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AbstratAn ayli edge olouring of a graph is an assignment of olours to its edges in suh away that inident edges get distint olours, and the edges of any yle use at least threedistint olours. The latter ondition is equivalent to the requirement that the subgraphindued by any pair of olour lasses (set of edges reeiving the same olour) is a forest.The minimum number of olours su�ient to aylially olour the edges of a graph G,is alled its ayli hromati index and is denoted by a′(G).In this thesis we study a problem alled the ayli edge olouring of graphs. Forbrevity, we often use the phrase �ayli olouring�, instead of �ayli edge olouring�.This notion is a more restrited version of the standard edge olouring notion, whih inturn is the same as the standard vertex olouring notion on line graphs. This thesis studiesthis notion in the ontext of two di�erent aims. The �rst aim is to get tight estimates onthe minimum number of olours su�ient to ahieve suh olourings for any graph. Theseond is to atually produe suh olourings using as few olours as possible.The ayli olouring problem an thus be viewed from a ombinatorial perspetiveand also from an algorithmi perspetive. It is interesting and hallenging with respet toboth perspetives. It is noteworthy that no good estimates on a′(G) have been obtainedfor even highly strutured lasses like the omplete graphs, or restrited families like bi-partite graphs. From the algorithmi point of view it is np-hard to determine a′(G) ingeneral, and even when restrited to sububi, 2-degenerate graphs. Its lose relationshipto standard vertex olourings indiates that it ould be useful in modelling and solv-ing problems involving on�it-free sheduling of ativities. The ayli edge olouringproblem is also losely related to star and oriented olourings of line graphs whih haveappliations in protools for mobile ommuniation.In this thesis, we have ontributed to improving the understanding of the ayliolouring problem from a ombinatorial as well as an algorithmi perspetive. Spei�allywe have obtained the following results.
• We have improved the previously best known upper bound on a′(G) for all graphs(16∆) to 5.91∆ for graphs of girth at least 9. We get a further improvement to

4.52∆ when we restrit our attention to graphs of girth at least 220. Here, ∆(G)represents the maximum degree of the graph. 6



(This result whih is joint work, forms a part of the Ph.D. thesis of my ollaboratorN. Narayanan, also.)
• We obtain a general relationship between the girth, g(G) of a graph G and itsayli hromati index, whih gives progressively better upper bounds on a′(G), asthe girth, g(G) of the graph inreases.
• We obtain exat estimates of a′(G) for the well known graph lasses: hyperubes,grids and tori. Also, we show that for eah partial torus (a generalisation of gridsand tori), its a′(G) is always either ∆ or ∆ + 1. Our proof also suggests an e�ientalgorithm to produe suh olourings for these graphs.
• We also prove that a′(G) ≤ a′(G1) + · · · + a′(Gk) where G1, . . . , Gk are the primefators of G (with respet to artesian produt fatorisation), provided a′(Gi) > 1,for some i. This generalises and extends the results we obtain for partial tori,mentioned above. The graph G an be e�iently oloured using a′(G1)+. . .+a′(Gk)olours, provided we have ayli olourings of eah Gi using a disjoint set of a′(Gi)olours.
• We prove that for the lass of partial 2-trees, a′(G) ≤ ∆+1. Our proof also yields apolynomial time algorithm for onstruting an ayli olouring of any partial 2-treeusing ∆ + 1 olours.
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Chapter 1IntrodutionMany problems of pratial importane an be studied by modelling them in a graph theo-reti framework. Deiding the loations of retail outlets to meet the on�iting onstraintsof proximity to ustomers and minimising the total investment in setting-up osts is onesuh problem. Sheduling the repair of roads in a ity while ensuring that important ityentres are still aessible is another. Routing a leaning vehile through the roads of aity minimising the travel distane is another problem whih an be solved using graphtheoreti tehniques. Graph theory is vast and eah of these problems are modelled andsolved using di�erent properties of graphs. For an exellent introdution to graph theoryand its appliations see [Wes96℄,[Har69℄,[Rob93℄.Graph olouring is an important problem in graph theory and ombinatoris as well.It arose famously in the ontext of the four olour theorem, whih states that the regionsof a map an be oloured using four olours so that regions sharing a boundary get distintolours. A proper olouring of a graph assigns olours to its verties in suh a way thatno pair of adjaent verties get the same olour. Equivalently, this may be viewed as anassignment of olours to verties suh that the set of verties reeiving the same olouris an independent set. When viewed in this way we an speak of a proper olouringas a partition of the vertex set into independent sets. In general, graph olouring anbe thought of as a partition of the elements of a graph (verties or edges), with therequirement that the partition satis�es spei�ed onstraints.Standard vertex olouring is used to shedule ativities in a on�it-free manner. Sup-pose we need to shedule meetings of several ommittees at various time slots. We model1



CHAPTER 1. INTRODUCTIONit by a graph with one vertex for eah ommittee and an edge between two verties ifthe orresponding ommittees have a ommon member. A proper vertex olouring ofthis graph, indiates a shedule where no two ommittees with a ommon member aresheduled a meeting at the same time. Sheduling the alloation of proessor registers toprogram variables by a ompiler, to enhane performane, is a very important real-timeappliation of proper vertex olourings. Proper edge olouring an be used in a similarfashion to shedule mathes between teams in a sports league, so that, no team is as-signed two mathes to be played at the same time. Colouring problems are good toolsfor modelling sheduling problems of various types. In this thesis we onsider an impor-tant variant of graph olouring alled ayli edge olouring. More details are given inSetion 1.2.1.1 De�nitions and notationsHere, we present some de�nitions and notations whih we use throughout the thesis. Wealso state some well known results. Where we have used a notation, onept or result notstated here, it an be taken to have its standard meaning in widespread use. We onsideronly �nite, simple, undireted graphs G = (V, E), where V is alled the set of vertiesand E is alled the set of edges. Throughout, we use n to denote |V |. Eah edge is a
2-element subset of V . Sometimes, we use the short notation (u, v) to denote {u, v} ∈ E.If v ∈ e, where e ∈ E, then we say that v is an endpoint of e. Two verties v1 and v2 aresaid to be adjaent (or neighbours) if (v1, v2) ∈ E. A vertex v and an edge e are said tobe inident to eah other if v ∈ e. Two edges are said to be inident to eah other if theyshare an endpoint.A path in G is a sequene of verties v0, v1, . . . , vk−1, vk, suh that the v′

is are all distintand for 0 ≤ i < k, (vi, vi+1) ∈ E. The length of a path is the number of edges it ontains.A path starting at a vertex u and ending at a vertex v is alled a u-v path. We denote apath on n verties by Pn. G is onneted if, for every pair of verties u, v in V , there is a
u-v path.A yle inG is a sequene of verties v0, v1, . . . , vk−1, vk, suh that v0 = vk, {v0, . . . , vk−1}are all distint and for 0 ≤ i < k, (vi, vi+1) ∈ E. The length of a yle is the number ofedges it ontains. We use Cn to denote a yle on n verties. The length of a shortest2



1.1. DEFINITIONS AND NOTATIONSyle and a longest yle in a graph are alled its girth and irumferene respetively.We will use girth frequently and for a graph G we denote it by g(G). G is 2-onneted if,for every pair of verties u, v in V , there is yle whih passes through both u and v.In general, the onnetivity of a simple graph, is the smallest number of verties whihneed to be deleted to disonnet the graph. Analogously, the edge onnetivity of a graphis the minimum number of edges whih need to be deleted to disonnet the graph.Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. We say G2 is a subgraph of G1 if
V2 ⊆ V1 and E2 ⊆ E1. If, in addition, for eah v1, v2 ∈ V2, (v1, v2) ∈ E2 i� (v1, v2) ∈ E1,we say G2 is an indued subgraph of G1. The subgraph of a graph G = (V, E) indued bythe vertex set V ′ is denoted by G[V ′]. A pair of graphs G1 = (V, E1) and G2 = (V, E2) onthe same set of verties V are omplementary if for all u, v ∈ V , (u, v) ∈ E1 i� (u, v) /∈ E2.The omplement of a graph G is denoted by G. G = (V, E) is said to be a omplete graphif for eah u, v ∈ V , (u, v) ∈ E. The omplete graph on n verties is denoted by Kn. Agraph and its omplement onstitute a partition of the edge set of the omplete graph. Amaximal onneted subgraph of a graph is alled a omponent of the graph. Similarly, amaximal 2-onneted subgraph is alled a blok of the graph.Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphi to eah other if thereexists a bijetive funtion f : V1 → V2 suh that (u, v) ∈ E1 i� (f(u), f(v)) ∈ E2. Thefuntion f is said to be an isomorphism between the graphs. A pair of isomorphi graphshave idential strutural properties.A graph G = (V, E) is said to be bipartite if V an be partitioned into two non-emptyparts V1 and V2 (alled partite sets) suh that eah edge e ∈ E joins a vertex of V1 toa vertex of V2. The onept of bipartite graphs an be extended naturally to r-partitegraphs for eah r ≥ 2. A omplete bipartite graph is a bipartite graph in whih there isan edge joining eah pair of verties lying in di�erent partite sets. A omplete bipartitegraph with partite sets of size m and n is denoted by Km,n.The degree of a vertex v in G, denoted by dG(v), is the number of edges inident to
v. If G is lear from the ontext, we use the shorter notations dv or d(v). The maximumdegree of a graph G, denoted by ∆G or ∆(G), is the maximum degree of any vertex in
G. Similarly, the minimum degree of a graph G, denoted by δG or δ(G), is the minimumdegree of any vertex in G. The average degree of a vertex in G, denoted by davg(G), isde�ned to be 2|E(G)|/|V (G)|. The symbol G is often dropped in these notations when3



CHAPTER 1. INTRODUCTIONthe graph under onsideration is lear from the ontext.A subset M ⊆ E is a mathing if no pair of edges in M are inident to eah other andits size is the number of edges in it. A maximal mathing of a graph G is a mathing of
G whih is not ontained in any other mathing of G. A maximum mathing of G is amathing of maximum ardinality. The size of a maximum mathing of G is an importantparameter. It is denoted by α′(G).The parameters ∆(G), g(G) and α′(G) have a strong bearing on ayli edge olouringand the ayli hromati index whih is the fous of this thesis.A lique in a graph G is a omplete subgraph of G. A maximal lique K of a graph
G is one whih is not ontained within any other lique of G. The size of a lique of Gis the number of verties it ontains; a lique on k verties is also alled a k-lique. Amaximum lique of G is a lique whose size is at least as large as the size of any otherlique of G. The lique number of G, denoted ω(G), is the size of a maximum lique in G.Similarly, an independent set I in G is I ⊆ V suh that there is no edge in G joining twoverties in I. The independene number of G, denoted α(G), is the number of verties ina maximum independent set of G.1.1.1 Graph olouringsFirst, we de�ne vertex and edge olourings.De�nition 1.1.1. A proper vertex olouring of a graph G is a funtion f : V → C, where
C is any �nite set of labels (alled olours) suh that adjaent verties are mapped todi�erent olours.De�nition 1.1.2. The hromati number of a graph G, denoted by χ(G), is the minimumnumber of olours (i.e. |C|) su�ient to properly olour the verties of G.The set of verties reeiving the same olour in a olouring, is alled a olour lass.Clearly, eah olour lass forms an independent set. Any proper vertex olouring of agraph, partitions V into independent sets.It is lear that for any graph G, χ(G) ≤ ∆(G)+1. In fat, there is a very simple lineartime algorithm whih, given an arbitrary ordering of V (G), iteratively produes a properolouring of V (G) using at most ∆(G) + 1 olours. Also, by Brooks' Theorem ([Bro41℄),
χ(G) ≤ ∆(G) for any onneted graph G unless G is a omplete graph or an odd yle. 4



1.1. DEFINITIONS AND NOTATIONSDe�nition 1.1.3. A proper edge olouring of a graph G is a funtion f : E → C, where
C is any �nite set of olours suh that inident edges are mapped to di�erent olours.De�nition 1.1.4. The hromati index of a graph G, denoted by χ′(G), is the minimumnumber of olours (i.e. |C|) su�ient to properly edge olour G.The set of edges reeiving the same olour in an edge olouring, is alled a olourlass. It follows that the edges in any olour lass form a mathing. We have χ′(G) ≥
|E(G)|/α′(G). Any proper edge olouring of a graph partitions its edge set into mathings.The study of edge parameters of a graph an be thought of as the study of the orre-sponding vertex parameters of an assoiated graph, alled its line graph. The line graphsare de�ned below.De�nition 1.1.5. The line graph, denoted by L(G) = (V ′, E ′), of a graph G = (V, E) isthe graph in whih V ′ = E and (v′

1, v
′
2) ∈ E ′ if v′

1 and v′
2 are inident to eah other in G.The lass of line graphs has been well haraterised and there are very e�ient algo-rithms [Kra43℄ to determine whether a given input graph is a line graph.In the light of this de�nition, it is lear that a proper edge olouring of any graph

G is a proper vertex olouring of L(G) and vie versa. Thus, χ′(G) = χ(L(G)). Thisrelationship does not, however, hold for all problems. For example, an eulerian tour of Gis a hamiltonian yle in L(G), but the onverse is not true. Sine inident edges mustreeive di�erent olours, it is lear that χ′(G) ≥ ∆(G). Sine ∆(L(G)) ≤ 2∆(G) − 2, itfollows that χ(L(G)) ≤ 2∆(G)− 1. This trivial upper bound on the hromati index wassigni�antly improved by Vizing [Viz64℄ and his result is stated in the theorem below.Theorem (Vizing). For any graph G, ∆(G) ≤ χ′(G) ≤ ∆(G) + 1.Vizing's proof is onstrutive and the resulting algorithm is an e�ient one for produ-ing an edge olouring of any graph G using at most ∆(G) + 1 olours. The running timeof a straightforward implementation of Vizing's idea is O(n4). There have subsequentlybeen several improvements and re�ned algorithms. See [GNK+85℄ for better results.We now de�ne notions entral to the problem whih is addressed in this thesis.De�nition 1.1.6. An ayli edge olouring of a graph G = (V, E) is a proper edgeolouring of G suh that there is no two oloured yle. Equivalently, the subgraphindued by any pair of olour lasses is a forest. 5



CHAPTER 1. INTRODUCTIONDe�nition 1.1.7. The ayli hromati index (or ayli edge hromati number) of agraph G, denoted by a′(G), is the least number of olours su�ient to aylially olourthe edges of G.The analogous notions with verties are also de�ned and studied (see [AMR91℄, [FGR03℄,[Gru73℄, [Sku04℄). An ayli vertex olouring of a graph using k olours, is a properolouring of its verties suh that every yle uses at least three olours. The aylihromati number, a(G), is the smallest k for whih suh a olouring exists.In this thesis, we study the ayli edge olouring problem whih is the same as theayli vertex olouring problem restrited to the lass of line graphs. In Setion 1.2, welook at some known trivial and non-trivial bounds on a′(G).1.1.2 Graph lassesIn this setion, we de�ne the graph lasses we study. Some lasses of graphs we study arede�ned on the basis of an operator alled the artesian produt whih is used to generateompliated graphs from simpler ones. We de�ne this operation below as also some of thegraphs we onsider.De�nition. Given two graphs G1 = (V1, E1) and G2 = (V2, E2), the artesian produt of
G1 and G2, denoted by G12G2, is de�ned to be the graph G = (V, E) where V = V1 × V2and E ontains the edge joining (u1, u2) and (v1, v2) if and only if either u1 = v1 and
(u2, v2) ∈ E2 or u2 = v2 and (u1, v1) ∈ E1.This operation is assoiative and ommutative. Thus, the artesian produt operatoran be applied to any �nite series of graphs in any order, without a�eting the resultantgraph.Below are de�ned some well known lasses of graphs de�nable in terms of artesianprodut. We use paths and yles to donote the set of all paths and all yles on threeor more verties respetively. We sometimes use the notation edge when talking aboutthe graph P2.De�nition. A hyperube is any graph obtained as the artesian produt of a number of
P2's. Its dimension is the number of P2's in the produt. 6



1.1. DEFINITIONS AND NOTATIONSDe�nition. A grid or mesh is any graph obtained as the produt of graphs from paths.Its dimension is the number of paths in the produt.De�nition. A torus is any graph obtained as the artesian produt of graphs from y-les. Its dimension is the number of yles in the produt.The above three types of graphs are all speial ases of the lass of partial tori de�nedbelow. We also refer to these graphs as grid-like graphs.De�nition. A d-dimensional partial torus is a onneted graph G, where G is of the form
G ∼= G12G2 · · ·2Gd, where Gi ∈ edge ∪ paths ∪ yles for eah i ≤ d.De�nition. A k-tree is any graph obtained from the omplete graph Kk+1, by a sequeneof zero or more operations of adding a new vertex adjaent to the verties of an existing
k-lique in the graph.De�nition. A partial k-tree is any subgraph of a k-tree.1.1.3 Algorithms and omplexityHere, we give a brief introdution to algorithms and the omplexity of problems. See[CLR89℄, for an exellent and omprehensive introdution to the the theory of algorithmdesign.We de�ne the e�ieny of an algorithm as the number of elementary steps it usesin order to solve a problem instane of a given size. For an algorithm A, we denote by
TA(n) the maximum running time (measured by the number of elementary operations)taken by the algorithm on any input of size n. We ompare the relative merits of twoalgorithms for a problem on the basis of these funtions, foussing on the funtion valuesasymptotially, as the input size grows arbitrarily large.We say an algorithm for a problem is e�ient if its running time is bounded by somepolynomial funtion of its input size, n. A problem is said to be tratable, if it has ane�ient algorithm to solve it and otherwise it is said to be intratable. We also use thenotion of np-hard optimisation problems. For an introdution to this notion, see [GJ79℄.An np-hard optimisation problem is not likely to admit an e�ient algorithm for solving itexatly. In that ase, we overome the di�ulty by designing an approximation algorithm.7



CHAPTER 1. INTRODUCTION1.2 Ayli edge olouringThe notions of ayli vertex and edge olourings were introdued by Grunbaum in[Gru73℄. For the edge version, it was onjetured by Alon, Sudakov and Zaks (see[ASZ01℄), and independently by Fiamik (see [Fia78℄), that a′(G) ≤ ∆ + 2 for every
G and they also provided examples of graphs (omplete graphs on an even number ofverties) requiring ∆ + 2 olours in any ayli edge olouring.Conjeture 1.2.1. For any graph G, a′(G) ≤ ∆(G) + 2.As we have seen, many graph theoreti problems onerning edges an be viewed asequivalent vertex problems in the orresponding line graph. Solutions to one problem yieldsolutions to the other and vie versa. However, this statement is not true in general asexplained in Setion 1.1.1. In the ase of ayli olouring though, the above observationholds. An ayli vertex olouring of L(G) yields an ayli edge olouring of G andonversely also, an ayli edge olouring of G yields an ayli vertex olouring of L(G).This is true even for the standard vertex and edge olouring problems. The number ofolours used in eah ase is idential.We obtain bounds on a′(G) in terms of its maximum degree ∆. The reason for thishoie is that ∆ is a lower bound and there exists a funtion f(∆) suh that a′(G) ≤ f(∆)for all graphs. Here, the funtion has been shown to be linear. No other parameter bettersatis�es both the riteria of being easily omputable and losely tied to the value. Thisis also a parameter ommonly used to bound the hromati number and hromati indexof graphs.We have seen that χ(G) ≤ ∆(G) + 1, while ∆(G) ≤ χ′(G) ≤ ∆(G) + 1 for any graph.However, ∆+1 is not always tight for χ(G), as seen in the ase of bipartite graphs, where
χ(G) = 2, while ∆(G) is unbounded. We infer that in the ase of ordinary vertex and edgeolourings, we ould have ∆(G) signi�antly away from χ(G), but ∆(G) and χ′(G) di�erby at most 1. A similar phenomenon holds for ayli olouring as the following boundsindiate. For any graph, χ(G) ≤ a(G) ≤ O(∆

4
3 ), while a′(G) = θ(∆) (see [AMR91℄).Thus, for planar graphs a(G) ≤ 5 always, but ∆(G) is unbounded. This phenomen ofthe edge version being better onentrated is observed in list olouring problems also, inaddition to the standard proper olouring and several other problems as well.In view of Conjeture 1.2.1 and the trivial lower bound of ∆(G) on a′(G), we often8



1.2. ACYCLIC EDGE COLOURINGuse the term gap to refer to the absolute di�erene in value between these two parametersof a graph.The ayli edge olouring problem is interesting and hallenging beause an exatestimate of a′(G) is not yet known even if G = Kn, while usually graph invariants areeasily determined for omplete graphs. This also demonstrates the di�ulty inherent inestimating this parameter. Another lass of graphs for whih there are no good estimateson a′(G) are bipartite graphs. This gives further indiation of the di�ulty of the problem.A possible explanation for the problem being di�ult even on bipartite graphs ould bethe fat that even yles are in some sense are the ore of the problem. Any properolouring automatially ensures that odd yles reeive at least three olours.When onsidering the ayli olouring problem, we an always assume without lossof generality that the graph is onneted, sine the independent ayli olourings of thedi�erent omponents using the same sets of olours yield an ayli edge olouring of thewhole graph. In fat, we often assume the graph is 2-onneted, beause there an neverbe a yle ontained in more than one blok. Thus independent olourings of eah blokan be ombined by renaming some of the olours and removing on�its at ut vertiesto ensure the olouring is proper. Another property is that ∆-regular graphs (∆ > 1)need at least ∆+1 olours for an ayli olouring. To see this, observe that in any properolouring using exatly ∆ olours, eah olour lass is a perfet mathing and hene, theunion of any two olour lasses is a 2-regular graph, whih is always a olletion of vertexdisjoint yles.From the point of view of appliability, the ayli edge olouring problem is loselyrelated to standard versions of vertex olouring and edge olouring whih are used to modelon�it-free sheduling of stand-alone ativities and interations respetively. Ayli edgeolouring an be used in on�it-free sheduling of interations in an environment whereyli deadloks may arise. Ayli hromati index is also related to star hromatinumber and oriented hromati number (see [KSZ97℄,[GTMP07℄), both of whih haveappliations in protools for mobile ommuniation. Any improved estimate on the aylihromati index leads to an improvement in estimating the oriented hromati number ofline graphs. 9



CHAPTER 1. INTRODUCTION1.3 Other/earlier resultsWhile the ayli edge olouring problem still provides a lot of sope for researh, somework has already been done in the area and interesting results have been obtained. Wenow give below a survey of some of the prominent results already obtained in this area.In addition to results elaborated below, see also [FGR03℄,[Bur79℄,[MR98℄ for further workon this problem.See [GP05℄ and [GGW06℄ for work on a generalised form of the ayli olouringproblem. In the afore-mentioned works, the authors de�ne the r-ayli edge olouring asa olouring in whih any yle in the graph of length k uses at least min{r, k} olours.They de�ne the assoiated parameter r-ayli hromati index, a′
r(G) for a graph G asthe minimum number of olours su�ient to obtain suh a olouring. They obtain boundson the value for random regular regular graphs whih hold asymptotially, and also tightbounds for a′

r(G) for bounded degree graphs. Other types of generalisation should alsobe possible.1.3.1 Bounds on ayli hromati indexThe following theorem (whih apears in [AMR91℄) is an existential proof that a′(G) islinearly upper bounded by ∆. It gives an asymptotially tight value.Theorem 1.3.1. For any graph G, a′(G) = O(∆).The next is a result on�rming Conjeture 1.2.1 for graphs with high girth. The resultappears in [ASZ01℄, and the proof is by the probabilisti method.Theorem 1.3.2. There is a onstant c > 0, suh that, if G is a graph with g(G) ≥
c∆(G) log ∆(G), then a′(G) ≤ ∆(G) + 2.A weaker bound for a larger lass of graphs (also appearing in [ASZ01℄) is given below.Theorem 1.3.3. There is a onstant c > 0, suh that, if G is a graph with g(G) ≥ c log ∆,then a′(G) ≤ 2∆ + 2.The next result, due to Nesetril and Wormald (see [NW05℄), shows the onjeture istrue for random regular graphs. 10



1.4. MAIN RESULTS OBTAINED HERETheorem 1.3.4. If G is a random d-regular graph on n verties, then a′(G) = d + 1with very high probability. Here, it is assumed that d is �xed but arbitrary while n growsarbitrarily large.It is an improvement over an earlier result, where the upper bound was greater by 1,for graphs on an odd number of verties (see [ASZ01℄).1.3.2 Known algorithmi aspets of ayli edge olouringVery few results have been obtained in this area. This is probably beause, it is hard toprove bounds whih are nearly tight even for highly strutured lasses of graphs. If wedo not impose a struture on the graph, then again we do not expet to get very tightbounds. The result mentioned below is due to Skulrattankulhai (see [Sku04℄).Theorem 1.3.5. If ∆(G) ≤ 3, then a′(G) ≤ 5. There is a linear time algorithm whihprodues suh a olouring.The following proof due to Subramanian, is the best bound obtained, without usingthe probabilisti method, on a′(G) for all graphs (see [Sub06℄). It is a onstrutive proofwhih produes suh a olouring in polynomial time.Theorem 1.3.6. For any graph G, a′(G) = O(∆ log ∆). Also, suh a olouring an beobtained in polynomial time. The olouring proedure is based on a greedy heuristi.The next result indiates why it might be hard to obtain optimal or almost optimalolourings even for very speial lasses of graphs (see [AZ02℄).Theorem 1.3.7. It is NP-hard to determine a′(G), where G is a 2-degenerate sububigraph.This, of ourse, implies that the problem is NP-hard for general graphs also.1.4 Main results obtained hereWe obtain good estimates on the ayli hromati index of various lasses of graphs andoften e�ient algorithms whih either produe olourings with the estimated number of11



CHAPTER 1. INTRODUCTIONolours or a lose approximation. The results an be broadly lassi�ed into two parts.First we mention bounds whih we obtained using random olourings and probabilistianalysis. These results use no strutural properties of the graph, exept assumptionson its girth. We believe that the bounds obtained are unlikely to be tight to within anadditive onstant fator. The seond set of results give bounds whih are very lose tothe optimum value and apply to strutured families of graphs. The proofs rely heavily onstrutural properties of the graph and also yield e�ient algorithms to produe olourings.1.4.1 Improved upper bounds on a′(G)The following theorem is a result obtained by us, whih gives an upper bound on theayli hromati index of graphs whose girths are lower bounded by a spei�ed onstant.Theorem. For any graph G with girth, g(G) ≥ 9, the ayli hromati index a′(G) ≤
5.91∆(G).The next theorem gets a better upper bound but the lass of graphs to whih it isappliable is a strit subset of the lass onsidered above. It applies only to graphs withhigher girth. The proofs of these results are quite similar.Theorem. For any graph G with girth, g(G) ≥ 220, the ayli hromati index a′(G) ≤
4.52∆(G).The next result gives a general upper bound on the ayli hromati index of a graphas a funtion of its maximum degree and its girth. As we disussed earlier, the maximumdegree of a graph is a very natural parameter, in terms of whih its ayli hromati indexan be bounded. Also, the girth of a graph is a measure of how easy it is to olour itaylially with a �xed set of olours. The higher its girth the easier it seems to olour thegraph, espeially when we adopt a random olouring proedure. This result is interestingbeause it gets an upper bound in terms of these two ruial parameters.Theorem. There are absolute onstants c1, c2 > 0 suh that, for any G with g ≥ c1 log ∆we have,

a′(G) ≤ ∆ + 1 +

⌈

c2

(

∆ log ∆

g

)⌉All these results appear in [MNS05℄,[MNS07b℄. 12



1.4. MAIN RESULTS OBTAINED HERE1.4.2 Algorithmi boundsHere, we state the results we obtained using onstrutive tehniques.Theorem. Let G be a simple graph with a′(G) = η. Then,1. a′(G2P2) ≤ η + 1, if η ≥ 2.2. a′(G2Pl) ≤ η + 2, if η ≥ 2 and l ≥ 3.3. a′(G2Cl) ≤ η + 2, if η > 2 and l ≥ 3.The next two theorems follow as orollaries and deal with more onretely de�nedlasses of graphs.Theorem. The following is true for eah d ≥ 1.
• a′(G) = ∆(G) + 1 = d + 1, if G is a hyperube of dimension d ≥ 2; a′(P2) = 1.
• a′(G) = ∆(G) = 2d, if G is a grid of dimension d.
• a′(G) = ∆(G) + 1 = 2d + 1, if G is a torus of dimension d.Theorem. When G has fators from at least 2 of the lasses yles, paths and edges,

a′(G) ∈ {∆(G), ∆(G) + 1}, and its exat value depends on the spei� ombination offators.The results of the preeeding two theorems are onstrutive leading to e�ient algo-rithms for obtaining almost optimal ayli edge olourings. These theorems are statedmore preisely in Chapter 3, where they are onsidered in greater detail. The preeedingthree results appear in [MNS06℄.The next theorem (see [MS07℄) gives a slightly weaker bound on a′(G) than the previ-ous theorems, but it overs a far wider lass of graphs. It relates a′(G) and the artesianprodut operation in a general setting.Theorem. Let G = (VG, EG) and H = (VH , EH) be two onneted non-trivial graphs suhthat max{a′(G), a′(H)} > 1. Then,
a′(G2H) ≤ a′(G) + a′(H) 13



CHAPTER 1. INTRODUCTIONThe following result (see [MNS07a℄) on ayli edge olouring was also obtained byus, but forms a part of the Ph.D. thesis of my ollaborator N. Narayanan.Theorem 1.4.1. If G is an outerplanar graph then a′(G) ≤ ∆(G)+1. A olouring usingthis many olours an be obtained in O(n log ∆) time.The next result states good bounds obtained by us on a′(G) for the lass of partial 2-trees (see [MNS08℄). In this ase also, the results translate diretly into e�ient algorithmswhih produe ayli edge olourings using the laimed number of olours.Theorem. If G is a partial 2-tree then a′(G) ≤ ∆(G) + 1.1.5 Thesis outlineIn Chapter 2, we present the upper bounds on a′(G) for graphs with high girth. We alsopresent therein, a result onneting ayli hromati index to girth and maximum degree.Chapter 3 gives an exposition of ayli olouring of partial tori. The ayli olouringof the artesian produt of arbitrary graphs is presented in Chapter 4. In Chapter 5, westudy ayli olouring of partial 2-trees. Chapter 6 ontains some onluding remarksand outlines possible future diretions for researh.
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Chapter 2Ayli edge olouring of high girthgraphsIn this hapter we present an upper bound on the ayli hromati index, a′(G), forall graphs with girth, g(G), greater than a �xed onstant. The proof is by probabilistiarguments and improves the estimates on this parameter for a fairly large lass of graphs.We also obtain a general relationship between the girth of a graph and an upper boundon its ayli hromati index. Some of the ideas in the proof are similar to those used inearlier work by others, while other ideas are new.After introduing the idea of attaking the ayli edge olouring problem in Se-tion 2.1 we introdue the neessary probabilisti tools in Setion 2.2. A brief survey ofother work on ayli olouring using the probabilisti method is presented in Setion 2.3.Setion 2.4 ontains our results and the proofs. We indiate open problems and presentsome onlusions in Setion 2.5.2.1 IntrodutionThe probabilisti method is a powerful tool to prove the existene of ombinatorial stru-tures having some desired property. It was pioneered by Erdös who applied it to variousombinatorial problems (see [AS00℄). It provides a proof of the existene of suh struturesusing probabilisti arguments. Also, it is sometimes possible to translate the existeneproof into an e�ient algorithm whih is signi�antly faster than the brute-fore approah15



CHAPTER 2. ACYCLIC EDGE COLOURING OF HIGH GIRTH GRAPHSof enumerating all possibilities.In the ontext of ayli edge olouring, it has been shown, originally by Alon, M-Diarmid and Reed, that the number of olours su�ient is O(∆) using the probabilistimethod (see [AMR91℄,[MR98℄), but to design an e�ient algorithm whih provably pro-dues a olouring using o(∆2) olours is non-trivial. Note that any proper edge olouringof G whih requires that eah path P on three edges should use three olours is also anayli edge olouring. It is easy to see that suh a olouring an be obtained using 2∆2olours. This an be seen by noting that eah suh olouring is a proper vertex olouringof the square of its line graph L(G), namely L(G)2, and that ∆(L(G)2) ≤ 2∆(G)2. Thisolouring is also e�iently onstrutible. The best, and so far the only onstrutive boundwhih is an improvement over this trivial bound is an algorithm, due to Subramanian,whih produes a olouring using O(∆ log ∆) olours in polynomial time (see [Sub06℄).Thus, there is a large gap between what an be shown existentially and what anbe onstruted systematially. Even if we ignore the issue of algorithms, the senario isbleak. There is no ombinatorial or deterministi proof that a′(G) = O(∆), to maththe bound proved using reourse to randomness. Most onstrutive results on ayliedge olouring have been obtained for highly strutured lasses of graphs where the extrastrutural information and properties have been used as a handle to obtain the solution.2.2 Tools and methodsFor an introdution to probability theory and tools of the probabilisti method we referthe reader to [Fel66℄,[AS00℄,[MR02℄.The basi approah to proving bounds on the ayli hromati index, using the prob-abilisti method, is to randomly olour the edges of the graph with the spei�ed numberof olours and show that the olouring thus obtained is an ayli olouring with posi-tive probability. Modi�ation of this basi approah adds sophistiation and, sometimes,produes improvements. One possiblity is to ombine the probabilisti method with adeterministi method. In this approah one might relax the requirements of the olouringprodued by the random olouring and handle the defet by a deterministi method. Onthe other hand one may produe a olouring with relaxed onstraints using a deterministimethod and retify it using a random proedure. It is also possible to interleave these16



2.2. TOOLS AND METHODSmethods an arbitrary number of times. Iterative random experiments have also providedbreakthroughs when a one pass method has failed in some problems.Let us onsider the basi approah mentioned above and olour eah edge uniformlyat random and independently from a �xed set of olours. If we require that the randomolouring be proper, we observe that long yles are less likely to reeive exatly twoolours than their shorter ounterparts. In fat, this statement holds even if we allowthe random olouring to be improper. It follows that any attempt to prove a bound bythis method is more likely to sueed if the lass of graphs onsidered are assumed tohave high girth. This is re�eted by the bounds obtained on a′(G) using the probabilistimethod.Below we state some of the tools we use in proving the results in this hapter.Lemma 2.2.1 (The Probabilisti Method). Let (Ω, p : Ω → [0, 1]) be a �nite probabilityspae. Let ω ∈ Ω be a random point hosen from this spae. Let P ⊆ Ω be an arbitraryproperty. Then if Prob(ω ∈ P) > 0, then there exists a point ω ∈ Ω suh that ω ∈ P.The next lemma is a speialised tool whih is a powerful weapon in the arsenal ofthe probabilisti method. It helps in showing that with positive probability, none of aolletion of bad events our. Suppose A1, . . . , An is a olletion of bad events whih wewant to avoid and whih are suh that eah Ai fails to our with positive probability.If these are mutually independent, then it follows that with positive probability none ofthem ours. The following tool is very powerful beause it is appliable even in senarioswhen there is limited interdependene between the events.Lemma 2.2.2 (Lova±z Loal Lemma). Let A = {A1, . . . , An} be a set of events de�nedover a probability spae. For eah i, let Ni ⊆ A be suh that Ai is mutually independentof all events in A \ Ni. Suppose that for eah event Ai, there exists a real 0 < xi < 1,suh that Pr(Ai) ≤ xi

∏

j:Aj∈Ni
(1 − xj). Then, Pr(

∧n
i=1 Ai) > 0.Given below is a simpler form of the loal lemma, appliable under some assumptions.Lemma 2.2.3 (Symmetri form of the loal lemma). Let A1, . . . , An be a set of eventsde�ned over a probability spae. Suppose for some p ∈ (0, 1) and some integer d ≥ 0, thatfor eah i, Pr(Ai) ≤ p, and also Ai is mutually independent of all but at most d otherevents Aj . If ep(d + 1) < 1, then Pr(

∧n
i=1 Ai) > 0. 17



CHAPTER 2. ACYCLIC EDGE COLOURING OF HIGH GIRTH GRAPHSTypially, in proofs using various forms of the loal lemma, we de�ne a set of badevents over a suitable probability spae, suh that their non-ourrene guarantees theproperty we are trying to prove. We then use the loal lemma to show that with positiveprobability none of these events our. It follows that the property we are trying toprove holds with positive probability. The probability of a sample point meeting thespei�ations, however, might be very small so that an e�ient randomised algorithmdoes not normally manifest itself.2.3 Related resultsIn this setion, we outline related results obtained by other researhers. That a′(G) =

O(∆2) an be seen by observing that any olouring in whih inident edges as well as edgesat distane two get distint olours is an ayli olouring. There are O(∆2) edges withindistane at most two from any given edge. Thus a simple greedy proedure produes aolouring with O(∆2) olours. A linear O(∆) upper bound for all graphs was proved usinga probabilisti method. Randomness has also been suessfully utilised to prove a boundtight within an additive fator of 2, for all graphs with suitably high girth in terms of themaximum degree.Theorem 2.3.1. For any graph G, a′(G) ≤ 64∆.This result (appearing in [AMR91℄) was later improved to 16∆, by Molloy and Reed(see [MR98℄), using essentially the same experiment and analysis, but making more arefulalulations. It an be shown that even with arbitrarily preise alulation, this experi-ment annot yield a bound signi�antly better than 12∆. The problem is that, using theprobabilisti arguments of [AMR91℄ and [MR98℄, one requires almost 12∆ olours even forproper olouring alone without ayliity. Consider the random experiment, used there,where eah edge hooses a olour uniformly at random and independently from a set of
C = a∆ olours for some a > 1. Even if we ignore ayliity and forbid only the eventsorresponding to pairs of inident edges reeiving the same olour, we an easily verify thatany proof (based on Lovász Loal Lemma with the same onstant for all events) ensuringproperness of the random olouring with positive probability, requires that a ≥ 4e.We de�ne a bad event as a pair of inident edges reeiving the same olour. Theprobability of this event is 1

C
= 1

a∆
. The number of other events on whih any of these18



2.3. RELATED RESULTSevents depend is at most 2 × 2(∆ − 1) ≤ 4∆. If we take the assoiated onstant of theloal lemma (note that we follow their spei�ation, that the same onstant is used forall events) to be 1
α∆

, the inequality whih we get is
1

a∆
≤ 1

α∆

(

1 − 1

α∆

)4∆A solution to this in the valid range of α does not yield a value of a < 4e. The abovearguments are based on the loal lemma in its most general form. Thus, the proof of
a′(G) ≤ 9∆ given in [MR02℄, based on applying a speialized version of Lovász LoalLemma, annot be orret. For further details on these arguments, see Appendix A ofour paper [MNS07b℄.However, if we bring in girth assumptions, we get better bounds.Theorem 2.3.2. ∃c > 0, suh that ∀G with girth, g(G) ≥ c∆ log ∆, a′(G) ≤ ∆ + 2.This result, proved in [ASZ01℄ using the probabilisti method, re�ets the fat thatshort yles give rise to di�ulties when getting good bounds on a′(G). The next result,also appearing in [ASZ01℄, is similar.Theorem 2.3.3. ∃c > 0, suh that ∀G with girth, g(G) ≥ c log ∆, a′(G) ≤ 2∆ + 2.As for onstrutive bounds, the following result was obtained in [Sub06℄.Theorem 2.3.4. For any graph G, a′(G) = O(∆ log ∆). There is a deterministi algo-rithm running in time O(mn∆2(log ∆)2) that produes suh a olouring with these manyolours.This result is the �rst, and so far the only, o(∆2) upper bound for all graphs, provedby a onstrutive method. Also, tight bounds have been obtained for random regulargraphs by Alon et. al. in [ASZ01℄, and Nesetril and Wormald in [NW05℄. The followingresult is from [NW05℄.Theorem 2.3.5. If G is a random d-regular graph on n verties (d is �xed, n → ∞),then Pr (a′(G) = (∆ + 1)) → 1.There is no expliit assumption here on the girth of the graphs. In fat, in the ase ofrandom d-regular graphs, there are short yles but there is a guarantee that any pair ofshort yles are separted by a long path. 19



CHAPTER 2. ACYCLIC EDGE COLOURING OF HIGH GIRTH GRAPHS2.4 Our resultsIn this setion we present the results we obtained using the probabilisti method. Like theearlier results, some assumptions are made about the girth of the graphs. There followsan elaborate desription of the proofs of the results.Theorem 2.4.1. There are absolute onstants c1, c2 > 0 suh that, for any graph G with
g ≥ c1 log ∆ we have,

a′(G) ≤ ∆ + 1 +

⌈

c2

(

∆ log ∆

g

)⌉The above result generalises Theorems 2.3.2 and 2.3.3. The following results givebounds on a′(G) for graphs with some assumptions on their girth.Theorem 2.4.2. For any graph G with girth, g(G) ≥ 9, the ayli hromati index
a′(G) ≤ 5.91∆(G).Theorem 2.4.3. For any graph G with girth, g(G) ≥ 220, the ayli hromati index
a′(G) ≤ 4.52∆(G).First, we present the proofs of Theorems 2.4.2 and 2.4.3 in Setion 2.4.1. After this,we present the proof of Theorem 2.4.1 in Setion 2.4.2.2.4.1 Proofs of improved upper boundsWe give a ombined proof of Theorems 2.4.2 and 2.4.3 here. The olourings, that onsti-tute the proofs, are obtained by produing improper random olourings satisfying ertainonstraints, whih are then reti�ed. We de�ne a measure of the improperness, and thetwo proofs di�er only in the value of this measure and are thus similar. In applying LovàszLoal Lemma we have not optimised the onstants. With a more metiulous alulationit might be possible to improve the bound further.Proof. It is known that, if ∆ ≤ 3, then a′(G) ≤ ∆ + 2 (see [Bur79℄, [Sku04℄). Henewe may assume that ∆ ≥ 4 in our arguments. Our proof onsists of two stages. In the�rst stage, we show, by probabilisti arguments, the existene of a olouring C, using aset C of c∆ olours (where c > 1 is a onstant to be �xed later), suh that C satis�es thefollowing properties for some positive integer η ≤ 4. 20



2.4. OUR RESULTS(i) every vertex has at most η inident edges of any single olour,(ii) there are no properly two-oloured yles, and(iii) there are no monohromatially oloured yles.
η = 1 orresponds to the standard proper edge olouring. The earlier results (The-orem 2.3.1 and its improved form in [MR98℄), was obtained without reourse to thisparameter η. Thus, this is the main new idea whih allows us to get a signi�antly betterbound, with a restrition to graphs of girth greater than a �xed onstant. In apply-ing the loal lemma, the properness ondition doesn't allow a bound signi�antly betterthan 12∆, as stated earlier. Thus allowing limited improperness (every olour lass is abounded degree forest, instead of just a mathing), and then partitioning the edge setof eah forest, we obtain an ayli olouring with a small multipliative overhead in thenumber of olours. Even with the overhead it is muh smaller than 12∆.Note that in C, eah olour lass (set of edges reeiving the same olour) is a forest ofmaximum degree at most η. In the seond stage, we split eah olour lass into η partsby reolouring the edges of eah olour ci with the olours c1

i , . . . , c
η
i to get a olouring C′.We laim that C′ is proper and ayli. Sine every forest of maximum degree at most dis properly edge olourable using d olours, it is easy to see that properness holds. Anybihromati yle in the olouring C′ should either ome from an existing two-olouredyle in C, or from a monohromati even length yle in C being split into two. Both ofthese possibilities are forbidden by properties (ii) and (iii) of the olouring, respetievely.It follows that the olouring C′ is proper, ayli and uses at most cη∆ olours.To omplete the proof, it is now su�ient to show that suh a olouring C, desribedabove, exists. We do this probabilistially, using Lovàsz Loal Lemma. For this, wedo the following random experiment. Eah edge hooses a olour uniformly at randomand independently, from the set C. For the resulting random olouring to satisfy (i)-(iii)above, de�ne the following three types of bad events. As explained below, in the abseneof these events, the olouring obtained satis�es the above properties.1. For a set of η + 1 edges {e1, . . . , eη+1} inident on a vertex u, let Ee1,...,eη+1 be theevent that all of them reeive the same olour. We all this an event of Type I.2. Let EC,2k denote the event that an even yle C of length 2k is properly olouredwith 2 olours. We all this an event of Type II. 21



CHAPTER 2. ACYCLIC EDGE COLOURING OF HIGH GIRTH GRAPHS3. Let EC,ℓ denote the event that a yle C of length ℓ is oloured monohromatially.We all this an event of Type III.Suppose C be suh that none of the above events hold. We laim that properties(i)-(iii) above are satis�ed. It is easy to see that the absene of events of type I impliesthat (i) holds. Similarly, absene of type II, III events, respetively imply (ii) and (iii).In order to apply the loal lemma, we need estimates for the probabilities of eahevent, and also for the number of other events of eah type whih an possibly in�ueneany given event. For the above random experiment, an event E is mutually independentof a set B of other events if the set of edges on whih E depends is disjoint from the setof edges on whih the events in B depend. Hene, we alulate the the number of eventsof eah type that depend on a given edge, and multiply by the number of edges de�ningthe event E to get an upper bound on the number of events in�uening E . The followingtwo lemmas present the estimated bounds.The proof of Lemma 2.4.1 is straightforward. It is based on the elementary fat thatthe probability of an event in a probability spae is the ratio of the number of favourableases to the total number of ases. This, ombined with a bit of simpli�ation of theexpressions obtained give us the laimed values. Lemma 2.4.2 is proved by omputing thenumber of subgraphs of a �xed type to whih any given edge in the input graph belongs.As we stated earlier, we use the number of events of any type in�uened by an edge toestimate the interdependene. These values are estimated using nothing more than thefat that the graph has maximum degree ∆ and therefore the upper bounds obtainedapply universally to all the graphs.Lemma 2.4.1. The probabilities of events are as follows:1. For eah event Ee1,...,eη+1 of type I, Pr(Ee1,...,eη+1) = 1
|C|η .2. For eah event EC,2k of type II, where the length of C is 2k, Pr(EC,2k) ≤ 1

|C|2k−23. For eah event EC,ℓ of type III, where C is of length ℓ, Pr(EC,ℓ) = 1
|C|ℓ−1 .Lemma 2.4.2. The following is true for any given edge e:1. Less than 2∆η

η!
events of type I depend on e.2. Less than ∆2k−2 events of type II depend on e. 22



2.4. OUR RESULTS3. Less than ∆ℓ−2 events of type III depend on e.In order to apply Lovász Loal Lemma, let x0 = 1/(α∆)η, xk = 1/(β∆)2k−2 and
yℓ = 1/(γ∆)ℓ−1, be the values assoiated with events of Types I, II and III respetively,where α,β,γ > 1 are onstants to be determined by alulation. Reall that we use g todenote girth. We onlude that, with positive probability none of the above events our,provided ∀k ≥ ⌈g
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η!

∏

θ≥⌈ g
2
⌉

(1 − xθ)
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CHAPTER 2. ACYCLIC EDGE COLOURING OF HIGH GIRTH GRAPHSwhere
S2 =

∑

λ≥g

1

∆γλ−1
≤ 1

∆γg−2(γ − 1)
.Thus, taking roots on both sides and simplifying, the three inequalities required byloal lemma are satis�ed ∀k ≥ ⌈g
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1
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η

Υ , 1
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Υ (2.1)where
Υ =

2
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(β2 − 1)β2⌈ g
2
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+
1

∆γg−2(γ − 1)
.Now we have to set spei� values of α, β, γ and η. First we set η = 2 and α = β =

γ = 2. Using g ≥ 9 and ∆ ≥ 4, we have Λ ≥ (1− 1
64

)64 ≥ 0.3649. It an easily be veri�edthat that the above inequalities (2.1) are satis�ed by setting c = 2.951. It follows that
a′(G) ≤ 5.91 < 6∆ for all graphs G with girth g ≥ 9. This proves Theorem 2.4.2.Seondly, we set η = 4, α = 1.02, β = 1.04 and γ = 1.04. Using g ≥ 220 and ∆ ≥ 4,we have Λ ≥ (1− 1

256
)256 ≥ 0.3671. It follows that by setting c = 1.13, a′(G) ≤ 4×1.13∆ =

4.52∆ when girth g ≥ 220. Hene Theorem 2.4.3.Further improvements on a′(G), whih an be obtained (with this experiment) bystrengthening the girth requirement are only marginal as long as we fous on onstantlower bounds on girth.2.4.2 Girth and ayli hromati indexAn even yle is alled half-monohromati with respet to a olouring if one of its halves (aset of alternate edges) is monohromati. Notie that, this de�nition inludes bihromatiyles also.Proof. For the sake of simpliity in the analysis, we write g in the form c1∆
ε log ∆, where

ε ≥ 0 and where c1 is mentioned in Theorem 2.4.1. We an, assume without loss ofgenerality, that ε ≤ 1, beause when ε exeeds 1, by hoosing a large value of c1, a′(G) ≤
∆ + 2 as in Theorem 2.3.2. As before, we assume ∆ ≥ 4.The proof onsists of an initial deterministi phase followed by a random phase. Webegin by obtaining a proper edge olouring of G using ∆ + 1 olours applying Vizing's24



2.4. OUR RESULTSmethod. We, then randomly reolour some of the edges with a new set of o(∆) olours,and show that with positive probability, the olouring obtained is proper and ayli. Thisrandom experiment is a slight modi�ation of the ones used in the proofs of Theorems2.3.3 and 2.3.2.The random olouring is obtained as follows:1. Obtain a proper olouring C : E → S1 = {1, . . . , ∆ + 1}.2. In the seond phase we do the following:
• Ativate eah edge with independent probability p = 1

∆ε .
• Eah ativated edge hooses a new olour uniformly at random and indepen-dently, from the set S2 = {1′, . . . , (a∆1−ε)′}, where a > 1 is a onstant to bedetermined later.Denote the resulting random olouring by C′. With respet to C′, we de�ne the fol-lowing bad events.1. For a pair of inident edges e and f , let Ee,f denote the event that they are bothreoloured with the same new olour. We all this an event of type I.2. Let EC,2k denote the event that a bihromati yle C of length 2k in C is undisturbedin the reolouring proess. Call this a type II event.3. Let EC,2ℓ denote the event that a half-monohromati yle C of length 2ℓ in Cbeomes bihromati by retaining the same olour on a half and reeiving a ommonnew olour on the other half, a type III event.4. Let EC,2m denote the type IV event where an even length yle C of length 2mbeomes properly bihromati with 2 of the new olours.We laim that the absene of type I-IV events imply that the olouring C′ is properand ayli. Sine C is proper, the absene of events of type I ensures that C′ is alsoproper. The absene of events of type II, III and IV ensure respetively, (i) the abseneof bihromati yles using both olours from S1, (ii) one olour from eah of S1 and S2and (iii) both olours from S2. It is therefore su�ient to show the absene of the abovefour types of events whih we do by using Lovász Loal Lemma. 25



CHAPTER 2. ACYCLIC EDGE COLOURING OF HIGH GIRTH GRAPHSTo apply the loal lemma we need estimates for the probabilities of eah event, andfor the number of events of eah type possibly in�uening a given event. As before, wealulate the number of events of eah type that depend on a single edge and multiply bythe number of edges in any event to get an upper bound on the total dependene. Thefollowing two lemmas present the estimated bounds.Lemma 2.4.3. The probabilities of events are as follows: For eah1. event Ef,g of type I, Pr(Ef,g) = p2

a∆1−ε = 1
a∆1+ε .2. event EC,2k of type II, Pr(EC,2k) = (1 − p)2k ≤ e

−2k
∆ε .3. event EC,2ℓ of type III, Pr(EC,2ℓ) ≤ 2pℓ(1−p)ℓ
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(a∆)ℓ .4. event EC,2m of type IV , Pr(EC,2m) = p2m
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2

)

2
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(a∆)2m .Lemma 2.4.4. The following is true for any given edge e:1. Less than 2∆ events of type I depend on e.2. Less than ∆ events of type II depend on e.3. Less than 2∆ℓ−1 events of type III depend on e, for eah ℓ ≥ 2.4. Less than ∆2m−2 events of type IV depend on e, for eah m ≥ 2.To apply Lovász Loal Lemma, let x0 = 1/(α∆1+ε), x1 = 1/(β∆1+2ε), yℓ = (2a∆1−ε)/(γ∆)ℓand zm = (a∆1−ε)2/((δ∆)2m) be the values assoiated with events of type I, II, III and
IV , where the lengths of the yles in Type III and IV events are 2ℓ and 2m, respe-tively. Here α, β, γ, δ > 1 are real values to be determined by alulation. We onludethat with positive probability none of the above events our, provided ∀k, ℓ, m ≥ ⌈g
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2.4. OUR RESULTS
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.Let Pi, Ni and xi denote, respetively, the probabilities, number of edges and loallemma onstants assoiated with events of type i. We an see that, as in the previousproof, the inequalities required by loal lemma are satis�ed provided
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125
and eah of the inequalities(2.2) are satis�ed. As a result, the inequalities orresponding to loal lemma are alsosatis�ed. Finally �xing c2 = a · c1, the theorem is proved. 27



CHAPTER 2. ACYCLIC EDGE COLOURING OF HIGH GIRTH GRAPHS
2.5 ConlusionsThe work presented in this hapter has been published by us. The referenes are [MNS07b℄,[MNS05℄.We obtained a reasonably signi�ant improvement over 16∆, by a new idea whihinitially allows limited improperness in the olouring. To do this, we only require toassume a onstant lower bound on girth, whih is not a very severe onstraint. We tried toget better bounds by modifying the ideas presented in this hapter. Some of the ideas triedinlude non-uniform assignment of olours randomly, and also allowing di�erent values ofthe parameter η for di�erent olours. The optimum values ourred when everything wasidential. It would be interesting to �nd something radially di�erent whih lowers thebound loser to its onjetured value of (∆+2). A probabilisti argument might yield animprovement but it is naturally unlikely to give a bound whih is very tight.J. Bek has designed a method (see [Be91℄) for translating existential proofs us-ing Lovász Loal Lemma into e�ient randomised algorithms for onstruting an objetguaranteed by the proof. It would be interesting to investigate the appliability of Bek'smethod in the ontext of our proof.The result we obtained in Theorem 2.4.1, uni�es the two results of Theorems 2.3.3 and2.3.2 in a generalised framework. Theorem 2.3.2 gives a very tight bound but the lassof graphs it applies to is quite restritive. For example, Theorem 2.3.2, when appliedto graphs G with minimum degree, δ(G) ≥ 3, requires that ∆ = O(log n). This isbeause it is well-known that graphs having δ ≥ 3 always have a yle of length O(log n).Theorem 2.3.3 gives a weaker bound appliable for a wider lass of graphs. Our result,Theorem 2.4.1, shows these to be speial extreme ases of a trend.Theorem 2.3.4 represents the �rst step towards getting an asymptoti improvementover the trivial O(∆2) bound towards the known value of O(∆) by onstrutive means. Itwould be interesting to improve this onstrutive bound further, possibly to O(∆) itself.

28



Chapter 3Ayli edge olouring of partial toriIn this hapter we onsider the problem of ayli olouring of partial tori (a.k.a. grid-like graphs). We obtain tight bounds on the number of olours required and also designe�ient algorithms to produe suh olourings. We mention lasses of graphs for whihgood algorithms have been obtained for the ayli olouring problem in Setion 3.1. Wede�ne partial tori in Setion 3.2 and also introdue the notation we use. Setion 3.3 statesour results and the proofs follow in Setion 3.4. An algorithm to aylially olour partialtori is presented in Setion 3.5. These algorithms are a diret result of the preeedingproofs. Setion 3.6 makes some onluding remarks.3.1 IntrodutionDetermining a′(G) to great auray is a very di�ult problem. Even for the highlystrutured and simple lass of omplete graphs, the value of a′(G) is not yet determined.First, we reall the following known fats about ayli edge olouring. It is NP-Hard todetermine a′(G). Also, a′(G) ≥ χ′(G) ≥ ∆ for any graph G. Reall, that χ′(G) denotesthe hromati index of G.Often, the gap between the trivial lower bound of ∆ and the demonstrated upperbound is at least a linear funtion of ∆. This is the ase for the family of odd graphswhih are a generalisation of the Petersen graph. The odd graph Ok has as vertex set the
(

2k+1
k

), k-element subsets of [1, . . . , 2k + 1], and an edge between two verties preiselywhen the orresponding sets are disjoint. It an be shown quite easily that ∆(G) + 1 ≤29



CHAPTER 3. ACYCLIC EDGE COLOURING OF PARTIAL TORI
a′(G) ≤ 2∆(G)−1, for the lass of odd graphs. While we believe the atual value is loserto the lower bound, the problem is still open. Thus, results whih are o� by an additiveonstant are good, and all the more so if the onstant is 1 or 2.Most of the results obtained in Chapter 2 and also those mentioned therein, are exis-tential in nature and are not onstrutive. In those ases, there is no known e�eient wayof obtaining suh olourings whih is better than looking through all possible olouringsuntil one is found. In this hapter we present results obtained by us, whih provide goodestimates on the ayli hromati index of partial tori. In most of the ases the valueswe provide are exat, and in the few remaining ases the value is o� by an additive fatorof at most 1. Our main result, whih is on the ayli hromati index of partial tori, isobtained by an appliation of a more general result, whih we prove �rst.These graphs an atually be oloured in polynomial time with these many olours.The only other examples of graph families where suh tight bounds have been provedand are onstrutible e�iently are graphs with ∆(G) ≤ 3, due to Skulrattankulhai(see [Sku04℄), our results on outer planar graphs (see [MNS07a℄) and partial 2-trees (see[MNS08℄) and a result on 2-degenerate graphs ([CM07℄) due to Manu and Chandran. Themethods used in our results here an be extended to give bounds on any graph expressedas the artesian produt of other graphs (see [MS07℄) . The bounds are in terms oforresponding values of the onstituents of the produt, and are not as tight as thesebounds. These results are presented in Chapter 4.3.2 De�nitions and notationsSome of the notations and de�nitions we use in this hapter have already been given inChapter 1, but we provide them again for ready referene. We use Pk to denote a simplepath on k verties. Without loss of generality, we assume that V (Pk) = {0, . . . , k−1} and
E(Pk) = {(i, j) : |i− j| = 1}. Similarly, we use Ck to denote a yle (0, . . . , k − 1, 0) on kverties. We use paths to denote the set {P3, P4, . . .} of all paths on 3 or more verties.Similarly, we use yles to denote the set {C3, C4, . . .} of all yles. We sometimes useedge to denote P2. The standard notation [n] is used to denote the set {1, 2, . . . , n}.Our de�nition of the lass of partial tori is based on the so-alled artesian produt ofgraphs de�ned below. 30



3.2. DEFINITIONS AND NOTATIONSDe�nition 3.2.1. Given two graphs G1 = (V1, E1) and G2 = (V2, E2), the artesianprodut of G1 and G2, denoted by G12G2, is de�ned to be the graph G = (V, E) where
V = V1 × V2 and E ontains the edge joining (u1, u2) and (v1, v2) if and only if either
u1 = v1 and (u2, v2) ∈ E2 or u2 = v2 and (u1, v1) ∈ E1.Note that 2 is a binary operation on graphs whih is ommutative in the sense that
G12G2 and G22G1 are isomorphi. Similarly, it is also assoiative. Hene, the graph
G02G12 · · ·2Gd is unambiguously de�ned for any d. We use Gd to denote the d-foldCartesian produt of G with itself. It was shown independently by Sabidussi, and Vizing,and others (see [AHI92℄,[IK00℄) that any onneted graph G an be expressed as a produt
G ∼= G12 · · ·2Gk of prime fators Gi. Here, a graph is said to be prime with respet tothe 2 operation if it has at least two verties and if it is not isomorphi to the produtof two non-trivial graphs (those having at least two verties). Also, this fatorisation (ordeomposition) is unique exept for a re-ordering of the fators and will be referred to asthe Unique Prime Fatorisation (UPF) of the graph. Sine a′(G) is a graph invariant,we assume, without loss of generality, that any Gi from edge ∪ paths ∪ yles hasas its vertex set {0, 1}, {0, . . . , k − 1}, {0, . . . , k − 1} respetively, and the adjaeny asdesribed above. This allows us to expliitly handle onrete example graphs of theseisomorphism lasses.De�nition 3.2.2. A d-dimensional partial torus is a onneted graph G whose uniqueprime fatorisation is of the form G ∼= G12 · · ·2Gd where Gi ∈ edge ∪ paths ∪ ylesfor eah i ≤ d. We denote the lass of suh graphs by Pd.De�nition 3.2.3. If eah prime fator of a graph G ∈ Pd is a P2, then G is alled the
d-dimensional hyperube. This graph is denoted by P d

2 .De�nition 3.2.4. If eah prime fator of a graph G ∈ Pd is from paths, then G is alleda d-dimensional grid or mesh. The lass of all suh graphs is denoted by Md.De�nition 3.2.5. If eah prime fator of a graph G ∈ Pd is from yles, then G isalled a d-dimentional torus. The lass of all suh graphs is denoted by Td. 31



CHAPTER 3. ACYCLIC EDGE COLOURING OF PARTIAL TORI3.3 ResultsThe results we have obtained for grid-like graphs is stated in Theorem 3.3.2 below. Theproofs (given in Setion 3.4.1) are based on the following useful theorem whose proof isgiven later in Setion 3.4.2.Theorem 3.3.1. Let G be a simple graph with a′(G) = η. Then,1. a′(G2P2) ≤ η + 1, if η ≥ 2.2. a′(G2Pl) ≤ η + 2, if η ≥ 2 and l ≥ 3.3. a′(G2Cl) ≤ η + 2, if η > 2 and l ≥ 3.As a orollary, we obtain the following results.Theorem 3.3.2. The following is true for eah d ≥ 1.
• a′(P d

2 ) = ∆(P d
2 ) + 1 = d + 1 if d ≥ 2; a′(P2) = 1.

• a′(G) = ∆(G) = 2d for eah G ∈ Md.
• a′(G) = ∆(G) + 1 = 2d + 1 for eah G ∈ Td.
• Let G ∈ Pd be any graph. Let e (respetively p and c) denote the number of primefators of G whih are from edge (respetively from paths and yles). Then,� a′(G) = ∆(G) + 1 = e + 2c + 1 if p = 0.� a′(G) = ∆(G) = e + 2p + 2c if either p ≥ 2, or p = 1 and e ≥ 1.� a′(G) = ∆(G) = 2 + 2c if p = 1, e = 0 and if at least one prime fator of Gis an even yle.� a′(G) ∈ {∆ = 2 + 2c, ∆ + 1 = 2 + 2c + 1} if p = 1, e = 0 and if all primefators of G (exept the one path) are odd yles. There are examples for bothvalues of a′(G). 32



3.4. PROOFS3.4 ProofsWe repeat here a fat about ayli edge olouring whih we have stated before. It anbe easily veri�ed and would be used often in our proofs. We follow the statement of thefat with a brief explanation as to why it is orret.Fat 3.4.1. If a graph G is regular with ∆(G) ≥ 2, then a′(G) ≥ ∆(G) + 1.This is beause in any proper edge-olouring of G with ∆(G) olours, eah olour isused on some edge inident inident at any vertex. Hene, for eah pair of distint olours
a and b and for eah vertex u, there is a unique yle in G going through u and whih isoloured with a and b.We �rst present the proof of Theorem 3.3.2. In this proof, we assume the truth ofTheorem 3.3.1, and apply its various ases to omplete the proof of Theorem 3.3.2.3.4.1 Proof of Theorem 3.3.2Case 1 (G is the d-dimensional hyperube P d

2 )Clearly, a′(P2) = 1 and a′(P 2
2 ) = a′(C4) = 3. For d > 2, we start with G = P 2

2 andrepeatedly and indutively apply Statement (1) of Theorem 3.3.1 to dedue that a′(P d
2 ) ≤

d + 1. Combining this with Fat 3.4.1, we get a′(P d
2 ) = d + 1 for d ≥ 2.Case 2 (Case G is a d-dimensional mesh Md)Again, we prove by indution on d. If d = 1, then G ∈ paths and hene a′(G) = 2 = ∆(G).For d > 1, repeatedly and indutively apply Statement (2) of Theorem 3.3.1 to deduethat a′(G) ≤ 2(d−1)+2 = 2d. Combining this with the trivial lower bound a′(G) ≥ ∆(G),we get a′(G) = 2d for eah G ∈ Md and eah d ≥ 1.Case 3 (Case G is a d-dimensional torus Td)We prove by indution on d. If d = 1, then G ∈ yles and hene a′(G) = 3 = ∆(G)+1.For d > 1, repeatedly and indutively apply Statement (3) of Theorem 3.3.1 to deduethat a′(G) ≤ 2(d−1)+1+2 = 2d+1. Combining this with Fat 3.4.1, we get a′(G) = 2d+1for eah G ∈ Td and eah d ≥ 1.Case 4 (Case G is a d-dimensional partial torus Pd)Let e, p and c be as de�ned in the statement of the theorem. If p = 0, then G is theprodut of edges and yles and hene G is regular and a′(G) ≥ ∆(G) + 1 by Fat 3.4.1.33



CHAPTER 3. ACYCLIC EDGE COLOURING OF PARTIAL TORIAlso, we an assume that c > 0. Otherwise, G = P d
2 and this ase has already beenestablished. Again, without loss of generality, we an assume that the �rst fator G1 of Gis from yles and a′(G1) = 3. Now, as in the previous ases, we apply indution on dand also repeatedly apply one of the Statements (1) and (3) of Theorem 3.3.1 to deduethat a′(G) ≤ ∆(G) + 1. This settles the ase p = 0.Now, suppose either p ≥ 2, or p = 1 and e ≥ 1. Order the d prime fators of G sothat G ∼= G12 · · ·2Gd and the �rst p fators are from paths and the next e fators areopies of P2. By the previously established ases and from Theorem 3.3.1, it follows that

a′(G12 · · ·2Gp+e) = ∆(G12 · · ·2Gp+e) = 2p + e ≥ 3.As before, applying (3) of Theorem 3.3.1 indutively, it follows that
a′(G) = a′(G12 · · ·2Gp+e+c) ≤ ∆(G) = 2p + e + 2c.Combining this with the trivial lower bound establishes this ase also.Suppose p = 1, e = 0 and at least one prime fator of G is an even yle. Let G1 = Pkfor some k ≥ 3 and G2 = C2l for some l ≥ 2. We note that it is enough to show that

G′ = G22G1 is aylially olourable with ∆(G′) = 4 olours. Extending this olouringto an optimal olouring of G an be ahieved by repeated appliations of Statement (3)of Theorem 3.3.1 as before. Hene we fous on showing a′(G′) = 4.Firstly, olour the yle G2 = C2l = 〈0, 1, . . . , 2l− 1, 0〉 aylially as follows. For eah
i, 0 ≤ i ≤ 2l− 2, olour the edge (i, i +1) with 1 if i is even and with 2 if i is odd. Colourthe edge (2l−1, 0) with 3. Now, use the same olouring on eah of the k isomorphi opies(numbered with 0, . . . k−1) of G2. For eah j, 0 ≤ j < k−1, the jth and (j+1)th opies of
G2 are joined by ross-edges whih onstitute a perfet mathing between similar vertiesin the two opies. These ross-edges are oloured as follows. For every i and j, the rossedge joining (i, j) and (i, j + 1) is oloured with 4 if (i + j) is even and is oloured withthe unique olour from {1, 2, 3} whih is missing at this vertex i in both opies if (i + j)is odd. See Figure 3.1 for an illustration.The olouring is suh that in eah perfet mathing joining two adjaent opies of G2,the ross edges whih are part of this mathing are alternately oloured with 4 and aolour from {1, 2, 3}. Note that there an be no bihromati yle within eah opy of34



3.4. PROOFS
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G2. Hene, any bihromati yle (if it exists) should use ross edges.First, we laim that there an be no (4, c)-oloured yle for any c ∈ {1, 2, 3}. To seethis, note that no two suessive edges of any suh yle an be from the same opy of G2sine there is no edge oloured 4 in any opy of G2. In addition, to omplete a yle it isneessary that there must be two adjaent opies, say the jth and the (j + 1)th, suh thatthe yle passes from the jth to the (j + 1)th and bak to jth opy using exatly 3 edges.This ontradits the fat that the ross edges between adjaent opies are alternatelyoloured with 4 and a olour from {1, 2, 3}.In addition, there an be no (c, c′)-oloured yle for any c, c′ ∈ {1, 2, 3}. To see this,we �rst note that any maximal (c, c′)-oloured path in the jth (for any j) opy of G2 is ofodd length (ounted as the number of edges) and hene the �rst and last edge of suh apath are oloured the same, say with c. This means the c′-oloured edges inident at thetwo end points u and v onnet them to the di�erent, namely the (j − 1)th and (j + 1)th,opies (beause of the way ross edges are oloured). Extending this further, we see that35



CHAPTER 3. ACYCLIC EDGE COLOURING OF PARTIAL TORI
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(v, k − 1) and does not omplete to a yle. This shows that a′(G′) = 4 as desired.Suppose p = 1, e = 0 and all prime fators of G (exept the one path) are odd yles. Inthis ase, a′(G) an take both values as the following examples show. If G = P32C3, thenit an be easily veri�ed that a′(G) = 5 = ∆+1. Also, if G = P32C5, then a′(G) = 4 = ∆as shown by the olouring in Figure 3.2.
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3.4. PROOFS3.4.2 proof of Theorem 3.3.1We now present the proof of Theorem 3.3.1.A restrited lass of bijetions (de�ned below) would play an important role in thisproof.De�nition 3.4.1. A bijetion σ from a set A to an equivalent set B is a non-�xingbijetion if σ(i) 6= i for eah i.Sine a′(G) = η, we an edge-olour G aylially using olours from [η]. Fix one suholouring C0 : E(G) → [η].De�ne C1 to be the olouring de�ned by C1(e) = σ(C0(e)) where σ : [η] → [η] is anybijetion whih is non-�xing. For onreteness, de�ne σ(i) = (i mod η) + 1.Case 1 (a′(G2P2))Let G0, G1 be the two isomorphi opies of G indued respetively by the sets {(u, 0) :

u ∈ V (G)} and {(u, 1) : u ∈ V (G)}. Let G0 and G1 be edge oloured respetively by
C0 and C1. For eah of the remaining edges (termed ross-edges and whih onstitute aperfet mathing between G0 and G1) of the form ((u, 0), (u, 1)), give a new olour α.Denote by C, the resultant olouring of G2P2. We laim that C is proper and ayli.It is easy to see that C is proper. Also note that any bihromati yle in C shouldneessarily use the olour α (sine the olourings of G0 and G1 are ayli).Suppose that G2P2 has a bihromati yle C using the olours α and some otherolour, say i, from the set [η]. In C, G0 and G1 are both oloured α-free and hene anyproper α, i-oloured yle should ontain the α-oloured edges an even number of times.Hene we have |C| ≡ 0 mod 4. Fix a vertex (u1, 0) as the starting point of C. Then Clooks like C = 〈(u1, 0)

α→ (u1, 1)
i→ (u2, 1)

α→ (u2, 0) · · · (uk, 0)
i→ (u1, 0)〉.Notie that k is of even parity (sine |C| ≡ 0 mod 4). For eah i-oloured edge

(u2ℓ+1, 1) → (u2ℓ+2, 1) of G1 in C, its isomorphi opy in G0, namely, the edge (u2ℓ+1, 0) →
(u2ℓ+2, 0) is oloured with a olour j = σ−1(i) 6= i (sine σ is a non-�xing bijetion of [η]).Now it an be seen that the yle 〈(u1, 0)

j→ (u2, 0)
i→ (u3, 0) . . .

j→ (uk, 0)
i→ (u1, 0)〉is an i, j-oloured yle in G0. This is a ontradition to the fat that G0 is ayliallyoloured. Hene the olouring C is ayli.Case 2 (a′(G2Pk))Let the k isomorphi opies of G in G2Pk be G0, G1, . . . , Gk−1 where Gi is indued by37



CHAPTER 3. ACYCLIC EDGE COLOURING OF PARTIAL TORIthe set {(u, i) : u ∈ V (G)}. Let α0 and α1 be two new olours whih are not in [η]. Ourolouring is as follows.For eah i, olour the edges of opy Gi with Ci mod 2. Also, for eah i, olour the edgesof the form ((u, i), (u, i + 1)) with the new olour αi mod 2. Denote by C the resultantolouring of G2Pk. It is easy to see that C is proper. We laim that C is also ayli.For eah i (0 ≤ i < k − 1) and for eah edge e of G, notie that Gi and Gi+1have di�erent olours on their respetive opies of e (sine the olourings C0 and C1 arebased on mutually non-�xing bijetions over [η]). Hene bihromati yles between twoonseutive opies of G are ruled out by Case 1. So any bihromati yle C should passthrough at least three onseutive opies of G, thus �xing the olours of C to be α0 and
α1. Sine all the opies of G are free of both α0 and α1, and the edges joining (u, i) and
(u, i + 1) between suessive opies of G alone do not form a yle, the olouring C isayli.Case 3 (a′(G2Ck))In this ase, we have k isomorphi opies of G numbered G0, G1, . . . , Gk−2, Gk−1 suh thatthere is a perfet mathing between suessive opies Gi and G(i+1) mod k (see Figure 3.3).Our olouring is as follows.For eah i, 1 ≤ i ≤ k − 2, olour the edges of Gi with C(i+1) mod 2.As before, let α0, α1 be two new olours whih are not in [η]. Let D0 be a olouring of
G0 de�ned by D0(e) = τ(C0(e)) where τ(i) = i + 1, i < η, τ(η) = α1.In order to olour Gk−1, de�ne a olouring D1(e) = µ(C0(e)) where µ(i) = i + 2,
i < η − 1 and µ(η − 1) = α(k+1) mod 2, µ(η) = 2.Now, olour any edge of the form ((u, i), (u, i+1)), 0 ≤ i < k− 1 with the new olour
αi mod 2. Colour the edges of the form ((u, k − 1), (u, 0)) with the olour 1. Denote thisolouring of G2Ck by C.We laim that C is proper and ayli. For eah i, the olouring C restrited to Gi isproper and ayli by de�nition. Also note that, eah ross-edge ((u, i), (u, (i+1) mod k))is oloured with a olour γ (say) whih is not used in either of the opies Gi and Gi+1.Hene C is proper.Also, in C, any edge e ∈ Gi and its isomorphi opy e′ ∈ G(i+1) mod k reeive di�erentolours (sine the olourings on suessive opies of G are based on mutually non-�xingbijetions). Hene, as shown for the Case G2P2, there an be no bihromati yle in C38



3.4. PROOFSrestrited to two suessive opies of G. Hene any suh bihromati yle C should passthrough at least 3 onseutive opies of G, again �xing the two olours of C to be thoseused on two inident ross edges. Also, it is easy to see that there an be no bihromatiyle involving only ross-edges sine any suh yle uses the three olours {α0, α1, 1}.Note that eah of G1, . . . , Gk−2 are oloured free of both α0 and α1. Hene any α0, α1-bihromati yle C should start from some vertex (u1, 0) in G0, then reah (u1, k − 1)using only ross edges, then go to some vertex (u2, k−1) using an edge of Gk−1, then reah
(u2, 0) using only ross edges and then some vertex (u3, 0) using a α1-oloured edge of G0and ontinue this (possibly) again and again and �nally reah a vertex (uk, 0) (where kis an even number) and then go to (u1, 0) using a α1-oloured edge of G0. Here the onlynon-ross edges used in C are either from G0 (and oloured with α1) or from Gk−1 (andoloured with either α0 or α1 depending on the parity of k). From the de�nitions of D0and D1, it follows that for eah edge (u2l+1, k − 1) → (u2l+2, k − 1) from Gk−1 used in C,its isomorphi opy in G0, namely (u2l+1, 0) → (u2l+2, 0), is oloured with η. This impliesthe existene of a α1, η-oloured bihromati yle in G0 and this is a ontradition.Similarly, any α0, 1-oloured bihromati yle should only visit verties in the opies
G1, G0, Gk−1, Gk−2 (or G1, G0, Gk−1) depending on whether k is even (or odd). As arguedbefore, this would imply the existene of a (1, η)-oloured yle in G0 (or a (1, (η − 1))-oloured yle in G0) ontraditing our de�nition of C.Also, if k is even, then any (1, α1)-oloured yle should only visit verties in G0 and
Gk−1 (whih are onseutive) and hene annot exist. If k is odd, then suh a yle anonly visit verties in G0, Gk−1 and Gk−2 and its existene would imply the existene of a
(2, α1)-oloured yle in G0 whih is again a ontradition. This shows that C is ayli.
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CHAPTER 3. ACYCLIC EDGE COLOURING OF PARTIAL TORI3.5 Algorithmi aspetsThere has been very little study of algorithmi aspets of ayli edge olouring. In [AZ02℄,Alon and Zaks prove that it is NP-omplete to determine if a′(G) ≤ 3 for an arbitrarygraph G. They also desribe a deterministi polynomial time algorithm whih obtainsan ayli (∆ + 2)-edge-olouring for any graph G whose girth g is at least c∆3 for somelarge absolute onstant c. Skulrattanakulhai [Sku04℄ presents a linear time algorithmto aylially edge olour any graph with ∆ ≤ 3 using at most 5 olours. Apart fromthis, and a few other results mentioned elsewhere in this thesis, no signi�ant progresshas been made on the algorithmi aspets of ayli edge olouring.All of our proofs given in the previous setion are onstrutive and readily translateto e�ient algorithms whih �nd optimal (or almost optimal) ayli edge olourings ofthe partial tori. Formally,Theorem 3.5.1. Let G ∈ Pd be a graph (on n verties and m edges) spei�ed by itsUnique Prime Fatorisation. Then, an ayli edge olouring of G using ∆ or ∆ + 1olours an be obtained in O(n + m) time. Also, the olouring is optimal exept when Gis a produt of a path and a number of odd yles.For the sake of ompleteness, we now present a brief and formal desription of thesealgorithms. Before we �nish, we need to say a few words about how the input is presentedto the algorithm. It is known from the work of Aurenhammer, Hagauer and Imrih [AHI92℄that the UPF of a onneted graph G (on n verties and m edges) an be obtained in
O(m logn) time. Hene we assume that our onneted input G ∈ Pd is given by the listof its prime fators G1, . . . , Gd. Also, without loss of generality, we assume that the listis suh that(i) Gi ∈ paths for i = 1, . . . , p ;(ii) Gi = P2 for i = p + 1, . . . , p + e ;(iii) Gi ∈ yles for i = p + e + 1, . . . , d = p + c + e and all even yles appear beforeall odd yles in the order.Here p, e, c denote respetively the number of prime fators whih are from paths, edgesand yles. 40



3.5. ALGORITHMIC ASPECTSAlgorithmi Version of Theorem 3.3.2Algorithm 1 AyColPCGrid(G1, . . . , Gd)1: if d = 1, then output an optimal ayli edge-olouring of G1 using 2 (1 or 3) oloursdepending on whether G1 ∈ paths (G1 = P2 or G1 ∈ yles) and exit.2: if d = 2 then3: if both G1 = G2 = P2, then output an optimal olouring of G12G2 using 3 oloursand exit.4: if either G1 = P2 and G2 ∈ yles or G1 ∈ paths and G2 is an even yle, theninterhange G1 and G2; Otherwise, let G1 and G2 remain the same.5: Let C0 be an optimal ayli olouring of G1 (on l verties) de�ned as follows : Foreah i, 0 ≤ i < l − 1, olour the edge (i, i + 1) with i mod 2. Colour the edge
(l − 1, 0) (if it exists) with 3.6: Output the optimal ayli edge olouring obtained by applyingAyol2fa(G2, G1, C0) and exit.7: end if8: if d > 2 then9: Obtain an optimal olouring C0 of G = G12 · · ·2Gd−1 by applyingAyColPCGrid(G1, . . . , G(d−1)).10: Obtain an optimal olouring of G2Gd by applying Ayol2fa(G, Gd, C0).11: Output the optimal olouring of G12 · · ·2Gd thus obtained and exit.12: end if
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CHAPTER 3. ACYCLIC EDGE COLOURING OF PARTIAL TORIAlgorithmi Version of Theorem 3.3.1Algorithm 2 Ayol2fa(G, H, C0)1: Let H be a path or a yle on k ≥ 2 verties {0, . . . , k − 1}. Let G0, . . . , Gk−1 be the
k isomorphi opies of G indued respetively by the sets {(u, i) : u ∈ V (G)} for eah
i.2: if G is an even yle C2l and H = Pk, then olour eah of the k isomorphi opiesof G by the same olouring C0. For every j (0 ≤ j < k − 1) and i (0 ≤ i ≤ 2l − 1),olour the edge joining (i, j) and (i, j + 1) with 4 if i + j is even and olour it withthe unique olour from {1, 2, 3} whih is missing at both opies of i if i+ j is odd andexit.3: Otherwise, suppose C0 uses olours from [η] = {1, . . . , η} for some η > 0. Let σ, τ, µbe three permutations over [η + 2] = {1, . . . , η + 2} de�ned by4: σ(i) = (i mod η) + 1 for i ∈ [η] and σ(i) = i for i > η.5: τ(i) = i + 1 for i < η, τ(η) = η + 1, τ(η + 1) = 1 and τ(η + 2) = η + 2.6: µ(i) = i + 2 for i < η − 1, µ(η − 1) = η + 1 + ((k + 1) mod 2), µ(η) = 2, µ(η + 1 +
((k + 1) mod 2)) = 1 and µ(η + 1 + (k mod 2)) = η + 1 + (k mod 2).7: Let C1,D0,D1 be three new olourings of G obtained respetively by olouring eahedge e of G by the olour σ(C0(e)), τ(C0(e)), µ(C0(e)).8: if H = Pk, then olour eah opy Gi by the olouring Ci mod 2. Also, for eah i < k−1,olour the ross-edges between Gi and Gi+1 with the ommon olour missing from bothof them. This missing olour is η + 1 + (i mod 2).9: if H = Ck, then, for eah i, 0 < i < k − 1, olour Gi by the olouring C(i+1) mod 2.Also, olour G0 by D0 and olour Gk−1 by D1. Also, for eah 0 ≤ i < k−1, olour theross-edges between Gi and Gi+1 with the ommon olour, namely η + 1 + (i mod 2),missing from both of them. In addition, the ross-edges between G0 and Gk−1 areoloured with 1.
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3.6. REMARKS3.6 RemarksThe work presented in this hapter has been published by us. The referene is [MNS06℄.If G is isomorphi to the produt of a path and a number of odd yles, it an takeeither of the values in {∆, ∆ + 1}. It would be interesting to see if we an lassify suhgraphs for whih a′(G) = ∆. It would also be nie to onstrut an optimal olouringe�iently. Another diretion is to extend this result and prove a′(G) ≤ ∆(G) + 1, where
G is any subgraph of a hyperube. If suh a result is obtained, it an be used to getresults for more ompliated kinds of produts.A standard kind of produt alled strong produt is another operation whose e�et onthe ayli hromati index would be interesting to study and we are looking at this. Thestrong produt of two graphs G = (V, E) and H = (V ′, E ′) has as vertex set V × V ′ andedge set ((u1, v1), (u2, v2)) if (u1 = u2 or (u1, u2) ∈ E) and (v1 = v2 or (v1, v2) ∈ E ′).It is lear that the graph resulting from applying the strong produt operator to a pairof graphs is a supergraph, on the same vertex set, of the graph obtained by applying theartesian produt operator to the same pair of graphs.
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Chapter 4Cartesian produt and ayli edgeolouringIn this hapter, we extend and generalise the results obtained in Chapter 3 to the artesianprodut of any two graphs. These graphs are more general than those onsidered inChapter 3, sine those graphs are all obtained by applying the artesian produt operatorto a olletion of only edges, paths and yles.In Setion 4.1 we introdue the idea of aylially olouring the artesian produtof graphs in a more general setting than grid-like graphs. We state useful properties ofthe artesian produt operator in Setion 4.2. Setion 4.3 ontains our result and alsoa detailed proof. A few immediate onsequenes of this result are given as orollaries inSetion 4.4. Setion 4.5 ontains some onluding remarks.4.1 IntrodutionThe results in Chapter 3 involove graphs, all of whose fators, under the unique primefatorisation with respet to the artesian produt, are from the family edges ∪ paths ∪yles. The strongest requirement of the graph G in any of the ases of Theorem 3.3.1is that a′(G) > 2. Theorem 3.3.2 follows as a onsequene by iterative appliations ofvarious ases of Theorem 3.3.1. Here, we look at graphs whih are the artesian produtof any two graphs.The fators of the graph being more general, the bounds we get on a′(G) are not as45



CHAPTER 4. CARTESIAN PRODUCT AND ACYCLIC EDGE COLOURINGtight as for grid-like graphs. In the ase of grid-like graphs, for eah additional primefator inorporated we extend the olouring by introduing only as many new oloursas the inrease in maximum degree. Here, we show that we an inorporate eah primefator, say F , using an additional a′(F) olours. Even though these bounds may not betight, they an be used to obtain bounds for any graph if we know the a′(H) values foreah of its prime fators H .
4.2 Cartesian produtsWe have already de�ned the artesian produt formally (De�nition 3.2.1). As was statedin Chapter 3, any non-prime graph with respet to this operator has a unique fatorisation,upto a reordering of the fators. Note that G2H an be thought of as being obtainedas follows. Take |V (H)| isomorphi opies of G and label them with verties from V (H).For eah edge (u, v) in E(H), introdue a perfet mathing between Gu and Gv whihjoins eah vertex in V (Gu) with its isomorphi image in V (Gv). Equivalently, one analso think of this as obtained by taking |V (G)| isomorphi opies of H and introduing aperfet mathing between orresponding opies of H for eah edge in E(G).The following fats are onsequenes of the de�nition of the artesian produt .Fat 4.2.1. The artesian produt G12G2 is ommutative in the sense that G12G2 isisomorphi to G22G1. Similarly, this operation is also assoiative. Hene the produt
G12G22 . . .2Gk is well-de�ned for eah k. For eah G and k ≥ 1, we de�ne Gk asfollows : G1 ∼= G and Gk ∼= Gk−1

2G for k > 1.Fat 4.2.2. If G = G12G22 . . .2Gk, then G = (V, E) where V is the set of all k-tuples of the form (u1, . . . , uk) with eah ui ∈ V (Gi) and the edge joining (u1, . . . , uk) and
(v1, . . . , vk) is in E if and only if for some i, 1 ≤ i ≤ k, (i) uj = vj for all j 6= i and (ii)the edge (ui, vi) is in E(Gi).Fat 4.2.3. G12G2 is onneted if and only if both G1 and G2 are onneted. 46



4.3. OUR RESULT AND PROOF4.3 Our result and proofIn view of Fat 4.2.3, it is su�ient to onsider only onneted graphs. Also, if H istrivial (that is, H is a graph on just one vertex), then G2H is isomorphi to G for any
G. Hene, we fous only on onneted non-trivial graphs.We obtain the following general statement relating a′(G) and the artesian produtoperator.Theorem 4.3.1. Let G = (VG, EG) and H = (VH , EH) be two onneted non-trivialgraphs suh that max{a′(G), a′(H)} > 1. Then,

a′(G2H) ≤ a′(G) + a′(H).Note : If G and H are both onneted and non-trivial with a′(G) = a′(H) = 1, theneah of G and H is a P2. In that ase, G2H ∼= C4 where C4 is a yle on 4 verties. Onlyin this ase, we have a′(G2H) = 3 whereas a′(G) + a′(H) = 2.The proof is presented in two stages. We �rst desribe a olouring in Setion 4.3.1. InSetion 4.3.2, we prove that the olouring we obtain is proper and ayli, thus ompletingthe proof.4.3.1 The olouringLet a′(G) = η and a′(H) = β. Without loss of generality, assume that η ≥ β. Let ∆denote the maximum degree of H . Set d to be ∆+1 if H is either a omplete graph or anodd yle and to be ∆ otherwise. In either ase, by Brooks' Theorem, H an be properlyvertex oloured using olours from the set [d] = {0, . . . d − 1}.We know that β = a′(H) ≥ ∆ always. If H = K∆+1 or C2k+1, then (sine H is
∆-regular) a′(H) ≥ ∆ + 1 (exept when H = K2). In both ases, η ≥ β ≥ d. If H = K2,then d = ∆ + 1 = 2 and η ≥ 2 by assumption. In any ase, we have η ≥ d.Let XG : EG → [η] = {0, . . . , η−1} and XH : EH → [β ′] = {0′, . . . , (β−1)′} be ayliedge olourings of G and H respetively, using disjoint sets of olours.Eah edge in G2H is either (i) an edge joining (u1, v) and (u2, v) for some e =

{u1, u2} ∈ EG and v ∈ VH or (ii) an edge joining (u, v1) and (u, v2) for some f =

{v1, v2} ∈ EH and u ∈ VG. We denote the former edges by ev (where e ∈ EG, v ∈ VH) and47



CHAPTER 4. CARTESIAN PRODUCT AND ACYCLIC EDGE COLOURINGthe latter edges by fu (where f ∈ EH , u ∈ VG). Note that eah edge of G2H lies eitherin some isomorphi opy Hu of H or in some isomorphi opy Gv of G.For eah i ∈ {0, . . . , d − 1}, let σi : [η] → [η] be a bijetion de�ned by
σi(j) = (j + i) mod η, ∀j ∈ [η].Sine η ≥ β ≥ d, we notie that the bijetions σi(i ∈ [d]) are mutually non-�xing, thatis, for all i, k ∈ {0, . . . , d − 1} suh that i 6= k, and for eah j ∈ [η], σi(j) 6= σk(j).Let YH : VH → {0, . . . , d−1} be a proper vertex olouring of VH . We de�ne a olouringof the edges of G2H based on the olourings XG, XH and YH as follows.For eah edge in E of the form fu, where f ∈ EH and u ∈ VG, we olour fu using theolour XH(f). Now onsider any arbitrary edge of the form ev where e ∈ EG and v ∈ VH .Let i = YH(v) be the olour used by YH on v. Colour ev using the olour σi(XG(e)).In other words, edges fu in eah isomorphi opy Hu is oloured the same way as fin H is oloured by XH . But edges ev in eah isomorphi opy Gv is oloured essentially(ignoring the labels of olours) the same way as G is oloured but the olour labelsare rotated by mutually non-�xing permutations. The permutation that is used for a

Gv is deided by the vertex olour assigned to v by YH . As a result, for eah edge
f = (v1, v2) ∈ EH and for eah edge e = (u1, u2) ∈ EG, ev1 and ev2 get di�erent oloursbut always from [η].4.3.2 Corretness of the olouringLet X : E(G2H) → {0, . . . , η − 1} ∪ {0′, . . . , (β − 1)′} be the olouring de�ned in theprevious setion. We will show that X is proper and ayli.Claim. X is proper.Proof. Consider any vertex (u, v). The set of edges in G2H whih are inident on (u, v)an be partitioned into two subsets Au = {fu : v ∈ f ∈ EH} and Av = {ev : u ∈ e ∈ EG}.Sine edges in these two sets are oloured using olours from disjoint sets, namely from
[η] and [β ′], there is no on�it between these two sets. Now, let us fous on edges in
Au. Sine fu's are oloured in the same way as f 's are oloured in H , there is no on�itamong edges in Au. Similarly, the edges ev's in Av are oloured with distint olours,there is no on�it among members of Av also. Hene X is proper. 48



4.3. OUR RESULT AND PROOFIt is only left to prove the ayliity of X. We prove by ontradition. Suppose thereis a bihromati yle C in G, with respet to the olouring X. First, we note thatClaim. C annot lie entirely within any isomorphi opy Gv or Hu of G or H respetively.Proof. Note that X restrited to Hu (or Gv) is basially either XH (or XG exept forrenaming of the olours). Hene if C lies within suh an isomorphi opy, it implies thateither XH or XG has a bihromati yle, whih is a ontradition.By the above laim, it follows that C should visit verties in at least two di�erentopies Gv and Gv′ . But di�erent opies are only joined by edges of type fu for some
f ∈ EH and u ∈ VG. Thus, it follows that C has at least one edge eah of the two types
ev (e ∈ EG, v ∈ VH) and fu (f ∈ EH , u ∈ VG) whih are oloured with respetively, say,
a ∈ [η] and b ∈ [β ′].Claim. Let (u1, v1) be some arbitrary vertex in C. Let (u1, v2) for some v2 ∈ VH be theother end point of the unique b-oloured edge in C inident at (u1, v1). C lies entirelywithin Gv1 and Gv2.Proof. The proof is by indution on the distane l in C from (u1, v1) along the diretionspei�ed by the edge {v1, v2}u1. For l = 0, it is learly true. Suppose it is true for vertieswhose above-de�ned distane is at most l′. Let (ul′, vl′) be the vertex at distane l′. Byindutive hypothesis, vl′ is either v1 or v2. Let c ∈ {a, b} be the olour of the edge joining
(ul′, vl′) and (ul′+1, vl′+1). If c = a, then vl′+1 = vl′ and hene the hypothesis is learlytrue for l = l′ + 1. If c = b (hene ul′+1 = ul′) and if vl′ = v1, then vl′+1 = v2. This followsfrom (i) the b-oloured edge inident at the opy of u1 in Gv1 joins it to the opy of u1 in
Gv2 and hene (ii) all edges of the perfet mathing joining isomorphi opies of vertiesin Gv1 and Gv2 are oloured with b. In partiular, the b-oloured edge inident at (ul′, v1)joins it to (ul′, v2). Similarly, one an argue that if c = b and if vl′ = v2, then vl′+1 = v1.In any ase, vl′+1 ∈ {v1, v2}, there by proving that C lies entirely within Gv1 and Gv2 .Sine the edges in Gv1 and Gv2 are oloured without using olour b and sine everyalternate edge of C is oloured with b, we see that b is used an even number of times in
C. This implies |C| = 0 (mod 4). Thus, C looks like

C = 〈 (u1, v1), (u1, v2), (u2, v2), (u2, v1), . . . , (u2k−1, v2), (u2k, v2), (u2k, v1), (u1, v1) 〉. 49



CHAPTER 4. CARTESIAN PRODUCT AND ACYCLIC EDGE COLOURINGFor eah of the a-oloured edges in Gv2 joining (u2l−1, v2) and (u2l, v2), its isomorphiopy in Gv1 joins (u2l−1, v1) and (u2l, v1) and is oloured with the olour c = σi(σ
−1
j (a)) 6= awhere i = YH(v1) and j = YH(v2). These isomorphi opies in Gv1 of a-oloured edges of

C in Gv2 together a-oloured edges of C in Gv1 onstitute the following bihromati yle
D = 〈 (u1, v1), (u2, v1), (u3, v1), . . . , (u2k, v1), (u1, v1) 〉.This is a ontradition to the fat that X restrited to Gv1 is ayli. This shows that

X admits no bihromati yle and hene X is proper and ayli. Sine X uses onlyolours from [η] ∪ [β ′], we get a′(G2H) ≤ a′(G) + a′(H).4.4 ConsequenesThe following results for ertain speial families of graphs, are immediate onsequenesof the result of the previous setion.Corollary 4.4.1. Let G1, . . . , Gk be k onneted non-trivial graph suh that for eah i,
1 ≤ i ≤ k, a′(Gi) = ∆(Gi) and max{a′(G1), . . . , a

′(Gk)} > 1. Then,
a′(G12 . . .2Gk) = ∆(G12 . . .2Gk).Proof. Follows from

(i) a′(G) ≥ ∆(G) for any G,
(ii) ∆(G12 . . .2Gk) = ∆(G1) + . . . + ∆(Gk),
(iii) Theorem 4.3.1.Corollary 4.4.2. Let G be a onneted non-trivial graphs suh that a′(G) = ∆(G) > 1.Then, for eah d ≥ 1,

a′(Gd) = d∆(G).Even though the following orollary has already been presented in Chapter 3, wepresent it here for the sake of ompleteness.Corollary 4.4.3. Let G = P d
2 = P22 · · ·2P2 be the d-dimensional hyperube for some

d ≥ 1. Then,
a′(P2) = 1 and a′(P d

2 ) = d + 1 for d > 1. 50



4.5. CONCLUSIONSProof. Suppose d > 1. Sine G = P d
2 is d-regular, we need at least d + 1 olours in anyayli edge olouring of P d

2 and hene a′(G) ≥ d+1. Also, a′(P 2
2 ) = a′(C4) = 3. Startingwith G = P 2

2 and applying Theorem 4.3.1 repeatedly by setting H = P2 eah time, weget a′(P d
2 ) ≤ a′(P 2

2 ) + (d − 2) ≤ d + 1. Combining both the lower and upper bounds, weget the result.4.5 ConlusionsThe work presented in this hapter has been submitted to a journal. The referene is[MS07℄.It is quite possible that Conjeture 1.2.1 is true. Under this assumption, we know thatthe gap between the maximum degree of a graph and its ayli hromati index is at most2. Note that for any ∆-regular graph (∆ > 1), the gap is at least 1. Thus, by applyingTheorem 4.3.1 repeatedly on suh graphs, the di�erene between the bound obtained andthe maximum degree inreases for eah additional fator added. Thus if the onjetureis true, the bounds obtained by applying our result annot be optimal. Nevertheless, itis not possible to make an unquali�ed laim of the type a′(G2H) ≤ a′(G) + ∆(H). It iswell-known that ∆(G2H) = ∆(G) + ∆(H). Therefore, if the gap is 0 for G but positivefor G2H , then this will violate a laim of the form made previously. We onlude that,if the onjeture is true, then a statement of the form a′(G2H) ≤ a′(G) + ∆(H) an bemade, only if the gap is 2 for G.From an algorithmi point of view, our proof immediately yields an e�ient algorithmto obtain a olouring of G2H using a′(G) + a′(H) olours, provided olourings for G and
H are available using disjoint sets of a′(G) and a′(H) olours, respetively. Its strengthas an algorithmi result, however, is undermined by the fat that optimal olourings ofthe prime fators themselves are not always easily omputable.
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Chapter 5Ayli edge olouring of partial2-treesIn this hapter we onsider the problem of aylially edge olouring the lass of partial
2-trees. These are preisely the graphs of treewidth at most 2. More generally, for
k ≥ 0, the partial k-trees are preisely the lass of all graphs with treewidth at most
k. The partial k-trees are a strit sublass of the lass of all k-degenerate graphs. Wede�ne these losely related lasses of graphs and desribe a hierarhy among them, inSetion 5.2. We elaborate some properties of these graphs in Setion 5.1, whih failitatethe ayli edge olouring problem on partial 2-trees. Setion 5.4 states the results wehave obtained and the proofs follow in subsequent setions. Closely related results arementioned in Setion 5.3. A brief desription of the algorithm orresponding to the proofis given in Setion 5.7. Setion 5.8 inorporates a few onluding remarks and outlinespossible future diretions for researh.5.1 IntrodutionAs the reader is familiar, the ayli edge olouring problem is about olouring the edgesof a graph properly while simultaneously avoiding bihromati yles. It stands to reasonthat the more yli struture a graph has the more di�ult it is to aylially olour it.As always, the di�ulty is present beause the number of olours to be used is stringentlyrestrited. In order to understand this better, a rigourous quantitative notion of the yli53



CHAPTER 5. ACYCLIC EDGE COLOURING OF PARTIAL 2-TREESstruture of a graph is needed.The treewidth of a graph is indiretly a measure of its yli struture and indiateshow lose the graph is to a tree. The treewidth, de�ned formally below, is 1 for the lassof trees while it is n − 1 for the omplete graph Kn. These are the ends of the spetrumand every oneted graph has treewidth in this range. The ayli hromati index a′ ofa tree is its maximum degree ∆. Further, it is absolutely straightforward to obtain anayli edge olouring of trees using a′ olours. In sharp ontrast, it has proved extremelydi�ult to obtain tight estimates on a′ for omplete graphs, inspite of their simple andsymmetri struture.This suggests that it might be easier to get tighter bounds on the ayli hromatiindex when we fous on lasses of graphs with small treewidth. Motivated by this, westudy the ayli edge olouring problem for suh graphs.5.2 De�nitionsThe treewidth of a graph is de�ned in terms of a notion alled tree deomposition of thegraph. We make these notions preise in the following de�nitions.De�nition 5.2.1. Given a graph G = (V, E), a tree deomposition of G is any tree Twhose nodes are labelled by subsets of V , suh that:
• every vertex v ∈ V appears in the label of at least one node of T

• for every edge e = (u, v) ∈ E, there is at least one node of T whose label ontainsboth u and v

• for any vertex v ∈ V the set of nodes whose labels ontain v indues a onnetedsubgraph of TIn a tree deomposition the number of verties of the original graph used to label anode of the tree is alled the label size of that node. The width of the tree deompositionis the largest label size of any node in that deomposition.De�nition 5.2.2. The treewidth of a graph G, denoted by tw(G), is exatly one lessthan the minimum width of any tree deomposition of G. 54



5.3. RELATED RESULTSTreewidth is a monotoni property, in the sense that the treewidth of a subgraph isat most the treewidth of the original graph.We now de�ne k-trees whih are the basis of the de�nition of partial k-trees.De�nition 5.2.3. A k-tree is any graph obtained from the omplete graph Kk+1, by asequene of zero or more operations of adding a new vertex adjaent to the verties of anexisting k-lique in the graph.De�nition 5.2.4. A partial k-tree is any subgraph of a k-tree.It an be seen that k-trees have treewidth exatly k. The monotoniity of the treewidthproperty implies that partial k-trees also have treewidth at most k. In fat, it is well-known that they are exatly the lass of graphs of treewidth at most k. A losely relatednotion is the lass of k-degenerate graphs de�ned below.De�nition 5.2.5. A k-degenerate graph is any graph obtained from the graph on a singlevertex, K1, by a sequene of zero or more operations of adding a new vertex adjaent toat most k existing verties in the graph.Note that every partial k-tree is also k-degenerate. These lasses, though their de�ni-tions appear similar, di�er strongly. It is known that all planar graphs are 5-degenerate,but planar graphs have unbounded treewidth. An in�nite family of suh examples is thefamily of square grids, Pn2Pn. All these graphs are planar but have treewidth at least n.A property of any k-degenerate G, is that its minimum degree δ(G) ≤ k. Additionally,for every subgraph, H ⊆ G, δ(H) ≤ k. This is an alternative, equivalent haraterisationof k-degenerate graphs whih often proves useful.5.3 Related resultsAs we mentioned earlier, partial 2-trees are a sublass of 2-degenerate graphs. We statehere some results on ayli edge olouring of 2-degenerate graphs. The earliest resulton ayli edge olouring of 2-degenerate graphs was by Card and Roditty [CR94℄, wherethey proved that a′(G) ≤ ∆ + k − 1, where k is the maximum edge-onnetivity, de�nedas k = maxu,v∈V (G) λ(u, v), where λ(u, v) is the edge-onnetivity of the pair u, v. Notethat, here, k an be as high as ∆. 55



CHAPTER 5. ACYCLIC EDGE COLOURING OF PARTIAL 2-TREESAlon and Zaks show that it is NP-Hard to determine a′ for sububi graphs (see [AZ02℄).It follows, from the redution they use, that the problem is hard even for 2-degenerategraphs. It is possible that the problem is hard for many non-trivial sublasses of 2-degenerate graphs. In this ontext, it is signi�ant that there have been a few resultswhih give bounds on a′ whih di�er from the optimum by at most one or two, and alsoprovide e�ient algorithms to produe suh olourings. Reently, it has been shown byMuthu, Narayanan and Subramanian, that if G is an outerplanar graph then a′(G) ≤ ∆+1[MNS07a℄. Subsequently, a weaker bound of a′(G) ≤ ∆ + 2 has been obtained by Manuand Chandran for the larger lass of all 2-degenerate graphs [CM07℄. More reent infor-mation indiates that Manu and Chandran have proved a better upper bound of ∆ + 1for the lass of 2-degenerate graphs also.5.4 Our resultsHere, we formally state the results we obtain. By setting k = 2 in De�nitions 5.2.3 and 5.2.4we obtain the following de�nitions.De�nition 5.4.1. A 2-tree is any graph obtained from the triangle K3, by a sequene ofzero or more operations of adding a new vertex adjaent to the endpoints of an existingedge in the graph.De�nition 5.4.2. A partial 2-tree is any subgraph of a 2-tree.The main ontribution of this hapter is the following result.Theorem 5.4.1. If G is a 2-tree or a partial 2-tree, then a′(G) ≤ ∆ + 1.Sine every series-parallel graph (de�ned below) is a partial 2-tree (see [Gra99℄), weobtain the following orollary.Corollary. If G is a series-parallel graph, a′(G) ≤ ∆ + 1.De�nition 5.4.3. A series-parallel graph is any simple graph obtained starting from K2and performing any sequene of the following two operations:
(i) subdivide an edge
(ii) add edges parallel to existing edges.Finally all multiple edges are eliminated to render the graph simple. 56



5.5. BOUND FOR 2-TREESAn independent proof of this result has been obtained in [CM07℄. That proof usesideas similar to the proof that a′(G) ≤ ∆ + 2 for 2-degenerate graphs G, given in thesame paper.We �rst prove the bound for 2-trees in Setion 5.5 and then extend the arguments towork for the more general partial 2-trees in Setion 5.6.5.5 Bound for 2-treesFirst, we de�ne the term 2-ear. The proess of adding a new vertex w adjaent to twoexisting verties u and v (not neessarily adjaent) in a graph G, is alled adding a 2-ear to
G. In the ase of 2-trees, the verties u and v must be adjaent. The path added throughthe new vertex w, desribed above is alled a 2-ear of the graph. Note, that 2-trees anbe onstruted starting from a triangle and repeateding the proedure of adding 2-earsto the endpoints of an edge.From De�nition 5.4.1, it is easily seen that 2-trees are triangulated (hordal), planarand 2-degenerate. With respet to that de�nition of 2-trees, we introdue the followingterms and notations. The triangle with whih the onstrution is initiated is alled theinitial triangle or base triangle. For a given edge (u, v), the set of all ears added betweenits endpoints, is denoted by ext(u, v). (u, v) is alled the base edge for eah of these ears.We olour the graph inrementally by adding more edges to a partial olouring inbathes. The inrementation used here is di�erent from other inremental proedureswhere only a single edge is introdued at a time. Here, in eah stage, we introdue a setof all 2-ears having the same base edge. The edge order is desribed in greater detaillater.5.5.1 AssumptionsAt any intermediate stage the number of olours used is one more than the urrent max-imum degree, ∆. Here, a stage refers to the addition of all 2-ears having the same baseedge, and the urrent maximum degree refers to the maximum degree after the introdutionof this entire bath of 2-ears.We use Lv to denote the subset of olours not seen by the vertex v in the urrent partialolouring of G (prior to olouring the urrent bath of edges). Note that |Lv| ≥ Uv + 157



CHAPTER 5. ACYCLIC EDGE COLOURING OF PARTIAL 2-TREES(sine we use ∆ + 1 olours), where Uv is the number of unoloured edges inident to
v. d(v) denotes the degree of the vertex v. The above desribed notation is used in thedesription of all our olouring proedures.5.5.2 Ayli olouring of K2,tNow, we desribe how to aylially edge olour any member of a speial lass of graphs.In the olouring of 2-trees, the graphs indued by the edges added in a bath as desribedabove, all belong to this speial family. This olouring proedure is, thus, a subroutineused in our olouring of 2-trees. The speial lass we refer to is the family of ompletebipartite graphs (K2,t), where one of the partite sets has exatly two verties. We desribeone normal ayli edge olouring of this lass of graphs and another ayli edge olouringbased on lists assoiated with eah edge.The following lemma desribes an ayli edge olouring for the omplete bipartitegraph, K2,t, using t olours if t ≥ 3, and using t + 1 olours otherwise.Lemma 5.5.1. For the omplete bipartite graph, K2,t,

a′(K2,t) =

{

t if t ≥ 3

t + 1 otherwise.Proof. Let A = {u, v} be the partite set of size two, and let B = {w1, . . . , wt} be thepartite set of size t. If t = 1 or 2, the olouring is straightforward. If t ≥ 3, olour (u, wi)with olour i, for i ∈ {1, . . . , t} and olour (v, wi) with olour i + 1, for i ∈ {1, . . . , t − 1}and olour (v, wt) with olour 1. It is easy to observe that the subgraph indued by anypair of olour lasses is either a path on 4 edges, or a olletion of two vertex disjointpaths on 2 edges eah (see Figure 5.1). In eah ase, the subgraph is ayli and henethe olouring is proper and ayli. Further, if t ≥ 3, the endpoints of these paths bothlie in B. Even if t = 2, one endpoint of any maximal bihromati path lies in B. Weall this sheme olouring by shifting and use it as a subroutine in the olouring of partial2-trees.We use the above-mentioned proedure in our olouring of 2-trees, when the twoendpoints u and v of a base edge e = (u, v), suh that |ext(e)| = k (k ≥ 3), have at least
k ommon free olours. 58



5.5. BOUND FOR 2-TREES
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Figure 5.1: ayli olouring of K2,tWe now desribe a generalised version of the previous lemma whih desribes an ayliedge olouring of the same graph when the olours allowed for any edge is restrited toan assoiated list.Lemma 5.5.2. Consider the omplete bipartite graph H = (A,B, F ) with A = {u, v}and B = {w1, . . . , wt}. Let Lu denote a set of t olours whih are permitted for edgesinident at u. Lv is de�ned similarly. Then, there is an ayli edge olouring of H usingonly olours from Lu and Lv for edges inident at u and v respetively.Proof. Without loss of generality, assume that I = Lu ∩Lv = {1, . . . , i} is the set of i ≥ 0olours available for edges inident at both u and v and also that Lu\I = {i+1, . . . , t} andalso that Lv \ I = {t+1, . . . 2t− i}. Then, olour the edges (u, w1), . . . (u, wt) with 1, . . . , trespetively. Colour the edges (v, w1), . . . , (v, wi−1) with 2, . . . , i respetively. Colour theedges (v, wi) . . . , (v, wt−1) with t + 1, . . . , 2t− i respetively and (v, wt) with olour 1 (seeFigure 5.2). It an be seen that this olouring is proper and ayli. We all this shemealso olouring by shifting and use it as a subroutine in the olouring of partial 2-trees.We use this proedure (desribed in the proof of Lemma 5.5.2) in our olouring of2-trees, when the two endpoints u and v of a base edge e = (u, v), suh that |ext(e)| = k(k ≥ 2), do not neessarily have k ommon free olours. Note that the olouring whih59



CHAPTER 5. ACYCLIC EDGE COLOURING OF PARTIAL 2-TREESresults from applying Lemma 5.5.2, when t ≤ 2 and the lists Lu and Lv are idential isnot ayli. The olouring sheme desribed in the proof produes a proper and ayliolouring only if either the lists are distint or t ≥ 3.
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Figure 5.2: list ayli olouring of K2,t5.5.3 The olouring proedureWe may assume that the given graph is bionneted, sine an ayli olouring of anygraph an be obtained from the ayli olourings of its bionneted omponents using
a′(G) olours. First we prove the result for the lass T of 2-trees and then extend it, inthe next setion, to inlude all of P, the partial 2-trees. We use the following easy toverify fat repeatedly in our proofs.Observation 1. If G is a 2-tree, one an onstrut G from any arbitrary triangle of Gby repeatedly adding 2-ears aording to De�nition 5.4.1.We obtain a (∆ + 1)-ayli edge olouring of any 2-tree by an iterative olouringproedure whih inorporates more edges at eah stage into an existing partial olouringuntil the graph is fully oloured. There is in general more than one way in whih a 2-tree an be onstruted aording to De�nition 5.4.1. We �x one suh onstrution, andwith respet to it, de�ne a notion of level to lassify edges. The edges are introdued in60



5.5. BOUND FOR 2-TREESinreasing order of level number and oloured immediately. The proedure never altersthe olour of an edge one it has been assigned.We reonstrut the graph G by starting from any triangle T = {a, b, c} as mentionedin Observation 1, and building the graph ear by ear. We all this the base triangle orinitial triangle. Reall that ext(u, v) denotes the set of all 2-ears having (u, v) as its baseedge.We also assign a nonnegative integer value to eah edge e and all it the level of e anddenote it by level(e). Initially, the three edges of T are assigned level 0. The level numberis de�ned indutively. If e = (u, v) is any edge already added suh that level(e) = i, thenfor eah 2-ear (u, w, v) ∈ ext(u, v), we assign level(u, w) = level(w, v) = i + 1 and addthis 2-ear. In addition, we we follow the onvention that:
(a) edges are added in inreasing order of their level numbers and
(b) if (u, w, v) is a level i ear, then all (i + 1)-level ears of ext(u, w) appear ontiguously(the same holds for ext(w, v) also) with 2-ears of one set appearing immediately before orafter the 2-ears of the other set.This is the order in whih the edges are introdued and oloured. Figure 5.3 indiateshow the graph looks just prior to the addition of a set of level(i + 1) edges.In the following, we use ∆ to denote, always, the maximum degree of the urrentgraph (after adding the edges to be oloured at this step). The olouring proedure anbe summarised as follows.1. Colour the base triangle T = {ab, bc, ac} with the olours 1, 2, 3, respetively.2. Colour the level 1 edges in the order ext(a, b), followed by ext(b, c), and �nally

ext(a, c). We assume, without loss of generality, that |ext(a, b)| ≤ |ext(b, c)| ≤
|ext(a, c)|, where the notation |ext(u, v)| represents the number of ears having theedge (u, v) as its base edge.

• If |ext(a, b)| = 1, then olour the new edge inident to vertex a with olour 2(whih is free there) and the edge inident to b with the newly available olour(due to the inrease in ∆). If |ext(a, b)| = 2 olour aording to Lemma 5.5.2where La = {2, 4} and Lb = {3, 4}. If |ext(a, b)| ≥ 3 olour aording toLemma 5.5.1 using olours from {4, . . . , |ext(a, b)| + 3}. 61



CHAPTER 5. ACYCLIC EDGE COLOURING OF PARTIAL 2-TREES
• If |ext(b, c)| = 1, then olour the new edge inident to b with the newly avail-able olour (again due to inrease in ∆), and the edge inident to c with anymissing olour. If |ext(b, c)| = 2, ∆ inreases by 2. Let the two new oloursbe n1 and n2. Let α be some original olour missing at b. Colour ext(b, c)using Lemma 5.5.2, with Lb = {n1, α} and Lc = {n1, n2}. If |ext(b, c)| ≥ 3,then olour ext(b, c) using Lemma 5.5.1, sine there are |ext(b, c)| ommon freeolours (the set of new olours due to inrease in ∆).
• If |ext(a, c)| = 1, then, we know that |ext(a, b)| ≤ 1 and |ext(b, c)| ≤ 1. Thereader an verify that the olouring an be extended using the stipulated ∆ +

1 ≤ 5 olours. If |ext(a, c)| = 2, then either |ext(a, b)| = 2 and |ext(b, c)| = 2or ∆ inreases on aount of adding ext(a, c). In the former ase, there existnon-idential lists of two olours eah, missing at a and c. Colour ext(a, c)using Lemma 5.5.2 with these lists. In the latter ase, olour ext(a, c) usingLemma 5.5.2 where La = {α, n} and Lb = {β, n}. Here, α and β are distintolours missing at a and b respetively, while n is the new olour. If |ext(a, c)| ≥
3, olour ext(a, c) using Lemma 5.5.1 provided there is a list of |ext(a, c)|ommon free olours at a and c, and using Lemma 5.5.2 otherwise.3. For i ≥ 1, the proedure for olouring level-(i + 1) edges is as follows. Assumethat all edges up to level-i have already been added and oloured aylially (using

∆ + 1 olours). Assume that for some level i 2-ear, (u, w, v), we add the edges in
ext(u, w) followed by those in ext(w, v) in inrementally building the graph. Werefer to (u, w, v) as the base ear. Refer to Figure 5.3. Let the number of 2-earsin ext(u, w) and ext(w, v) be, respetively, k1 and k2. We assume, without loss ofgenerality, that k1 ≤ k2. Colour the new edges as desribed below, under olourextension.5.5.3.1 Colour extensionWe desribe below how to extend the olouring C to the newly added ears. The proedurefalls under a number of ases aording to the values of k1 and k2. We olour the ears in

ext(u, w) �rst and then those in ext(v, w). Let C(uw) = x and C(vw) = y and C(uv) =

a. Notie that sine we use ∆ + 1 olours, we have |Lu| ≥ k1 + 1, |Lv| ≥ k2 + 1 and62



5.5. BOUND FOR 2-TREES
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Figure 5.3: olour extension
|Lw| ≥ k1 + k2 + 1. One should also note that |Lu ∩ Lw| ≥ k1 at the point of beginningthe olouring of ext(u, w) (beause we olour ext(u, w) before olouring ext(v, w)). Reallthat k1 ≤ k2 as assumed before.In the olouring sheme below, we always olour the k1 ears in ext(u, w) by applyingLemma 5.5.1. It is worth realling from the proof of Lemma 5.5.1 that any maximalbihromati path in ext(u, w) has at least one endpoint distint from u and w. As aresult, the subsequent olouring of ears in ext(v, w) annot reate any bihromati ylepassing through ext(u, w).

• Case k1 = 0:If k2 = 1, olour the edge of the ear inident to w using C(uv) = a and other edgewith any olour from Lv \ {x}. Similarly if k2 = 2, olour one ear with 2 oloursfrom Lv \ {x} and the other ear with one of these olours and olour a. Otherwise,the k2 ears based on edge (v, w) are oloured using k2 olours from Lv \ {x}, asgiven in Lemma 5.5.1.
• Case k1 = 1:In this ase, we olor the single ear based on (u, w) with the olours a and someolour from Lu \ {y}. If k2 = 1, we olour the ear based on (v, w) properly, avoidingthe olour x. If k2 = 2, we olour the ears based on (v, w), using nonidential list ofolours, avoiding the olour x. If k2 ≥ 3, we pik a subset of k2 olours from Lv \{x}and a set of same size from Lw. Note that these sets might be idential or distint.63



CHAPTER 5. ACYCLIC EDGE COLOURING OF PARTIAL 2-TREESWe aordingly use the olouring proedure in Lemma 5.5.1 or Lemma 5.5.2 toextend the partial olouring.
• Case k1 = 2:In this ase, one of the ears based on (u, w) is oloured using 2 olours from Lu \
{y} while the other is oloured using a and one of these olours. If k2 = 2, wepik non-idential lists of olours and olour ext(v, w) using these lists aording toLemma 5.5.2. If k2 ≥ 3, for the ears based on (v, w), we pik a subset of k2 oloursfrom Lv\{x} and a set of the same size from Lw. If these sets are idential we extendthe olouring aording to Lemma 5.5.1, and otherwise aording to Lemma 5.5.2.

• Case k1 ≥ 3:In this ase, the ears based on (u, w) are oloured using k1 olours from Lu \ {y}.Observe that here, Lw ⊂ Lu \ {y}, so the seleted set of olours are free at bothendpoints of the ear set, thus enabling the appliation of Lemma 5.5.1. For the
ears based on (v, w), we pik a subset of olours from Lv \ {x} of ardinality k2 anda set of same size from Lw. We olour aording to Lemma 5.5.1 or Lemma 5.5.2,depending on whether these lists are idential or distint.We now need to argue that the new partial olouring obtained as a result of the olourextension proedure is proper and ayli, in eah of the four ases. However, we argue indetail only for the ase k1 ≥ 3. The arguments for the other ases are of a similar natureand are simpler.Prior to olouring ext(u, w) and ext(v, w), the graph is assumed to be oloured properlyand aylially. Observe that the olouring proedure of Lemma 5.5.1, never reatesbihromati yles in the graph indued by the edges of ext(u, w). From that lemma, it isalso lear that there is no maximal bihromati path involving the edges of ext(u, w) withendpoints as u and w. It follows that there is no bihromati yle using a ombinationof the old and new edges. Thus the olouring is proper and ayli after the addition of

ext(u, w).Now, ext(v, w) is oloured aording to Lemma 5.5.2, sine the list of available oloursavailable at v and w need not neessarily have k2 ommon olours. From the lemma, weknow that the edges of ext(v, w) do not indue any bihromati yles. We do not usethe olour x in ext(v, w), so any bihromati yle using edges of ext(v, w) must also use64



5.6. PARTIAL 2-TREESedges of ext(u, w). However, that is not possible, sine any bihromati path starting at
w and entering ext(u, w) terminates at a vertex in ext(u, w) distint from u and w. Thusthere is no bihromati yle using a ombination of old and new edges.5.6 Partial 2-treesHere, we extend the proof given above to partial 2-trees.Given any partial 2-tree T , we onsider any 2-tree G whih ontains T as a subgraph.We mark all the edges of G whih are not in T as imaginary edges. We use the imaginaryedges only to lassify the level of edges for the further addition of ears. They do notontribute to the degree of a vertex in G. They are never oloured. The important pointto notie is that, again we need only ∆(T ) + 1 olours to extend the partial olouringat any stage. As before, ∆(T ) refers to the maximum degree of the partial 2-tree at theurrent stage. An ear onsisting of two real edges is alled a full ear, while ears withone real edge and one imaginary edge are alled half ears. Observe that empty ears (bothedges are imaginary) are inonsequential, sine we do not olour them at all, and only usetheir endpoints for the addition of higher level ears.Suppose, at any point, we are to olour k1, k2 pairs of ears (some of them ould behalf ears). We notie that if there are k unoloured real edges at an endpoint, then wehave at least k + 1 available olours for the edges inident at the endpoint.Here, the ears having the same base edge (real or imaginary) are ordered with all thefull ears �rst followed by the half ears and �nally by the empty ears. Colour the full earsas mentioned earlier for 2-trees and extend the olouring to half ears in a proper fashion.It follows that suh a olouring is proper and ayli. It is idential to the ase of 2-trees,exept for the half ears. However, half ears only give rise to pendant edges and annotreate bihromati yles, so any proper olouring is su�ient. This ompletes the proofof Thorem 5.4.1 for partial 2-trees.5.7 Algorithmi aspetsOur proof that a partial 2-tree an be aylially oloured using ∆ + 1 olours, an bemade onstrutive yielding an e�ient algorithm to produe suh a olouring. 65



CHAPTER 5. ACYCLIC EDGE COLOURING OF PARTIAL 2-TREESThe proof onsists of a olouring proedure whih olours the set of edges onsideredin a spei� order. This naturally divides the proedure into two phases. In the �rstphase, the order of the edges is omputed. In the seond phase the edges are olouredonsidering them in this order. Stritly speaking, the edge order is a partial order, andnot a total order, sine we introdue them in bathes rather than one by one.By observation 1, we an onstrut the graph starting from any triangle. Finding atriangle in a graph an be done using a standard graph searhing algorithm like BreadthFirst Searh (BFS). Subsequent omputation of the edge order onsists of �nding the setof all ommon neighbours of the endpoints of eah base edge onsidered in inreasingorder of levels. This an be aomplished by a modi�ation of the basi BFS proedure.Our olouring of 2-trees begins with the olouring of the base triangle. At eah sub-sequent stage, a bipartite graph is oloured either in a very simple way or using one ofLemmas 5.5.1 and 5.5.2.The olouring of the initial triangle takes onstant time. The olouring is then ex-tended to inlude at eah stage the edges extending a �xed base edge. In order to performthis step, we need to ompute the list of available olours at eah of the endpoints of thebase edge. Prior to olouring an extension, omparison between these lists needs to bemade in order to determine the set of ommon olours and also the symmetri di�ereneof these lists. After these lists are omputed, we order the edges of the extension andassign olours to eah of the edges. The extension proedure an be performed at a ostof O(∆2) to the running time.A simple alulation then reveals that the entire graph an be oloured within O(n2)time. This is also an upper bound on the time taken to ompute the edge order of thewhole graph.5.8 Future diretionsThe work presented in this hapter has been submitted to a onferene. The referene is[MNS08℄. It would be interesting to extend these ideas and see if similar or even weakenedresults an be obtained for the partial k-trees for higher values of k. The results obtainedby similar methods is likely to yield bounds as a funtion of both ∆ and k, rather thanonly ∆. 66



Chapter 6Conlusions
6.1 SummaryIn this thesis, we studied the problem of ayli edge olouring of graphs. We introdueda new olouring idea and proved that a′(G) ≤ 4.52∆ for all graphs of girth g(G) ≥ 220.This improves the previous best bound of 16∆ for graphs with girth at least 220. This isa step towards obtaining tight bounds on a′(G).We also illustrated a general relationship between the girth of a graph and its aylihromati index, whih highlights the fat that aylially olouring a graph seems harderfor graphs with small yles.We obtained optimal or nearly optimal estimates on the ayli hromati index ofsome strutured lasses of graphs. For these lasses, we also provided e�ient algorithmsto onstrut the orresponding optimal olourings. The lasses of graphs for whih wehave obtained near optimal estimates on the ayli hromati index are grid-like graphs,partial 2-trees and outerplanar graphs (not in this thesis). This is interesting onsideringthat for other strutured lases like omplete graphs no optimal or near optimal estimateis known at present.We also orrelate a′(G) to the orresponding values of its prime fators under theartesian produt operation. Thus, tight bounds on the a′ of the prime fators of a graph
G, lead to reasonably tight bounds on a′(G) as well. Also, if the atual olourings of theprime fators an be omputed e�iently, then a olouring of the resultant graph an alsobe omputed e�iently by our method of proof. 67



CHAPTER 6. CONCLUSIONS6.2 Future diretionsIt is easy to see that a′(Kn) ≤ p, where p is the smallest prime greater than or equal to
n. But the gap between p and n ould be as large as √n for ertain values of n. So, itwould be interesting to obtain a ∆ + O(1) bound for Kn.It would also be interesting to obtain improved bounds for general lasses of graphs.If G is a partial torus isomorphi to the produt of a path and a number of odd yles,
a′(G) an take either of the values in {∆, ∆ + 1}. It would be interesting to see if we anlassify suh graphs for whih a′(G) = ∆ and also onstrut optimal olourings e�iently.It is quite possible that Conjeture 1.2.1 is true. Under this assumption, we knowthat the gap between the maximum degree of a graph and its ayli hromati indexis at most 2. Note that for any ∆-regular graph (∆ > 1), the gap is at least 1. Thus,by applying Theorem 4.3.1 repeatedly on suh graphs, the di�erene between the boundobtained and the maximum degree of the resultant graph inreases for eah additionalfator.Thus, assuming the truth of the onjeture, it is not possible to make a statement ofthe form a′(G2H) ≤ a′(G) + ∆(H). It would be interesting to �nd onditions on G and
H whih would enable us to make suh a statement.It is a hallenge to obtain onstrutive bounds better than the urrently best known
O(∆ log∆), for all graphs. It would be nie to improve the best known bound of 16∆ forall graphs.
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