallenge to obtain 
onstru
tive bounds better than the 
urrently best known
O(∆ log∆), for all graphs. It would be ni
e to improve the best known bound of 16∆ forall graphs.
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