Some explicit minimal graded free resolutions

By
Aaloka Kanhere
The Institute of Mathematical Sciences, Chennai.

A thesis submitted to the
Board of Studies in Mathematics

In partial fulfillment of the requirements
For the Degree of
DOCTOR OF PHILOSOPHY
of
HOMI BHABHA NATIONAL INSTITUTE

July 2008

Homi Bhabha National Institute

Recommendations of the Viva Voce Board

As members of the Viva Voce Board, we recommend that the dissertation prepared by Aaloka Kanhere entitled Some explicit minimal graded free resolutions may be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy.

Chairman: S.Kesavan
Date :
Convener : D.S.Nagaraj
Date :
Member 1: Clare D'Cruz
Date :
Member 2: K. N. Raghavan
\qquad

Date :

Member 3: P. Sankaran

Date :

Final approval and acceptance of this dissertation is contingent upon the candidate's submission of the final copies of the dissertation to HBNI.

I hereby certify that I have read this dissertation prepared under my direction and recommend that it may be accepted as fulfilling the dissertation requirement.

Date :

Guide: D.S.Nagaraj

DECLARATION

I, hereby declare that the investigation presented in the thesis has been carried out by me. The work is original and the work has not been submitted earlier as a whole or in part for a degree/diploma at this or any other Institution or University.

Aaloka Kanhere

To my parents and all my friends in IMSc and outside.

ACKNOWLEDGEMENTS

Firstly I want to thank Prof.D.S.Nagaraj, my supervisor for his guidance, the problems his suggested and most importantly for his constant support without which I would not have been writing this thesis. I would like to thank Prof. Tony Puthenpurakal for his encouragment and for suggesting some of the problems. I want to thank Prof. Clare D'Cruz for helping out with 'Singular' and for her useful observations which form the appendix of this thesis.

I would like to thank Dr. Arjit Dey for his patience with my doubts during my coursework and beyond. I want to thank all my seniors for their help during my coursework. A big 'Thank You' to all my friends in IMSc for the support and help they have given me. My stay in IMSc wouldn't have been as pleasurable without them.

I would like to thank The Institute of Mathematical Sciences for the fellowship that supported my graduate studies. I also want to thank the non-academic staff of the Institute for taking care of administrative details, which often were beyond their required duties.

Lastly I want to thank my parents and Arya for their moral support and confidence in me.

Abstract

This thesis has three parts. In the first part we take an irreducible curve \mathcal{C} in \mathbb{P}^{2}. Then we use the Veronese map, (σ) to map it to \mathbb{P}^{5} and compute the resolution of $\sigma(\mathcal{C})$.In the second part we look at reduced intersection of two distinct curves \mathcal{C} and \mathcal{C}^{\prime} in \mathbb{P}^{2}. And find the resolution of $\sigma\left(\mathcal{C} \cap \mathcal{C}^{\prime}\right)$. In the third part we compute explicit Differential graded algebra for one of the resolutions computed ealier.

\section*{Part 1}

Let \mathcal{C} be a smooth irreducible homogeneous curve in \mathbb{P}^{2}. Then we know that \mathcal{C} is given by zeros of an irreducible homogeneous polynomial in 3 -variables, i.e., $\mathcal{C}=$ $Z\left(f\left(x_{0}, x_{1}, x_{2}\right)\right), f \in K\left[x_{0}, x_{1}, x_{2}\right]$ is an irreducible homogeneous polynomial.

Consider the embedding on \mathbb{P}^{2} in \mathbb{P}^{5} via the Veronese embedding σ, where $\sigma(x, y, z)=$ $\left(x^{2}, x y, x z, y^{2}, y z, z^{2}\right)$, this also gives an embedding of \mathcal{C} in \mathbb{P}^{5}.

In this part of the thesis, we look at $S / \mathcal{I}_{\sigma(\mathcal{C})}$, the homogeneous coordinate ring of $\sigma(\mathcal{C})$ in \mathbb{P}^{5} and explicitly calculate the minimal graded free resolution of $S / \mathcal{I}_{\sigma(\mathcal{C})}$, where S is the homogeneous coordinate ring of \mathbb{P}^{5}.

Let the degree of \mathcal{C} in \mathbb{P}^{2} be d,i.e, \mathcal{C} be defined by an irreducible homogeneous polynomial, ' f ' of degree d in $K\left[x_{0}, x_{1}, x_{2}\right]$. Depending on the parity of d, we get the following two results.

Theorem 1: Let \mathcal{C} be an irreducible curve of even degree say $d=2 m, m \geq 1$. The homogeneous coordinate ring $S / \mathcal{I}_{\sigma(\mathcal{C})}$ of $\sigma(\mathcal{C})$ in \mathbb{P}^{5} has the following minimal graded free resolution: $$
\begin{aligned} 0 \rightarrow S(-m-4)^{\oplus 3} \xrightarrow{\alpha_{4}} S(-4)^{\oplus 3} \oplus S(-m-3)^{\oplus 8} \xrightarrow{\alpha_{3}} \\ \quad \xrightarrow{\alpha_{3}} S(-3)^{\oplus 8} \oplus S(-m-2)^{\oplus 6} \xrightarrow{\alpha_{2}} S(-2)^{\oplus 6} \oplus S(-m) \xrightarrow{\alpha_{1}} S \rightarrow S / \mathcal{I}_{\sigma(\mathcal{C})} \rightarrow 0 \end{aligned}
$$

where α_{i} 's are matrices of homogeneous polynomial entries with no non-zero scalars [See Section 2.1]

Theorem 2: Let \mathcal{C} be an irreducible curve of odd degree say $d=2 m-1$, for $m \geq 2$. The homogeneous coordinate ring $S / \mathcal{I}_{\sigma(\mathcal{C})}$ of $\sigma(\mathcal{C})$ in \mathbb{P}^{5} has the following minimal graded free resolution:

$$
\begin{aligned}
& 0 \rightarrow S(-m-4) \xrightarrow{\beta_{4}} S(-4)^{\oplus 3} \oplus S(-m-2)^{\oplus 6} \xrightarrow{\beta_{3}} \\
& \xrightarrow{\beta_{3}} S(-3)^{\oplus 8} \oplus S(-m-1)^{\oplus 8} \xrightarrow{\beta_{2}} S(-2)^{\oplus 6} \oplus S^{\oplus 3}(-m) \xrightarrow{\beta_{1}} S \rightarrow S / \mathcal{I}_{\sigma(\mathcal{C})} \rightarrow 0
\end{aligned}
$$

where β_{i} 's are matrices of homogeneous polynomial entries with no non-zero scalars [See Section 2.2]

Corollary 1: Let \mathcal{C} be a smooth, irreducible plane curve of degree d and L be the line bundle $\mathcal{O}_{\mathcal{C}}(2)$.
(a) $S / \mathcal{I}_{\sigma(\mathcal{C})}$ is Gorenstein if ' d ' is odd and when ' d ' is even $S / \mathcal{I}_{\sigma(\mathcal{C})}$ is Cohen-Maculay but not Gorenstein.
(b) (\mathcal{C}, L) satisfies property N_{0} for all $d \geq 2$.
(c) (\mathcal{C}, L) satisfies N_{1} iff $d=3,4$.

Part 2

Consider two distinct irreducible plane projective curves, \mathcal{C} and \mathcal{C}^{\prime} of degrees d and d^{\prime} respectively. Then by Bezout's theorem we know that \mathcal{C} and \mathcal{C}^{\prime} intersect at $d . d^{\prime}$ points
counted with multiplicity.
In the second problem, we explicitly write down the minimal graded free resolution of $S / \mathcal{I}_{\sigma\left(\mathcal{C} \cap \mathcal{C}^{\prime}\right)}$, where $\mathcal{I}_{\sigma\left(\mathcal{C} \cap \mathcal{C}^{\prime}\right)}$ is the ideal sheaf of $\sigma\left(\mathcal{C} \cap \mathcal{C}^{\prime}\right)$. Depending on the parities of d and d^{\prime}, we get the following three results.

Theorem 3: Let $\mathcal{C}, \mathcal{C}^{\prime}$ be two irreducible curves of even degree say $d=2 m$ and $d^{\prime}=2 m^{\prime}, m, m^{\prime} \geq 1$. The homogeneous coordinate ring $S / \mathcal{I}_{\sigma\left(\mathcal{C} \cap \mathcal{C}^{\prime}\right)}$ of $\sigma\left(\mathcal{C} \cap \mathcal{C}^{\prime}\right)$ in \mathbb{P}^{5} has the following minimal graded free resolution.

$$
\begin{aligned}
0 \rightarrow & S\left(-m-m^{\prime}-4\right)^{\oplus 3} \xrightarrow{\mathcal{P}_{5}} S(-m-4)^{\oplus 3} \oplus S\left(-m^{\prime}-4\right)^{\oplus 3} \oplus S\left(-m-m^{\prime}-3\right)^{\oplus 8} \xrightarrow{\mathcal{P}_{4}} \\
& \xrightarrow{\mathcal{P}_{4}} S(-4)^{\oplus 3} \oplus S(-m-3)^{\oplus 8} \oplus S\left(-m^{\prime}-3\right)^{\oplus 8} \oplus S\left(-m-m^{\prime}-2\right)^{\oplus 6} \xrightarrow{\mathcal{P}_{3}} \\
& \xrightarrow{\mathcal{P}_{3}} S(-3)^{\oplus 8} \oplus S(-m-2)^{\oplus 6} \oplus S\left(-m^{\prime}-2\right)^{\oplus 6} \oplus S\left(-m-m^{\prime}\right) \xrightarrow{\mathcal{P}_{2}} \\
& \xrightarrow{\mathcal{P}_{2}} S(-2)^{\oplus 6} \oplus S(-m) \oplus S\left(-m^{\prime}\right) \xrightarrow{\mathcal{P}_{1}} S \rightarrow S / \mathcal{I}_{\sigma\left(\mathcal{C} \cap \mathcal{C}^{\prime}\right)} \rightarrow 0
\end{aligned}
$$

where \mathcal{P}_{i} 's are matrices with homogeneous polynomial entries with no non-zero scalars[See Section 3.1]

Theorem 4: Let $\mathcal{C}, \mathcal{C}^{\prime}$ be two irreducible curves of degrees say $d=2 m$ and $d^{\prime}=$ $2 m^{\prime}-1, m, m^{\prime} \geq 2$. Then the homogeneous coordinate ring $S / \mathcal{I}_{\sigma\left(\mathcal{C} \cap \mathcal{C}^{\prime}\right)}$ of $\sigma\left(\mathcal{C} \cap \mathcal{C}^{\prime}\right)$ in \mathbb{P}^{5} has the following minimal graded free resolution.

$$
\begin{aligned}
0 \rightarrow & S\left(-m-m^{\prime}-4\right) \xrightarrow{\mathcal{Q}_{5}} S(-m-4)^{\oplus 3} \oplus S\left(-m^{\prime}-4\right) \oplus S\left(-m-m^{\prime}-2\right)^{\oplus 6} \xrightarrow{\mathcal{Q}_{4}} \\
& \xrightarrow{\mathcal{Q}_{4}} S(-4)^{\oplus 3} \oplus S(-m-3)^{\oplus 8} \oplus S\left(-m^{\prime}-2\right)^{\oplus 6} \oplus S\left(-m-m^{\prime}-1\right)^{\oplus 8} \xrightarrow{\mathcal{Q}_{3}} \\
& \xrightarrow{\mathcal{Q}_{3}} S(-3)^{\oplus 8} \oplus S(-m-2)^{\oplus 6} \oplus S\left(-m^{\prime}-1\right)^{\oplus 8} \oplus S\left(-m-m^{\prime}\right)^{\oplus 3} \xrightarrow{\mathcal{Q}_{2}} \\
& \xrightarrow{\mathcal{Q}_{2}} S(-2)^{\oplus 6} \oplus S(-m) \oplus S\left(-m^{\prime}\right)^{\oplus 3} \xrightarrow{\mathcal{Q}_{1}} S \rightarrow S / \mathcal{I}_{\sigma\left(\mathcal{C} \cap \mathcal{C}^{\prime}\right)} \rightarrow 0
\end{aligned}
$$

where \mathcal{Q}_{i} 's are matrices with homogeneous polynomial entries with no non-zero scalars[See Section 3.2]

Theorem 5: Let \mathcal{C} and \mathcal{C}^{\prime} be two irreducible plane curves of odd degree say $d=2 m-1$ and $d^{\prime}=2 m^{\prime}-1$ for $m, m^{\prime} \geq 2$. The coordinate ring $S / \mathcal{I}_{\sigma\left(\mathcal{C} \cap \mathcal{C}^{\prime}\right)}$ of $\sigma\left(\mathcal{C} \cap \mathcal{C}^{\prime}\right)$ in \mathbb{P}^{5} has the following minimal graded free resolution.

$$
\begin{aligned}
0 \rightarrow & S\left(-m-m^{\prime}-3\right)^{\oplus 3} \xrightarrow{\mathcal{R}_{5}} S(-m-4) \oplus S\left(-m^{\prime}-4\right) \oplus S\left(-m-m^{\prime}-2\right)^{\oplus 8} \xrightarrow{\mathcal{R}_{4}} \\
& \xrightarrow[\rightarrow]{\mathcal{R}_{4}} S(-4)^{\oplus 3} \oplus S(-m-2)^{\oplus 6} \oplus S\left(-m^{\prime}-2\right)^{\oplus 6} \oplus S\left(-m-m^{\prime}-1\right)^{\oplus 6} \xrightarrow{\mathcal{R}_{3}} \\
& \xrightarrow{\mathcal{R}_{3}} S(-3)^{\oplus 8} \oplus S(-m-1)^{\oplus 8} \oplus S\left(-m^{\prime}-1\right)^{\oplus 8} \oplus S\left(-m-m^{\prime}+1\right) \xrightarrow{\mathcal{R}_{2}} \\
& \xrightarrow{\boldsymbol{R}_{2}} S(-2)^{\oplus 6} \oplus S(-m)^{\oplus 3} \oplus S\left(-m^{\prime}\right)^{\oplus 3} \xrightarrow{\mathcal{R}_{1}} S \rightarrow S / \mathcal{I}_{\sigma\left(\mathcal{C}^{\prime} \mathcal{C}^{\prime}\right)} \rightarrow 0
\end{aligned}
$$

where \mathcal{R}_{i} 's are matrices with homogeneous polynomial entries with no non-zero scalars[See Section 3.3]

Corollary 2: $S / \mathcal{I}_{\sigma\left(\mathcal{C} \cap \mathcal{C}^{\prime}\right)}$ is Gorenstein if degrees of \mathcal{C} and \mathcal{C}^{\prime} are of different parities and is Cohen-Maculay but not Gorenstein otherwise.

Part 3

Consider the resolution in Theorem 2. Namely,

$$
\begin{aligned}
0 \rightarrow S(-m-4) \xrightarrow{\beta_{4}} S(-4)^{\oplus 3} \oplus S(-m-2)^{\oplus 6} \xrightarrow{\beta_{3}} \\
\quad \xrightarrow{\beta_{3}} S(-3)^{\oplus 8} \oplus S(-m-1)^{\oplus 8} \xrightarrow{\beta_{2}} S(-2)^{\oplus 6} \oplus S^{\oplus 3}(-m) \xrightarrow{\beta_{1}} S \rightarrow S / \mathcal{I}_{\sigma(\mathcal{C})} \rightarrow 0
\end{aligned}
$$

Then

$$
\begin{aligned}
& \mathbf{P} \bullet .0 \rightarrow S(-m-4) \xrightarrow{\beta_{4}} S(-4)^{\oplus 3} \oplus S(-m-2)^{\oplus 6} \xrightarrow{\beta_{3}} \\
& \quad \xrightarrow{\beta_{3}} S(-3)^{\oplus 8} \oplus S(-m-1)^{\oplus 8} \xrightarrow{\beta_{2}} S(-2)^{\oplus 6} \oplus S^{\oplus 3}(-m) \xrightarrow{\beta_{1}} S \rightarrow S / \mathcal{I}_{\sigma(\mathcal{C})} \rightarrow 0
\end{aligned}
$$

is a symmetric acyclic complex.
In $[\mathrm{KM}$], the author proves that any length 4, symmetric resolution has a DG Algebra structure. Hence the above resolution has a DG Algebra structure.

Theorem 3.1: We give an explicit DG Algebra structure to the above acyclic complex P•

Contents

1 Preliminaries 1
1.1 The d-Uple embedding 1
1.2 Syzygies and minimal free resolutions 3
$1.3 \quad N_{p}$-property 5
1.4 Differential graded(DG) algebras 6
2 Resolutions of plane curves in the Veronese embedding. 9
2.1 Degree of \mathcal{C} is even 11
2.2 Degree of \mathcal{C} is odd 15
2.3 Some remarks on N_{p} properties on plane curves under Veronese embedding 21
3 Resolutions of Veronese embedding of complete intersections of curves in the plane. 25
3.1 Degrees of \mathcal{C} and \mathcal{C}^{\prime} are even. 27
3.2 Degree of \mathcal{C} is even and degree of \mathcal{C}^{\prime} is odd 32
3.3 Degrees of \mathcal{C} and \mathcal{C}^{\prime} are odd 37
4 DG -Algebra 43
4.1 Defining (*) 45
4.2 Associativity 48
4.3 Defining ∂ 49
5 Appendix 53

Preliminaries

1.1 The d-Uple embedding

Let \mathbb{P}^{n} be n-dimensional projective space over a field K. Then for $d>0$, we can define a map $\sigma_{d}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{N}$, where $N=\binom{n+d}{n}-1$, such that for $\bar{P} \in \mathbb{P}^{n}$,

$$
\sigma_{d}(\bar{P})=\left(M_{0}(\bar{P}), \ldots, M_{N}(\bar{P})\right)
$$

where M_{i} 's are degree d monomials which form a basis of the vector space of all homogeneous polynomials of degree d in $n+1$ variables.

This map which is an embedding, is called the d-Uple embedding.
Now for n and N as above define a map, θ such that

$$
\begin{gathered}
\theta \quad: \quad K\left[y_{0}, \ldots, y_{N}\right] \rightarrow K\left[x_{0}, \ldots, x_{n}\right] \\
\\
\theta\left(y_{i}\right)=M_{i}\left(x_{0}, \ldots, x_{n}\right)
\end{gathered}
$$

Then $\operatorname{ker} \theta$ is a homogeneous prime ideal of $K\left[y_{0}, \ldots, y_{N}\right]$ and $Z(\operatorname{ker}(\theta))$ is a projective variety of \mathbb{P}^{N} and $Z(\operatorname{ker}(\theta))=\sigma_{d}\left(\mathbb{P}^{n}\right)$.(See $[\mathrm{H}]$ for proof of the statement.)

The 2-uple embedding of \mathbb{P}^{2} is called the Veronese Embedding, and $\sigma_{2}\left(\mathbb{P}^{2}\right)$ is called the Veronese Surface. Now let us look at the map θ with $n=2$ and $N=5$. So we have

$$
\theta: \quad K\left[y_{0}, \ldots, y_{5}\right] \rightarrow K\left[x_{0}, x_{1}, x_{2}\right]
$$

To see this map more clearly, we will change the notations.
Let us denote, $K\left[y_{0}, \ldots, y_{5}\right]$ as $K\left[x_{00}, x_{01}, x_{02}, x_{11}, x_{12}, x_{22}\right]$ and

$$
\theta\left(x_{i j}\right)=x_{i} \cdot x_{j} \text { for } 0 \leq i \leq j \leq 2
$$

Then we see that $\operatorname{ker}(\theta)=\left\langle\Delta_{i j} \quad: \quad 0 \leq i \leq j \leq 2\right\rangle$, where

$$
\begin{align*}
\Delta_{00} & =x_{11} x_{22}-x_{12}^{2} \\
\Delta_{01} & =x_{01} x_{22}-x_{12} x_{02} \\
\Delta_{02} & =x_{01} x_{12}-x_{02} x_{11} \\
\Delta_{11} & =x_{00} x_{22}-x_{02}^{2} \tag{1.1}\\
\Delta_{12} & =x_{00} x_{12}-x_{02} x_{01} \\
\Delta_{22} & =x_{00} x_{11}-x_{01}^{2}
\end{align*}
$$

CHAPTER 1. PRELIMINARIES

Hence we get that, $\left\{\Delta_{i j}=0: 0 \leq i \leq j \leq 2\right\}$ are the 6 defining equations of the Veronese Surface; In fact $Z(\operatorname{ker}(\theta))=\sigma\left(\mathbb{P}^{2}\right)$ as a projective subvariety of \mathbb{P}^{5}

1.2 Syzygies and minimal free resolutions

Note that as we will only look at homogeneous coordinate rings of projective varieties and finitely generated modules over them, our definitions and notations will be adapted accordingly. We know that the homogeneous coordinate ring of the projective space, \mathbb{P}_{K}^{n} is the polynomial ring, $S=K\left[x_{0}, \ldots, x_{n}\right]$ in $n+1$ variables, with all the variables of degree one.

Let $M=\oplus_{d \in \mathbb{Z}} M_{d}$ be a finitely generated graded S-module with the $d^{\text {th }}$ graded component M_{d}. Now as M is finitely generated, each M_{d} is finite dimensional K-vector space.
For any graded module, $M, M(a)$ is the module M shifted(or 'twisted') by a, where $a \in \mathbb{Z}$:

$$
M(a)_{d}=M_{a+d}
$$

A module M over a graded ring S is called graded free S-module if M is decomposable as a direct sum of free S modules: $M=\oplus_{i} S\left(a_{i}\right)$.

Given homogeneous elements $m_{i} \in M$ of degree a_{i} that generate M as an S-module, we define a map from graded free S module $F_{0}=\oplus_{i} S\left(-a_{i}\right)$ onto M, by sending the $a_{i}{ }^{\text {th }}$ degree generators to m_{i}. Now if N is the kernel of this map, then the elements of N are called syzygies of M. We also know that N is finitely generated graded S-module, hence we can define a map onto N from another graded free S-module, F_{1} in same way. Continuing this way we can construct a sequence of maps of graded free module. This sequence is called a graded free resolution of M.

A complex of graded S-modules

$$
\ldots \rightarrow F_{i} \xrightarrow{\delta_{i}} F_{i-1} \rightarrow \ldots
$$

is called minimal if for each $i, \delta_{i}\left(F_{i}\right) \subset \boldsymbol{m} F_{i-1}$, where $\boldsymbol{m}=\left(x_{0}, \ldots, x_{n}\right)$, the only homogeneous maximal ideal of S.

Now we are in a position to state a theorem, which we will use extensively in the first two problems.

Theorem 1.1[OP]: The homogenous coordinate ring $S / \mathcal{I}_{\sigma\left(\mathbb{P}^{2}\right)}$ of $\sigma\left(\mathbb{P}^{2}\right)$ in \mathbb{P}^{5} has the following minimal graded free resolution:

$$
\begin{equation*}
0 \rightarrow S(-4)^{\oplus 3} \xrightarrow{M_{3}} S(-3)^{\oplus 8} \xrightarrow{M_{2}} S(-2)^{\oplus 6} \xrightarrow{M_{1}} S \rightarrow S / \mathcal{I}_{\sigma\left(\mathbb{P}^{2}\right)} \rightarrow 0 \tag{1.2}
\end{equation*}
$$

where,

$$
M_{1}=\left[\begin{array}{llllll}
\Delta_{00}, & \Delta_{01}, & \Delta_{02},, & \Delta_{11}, & \Delta_{12}, & \Delta_{22} \tag{1.3}
\end{array}\right]
$$

CHAPTER 1. PRELIMINARIES

$$
M_{2}=\left[\begin{array}{cccccccc}
x_{02} & 0 & x_{01} & 0 & 0 & x_{00} & 0 & 0 \\
-x_{12} & x_{02} & -x_{11} & x_{01} & 0 & 0 & x_{00} & 0 \\
x_{22} & 0 & x_{12} & x_{02} & x_{01} & x_{02} & 0 & x_{00} \\
0 & -x_{12} & 0 & -x_{11} & 0 & -x_{11} & -x_{01} & 0 \\
0 & x_{22} & 0 & 0 & -x_{11} & x_{12} & x_{02} & -x_{01} \\
0 & 0 & 0 & x_{22} & x_{12} & 0 & 0 & x_{02}
\end{array}\right] \text { (1.4) }
$$

and let

$$
M_{2}=\left[\begin{array}{lllllll}
W_{1}, & W_{2}, \quad W_{3}, \quad W_{4}, \quad W_{5}, \quad W_{6}, \quad W_{7}, \quad W_{8}
\end{array}\right]
$$

$$
M_{3}=\left[\begin{array}{ccc}
x_{01} & -x_{00} & 0 \tag{1.5}\\
-x_{11} & x_{01} & 0 \\
-x_{02} & 0 & x_{00} \\
x_{12} & -x_{02} & 0 \\
-x_{22} & 0 & x_{02} \\
0 & x_{02} & -x_{01} \\
0 & -x_{12} & x_{11} \\
0 & x_{22} & -x_{12}
\end{array}\right]
$$

and let

$$
M_{3}=\left[\begin{array}{lll}
G_{1}, & G_{2}, & G_{3}
\end{array}\right]
$$

$1.3 N_{p}$-property

Let X be a smooth irreducible projective curve of genus g and L be an very ample line bundle on X generated by global sections. Thus L determines a morphism

$$
\Phi_{L}: \quad X \longrightarrow \mathbb{P}\left(H^{0}(L)\right)=\mathbb{P}^{r}
$$

where $r=\operatorname{dim}\left(H^{0}(L)\right)-1$. If L is very ample then Φ_{L} is an embedding.
Let S denote the symmetric algebra, $\operatorname{Sym} \cdot H^{0}(L)$ on $H^{0}(L)$. So S is a homogeneous coordinate ring of \mathbb{P}^{r}. Consider the graded ring

$$
R=R(L)=\oplus_{m} H^{0}\left(X, L^{m}\right)
$$

associated to L. Then R is in a natural way a finitely generated module over S, and so we can talk about its minimal graded free resolution. $F_{\bullet} \rightarrow R \rightarrow 0$ of R; i.e.,

$$
\begin{equation*}
0 \rightarrow F_{r-1} \xrightarrow{f_{r-1}} \ldots \rightarrow F_{1} \xrightarrow{f_{1}} F_{0} \rightarrow R \rightarrow 0 \tag{1.6}
\end{equation*}
$$

is exact where each F_{i} is a direct sum of twists of S, that is,

$$
F_{i}=\oplus_{j} S\left(-a_{i, j}\right),
$$

and hence in particular the maps in equation(1.6) are given by matrices of homogeneous forms. Minimality in this context means that none of the entries in these matrices are non-zero constants.

Definition: [L] For a integer $p \geq 0$, we say that the line bundle L satisfies Property $\left(N_{p}\right)$ if

$$
F_{0}(L)=S \text { and } F_{i}(L)=\oplus S(-i-1) \text { for all } 1 \leq i \leq p
$$

The above definition means the following:

L satifies N_{0}	\Longrightarrow	Φ_{L} embeds X as a projectively normal curve; L satifies N_{1} L satisfies $N_{2}$$\Longrightarrow \quad$$N_{0}$ holds for L, and the homogeneous ideal I of X is generated by quadrics; N_{0} and N_{1} hold for X, and the module of syzygies among the quadrics generators $Q_{i} \in \mathcal{I}$ is spanned by relations of the form
$\sum_{\text {the }} L_{i} Q_{i}=0$ where the L_{i} are linear polynomials;		
\vdots	$\Longrightarrow \quad$$L$ satisfies N_{p-1} and the syzygies amongst the generators of F_{p-1} are linear polynomials	

CHAPTER 1. PRELIMINARIES

1.4 Differential graded(DG) algebras

Let S be a commutative ring.

Let

$$
\text { P. } \quad \ldots \quad \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow 0
$$

be an acyclic complex of projective S-modules with $P_{0}=S$. We can consider \mathbf{P}. as a graded module equipped with an endomorphism, $\partial: \mathbf{P}_{\bullet} \rightarrow \mathbf{P}$ • of degree -1 satisfying $\partial \circ \partial=0$.
In $[\mathrm{BH}]$, the authors give the following definition.
The resolution, $\left(\mathbf{P}_{\bullet}, \delta\right)$ is said to be a Differential $\operatorname{graded}(D G)$ algebra (or is said to have a DG algebra structure) if we can define an associative multiplication on \mathbf{P}. satisfying the following conditions,
(i) $P_{n} . P_{m} \subset P_{n+m} \quad \forall n, m \geq 0$;
(ii) $1 \in P_{0} \quad$ acts as the unit element i.e $\quad 1 . a=a .1=a \quad \forall a \in \mathbf{P}_{\bullet}$;
(iii) $a \cdot b=(-1)^{\operatorname{deg}(a) \cdot \operatorname{deg}(b)} b \cdot a$, for all homogeneous elements, $a, b \in \mathbf{P}_{\bullet}$;
(iv) $a \cdot a=0$ for all odd degree elements, a;
(v) $\partial(a . b)=\partial(a) \cdot b+(-1)^{\operatorname{deg}(a)} a \cdot \partial(b)$, for all homogeneous elements $a, b \in \mathbf{P}_{\text {. }}$.

Proposition:[A] If A is a projective resolution of a R-module, M, such that $A_{0}=R$ and $A_{n}=0$ for $n \geq 4$, then A has a structure of DG algebra.

Recall the resolution used in the previous section.

$$
0 \rightarrow S(-4)^{\oplus 3} \xrightarrow{M_{3}} S(-3)^{\oplus 8} \xrightarrow{M_{2}} S(-2)^{\oplus 6} \xrightarrow{M_{1}} S \rightarrow S / \mathcal{I}_{\sigma\left(\mathbb{P}^{2}\right)} \rightarrow 0
$$

Let us call the above resolution $\mathbf{P}_{\text {. }}$. Notice that this resolution is of length 3, and hence by the earlier proposition this can be given a DG-algebra structure.
So we have $\mathbf{P}_{\bullet}: 0 \rightarrow P_{3} \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0}=S \rightarrow 0$ where,
$\operatorname{rank}\left(P_{1}\right)=6$, with $\left\{e_{i} \quad: \quad i=1, \ldots, 6\right\}$ as the basis of P_{1}
$\operatorname{rank}\left(P_{2}\right)=8$, with $\left\{e_{w_{s}}: s=1, \ldots, 8\right\}$ as the basis of P_{2}
$\operatorname{rank}\left(P_{3}\right)=3$, with $\left\{e_{g_{t}} \quad: \quad t=1,2,3\right\}$ as the basis of P_{3}.
Now with the following conditions,
(i) $\quad e_{i} \cdot e_{j}=\sum_{s=1, \ldots, 8} A_{i, j_{s}} e_{w_{s}}$
(ii) $\quad e_{i} \cdot e_{w_{s}}=\sum_{t=1,2,3} B_{i, s_{t}} \cdot e_{g_{t}}$
(iii) $e_{i} \cdot e_{g_{t}}=0 \quad \forall \quad i=1, \ldots, 6 \quad$ and $\quad t=1,2,3$
(iv) $\quad e_{w_{s}} \cdot e_{w_{t}}=0 \quad \forall \quad s, t=1, \ldots, 8$
(v) $\quad \begin{aligned} & \partial\left(e_{2 i+j+1}\right)= \\ & \partial\left(e_{6}\right)= \\ & \Delta_{i j}\end{aligned} \quad i \neq 2,0 \leq i \leq j \leq 2$
(vi) $\partial\left(e_{w_{s}}\right)=\sum_{i=1, \ldots, 6} W_{s_{i}} \cdot e_{i}$
(vii) $\partial\left(e_{g_{t}}\right)=\sum_{s=1, \ldots, 8}(-1)^{t+1} G_{t_{s}} \cdot e_{w_{s}}$,

1.4. DIFFERENTIAL GRADED(DG) ALGEBRAS

and with $\left[A_{i, j}\right],\left[B_{i, j}\right]$ matrices from Chapter 4 , we can check that \mathbf{P}_{\bullet} is a DG-algebra. These structure will be used extensively in the third part of this thesis.

Resolutions of plane curves in the Veronese embedding.

Recall from chapter 1 , that the map
$x_{i j} \mapsto x_{i} . x_{j}$ for $0 \leq i \leq j \leq 2$ induces a homomorphism
$\theta: \quad K\left[x_{00}, x_{01}, x_{02}, x_{11}, x_{12}, x_{22}\right] \rightarrow K\left[x_{0}, x_{1}, x_{2}\right]$ of graded rings
From this we get the following lemma.
Lemma 2.1: If $g \in K\left[x_{0}, x_{1}, x_{2}\right]$ is a homogeneous polynomial of even degree(say $2 n)$. Then $g \in \operatorname{Im}(\theta)$, which means that the subalgebra $\operatorname{Im}(\theta)$ of $K\left[x_{0}, x_{1}, x_{2}\right]$ is generated by even polynomials.
Proof: Let

$$
\begin{equation*}
g=\sum_{i+j+k=2 n} b_{i j k} x_{0}^{i} x_{1}^{j} x_{2}^{k} \tag{2.1}
\end{equation*}
$$

Depending on the parities of i, j, k, we define some homogeneous polynomials in S using the coefficients $b_{i j k}$ appearing in (2.1) i.e., $g=g^{I}+g^{I I}+g^{I I I}+g^{I V}$ with;

$$
\begin{aligned}
g^{I}= & \sum_{\substack{i+j+k=2 n, i, j, k \text { all even }}} b_{i j k} x_{0}^{i} x_{1}^{j} x_{2}^{k} \\
g^{I I}= & \sum_{\substack{i+j+k=2 n, i \text { even, } j, k \text { odd }}} b_{i j k} x_{0}^{i} x_{1}^{j} x_{2}^{k} \\
g^{I I I}= & \sum_{\substack{i+j+k=2 n, j \text { even } i, k \text { odd }}} b_{i j k} x_{0}^{i} x_{1}^{j} x_{2}^{k} \\
g^{I V}= & \sum_{\substack{i+j+k=2 n, k \text { even, } i, j \text { odd }}} b_{i j k} x_{0}^{i} x_{1}^{j} x_{2}^{k}
\end{aligned}
$$

Case I : When i, j, k are all even, consider

$$
G^{I}=\sum_{\substack{i+j+k=d \\ i, j, k \text { even }}} b_{i j k} x_{00}^{\frac{i}{2}} x_{11}^{\frac{j}{2}} x_{22}^{\frac{k}{2}}
$$

Notice that $\theta\left(G^{I}\right)=g^{I}$

CHAPTER 2. RESOLUTIONS OF PLANE CURVES IN THE VERONESE

EMBEDDING.

Case $I I$: When i is even, j and k odd, consider

$$
G^{I I}=\sum_{\substack{i+j+k=2 n \\ \text { i. even } \\ j, k \text { odd }}} b_{i j k} x_{00}^{\frac{i}{2}} x_{11}^{\frac{j-1}{2}} x_{22}^{\frac{k-1}{2}} x_{12}
$$

Similarly as in Case $I, \theta\left(G^{I I}\right)=g^{I I}$
Case III: When i, k are odd and j is even, consider

$$
G^{I I I}=\sum_{\substack{i+j+k=2 n \\ j \text { even } \\ i, k \text { ond }}} b_{i j k} x_{00}^{\frac{i-1}{2}} x_{11}^{\frac{j}{2}} x_{22}^{\frac{k-1}{2}} x_{02}
$$

$\theta\left(G^{I I I}\right)=g^{I I I}$
Case IV: When i, j are odd and k is even consider,

$$
G^{I V}=\sum_{\substack{i j+k=2 n \\ k \text { even } \\ i, \text { edd }}} b_{i j k} x_{00}^{\frac{i-1}{2}} x_{11}^{\frac{j-1}{2}} x_{22}^{\frac{k}{2}} x_{01}
$$

$\theta\left(G^{I V}\right)=g^{I V}$
Now let

$$
G=G^{I}+G^{I I}+G^{I I I}+G^{I V}
$$

Then $\theta(G)=g$.
Hence $g \in \operatorname{Im}(\theta)$.
From Section (1.1), we also know that for the embedding, $\mathbb{P}^{2} \stackrel{\sigma}{\hookrightarrow} \mathbb{P}^{5}, \mathbb{Z}(\operatorname{ker}(\theta))=$ $\sigma\left(\mathbb{P}^{2}\right)$.
Let \mathcal{C} be a smooth(or irreducible) plane curve. Hence \mathcal{C} is given by a irreducible polynomial in three variables. The Veronese embedding of \mathbb{P}^{2} in \mathbb{P}^{5} gives an embedding $\mathcal{C} \stackrel{\sigma}{\hookrightarrow} \mathbb{P}^{5}$. We will compute the syzygies of the homogeneous ideal $\mathcal{I}_{\sigma(\mathcal{C})}$ of this embedding of \mathcal{C} in \mathbb{P}^{5} using the resolution of the Veronese embedding talked about in Chapter 1. Let \mathcal{C} be defined by the polynomial f of degree d in three variables. Let

$$
\mathcal{C}=Z\left(f\left(x_{0}, x_{1}, x_{2}\right)\right) \text { where, } f=\sum_{i+j+k=d} a_{i j k} x_{0}^{i} x_{1}^{j} x_{2}^{k}
$$

2.1 Degree of \mathcal{C} is even

We have d is even(say $2 m$) and

$$
f=\sum_{i+j+k=2 m} a_{i j k} x_{0}^{i} x_{1}^{j} x_{2}^{k}
$$

From Lemma 2.1, we get that $f \in \operatorname{Im}(\theta)$. Let F be a homogeneous polynomial in S such that $\theta(F)=f$.

Lemma 2.2: Let $G \in S$ such that, G homogeneous and $Z(\theta(F)) \subset Z(\theta(G)) \subset \mathbb{P}^{2}$. Then $G \in<F, \Delta_{i, j}: 0 \leq i \leq j \leq 2>$, where $\left\langle F, \Delta_{i j}: 0 \leq i \leq j \leq 2\right\rangle$ is the homogeneous ideal generated by F and $\Delta_{i j}$ in S. i.e is
Proof: Let $\theta(G)=g$, then g is a homogeneous polynomial of even degree and,

$$
Z(f) \subset Z(g)
$$

Hence $g \in(f)$. As \mathcal{C} is an irreducible curve f is irreducible, hence,

$$
g=f . h \text { for some } h \text { homogeneous in } K\left[x_{0}, x_{1}, x_{2}\right]
$$

Now f and g are even degree implies that h is of even degree hence, by Lemma(2.1) we can find a homogeneous $H \in S$, such that $\theta(H)=h$.
Thus $\theta(G)=\theta(F) \cdot \theta(H)=\theta(F . H)$,

$$
\begin{gathered}
\Rightarrow \theta(G-F . H)=0 \\
\Rightarrow G-F . H \in \operatorname{ker}(\theta) \\
\Rightarrow G-F . H=\sum_{\substack{0 \leq i \leq j \leq 2}} \Delta_{i j} S_{i j} \text { for some } S_{i j} \in S, S_{i j} \text { homogeneous } \\
\Rightarrow G \in<F, \Delta_{i j}: 0 \leq i \leq j \leq 2>
\end{gathered}
$$

This completes the proof of the lemma.
From now on we will denote M_{1}, M_{2} and M_{3} from equations (1.4), (1.5) of section(1.2) as below: The $i^{\text {th }}$ row of M_{2} will be W_{i} and the $j^{\text {th }}$ of M_{3} will be G_{j}, for $1 \leq i \leq 8$ and $j=1,2,3$. So we have,

$$
\begin{gather*}
M_{2}=\left[\begin{array}{lllllll}
W_{1}, & W_{2}, & W_{3}, & W_{4}, & W_{5}, & W_{6}, & W_{7}, \\
W_{8}
\end{array}\right] \tag{2.2}\\
M_{3}=\left[\begin{array}{lll}
G_{1}, & G_{2}, & G_{3}
\end{array}\right] \tag{2.3}
\end{gather*}
$$

Theorem 2.1: Let \mathcal{C} be an irreducible curve of even degree say $d=2 m, m \geq 1$. The homogeneous co-ordinate ring $S / \mathcal{I}_{\sigma(\mathcal{C})}$ of $\sigma(\mathcal{C})$ in \mathbb{P}^{5} has the following minimal free resolution.

$$
\begin{align*}
& 0 \rightarrow S(-m-4)^{\oplus 3} \xrightarrow{\alpha_{4}} S(-4)^{\oplus 3} \oplus S(-m-3)^{\oplus 8} \xrightarrow{\alpha_{3}} \\
& \quad \xrightarrow{\alpha_{3}} S(-3)^{\oplus 8} \oplus S(-m-2)^{\oplus 6} \xrightarrow{\alpha_{2}} S(-2)^{\oplus 6} \oplus S(-m) \xrightarrow{\alpha_{1}} S \rightarrow S / \mathcal{I}_{\sigma(\mathcal{C})} \rightarrow 0 \tag{2.4}
\end{align*}
$$

where α_{i} 's are as follows,

$$
\begin{equation*}
\alpha_{1}=\left[\left[M_{1}\right], \quad F\right] \tag{2.5}
\end{equation*}
$$

If

$$
\alpha_{2}^{\prime}=\left[\begin{array}{rrrrrrr}
-F & 0 & 0 & 0 & 0 & 0 & \Delta_{00} \\
0 & -F & 0 & 0 & 0 & 0 & \Delta_{01} \\
0 & 0 & -F & 0 & 0 & 0 & \Delta_{02} \\
0 & 0 & 0 & -F & 0 & 0 & \Delta_{11} \\
0 & 0 & 0 & 0 & -F & 0 & \Delta_{12} \\
0 & 0 & 0 & 0 & 0 & -F & \Delta_{22}
\end{array}\right]
$$

CHAPTER 2. RESOLUTIONS OF PLANE CURVES IN THE VERONESE EMBEDDING.

write α_{2}^{\prime} as

$$
\alpha_{2}^{\prime}=\left[\begin{array}{cccccc}
U_{00}, & U_{01}, & U_{02}, & U_{11}, & U_{12}, & U_{22}
\end{array}\right]^{T}
$$

Then
$\alpha_{2}=\left[\begin{array}{llllllllllll}W_{1}^{\prime}, & W_{2}^{\prime}, & W_{3}^{\prime}, & W_{4}^{\prime}, & W_{5}^{\prime}, & W_{6}^{\prime}, & W_{7}^{\prime}, & W_{8}^{\prime}, & U_{00}, & U_{01}, & U_{02}, & U_{11},\end{array} U_{12}, \quad U_{22}\right]$
with

$$
W_{i}^{\prime}=\left[\begin{array}{c}
W_{i} \\
0
\end{array}\right] \quad \forall i=1, \ldots, 8
$$

with W_{i} as in (2.1)
That is,

$$
\alpha_{2}=\left[\begin{array}{cc}
{\left[M_{2}\right]} & -F I_{6} \\
0 & {\left[M_{1}\right]}
\end{array}\right]
$$

If

$$
H_{i}=\left[\begin{array}{c}
{\left[F . I_{i}^{8}\right]} \\
{\left[W_{i}\right]}
\end{array}\right]
$$

with

$$
\begin{gather*}
I_{i}^{k}=\left[\begin{array}{cccccc}
0, & 0, & \ldots, & i^{t h} \text { position } & 0, & \ldots,
\end{array}\right]^{T} \text { is a } k \times 1 \text { vector } \\
\text { Then, } \alpha_{3}=\left[\begin{array}{llllll}
G_{1}^{\prime}, & G_{2}^{\prime}, & G_{3}^{\prime}, & H_{1}, & \ldots, & H_{8}
\end{array}\right] \tag{2.7}
\end{gather*}
$$

where

$$
G_{i}^{\prime}=\left[\begin{array}{c}
G_{i} \\
{[\overline{0}]}
\end{array}\right] \quad \text { for } i=1,2,3
$$

where G_{i} as in (2.2) and $[\overline{0}]$ is a 0 matrix of appropriate dimension.
That is,

$$
\alpha_{3}=\left[\begin{array}{rr}
{\left[M_{3}\right]} & F I_{8} \\
0 & {\left[M_{2}\right]}
\end{array}\right]
$$

Finally,

$$
\left.\alpha_{4}=\left[\begin{array}{c}
{\left[-F . I_{1}^{3}\right]} \tag{2.8}\\
{\left[G_{1}\right]}
\end{array}\right), \quad\binom{\left[-F . I_{2}^{3}\right]}{\left[G_{2}\right]}, \quad\binom{\left[-F . I_{3}^{3}\right]}{\left[G_{3}\right]}\right]
$$

That is,

$$
\alpha_{4}=\left[\begin{array}{c}
-F I_{3} \\
{\left[M_{3}\right]}
\end{array}\right]
$$

Proof: From Lemma 2.2, it is clear that

$$
\alpha_{1}=\left[\begin{array}{cccccc}
\Delta_{00}, & \Delta_{01}, & \Delta_{02}, & \Delta_{11}, & \Delta_{12}, & \Delta_{22},
\end{array}\right]
$$

Now consider $B \in S$ homogenous and

$$
A=\left[\begin{array}{llllll}
a_{00}, & a_{01}, & a_{02}, & a_{11}, & a_{12}, & a_{22}
\end{array}\right]
$$

where $a_{i j} \in S$ homogeneous such that

$$
\begin{gathered}
\sum_{i, j} a_{i j} \cdot \Delta_{i j}+B \cdot F=0 \\
\Rightarrow \theta(B \cdot F)=0 \\
\Rightarrow \theta(B) \cdot f=0 \\
\Rightarrow B \in<\Delta_{i j}: 0 \leq i \leq j \leq 2>
\end{gathered}
$$

2.1. DEGREE OF \mathcal{C} IS EVEN

Hence, $B=\sum\left(b_{i j} \Delta_{i j}\right)$ for some homogeneous polynomials $b_{i j} \in S$.

$$
\Rightarrow \sum\left(a_{i j}+b_{i j} \cdot F\right) \cdot \Delta_{i j}=0
$$

Now if $a_{i j} \Delta_{i j}+b_{i j} . F=0$ for all $\left(a_{i j}, b_{i j}\right)$ then such a $[A, B]$ is generated by $U_{i j}$. If not then,
$\Rightarrow \sum\left(a_{i j}+b_{i j} F\right) \in \operatorname{Syz}^{1}\left(<\Delta_{i j}: 0 \leq i \leq j \leq 2>\right)$
Hence, the relations between $\Delta_{i j}$ and F are generated by $U_{i j}: 0 \leq i \leq j \leq 2$ and $W_{k}^{\prime}: k=1, \ldots, 8$.
Hence we get,
$\alpha_{2}=\left[\begin{array}{lllllllllll}W_{1}^{\prime}, & W_{2}^{\prime}, & W_{3}^{\prime}, & W_{4}^{\prime}, & W_{5}^{\prime}, & W_{6}^{\prime}, & W_{7}^{\prime}, & W_{8}^{\prime}, & U_{00}, & U_{01}, & U_{02}, \\ U_{11}, & U_{12}, & U_{22}\end{array}\right]$

Now consider
$A=\left[\begin{array}{lllll}a_{00}, & a_{01}, & a_{02}, & a_{11}, & a_{12}, \\ a_{22}\end{array}\right]^{T}, a_{i j} \in S, a_{i j}$ homogeneous $\forall 0 \leq i \leq j \leq$ 2 and,

$$
B=\left[\left(b_{k}\right)\right], b_{k} \in S, \text { homogeneous }
$$

such that

$$
\begin{gathered}
\sum_{0 \leq i \leq j \leq 2} a_{i j} \cdot U_{i j}+\sum_{1 \leq k \leq 8} b_{k} \cdot W_{k}^{\prime}=0 \\
\Rightarrow \sum_{i, j} a_{i j} \Delta_{i j}=0
\end{gathered}
$$

as the last column of each $W_{k}^{\prime}, k=1, \ldots, 8$ is zero and the last column of $U_{i j}$ is $\Delta_{i j}$ for $0 \leq i \leq j \leq 2$

$$
\Rightarrow A \in<W_{k}: k=1, \ldots, 8>
$$

Let $A=\sum_{k}\left(c_{k} W_{k}\right)$, for some homogeneous polynomial, $c_{k} \in S$

$$
\Rightarrow-\sum_{k} c_{k} W_{k} F . I d_{6}+\sum_{k} b_{k} W_{k}=0
$$

where $I d_{n}$ is a $n \times n$ identity matrix.

$$
\Rightarrow \sum_{i, k} W_{k}\left(-c_{k} F+b_{k}\right)=0
$$

Hence if $-c_{k} . F+b_{k}=0$ for all k, this implies $b_{k}=c_{k} . F$ for all k then such $\left(b_{k}, a_{i j}\right)$ are generated by $<\left[\left[F \cdot\left[I_{i}^{8}\right]\right],\left[W_{i}\right]\right]>$ for $i=1, \ldots, 8$. If not then, $\left[\left(-c_{k} F+b_{k}\right) I_{k}\right]_{k=1, \ldots, 6} \in$ $\operatorname{Syz}^{1}\left(<W_{j}: j=1, \ldots, 8>\right)$.

Hence the relations between W_{k}^{\prime} and $U_{i j}$ are generated by G_{i}^{\prime} and H_{k}. Hence we get

$$
\alpha_{3}=\left[\begin{array}{llllll}
G_{1}^{\prime}, & G_{2}^{\prime}, & G_{3}^{\prime}, & H_{1}, & \ldots, & H_{8}
\end{array}\right]
$$

Now consider
$A=\left[\begin{array}{lllllll}a_{1}, & a_{2}, & a_{3}, & a_{4}, & a_{5}, & a_{6}, & a_{7}, \\ a_{8}\end{array}\right]^{T}, a_{i} \in S$, homogeneous for $i=$ $1, \ldots, 8$
$B=\left[\quad\left(b_{k}\right)\right], b_{k} \in S$, homogeneous for $k=1,2,3$ such that

$$
\begin{gathered}
\sum_{i} a_{i} \cdot H_{i}+\sum_{k} b_{k} \cdot G_{k}^{\prime}=0 \\
\Rightarrow \sum_{i} a_{i} W_{i}=0
\end{gathered}
$$

CHAPTER 2. RESOLUTIONS OF PLANE CURVES IN THE VERONESE

 EMBEDDING.as the last six columns of each $G_{k}^{\prime}, k=1,2,3$ are zero.

$$
\Rightarrow A \in<G_{k}: k=1,2,3>
$$

Let $A=\sum_{k}\left(c_{k} G_{k}\right)$, for some homogeneous polynomial, $c_{k} \in S$.
Then we have, $\sum_{k}\left(c_{k} G_{k}\right) \cdot\left(F \cdot I d_{8}\right)+\sum_{k} b_{k} \cdot G_{k}=0$

$$
\Rightarrow \sum_{k}\left(c_{k} \cdot F \cdot I d_{8}+b_{k}\right) G_{k}=0
$$

Now if $c_{k} \cdot F+b_{k}=0$ for every k, then $b_{k}=-c_{k} \cdot F$ for all p, then we can say that $\left(\left[b_{p}\right],\left[c_{p}\right]\right)$ is generated by $<\left(\left[-F . I_{i}^{3}\right],\left[I_{i}^{3}\right]\right): i=1,2,3>$, hence $\left(\left[b_{p}\right],\left[a_{k}\right]\right)$ is generated by $<\left(\left[-F \cdot I_{i}^{3}\right],\left[G_{i}\right]\right) i=1,2,3>$

Also from Theorem 1.1, we have that $G_{k}^{\prime}: k=0,1,2$ are independent. Hence $\operatorname{Syz}^{1}\left(<G_{i}^{\prime}, H_{j}: i=1,2,3\right.$ and $\left.j=1, \ldots 8>\right)=<\left(\left[-F . I_{i}^{3}\right],\left[G_{i}\right]\right): i=1,2,3>$ Hence,

$$
\alpha_{4}=\left[\binom{\left[-F . I_{i}^{3}\right]}{\left[G_{i}\right]}_{1 \leq i \leq 3}\right]
$$

2.2 Degree of \mathcal{C} is odd

Recall

$$
f=\sum_{i+j+k=d} a_{i j k} x_{0}^{i} x_{1}^{j} x_{2}^{k}
$$

Now let $f_{0}=x_{0} . f, f_{1}=x_{1} . f, f_{2}=x_{2} . f$. Then f_{n} is of even degree and hence according to Lemma 2.1, $f_{n} \in \operatorname{Im}(\theta)$ for $n=0,1,2$. We have the following lemma.
Lemma 2.3: $\quad Z(f)=Z\left(f_{0}\right) \cap Z\left(f_{1}\right) \cap Z\left(f_{2}\right)$.
Proof: Clearly, $Z(f) \subset Z\left(f_{0}\right) \cap Z\left(f_{1}\right) \cap Z\left(f_{2}\right)$
Also if $\exists \bar{p}=\left(p_{0}, p_{1}, p_{2}\right) \in Z\left(f_{0}\right) \cap Z\left(f_{1}\right) \cap Z\left(f_{2}\right)$ and $\bar{p} \notin Z(f)$. Then $\bar{p} \in$ $Z\left(x_{i}\right) \quad \forall i=0,1,2$. This implies $p_{i}=0 \forall i=0,1,2$. But this contradicts the fact that $\bar{p} \in \mathbb{P}^{2}$. Hence $Z(f)=Z\left(f_{0}\right) \cap Z\left(f_{1}\right) \cap Z\left(f_{2}\right)$.
In the same way as proof of Lemma 2.1, we split f in four parts depending on the parities of i, j, k.
Case I: i, j, k are all odd. Let

$$
\begin{gathered}
\text { Let } h_{I}=\sum_{i, j, k} a_{i j k} x_{00}^{\frac{i-1}{2}} x_{11}^{\frac{j-1}{2}} x_{22}^{\frac{k-1}{2}} \\
F_{0}{ }^{I}=\sum_{i+j+k=d} a_{i j k} x_{00}^{\frac{i+1}{2}} x_{11}^{\frac{j-1}{2}} x_{22}^{\frac{k-1}{2}} x_{12} \\
F_{1}{ }^{I}=\sum_{i+j+k=d} a_{i j k} x_{00}^{\frac{i-1}{2}} x_{11}^{\frac{j+1}{2}} x_{22}^{\frac{k-1}{2}} x_{02} \\
F_{2}{ }^{I}=\sum_{i+j+k=d} a_{i j k} x_{00}^{\frac{i-1}{2}} x_{11}^{\frac{j-1}{2}} x_{22}^{\frac{k+1}{2}} x_{01}
\end{gathered}
$$

Then,

$$
\begin{aligned}
& F_{0}^{I}=x_{00} x_{12} h_{I} \\
& F_{1}{ }^{I}=x_{11} x_{02} h_{I} \\
& F_{2}^{I}=x_{22} x_{01} h_{I}
\end{aligned}
$$

Case II: i odd, j even, k even. Now

$$
\begin{gathered}
\text { Let } h_{I I}=\sum_{i, j, k} a_{i j k} x_{00}^{\frac{i-1}{2}} x_{11}^{\frac{j}{2}} x_{22}^{\frac{k}{2}} \\
F_{0}{ }^{I I}=\sum_{i+j+k=d} a_{i j k} x_{00}^{\frac{i+1}{2}} x_{11}^{\frac{j}{2}} x_{22}^{\frac{k}{2}} \\
F_{1}{ }^{I I}=\sum_{i+j+k=d} a_{i j k} x_{00}^{\frac{i-1}{2}} x_{11}^{\frac{j}{2}} x_{22}^{\frac{k}{2}} x_{01} \\
F_{2}{ }^{I I}=\sum_{i+j+k=d} a_{i j k} x_{00}^{\frac{i-1}{2}} x_{11}^{\frac{j}{2}} x_{22}^{\frac{k}{2}} x_{02}
\end{gathered}
$$

Then,

$$
\begin{aligned}
&{F_{0}{ }^{I I}}=x_{00} h_{I I} \\
& F_{1}{ }^{I I}=x_{01} h_{I I} \\
& F_{2}{ }^{I I}=x_{02} h_{I I}
\end{aligned}
$$

CHAPTER 2. RESOLUTIONS OF PLANE CURVES IN THE VERONESE

 EMBEDDING.Case III: i even, j odd, k even. Now

$$
\begin{gathered}
\text { Let } h_{I I I}=\sum_{i, j, k} a_{i j k} x_{00}^{\frac{i}{2}} x_{11}^{\frac{j-1}{2}} x_{22}^{\frac{k}{2}} \\
{F_{0}}^{I I I}=\sum_{i+j+k=d} a_{i j k} x_{00}^{\frac{i}{2}} x_{11}^{\frac{j-1}{2}} x_{22}^{\frac{k}{2}} x_{01} \\
{F_{1}}^{I I I}=\sum_{i+j+k=d} a_{i j k} x_{00}^{\frac{i}{2}} x_{11}^{\frac{j+1}{2}} x_{22}^{\frac{k}{2}} \\
F_{2}^{I I I}=\sum_{i+j+k=d} a_{i j k} x_{00}^{\frac{i}{2}} x_{11}^{\frac{j-1}{2}} x_{22}^{\frac{k}{2}} x_{12}
\end{gathered}
$$

Then,

$$
\begin{aligned}
F_{0}{ }^{I I I} & =x_{01} h_{I I I} \\
F_{1}{ }^{I I I} & =x_{11} h_{I I I} \\
F_{2}{ }^{I I I} & =x_{12} h_{I I I}
\end{aligned}
$$

Case IV: i even, j even, k odd. Now

$$
\begin{gathered}
\text { Let } h_{I V}=\sum_{i, j, k} a_{i j k} x_{00}^{\frac{i}{2}} x_{11}^{\frac{j}{2}} x_{22}^{\frac{k-1}{2}} \\
F_{0}{ }^{I V}=\sum_{i+j+k=d} a_{i j k} x_{00}^{\frac{i}{2}} x_{11}^{\frac{j}{2}} x_{22}^{\frac{k-1}{2}} x_{02} \\
F_{1}{ }^{I V}=\sum_{i+j+k=d} a_{i j k} x_{00}^{\frac{i}{2}} x_{11}^{\frac{j}{2}} x_{22}^{\frac{k-1}{2}} x_{12} \\
{F_{2}}^{I V}=\sum_{i+j+k=d} a_{i j k} x_{00}^{\frac{i}{2}} x_{11}^{\frac{j-1}{2}} x_{22}^{\frac{k+1}{2}}
\end{gathered}
$$

Then,

$$
\begin{aligned}
F_{0}{ }^{I V} & =x_{02} h_{I V} \\
F_{1}{ }^{I V} & =x_{12} h_{I V} \\
F_{2}{ }^{I V} & =x_{22} h_{I V}
\end{aligned}
$$

Write $F_{n}=F_{n}{ }^{I}+F_{n}{ }^{I I}+{F_{n}}^{I I I}+F_{n}{ }^{I V} \forall n=0,1,2$
Also notice $\theta\left(F_{n}\right)=f_{n}$ for $n=0,1,2$

Lemma 2.4: Let $G \in k\left[x_{00}, x_{01}, x_{02}, x_{11}, x_{12}, x_{22}\right]$ be homogeneous and

$$
Z\left(\theta\left(F_{0}\right)\right) \cap Z\left(\theta\left(F_{1}\right)\right) \cap Z\left(\theta\left(F_{2}\right)\right) \subset Z(\theta(G)) \subset \mathbb{P}^{2}
$$

Then $G \in<F_{k}, \Delta_{i, j}: 0 \leq k \leq 2,0 \leq i \leq j \leq 2>$.
Proof: Now let $\theta(G)=g$, then $\operatorname{degree}(g)$ is even.

$$
\begin{gathered}
Z\left(f_{0}\right) \cap Z\left(f_{1}\right) \cap Z\left(f_{2}\right) \subset Z(g) \\
\Rightarrow Z(f) \subset Z(g)
\end{gathered}
$$

$\Rightarrow g \in(f)$ as \mathcal{C} is an irreducible curve and f is irreducible

2.2. DEGREE OF \mathcal{C} IS ODD

$$
\Rightarrow g=f . h \text { for some } h \in k\left[x_{0}, x_{1}, x_{2}\right]
$$

$\Rightarrow h \neq 1$ as degree of f is odd while degree of g is even. Moreover h is an odd-degree polynomial $\Rightarrow g=\sum_{i=0,1,2} f_{i} h_{i}$ for some homogeneous polynomial $h_{i} \in k\left[x_{0}, x_{1}, x_{2}\right]$,
where degree of h_{i} is even and $h=x_{0} h_{0}+x_{1} h_{1}+x_{2} h_{2}$

$$
\text { Hence } \Rightarrow G=\sum_{i=0,1,2} F_{i} H_{i}, \text { where } \theta\left(H_{i}\right)=h_{i} \forall i=0,1,2
$$

Such a H_{i} exists as the degree of h_{i} is even.

$$
\begin{gathered}
\Rightarrow \theta\left(G-\sum_{i=0,1,2} F_{i} H_{i}\right)=0 \\
\Rightarrow G-\sum_{i=0,1,2} F_{i} H_{i} \in k e r(\theta) \\
\Rightarrow G=\sum_{i=0,1,2} F_{i} H_{i}+\sum_{i, j=0,1,2} \Delta_{i j} S_{i j} \text { for some } S_{i j} \in k\left[x_{00}, \ldots, x_{22}\right] \\
\text { Hence } \Rightarrow G \in<F_{k}, \Delta_{i j}: i, j, k=0,1,2>
\end{gathered}
$$

Theorem 2.2: Let \mathcal{C} be an irreducible curve of odd degree say $d=2 m-1$, for $m \geq 2$. The homogeneous coordinate ring $S / \mathcal{I}_{\mathcal{C}}$ of $\sigma(\mathcal{C})$ in \mathbb{P}^{5} has the following resolution.

$$
\begin{align*}
0 \rightarrow & S(-m-4) \xrightarrow{\beta_{4}} S(-4)^{\oplus 3} \oplus S(-m-2)^{\oplus 6} \xrightarrow{\beta_{3}} \tag{2.9}\\
& \xrightarrow{\beta_{3}} S(-3)^{\oplus 8} \oplus S(-m-1)^{\oplus 8} \xrightarrow{\beta_{2}} S(-2)^{\oplus 6} \oplus S(-m)^{\oplus 3} \xrightarrow{\beta_{1}} S \rightarrow S / \mathcal{I}_{\mathcal{C}} \rightarrow 0
\end{align*}
$$

Proof:

From Lemma 2.3 and Lemma 2.4, it is clear that

$$
\beta_{1}=\left[\begin{array}{cccccccc}
\Delta_{00}, & \Delta_{01}, & \Delta_{02}, & \Delta_{11}, & \Delta_{12}, & \Delta_{22}, & F_{0}, & F_{1},
\end{array} F_{2}\right]
$$

Now consider $A=\left[\begin{array}{lllll}a_{00}, & a_{01}, & a_{02}, \quad a_{11}, \quad a_{12}, \quad a_{22}\end{array}\right], a_{i j} \in S$, homogeneous $\forall 0 \leq$ $i \leq æ \leq 2$ and $b=\left[b_{0}, \quad b_{1}, \quad b_{2}\right]$ where $b_{l} \in S$, homogeneous, for $k=0,1,2$ such that,

$$
\begin{gather*}
\sum_{i, j} a_{i j} \cdot \Delta_{i j}+\sum_{k} b_{k} \cdot F_{k}=0 \tag{2.10}\\
\Rightarrow \theta\left(\sum_{k}\left(b_{k} \cdot F_{k}\right)\right)=0 \\
\Rightarrow \sum_{k}\left(\theta\left(b_{k}\right) \cdot f_{k}\right)=0 \\
\Rightarrow \sum_{k}\left(\theta\left(b_{k}\right) \cdot f \cdot x_{k}\right)=0 \\
\Rightarrow \sum_{k}\left(\theta\left(b_{k}\right) \cdot x_{k}\right)=0
\end{gather*}
$$

Let $\theta\left(b_{k}\right)=B_{k}$, then degree of B_{k} is even. Then

$$
B=\left(B_{0}, B_{1}, B_{2}\right)^{T} \in \operatorname{Syz}^{1}\left(x_{0}, x_{1}, x_{2}\right)
$$

Now by simple computation we get

$$
\operatorname{Syz}^{1}\left(x_{0}, x_{1}, x_{2}\right)=<\left(\begin{array}{r}
x_{1} \\
-x_{0} \\
0
\end{array}\right),\left(\begin{array}{r}
x_{2} \\
0 \\
-x_{0}
\end{array}\right),\left(\begin{array}{r}
0 \\
x_{2} \\
-x_{1}
\end{array}\right)>
$$

CHAPTER 2. RESOLUTIONS OF PLANE CURVES IN THE VERONESE

 EMBEDDING.hence $B \in<Y_{0}, Y_{1}, Y_{2}>$ where

$$
\begin{aligned}
& Y_{0}=\left(\begin{array}{lll}
x_{1}, & -x_{0}, & 0
\end{array}\right) \\
& Y_{1}=\left(\begin{array}{lll}
x_{2}, & 0, & -x_{0}
\end{array}\right) \\
& Y_{2}=\left(\begin{array}{lll}
0, & x_{2}, & -x_{1}
\end{array}\right)
\end{aligned}
$$

But degree of B_{k} is even, hence, $B \in<x_{k} Y_{l}: k, l=0,1,2>$.
Hence, $\left(b_{0}, b_{1}, b_{2}\right) \in<Y_{l k}: k, l=0,1,2>$
where

$$
\begin{aligned}
& Y_{00}=\left(\begin{array}{lll}
x_{01}, & -x_{00}, & 0
\end{array}\right) \\
& Y_{01}=\left(\begin{array}{lll}
x_{11}, & -x_{01}, & 0
\end{array}\right) \\
& Y_{02}=\left(\begin{array}{lll}
x_{12}, & -x_{02}, & 0
\end{array}\right) \\
& Y_{10}=\left(\begin{array}{lll}
x_{02}, & 0, & -x_{00}
\end{array}\right) \\
& Y_{11}=\left(\begin{array}{lll}
x_{12}, & 0, & -x_{01}
\end{array}\right) \\
& Y_{12}=\left(\begin{array}{lll}
x_{22}, & 0, & -x_{02}
\end{array}\right) \\
& Y_{20}=\left(\begin{array}{lll}
0, & x_{02}, & -x_{01}
\end{array}\right) \\
& Y_{21}=\left(\begin{array}{lll}
0, & x_{12}, & -x_{11}
\end{array}\right) \\
& Y_{22}=\left(\begin{array}{lll}
0, & x_{22}, & -x_{12}
\end{array}\right)
\end{aligned}
$$

Also note that

$$
Y_{02}=Y_{11}-Y_{20}
$$

Now substituting all $Y_{i j}$ for $i, j=0,1,2$ except for Y_{02} for b in equation(2.8) we get, the following 8 vectors, Note that if A is a $n X m$ matrix then by A^{T} we denote the transpose of A.

$$
\begin{aligned}
& V_{1}=\left[\begin{array}{lllllll}
0, & 0, & -x_{00} h_{I}, & 0, & h_{I V}, & h_{I I I}, & {\left[Y_{00}\right]}
\end{array}\right]^{T} \\
& V_{2}=\left[\begin{array}{llllll}
0, & 0, & h_{I V}, & 0, & -x_{11} h_{I}, & -h_{I I},
\end{array}\left[Y_{01}\right]\right]^{T} \\
& V_{3}=\left[\begin{array}{lllllll}
0, & x_{00} h_{I}, & 0, & h_{I V}, & h_{I I I}, & 0, & {\left[Y_{10}\right]}
\end{array}\right]^{T} \\
& V_{4}=\left[\begin{array}{lllllll}
x_{00} h_{I}, & h_{I V}, & 0, & 0, & -h_{I I}, & -x_{22} h_{I}, & {\left[Y_{11}\right]}
\end{array}\right]^{T} \\
& V_{5}=\left[\begin{array}{llllll}
0, & -h_{I I I}, & 0, & -h_{I I}, & -x_{22} h_{I}, & 0,
\end{array}\left[Y_{12}\right]\right]^{T} \\
& V_{6}=\left[\begin{array}{lllllll}
0, & h_{I V}, & h_{I I I}, & x_{11} h_{I}, & 0, & -x_{22} h_{I}, & {\left[Y_{20}\right]}
\end{array}\right]^{T} \\
& V_{7}=\left[\begin{array}{lllllll}
h_{I V}, & x_{11} h_{I}, & -h_{I I}, & 0, & 0, & 0, & {\left[Y_{21}\right]}
\end{array}\right]^{T} \\
& V_{8}=\left[\begin{array}{lllllll}
-h_{I I I}, & -h_{I I}, & x_{22} h_{I}, & 0, & 0, & 0, & {\left[Y_{22}\right]}
\end{array}\right]^{T}
\end{aligned}
$$

Let

$$
\left.\beta_{2}^{\prime}=\left[\begin{array}{llllll}
{\left[V_{1}\right],} & {\left[V_{2}\right],} & {\left[V_{3}\right],} & {\left[V_{4}\right],} & {\left[V_{5}\right],} & {\left[V_{6}\right],}
\end{array}\right]\left[V_{7}\right], \quad\left[V_{8}\right]\right]
$$

2.2. DEGREE OF \mathcal{C} IS ODD

Now all the relations between F_{n} 's and $\Delta_{i j}$'s are generated by V_{k} 's and W_{l}^{\prime} 's and all the relations between only $\Delta_{i j}$'s are generated by W_{l} 's. Hence all relations between $F_{n}, \Delta_{j k}$ are generated by V_{k}, W_{l}^{\prime}.
Hence $\operatorname{Syz}^{1}\left(<F_{n}, \Delta_{i j}>\right)=<V_{k}, W_{l}^{\prime}: \quad 1 \leq k, l \leq 8>$ and

$$
\beta_{2}=\left(\left[W_{1}^{\prime}\right]\left[W_{2}^{\prime}\right] \ldots\left[W_{8}^{\prime}\right]\left[V_{1}\right] \ldots\left[V_{8}\right]\right)
$$

where $W_{k}^{\prime}=\left[\left[W_{k}\right][\overline{0}]\right]$ with $[\overline{0}]$ a 1×3 zero vector
Now consider, $\bar{A}=\left(a_{i}\right)$ with $a_{i} \in S$ homogeneous and $\bar{B}=\left(b_{k}\right)$ with $b_{k} \in S$, homogeneous

$$
\begin{equation*}
\sum_{i} a_{i} V_{i}+\sum_{k} b_{k} W_{k}^{\prime}=0 \tag{2.11}
\end{equation*}
$$

Let $\bar{A}=\left[a_{1}, \ldots, a_{8}\right]$ and $\mathbf{V}=\left[V_{1}, \ldots, V_{8}\right]^{T}$ then equation(2.11) can be written as

$$
\begin{equation*}
\bar{A} \cdot \mathbf{V}+\sum_{k} b_{k} \cdot W_{k}^{\prime}=0 \tag{2.12}
\end{equation*}
$$

Now as all the entries in the last 3 columns in each of W_{i}^{\prime} are zero we have,

$$
\sum_{i} a_{i} Y_{i j}=0
$$

Now it can be computed that $\operatorname{Syz}^{1}\left(Y_{i j}\right)=<K_{l}^{\prime}: 1 \leq l \leq 6>$ where

$$
\begin{aligned}
& K_{1}^{\prime}=\left[\begin{array}{llllllll}
x_{02}, & 0, & -x_{01}, & 0, & 0, & x_{00}, & 0, & 0
\end{array}\right] \\
& K_{2}^{\prime}=\left[\begin{array}{lllllll}
x_{12}, & x_{02}, & -x_{11}, & -x_{01}, & 0, & x_{01}, & x_{00},
\end{array} 0\right] \\
& K_{3}^{\prime}=\left[\begin{array}{lllllll}
x_{22}, & 0, & -x_{12}, & x_{02}, & -x_{01}, & 0, & 0, \\
x_{00}
\end{array}\right] \\
& K_{4}^{\prime}=\left[\begin{array}{lllllll}
0, & x_{12}, & 0, & -x_{11}, & 0, & 0, & x_{01},
\end{array} 0\right] \\
& K_{5}^{\prime}=\left[0, \quad x_{22}, \quad 0, \quad 0, \quad-x_{11}, \quad-x_{12}, \quad x_{02}, \quad x_{01}\right] \\
& K_{6}^{\prime}=\left[0, \quad 0, \quad 0, \quad x_{22}, \quad-x_{12}, \quad-x_{22}, \quad 0, \quad x_{02}\right]
\end{aligned}
$$

Hence $\bar{A}=\sum_{l} d_{l} . K_{l}^{\prime}$ in equation (2.12), we get

$$
\sum_{l=1}^{8} d_{l} K_{l}^{\prime} . \mathbf{V}+\sum_{k} b_{k} W_{k}^{\prime}=0
$$

where d_{l} are homogenous polynomials in S for all $l=1, \ldots, 6$. Simple calculation gives us that, $\left[\bar{B}, \sum_{l} d_{l} K_{l}^{\prime}\right] \in\left\langle K_{l}: \quad l=1, \ldots, 6\right\rangle$, where K_{l} 's for $1 \leq l \leq 6$ are as follows

$$
\begin{aligned}
& K_{1}=\left[\begin{array}{llllllll}
0, & 0, & 0, & x_{00} h_{I}, & 0, & 0, & -h_{I V}, & h_{I I I},
\end{array} \quad\left[K_{1}^{\prime}\right]\right]^{T} \\
& K_{2}=\left[\begin{array}{llllllll}
0, & 0, & x_{00} h_{I}, & 0, & -h_{I I I}, & -h_{I V}, & x_{11} h_{I}, & h_{I I},
\end{array} \quad\left[K_{2}^{\prime}\right]\right]^{T} \\
& K_{3}=\left[\begin{array}{llllllll}
-x_{00} h_{I}, & -h_{I V}, & 0, & -h_{I I I}, & 0, & h_{I I I}, & h_{I I}, & x_{22} h_{I},
\end{array} \quad\left[K_{3}^{\prime}\right]\right]^{T} \\
& K_{4}=\left[\begin{array}{llllllll}
0, & 0, & -h_{I V}, & -x_{11} h_{I}, & h_{I I}, & x_{11} h_{I}, & 0, & 0,
\end{array} \quad\left[K_{4}^{\prime}\right]\right]^{T} \\
& \left.K_{5}=\left[\begin{array}{lllllll}
-h_{I V}, & -x_{11} h_{I}, & h_{I I I}, & h_{I I},-x_{22} h_{I}, & 0, & 0, & 0
\end{array}\right]\left[K_{5}^{\prime}\right]\right]^{T} \\
& K_{6}=\left[\begin{array}{lllllllll}
h_{I I I}, & h_{I I}, & 0, & 0, & 0, & -x_{22} h_{I}, & 0, & 0, & {\left[K_{6}^{\prime}\right]}
\end{array}\right]^{T}
\end{aligned}
$$

CHAPTER 2. RESOLUTIONS OF PLANE CURVES IN THE VERONESE

 EMBEDDING.Now all the relations between V_{i} 's and W_{j}^{\prime} 's are generated by $\left\{K_{l}, G_{k}^{\prime}, 1 \leq l \leq 6, k=\right.$ $1,2,3\}$ and all the relations between only W_{j}^{\prime} 's (which are actually W_{j}) are generated by G_{k}^{\prime} 's. Hence we have that all relations between $\left\{\left\{V_{i}\right\},\left\{W_{j}^{\prime}\right\}\right\}$ are generated by $\left\{K_{l}, G_{k}^{\prime} 1 \leq l \leq 6, k=1,2,3\right\}$. So, $\operatorname{Syz}^{1}\left(<V_{i}, W_{j}^{\prime}>\right)=<K_{l}, G_{k}^{\prime}>$. So we get that,

$$
\beta_{3}=\left[\begin{array}{lllll}
{\left[G_{0}^{\prime}\right]}
\end{array}\left[\left[_{1}^{\prime}\right] \quad\left[G_{2}^{\prime}\right] \quad\left[K_{1}\right] \quad \ldots \quad\left[K_{6}\right]\right]\right.
$$

where, $G_{i}^{\prime}=\left[\begin{array}{cc}{\left[G_{i}\right]} & {[\overline{0}]}\end{array}\right]$ where $[\overline{0}]$ is an appropriate dimensional zero matrix.
Now consider $\bar{A}=\left(A_{i}\right)$, such that $A_{i} \in S$, homogeneous and $\bar{B}=\left(B_{k}\right)$, such that $B_{k} \in S$, homogeneous such that,

$$
\begin{equation*}
\sum_{l} A_{l} K_{l}+\sum_{k} B_{k} G_{k}^{\prime}=0 \tag{2.13}
\end{equation*}
$$

Hence we have,

$$
\sum_{l} A_{l} K_{l}^{\prime T}=0
$$

(as the last eight columns of G_{i}^{\prime} 's are zero entries)
Now it can be computed that $\operatorname{Syz}^{1}\left(K_{l}^{\prime}\right)=<J^{\prime}>$ where,

$$
J^{\prime}=\left[\begin{array}{c}
J_{1}^{\prime} \\
J_{2}^{\prime} \\
J_{3}^{\prime} \\
J_{4}^{\prime} \\
J_{5}^{\prime} \\
J_{6}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
x_{12}{ }^{2}-x_{11} x_{22} \\
-x_{02} x_{12}+x_{01} x_{22} \\
x_{11} x_{02}-x_{01} x_{12} \\
x_{02}^{2}-x_{00} x_{22} \\
-x_{21} x_{02}+x_{00} x_{12} \\
x_{01}^{2}-x_{00} x_{11}
\end{array}\right]
$$

Like in the calculation of K_{l} 's, substitute J^{\prime} in equation(2.13). Then we get,

$$
J=\left[\begin{array}{c}
J_{1} \\
J_{2} \\
J_{3} \\
J_{4} \\
J_{5} \\
J_{6} \\
J_{7} \\
J_{8} \\
J_{9}
\end{array}\right]=\left[\begin{array}{c}
-x_{00} x_{12} h_{I}-x_{00} h_{I I}-x_{01} h_{I I I}-x_{02} h_{I V} \\
-x_{11} x_{02} h_{I}+x_{01} h_{I I}+x_{11} h_{I I I}+x_{12} h_{I V} \\
-x_{01} x_{22} h_{I}-x_{02} h_{I I}-x_{12} h_{I I I}-x_{22} h_{I V} \\
{\left[\left[J^{\prime}\right]\right]}
\end{array}\right]
$$

Now all the relations between K_{l} 's and G_{k}^{\prime} 's are generated by J and there are no relations between only G_{k}^{\prime} 's as there are no non-trivial relations between G_{k} 's. Hence all relations between K_{l}, G_{k}^{\prime} are generated by J. Hence $\left.\operatorname{Syz}^{1}\left(<K_{l}, G_{k}^{\prime}\right\rangle\right)=\left\langle J_{i}: 1 \leq i \leq 9\right.$). Hence

$$
\beta_{4}=[J]
$$

This completes the proof of the theorem.

2.3. SOME REMARKS ON N_{P} PROPERTIES ON PLANE CURVES UNDER VERONESE EMBEDDING

2.3 Some remarks on N_{p} properties on plane curves under Veronese embedding

Due to the explicit computation of resolutions done in earlier sections we get some results about Property N_{p} of the line bundle, $\mathcal{O}_{\mathcal{C}}(2)$ of a plane curves, \mathcal{C} with degree $d \geq 2$.

Consider $L=\mathcal{O}_{\mathcal{C}}(2)$. Now $\mathcal{O}_{\mathcal{C}}(1)$ is very ample by definition. So L is very ample and hence globally generated and so determines an embedding, Φ_{L} such that:

$$
\Phi_{L}: \mathcal{C} \rightarrow \mathbb{P}^{5}
$$

Also we have $\sigma_{\mid \mathcal{C}}: \mathcal{C} \hookrightarrow \mathbb{P}^{5}$. Hence we get the following diagram.

We claim that the above diagram is commutative
Notice that $\Phi_{L}{ }^{*}\left(\mathcal{O}_{\mathbb{P} 5}(1)\right)=\mathcal{O}_{\mathcal{C}}(2)$ and also $\sigma^{*}\left(\mathcal{O}_{\mathbb{P}^{5}}(1)\right)=\mathcal{O}_{\mathbb{P}^{2}}(2)$. We have by definition of $\mathcal{C} \hookrightarrow \mathbb{P}^{2}$, that $\mathcal{O}_{\mathcal{C}}(1)=\mathcal{O}_{\mathbb{P}^{2} \mid \mathcal{C}}(1)$. Hence we get that $\Phi_{L}{ }^{*}\left(\mathcal{O}_{\mathbb{P}^{5}}(1)\right)=$ $\sigma_{\mid C^{C}}\left(\mathcal{O}_{\mathbb{P} 5}(1)\right)$ and so, we get that the above diagram is commutative.

Remark-1: \mathcal{C} is as above with degree d, then (\mathcal{C}, L) satisfies Property N_{0} for every $d \geq 2$.

Proof: Now $\mathcal{I}_{\mathcal{C}}$ is the ideal sheaf of \mathcal{C} in \mathbb{P}^{5} in $\left.\mathbb{P}\left(H^{0}(L)\right)\right)$. Then we have the following short exact sequence:

$$
0 \rightarrow \mathcal{I}_{\mathcal{C}} \rightarrow \mathcal{O}_{\mathbb{P}^{5}} \rightarrow \mathcal{O}_{\mathcal{C}} \rightarrow 0
$$

So for every $n \in \mathbb{Z}$, we have

$$
0 \rightarrow \mathcal{I}_{\mathcal{C}}(n) \rightarrow \mathcal{O}_{\mathbb{P}^{5}}(n) \rightarrow \mathcal{O}_{\mathcal{C}}(2 n) \rightarrow 0
$$

Also as $\mathcal{C} \hookrightarrow \mathbb{P}^{2}$, we get a map from $H^{0}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(n)\right) \rightarrow H^{0}\left(\mathcal{C}, \mathcal{O}_{\mathcal{C}}(n)\right)$ for all $n \in \mathbb{Z}$. Let this map be γ_{n}.

To prove that (\mathcal{C}, L) satisfies N_{0}. We have to prove that the map, $H^{0}\left(\mathbb{P}^{5}, \mathcal{O}_{\mathbb{P} 5}(n)\right) \xrightarrow{\Phi_{L_{n}}}$ $H^{0}\left(\mathcal{C}, \mathcal{O}_{\mathcal{C}}(2 n)\right)$ is surjective for all $n \in \mathbb{Z}$. Now we have the following commutative diagram.

Claim 1: $H^{0}\left(\mathcal{O}_{\mathbb{P}^{5}}(n)\right) \xrightarrow{\tilde{\sigma}_{n}} H^{0}\left(\mathcal{O}_{\mathbb{P}^{2}}(2 n)\right)$ surjects for all n.
From [OP], we know that $\mathcal{O}_{\mathbb{P}^{n}}(d)$ satisfies Property $N_{p}, \forall d \geq p$ and $\forall n$. Hence we have that $\mathcal{O}_{\mathbb{P}^{2}}(2)$ satisfies N_{0}, and so we have that $\tilde{\sigma}_{n}$ surjects for all n.

CHAPTER 2. RESOLUTIONS OF PLANE CURVES IN THE VERONESE

 EMBEDDING.Claim 2: γ_{n} surjects for all n.
As $\mathcal{C} \hookrightarrow \mathbb{P}^{2}$, we get the following short exact sequence.

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{2}}(-d) \rightarrow \mathcal{O}_{\mathbb{P}^{2}} \rightarrow \mathcal{O}_{\mathcal{C}} \rightarrow 0
$$

for every $n \in \mathbb{Z}$, we get the following long exact sequence:

$$
\begin{aligned}
& 0 \rightarrow H^{0}\left(\mathcal{O}_{\mathbb{P}^{2}}(n-d) \rightarrow H^{0}\left(\mathcal{O}_{\mathbb{P}^{2}}(n)\right) \xrightarrow{\gamma_{n}} H^{0}\left(\mathcal{O}_{\mathcal{C}}(n)\right) \rightarrow\right. \\
& \rightarrow H^{1}\left(\mathcal{O}_{\mathbb{P}^{2}}(n-d)\right) \rightarrow H^{1}\left(\mathcal{O}_{\mathbb{P}^{2}}(n)\right) \rightarrow H^{1}\left(\mathcal{O}_{\mathcal{C}}(n) \rightarrow 0\right.
\end{aligned}
$$

But,

$$
H^{1}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(n-d)\right)=0 \quad \forall n, d \in \mathbb{Z}
$$

Hence γ_{n} surjects for all $n \in \mathbb{Z}$.
So we get that $\tilde{\Phi_{L n}}$ surjects for all n. This implies that (\mathcal{C}, L) satisfies Property N_{0} for all plane curves, \mathcal{C} with degree, $d \geq 2$.

Remark-2: If (\mathcal{C}, L) as above, then L satisfies N_{1} iff degree of $\mathcal{C}=3$ or 4 .
Proof: A very ample line bundle L is said to satisfy property N_{1} if α_{1} from (A) has degree 2 entries, implying that $\mathcal{I}_{\mathcal{C}}$ is generated by quadrics.
Now if the curve \mathcal{C} has even degree, $d=2 m$, then the degree of f is $2 m$. And from lemma 1 we know that, $\mathcal{I}_{\mathcal{C}}=<F, \Delta_{i j}>$ where, degree (F) is m and degree $\left(\Delta_{i j}\right)=2$. Hence for $d=4, \mathcal{I}_{\mathcal{C}}$ is generated by quadrics, moreover for any even $d, d \neq 4, \mathcal{I}_{\mathcal{C}}$ is cannot be generated by quadrics.

Now if the curve \mathcal{C} has odd degree, $d=2 m-1$, then the degree of f_{i} is $2 m$ for $i=0,1,2$. Now from lemma 3 , we know that $\mathcal{I}_{\mathcal{C}}=<F_{0}, F_{1}, F_{2}, \Delta_{i j}>$. where degree $\left(F_{i}\right)=m$ and degree $\left(\Delta_{i j}\right)=2$. Hence for $d=3, \mathcal{I}_{\mathcal{C}}$ is generated by quadrics, and moreover for any odd $d, d \neq 3, \mathcal{I}_{\mathcal{C}}$ is cannot be generated by quadrics.

Remark-3: Let (\mathcal{C}, L) be as above, with $\operatorname{degree}(\mathcal{C})=2 m, m \geq 1$. Then (\mathcal{C}, L) fails to satisfy Property N_{2}, and hence Property $N_{p}, p \geq 2$.

Proof: Let $d=4$, then the matrix α_{2} has degree 2 entries, hence the resolution is not linear. Hence such a \mathcal{C} fails to satisfy Property N_{2}. And for $d \neq 4$ we know from result 2 , that such a \mathcal{C} fails to satisfy Property N_{p} for $p \geq 1$. Hence we have the above result.

Remark-4: Let (\mathcal{C}, L) be as above, with $\operatorname{degree}(\mathcal{C})=3$, then such a \mathcal{C} satisfies Property N_{3} but fails to satisfy Property N_{4}.

Proof: Notice that, if the degree of $\mathcal{C}=2 m-1$, then degree $\left(h_{i}\right)=m-1$, for $\forall i=I I, I I I, I V$ and $\operatorname{degree}\left(h_{I}\right)=m-2 . h_{i}$ for $i=I, I I, I I I, I V$ as defined in Chapter 2 Now when the $\operatorname{degree}(\mathcal{C})=3$, degree $\left(h_{I}\right)=0$ and degree $\left(h_{i}\right)=1$, for $\forall i=I I, I I I, I V$, hence β_{i} has linear entries, for $i=2,3$. So we have that the resolution is linear till the third step while β_{4} has quadratic entries, implies that the resolution is not linear in the fourth step, which implies that L satisfies N_{3} but fails

2.3. SOME REMARKS ON N_{P} PROPERTIES ON PLANE CURVES UNDER VERONESE EMBEDDING

to satisfy N_{4}.

Remark-5 For all plane curve, $\mathcal{C},($ degree $\geq 2), \mathcal{O}_{\mathcal{C}}(2)$ fails to satisfy N_{p} for $p \geq 4$.

Proof: With all but degree 3 and 4 curves failing to satisfy N_{1}, degree 4 curve failing to satisfy N_{2} and degree 3 curve failing to satify N_{4}, we get the above result.

Resolutions of Veronese embedding of complete intersections of curves in the plane.

If \mathcal{C} and \mathcal{C}^{\prime} are two distinct plane curves, then consider, $\mathcal{C} \cap \mathcal{C}^{\prime} \hookrightarrow \mathbb{P}^{2} \stackrel{\sigma}{\hookrightarrow} \mathbb{P}^{5}$, where $\mathbb{P}^{2} \hookrightarrow \mathbb{P}^{5}$ is the Veronese embedding. We will compute the syzygies of the homogeneous ideal, $\mathcal{I}_{\sigma\left(\mathcal{C C}^{\prime}\right)}$ of $\sigma\left(\mathcal{C} \cap \mathcal{C}^{\prime}\right)$ in \mathbb{P}^{5}.
Throughout we assume $\left(\mathcal{C} \cap \mathcal{C}^{\prime}\right)$ is reduced.
Now let \mathcal{C} be defined by the polynomial f of degree d in three variables, and \mathcal{C}^{\prime} be defined by \tilde{f} of degree d^{\prime} in three variables. Hence

$$
\mathcal{C}=Z\left(f\left(x_{0}, x_{1}, x_{2}\right)\right), \quad \mathcal{C}^{\prime}=Z\left(\tilde{f}\left(x_{0}, x_{1}, x_{2}\right)\right)
$$

Let us recall Theorem 2.1. and Theorem 2.2
Theorem Let \mathcal{C} be an irreducible curve of even degree say $d=2 m, m \geq 1$. The homogeneous ideal $\mathcal{I}_{\sigma(\mathcal{C})}$ of $\sigma(\mathcal{C})$ in \mathbb{P}^{5} has the following minimal free graded resolution.

$$
\begin{aligned}
0 \rightarrow S(-m-4)^{\oplus 3} \xrightarrow{\alpha_{4}} S(-4)^{\oplus 3} \oplus S(-m-3)^{\oplus 8} \xrightarrow{\alpha_{3}} \\
\quad \xrightarrow{\alpha_{3}} S(-3)^{\oplus 8} \oplus S(-m-2)^{\oplus 6} \xrightarrow{\alpha_{2}} S(-2)^{\oplus 6} \oplus S(-m) \xrightarrow{\alpha_{1}} S \rightarrow S / \mathcal{I}_{\sigma(\mathcal{C})} \rightarrow 0
\end{aligned}
$$

where

$$
\alpha_{1}=\left[\begin{array}{ll}
{\left[M_{1}\right],} & F
\end{array}\right]
$$

$$
\alpha_{2}=\left[\begin{array}{ll}
{\left[W_{i}, 0\right],} & {\left[U_{j k}\right]}
\end{array}\right]
$$

where $i=1, \ldots, 8$ and $0 \leq j \leq k \leq 2$

$$
\alpha_{3}=\left[\left[G_{i}^{\prime}, \overline{0}\right], \quad\left[H_{j}\right]\right]
$$

where $i=1,2,3$ and $j=1, \ldots, 8$.

$$
\left.\alpha_{4}=\left[\begin{array}{c}
{\left[-F . I_{1}^{3}\right]} \\
{\left[G_{1}\right]}
\end{array}\right), \quad\binom{\left[-F . I_{2}^{3}\right]}{\left[G_{2}\right]},\binom{\left[-F . I_{3}^{3}\right]}{\left[G_{3}\right]}\right]
$$

Also when we consider the above resolution for the curve, \mathcal{C}^{\prime}, we will denote the matrices in the resolution with ' \sim '.
Before recalling Theorem 2.2, we introduce a change in the notations for V_{i}, K_{i} and J

CHAPTER 3. RESOLUTIONS OF VERONESE EMBEDDING OF COMPLETE INTERSECTIONS OF CURVES IN THE PLANE.

appearing in Theorem 2.2 for the sake of convinence, so from now on we will denote $V_{1}=\left[\left[V_{00}\right], \quad\left[Y_{00}\right]\right], V_{2}=\left[\left[V_{01}\right], \quad\left[Y_{01}\right]\right], V_{3}=\left[\begin{array}{ll}{\left[V_{10}\right],} & {\left[Y_{10}\right]}\end{array}\right], V_{4}=\left[\begin{array}{ll}{\left[V_{11}\right],} & {\left[Y_{11}\right]}\end{array}\right]$,
$V_{5}=\left[\begin{array}{ll}{\left[V_{12}\right],} & {\left[Y_{12}\right]}\end{array}\right], V_{6}=\left[\begin{array}{ll}{\left[V_{20}\right],} & {\left[Y_{20}\right]}\end{array}\right], V_{7}=\left[\begin{array}{ll}{\left[V_{21}\right],} & {\left[Y_{21}\right]}\end{array}\right], V_{8}=\left[\begin{array}{ll}{\left[V_{22}\right],} & {\left[Y_{22}\right]}\end{array}\right]$.
$K_{i}=\left[\begin{array}{ll}{\left[K_{i}^{\prime \prime}\right],} & {\left[K_{i}^{\prime}\right]}\end{array}\right]$, and, $J=\left[\begin{array}{ll}{\left[J^{\prime \prime}\right],} & {\left[J^{\prime}\right]}\end{array}\right]$
Hence we have
Theorem: Let \mathcal{C} be an irreducible curve of odd degree say $d=2 m-1$, for $m \geq 2$. The ideal $\mathcal{I}_{\sigma(\mathcal{C})}$ of $\sigma(\mathcal{C})$ in \mathbb{P}^{5} has the following minimal free graded resolution.

$$
\begin{aligned}
& 0 \rightarrow S(-m-4) \xrightarrow{\beta_{4}} S(-4)^{\oplus 3} \oplus S(-m-2)^{\oplus 6} \xrightarrow{\beta_{3}} \\
& \xrightarrow{\beta_{3}} S(-3)^{\oplus 8} \oplus S(-m-1)^{\oplus 8} \xrightarrow{\beta_{2}} S(-2)^{\oplus 6} \oplus S^{\oplus 3}(-m) \xrightarrow{\beta_{1}} S \rightarrow S / \mathcal{I}_{\sigma(\mathcal{C})} \rightarrow 0
\end{aligned}
$$

where

$$
\begin{gathered}
\beta_{1}=\left[\begin{array}{llllll}
\Delta_{00}, & \Delta_{01}, & \Delta_{02}, & \Delta_{11}, & \Delta_{12}, & \Delta_{22}, \\
F_{0}, & F_{1}, & F_{2},
\end{array}\right] \\
\beta_{2}=\left[\begin{array}{ll}
{\left[\begin{array}{ll}
W_{i}, & \overline{0}
\end{array}\right],} & {\left[\begin{array}{ll}
{\left[V_{j k}\right],} & {\left[\mathbf{Y}_{\mathbf{j k}}\right]}
\end{array}\right]}
\end{array}\right]
\end{gathered}
$$

where $i=1, \ldots, 8$ and $0 \leq j, k \leq 2$ with $(j k) \neq(02)$

$$
\beta_{3}=\left[\begin{array}{ll}
{\left[G_{i},\right.} & \left.\left.\overline{0}], \quad\left[\begin{array}{ll}
{\left[K_{1},\right.} & \mathbf{K}_{j}^{\prime}
\end{array}\right]\right] .\right] .
\end{array}\right.
$$

where $i=1,2,3, j=1, \ldots, 6$ and $\overline{0}$ is an appropriate dimensional zero matrix.

$$
\beta_{4}=\left[J^{\prime \prime}, \mathbf{J}^{\prime}\right]
$$

Note that all the matrices in bold print are independent of the curve considered. Also like in the case of theorem 2.2, we will denote the matrices occuring in the resolution of \mathcal{C}^{\prime} with a ' \sim '

3.1. DEGREES OF \mathcal{C} AND \mathcal{C}^{\prime} ARE EVEN.

3.1 Degrees of \mathcal{C} and \mathcal{C}^{\prime} are even.

In this case d is even(say $2 m$), and $d^{\prime}=2 m^{\prime}$.

$$
\begin{aligned}
f & =\sum_{i+j+k=2 m} a_{i j k} x_{0}^{i} x_{1}^{j} x_{2}^{k} \quad \text { and } \\
\tilde{f} & =\sum_{i+j+k=2 m^{\prime}} \tilde{a}_{i j k} x_{0}^{i} x_{1}^{j} x_{2}^{k}
\end{aligned}
$$

As the degrees of f and \tilde{f} are even, from Lemma 2.1, we have that $f, \tilde{f} \in \operatorname{Im}(\theta)$. Let $F, \tilde{F} \in S$ be homogeneous polynomials such that $\theta(F)=f$ and $\theta(\tilde{F})=\tilde{f}$

Lemma 3.1: Let $G \in S$ such that G homogeneous and $Z(\theta(F)) \cap Z(\theta(\tilde{F})) \subset Z(\theta(G)) \subset$ \mathbb{P}^{2}. Then $G \in<F, \tilde{F}, \Delta_{i, j}: 0 \leq i \leq j \leq 2>$.

Proof: Let $\theta(G)=g$, then g is a homogeneous even degree polynomial and

$$
Z(f) \cap Z(\tilde{f}) \subset Z(g)
$$

$\Rightarrow g \in(f, \tilde{f})$ as \mathcal{C} and \mathcal{C}^{\prime} are irreducible curves and hence f and \tilde{f} are irreducible.

$$
\Rightarrow g=f . h+\tilde{f} . \tilde{h} \text { for some } h \text { and } \tilde{h} \text { homogeneous, in } K\left[x_{0}, x_{1}, x_{2}\right]
$$

Now as f, \tilde{f} and g are even degree homogeneous polynomials we get that h and \tilde{h} are both even degree polynomials hence $\exists H$ and $\tilde{H} \in S$, homogeneous such that $\theta(H)=h$ and $\theta(\tilde{H})=\tilde{h}$.
Thus we have

$$
\theta(G-(F . H+\tilde{F} \cdot \tilde{H}))=0
$$

Hence $G-F . H-\tilde{F} . \tilde{H} \in \operatorname{ker}(\theta)$
So we get $G-F . H-\tilde{F} . \tilde{H}=\sum_{0 \leq i \leq j \leq 2} \Delta_{i j} S_{i j}$ for some $S_{i j} \in S, S_{i j}$ homogeneous

$$
\Rightarrow G \in<F, \tilde{F}, \Delta_{i j}: 0 \leq i \leq j \leq 2>
$$

This completes the proof of the lemma.

Theorem 3.1: Let $\mathcal{C}, \mathcal{C}^{\prime}$ be two irreducible curves of even degree say $d=2 m$ and $d^{\prime}=2 m^{\prime}, m, m^{\prime} \geq 1$. The homogeneous coordinate $\operatorname{ring} S / \mathcal{I}_{\sigma\left(\mathcal{C} \cap \mathcal{C}^{\prime}\right)}$ of $\sigma\left(\mathcal{C} \cap \mathcal{C}^{\prime}\right)$ in \mathbb{P}^{5} has the following minimal free graded resolution.

$$
\begin{align*}
0 \rightarrow & S\left(-m-m^{\prime}-4\right)^{\oplus 3} \xrightarrow{\mathcal{P}_{5}} S(-m-4)^{\oplus 3} \oplus S\left(-m^{\prime}-4\right)^{\oplus 3} \oplus S\left(-m-m^{\prime}-3\right)^{\oplus 8} \xrightarrow{\mathcal{P}_{4}} \\
& \xrightarrow{\mathcal{P}_{4}} S(-4)^{\oplus 3} \oplus S(-m-3)^{\oplus 8} \oplus S\left(-m^{\prime}-3\right)^{\oplus 8} \oplus S\left(-m-m^{\prime}-2\right)^{\oplus 6} \xrightarrow{\mathcal{P}_{3}} \\
& \xrightarrow{\mathcal{P}_{3}} S(-3)^{\oplus 8} \oplus S(-m-2)^{\oplus 6} \oplus S\left(-m^{\prime}-2\right)^{\oplus 6} \oplus S\left(-m-m^{\prime}\right) \xrightarrow{\mathcal{P}_{2}} \\
& \xrightarrow{\mathcal{P}_{2}} S(-2)^{\oplus 6} \oplus S(-m) \oplus S\left(-m^{\prime}\right) \xrightarrow{\mathcal{P}_{1}} S \rightarrow S / \mathcal{I}_{\sigma\left(\mathcal{C} \cap \mathcal{C}^{\prime}\right)} \rightarrow 0 \tag{3.1}
\end{align*}
$$

where the matrices \mathcal{P}_{i} are given as follows:

$$
\mathcal{P}_{1}=\left[\begin{array}{lll}
{\left[M_{1}\right],} & F, & \tilde{F}] \tag{3.2}
\end{array}\right.
$$

CHAPTER 3. RESOLUTIONS OF VERONESE EMBEDDING OF COMPLETE INTERSECTIONS OF CURVES IN THE PLANE.

Let

$$
P_{2}=\left[\begin{array}{rrrrrrrr}
-F & 0 & 0 & 0 & 0 & 0 & \Delta_{00} & 0 \\
0 & -F & 0 & 0 & 0 & 0 & \Delta_{01} & 0 \\
0 & 0 & -F & 0 & 0 & 0 & \Delta_{02} & 0 \\
0 & 0 & 0 & -F & 0 & 0 & \Delta_{11} & 0 \\
0 & 0 & 0 & 0 & -F & 0 & \Delta_{12} & 0 \\
0 & 0 & 0 & 0 & 0 & -F & \Delta_{22} & 0
\end{array}\right]
$$

Similarly we get

$$
\tilde{P}_{2}=\left[\begin{array}{rrrrrrrr}
-\tilde{F} & 0 & 0 & 0 & 0 & 0 & 0 & \Delta_{00} \\
0 & -\tilde{F} & 0 & 0 & 0 & 0 & 0 & \Delta_{01} \\
0 & 0 & -\tilde{F} & 0 & 0 & 0 & 0 & \Delta_{02} \\
0 & 0 & 0 & -\tilde{F} & 0 & 0 & 0 & \Delta_{11} \\
0 & 0 & 0 & 0 & -\tilde{F} & 0 & 0 & \Delta_{12} \\
0 & 0 & 0 & 0 & 0 & -\tilde{F} & 0 & \Delta_{22}
\end{array}\right]
$$

and

$$
P_{2}=\left[\begin{array}{lllll}
U_{00}, & U_{01}, & U_{02}, & U_{11}, & U_{12},
\end{array} U_{22}\right]^{T}
$$

We have $\tilde{U}_{i j}$ for $0 \leq i \leq j \leq 2$ and hence \tilde{P}_{2}
Also let

$$
\mathcal{S}=\left[\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & \tilde{F} & -F
\end{array}\right]^{T}
$$

$\mathcal{P}_{2}=\left[\begin{array}{llllllllll}W_{1}^{\prime}, & W_{2}^{\prime}, & W_{3}^{\prime}, & W_{4}^{\prime}, & W_{5}^{\prime}, & W_{6}^{\prime}, & W_{7}^{\prime}, & W_{8}^{\prime}, & {\left[P_{2}\right],} & {\left[\tilde{P}_{2}\right],}\end{array}[\mathcal{S}]\right]$
where

$$
W_{i}^{\prime}=\left[\begin{array}{c}
W_{i} \\
0 \\
0
\end{array}\right] \quad \forall i=1, \ldots, 8
$$

with W_{i} as in equation (2.2) of Chapter 2.
Let

$$
\begin{aligned}
& H_{i}=\left[\begin{array}{c}
{\left[F \cdot I_{i}^{8}\right]} \\
{\left[W_{i}\right]} \\
{[\overline{0}]} \\
0
\end{array}\right] \\
& \tilde{H}_{i}=\left[\begin{array}{c}
{\left[\tilde{F} \cdot I_{i}^{8}\right]} \\
{[\overline{0}]} \\
{\left[W_{i}\right]} \\
0
\end{array}\right]
\end{aligned}
$$

where $i=1, \ldots 8,[\overline{0}]$ is a zero-matrix of appropriate dimension and

$$
I_{j}^{k}=\left[\begin{array}{lllllll}
0, & 0, & \ldots, & j_{1}^{t h} \text { position }
\end{array}, \quad 0, \quad \ldots, \quad 0\right]^{T} \text { is a } k \times 1 \text { vector }
$$

Let

$$
L_{i j}=\left[\begin{array}{c}
{[\overline{0}]} \\
{\left[-\tilde{F} I_{2 i+j+1}^{6}\right]} \\
{\left[F I_{2 i+j+1}^{6}\right]} \\
\Delta_{i j}
\end{array}\right] \quad \forall 0 \leq i \leq j \leq 2
$$

3.1. Degrees of \mathcal{C} and \mathcal{C}^{\prime} are even.

And let

$$
\begin{gather*}
L=\left[\begin{array}{lll}
{\left[L_{00}\right],} & \ldots, & {\left[L_{22}\right]}
\end{array}\right] \\
\mathcal{P}_{3}=\left[\left[G_{i}^{\prime}\right]_{1 \leq i \leq 3}, \quad\left[H_{j}\right]_{1 \leq j \leq 8},\right.
\end{gather*}\left[\begin{array}{ll}
\left.\tilde{H}_{j}\right]_{1 \leq j \leq 8}, & {[L]} \tag{3.4}
\end{array}\right]
$$

where

$$
G_{i}^{\prime}=\left[\begin{array}{c}
G_{i} \\
{[\overline{0}]}
\end{array}\right] \quad \text { for } i=1,2,3
$$

where G_{i} as in equation(2.3) of Chapter 2 and $[\overline{0}]$ is a 0 matrix of appropriate dimension, and $j=1, \ldots, 8$.

We define

$$
\left.\begin{array}{c}
P_{4}=\left[\left(\begin{array}{c}
{\left[-F . I_{1}^{3}\right]} \\
{\left[G_{1}\right]} \\
{[\overline{0}]} \\
{[\overline{0}]}
\end{array}\right), \quad\left(\begin{array}{c}
{\left[-F . I_{2}^{3}\right]} \\
{\left[G_{2}\right]} \\
{[\overline{0}]} \\
{[\overline{0}]}
\end{array}\right),\right.
\end{array}\left(\begin{array}{c}
{\left[-F . I_{3}^{3}\right]} \\
{\left[G_{3}\right]} \\
{[\overline{0}]} \\
{[\overline{0}]}
\end{array}\right)\right]
$$

And let

$$
\mathcal{W}_{i}=\left[\begin{array}{c}
{[\overline{0}]} \\
{\left[-\tilde{F} . I_{i}^{8}\right]} \\
{\left[F . I_{i}^{8}\right]} \\
{\left[W_{i}\right]}
\end{array}\right] \quad i=1, \ldots, 8 .
$$

Let

$$
\left.\mathcal{P}_{4}=\left[\begin{array}{llll}
{\left[P_{4}\right],} & {\left[P_{4}^{\prime}\right],} & {\left[\mathcal{W}_{1}\right],} & \ldots, \tag{3.5}
\end{array}\right]\left[\mathcal{W}_{8}\right]\right]
$$

And

$$
\begin{gather*}
\mathcal{G}_{i}=\left[\begin{array}{c}
{\left[\tilde{F} I_{i}^{3}\right]} \\
{\left[-F I_{i}^{3}\right]} \\
{\left[G_{i}\right]}
\end{array}\right] \\
\mathcal{P}_{5}=\left[\left[\mathcal{G}_{1}\right], \quad\left[\mathcal{G}_{2}\right], \quad\left[\mathcal{G}_{3}\right]\right] \tag{3.6}
\end{gather*}
$$

Proof:
From Lemma 3.1, it is clear that

$$
\mathcal{P}_{1}=\left[\begin{array}{llllllll}
\Delta_{00}, & \Delta_{01}, & \Delta_{02}, & \Delta_{11}, & \Delta_{12}, & \Delta_{22}, & F, & \tilde{F}
\end{array}\right]
$$

Now consider

$$
A=\left[\begin{array}{llllll}
A_{00}, & A_{01}, & A_{02}, & A_{11}, & A_{12}, & A_{22}
\end{array}\right]
$$

where $a_{i j} \in S$, homogeneous. And $B, B^{\prime} \in S$, homogeneous such that

$$
\begin{gathered}
\sum_{i, j} A_{i j} \cdot \Delta_{i j}+B \cdot F+\tilde{B} \cdot \tilde{F}=0 \\
\Rightarrow \theta(B \cdot F+\tilde{B} \cdot \tilde{F})=0 \\
\Rightarrow \theta(B) \cdot f=-\theta(\tilde{B}) \tilde{f}
\end{gathered}
$$

CHAPTER 3. RESOLUTIONS OF VERONESE EMBEDDING OF COMPLETE INTERSECTIONS OF CURVES IN THE PLANE.

Now if $B=0$, then we get $\theta(\tilde{B})=0$, hence $\tilde{B} \in<\Delta_{i j}: 0 \leq i \leq j \leq 2>$ So we get, \tilde{P}_{2}. Similar reasoning for $\tilde{B}=0$, gives us, P_{2}.
Now if B and \tilde{B} both non-zero, we get,

$$
\theta(B) \in<\tilde{f}>\text { and } \theta(\tilde{B}) \in<f>
$$

So let $\theta(B)=p . \tilde{f}$, then $\theta(\tilde{B})=-p . f$, where $p \in k\left[x_{0}, x_{1}, x_{2}\right]$. Degree of p is even, therefore $\exists P \in S$, such that $\theta(P)=p$. Hence $[B, \tilde{B}] \in\langle\mathcal{S}>$. So we get that the relations between $\Delta_{i j}, F$ and \tilde{F} are generated by $U_{i j}: 0 \leq i \leq j \leq 2, \tilde{U}_{i j}: 0 \leq i \leq j \leq 2$, $W_{k}^{\prime}: k=1, \ldots, 8$ and \mathcal{S}

Now we get

$$
\mathcal{P}_{2}=\left[\begin{array}{llll}
{\left[W_{i}^{\prime}\right]_{1 \leq i \leq 8},} & {\left[P_{2}\right],} & {\left[\tilde{P}_{2}\right],} & {[\mathcal{S}]}
\end{array}\right.
$$

for $i=1, \ldots, 8$
Now consider

$$
\begin{gathered}
A=\left[A_{k}\right]_{1 \leq k \leq 8}, A_{k} \in S, \quad A_{k} \text { homogeneous } \forall 1 \leq k \leq 8 \text { and } \\
B=\left[\left(B_{i j}\right)\right], B_{i j} \in S, \text { homogeneous } \\
\tilde{B}=\left[\left(\tilde{B}_{i j}\right)\right], \tilde{B}_{i j} \in S, \text { homogeneous }
\end{gathered}
$$

for $0 \leq i \leq j \leq 2$, and $D \in S$ homogeneous, such that

$$
\begin{equation*}
\sum_{1 \leq k \leq 8} A_{k} \cdot W_{k}^{\prime}+\sum_{0 \leq i \leq j \leq 2} B_{i j} \cdot U_{i j}+\sum_{0 \leq i \leq j \leq 2} \tilde{B}_{i j} \cdot \tilde{U}_{i j}+D \cdot \mathcal{S}=0 \tag{3.7}
\end{equation*}
$$

Now let $\tilde{B}_{i j}=0$ for all i, j, so $D=0$. Then we have

$$
B \in<W_{k}: k=1, \ldots, 8>
$$

Hence from Theorem 2.1, we get that the relations between W_{k}^{\prime} and $U_{i j}$ are generated by G_{i}^{\prime} and H_{k}. Similarly, when $B_{i j}=0$, for all i, j, we get that all relations between W_{k}^{\prime} and $\tilde{U}_{i j}$ are generated by G_{i}^{\prime} and \tilde{H}_{k}

Now if $B_{i j}, \widehat{B}_{k l} \neq 0$ for some i, j, k, l, then it is clear that $D \neq 0$ in (3.7) from the definitions of $W_{i}^{\prime}, U_{i j}$, and $\tilde{U}_{i j}$.
So we have

$$
\sum_{i j} B_{i j} \Delta_{i j}+D \cdot \tilde{F}=0, \quad \sum_{i j} \tilde{B}_{i j} \Delta_{i j}-D \cdot F=0
$$

This implies that $D \in<\Delta_{i j}: 0 \leq i \leq j \leq 2>$. So for some $C_{i j} \in S$, homogeneous we have $D=\sum_{i j} C_{i j} \Delta_{i j}$ and hence

$$
\sum_{i j}\left(B_{i j}+C_{i j} \cdot \tilde{F}\right) \Delta_{i j}=0 \text { and } \sum_{i j}\left(\tilde{B}_{i j}-C_{i j} \cdot F\right) \Delta_{i j}=0
$$

If $B_{i j}-C_{i j} \cdot \tilde{F}=0$ for all i, j and $\tilde{B}_{i j}+C_{i j} . F=0$ for all i, j, then $C_{i j} \cdot \tilde{F}=B_{i j}$ and $C_{i j} . F=-\tilde{B}_{i j}$ for all i, j then such ($B_{i j}, \tilde{B}_{i j}, C_{i j}$) are generated by $\left\langle H_{k}, \tilde{H}_{k}, L_{i j}\right\rangle$ for $0 \leq i \leq j \leq 2$ and $k=1, \ldots, 8$.
And if not then $\sum\left(\tilde{B}_{i j}+C_{i j} . F\right) \in \operatorname{Syz}^{1}\left(<W_{j}^{\prime}: 1 \leq j \leq 8>\right)$.
Similarly $\sum\left(B_{i j}-C_{i j} . \tilde{F}\right) \in \operatorname{Syz}^{1}\left(<W_{j}^{\prime}: 1 \leq j \leq 8>\right)$.
Hence the relations between $\left\{W_{k}^{\prime}, U_{i j}, \tilde{U}_{i j}, J\right.$ \}are generated by $G_{k}^{\prime}: k=1,2,3, H_{i}$, $\tilde{H}_{i}: 1 \leq i \leq 8$ and $L_{j k}: 0 \leq j \leq k \leq 2$.
Hence

$$
\left.\mathcal{P}_{3}=\left[\begin{array}{lllll}
{\left[G_{1}^{\prime}\right],} & {\left[G_{2}^{\prime}\right],} & {\left[G_{3}^{\prime}\right],} & {\left[H_{i}\right],} & {\left[\tilde{H}_{i}\right]}
\end{array}\right][L]\right]
$$

3.1. DEGREES OF \mathcal{C} AND \mathcal{C}^{\prime} ARE EVEN.

for $i=1, \ldots, 8$

Now consider

$$
\begin{aligned}
& A=\left[\left(A_{i}\right)\right]_{1 \leq i \leq 3} A_{i} \in S \text { homogeneous for } i=1,2,3 \\
& B=\left[\left(B_{j}\right)\right]_{1 \leq j \leq 8} \text { and } \\
& \tilde{B}=\left[\left(\tilde{B}_{j}\right)\right]_{1 \leq j \leq 8} \text {, where } B_{i} \text { and } \tilde{B}_{i} \text { homogeneous in } S \text { for } i=1, \ldots, 8, \\
& C=\left[\left(C_{k l}\right)\right] 1 \leq k \leq l \leq 2, \text { where } C_{i j} \in S \text { homogeneous for } 0 \leq k \leq l \leq 2 \text { such }
\end{aligned}
$$

that

$$
\sum_{i} A_{i} \cdot G_{i}^{\prime}+\sum_{i} B_{i} \cdot H_{i}+\sum_{i} \tilde{B}_{i} \cdot \tilde{H}_{i}+\sum_{i, j} C_{i j} \cdot L_{i j}=0
$$

Now if $[\tilde{B}]=[\overline{0}]$, then $C=[0]$, hence we have
$\sum_{i} B_{i} W_{i}=0$ then, $B \in<G_{p}: p=1,2,3>$ Now theorem 2.2 , we get P_{4}. Similarly we get \tilde{P}_{4}, when $B_{i j}=0$ for all (i, j)
If $B \neq[0]$ and $\tilde{B} \neq[0]$, then we have that $C_{i j} \neq 0$ for some i, j. So we get that $\sum_{i, j}\left(C_{i j} . \Delta_{i j}\right)=0$. This implies that $C \in<W_{k}>$, then with similar arguments as in the proof of theorem 2.2 , we get \mathcal{W}_{i} for $i=1, \ldots, 8$.

Hence we get

$$
\mathcal{P}_{4}=\left[\begin{array}{lllll}
{\left[P_{4}\right],} & {\left[\tilde{P}_{4}\right],} & {\left[\mathcal{W}_{1}\right],} & \ldots, & {\left[\mathcal{W}_{8}\right]}
\end{array}\right]
$$

Now let

$$
\begin{aligned}
& B=\left[\left(B_{i}\right)\right] \\
& \tilde{B}=\left[\left(\tilde{B}_{i}\right)\right] \\
& A=\left[\left(A_{j}\right)\right]
\end{aligned}
$$

such that for $i=1,2,3, B_{i}, \tilde{B}_{i}$ are homogeneous in S, and for $j=1, \ldots, 8, A_{j}$ are homogeneous in S

$$
B \cdot P_{4}+\tilde{B} \cdot \tilde{P}_{4}+\sum_{i} A_{i} \cdot \mathcal{W}_{i}=0
$$

Then we get that $\sum_{i} A_{i} \cdot W_{i}=0$, this implies that $A \in<G_{k}: k=1,2,3>$, with the same arguments as earlier we get, $\mathcal{G}_{1}, \mathcal{G}_{2}$, and \mathcal{G}_{3}. Hence

$$
\mathcal{P}_{5}=\left[\begin{array}{lll}
{\left[\mathcal{G}_{1}\right],} & {\left[\mathcal{G}_{2}\right],} & {\left[\mathcal{G}_{3}\right]}
\end{array}\right]
$$

CHAPTER 3. RESOLUTIONS OF VERONESE EMBEDDING OF COMPLETE INTERSECTIONS OF CURVES IN THE PLANE.

3.2 Degree of \mathcal{C} is even and degree of \mathcal{C}^{\prime} is odd

let $d=2 m$, and $d^{\prime}=2 m^{\prime}-1$

$$
\begin{aligned}
f & =\sum_{i+j+k=2 m} a_{i j k} x_{0}^{i} x_{1}^{j} x_{2}^{k} \quad \text { and }, \\
\tilde{f} & =\sum_{i+j+k=2 m^{\prime}-1} \tilde{a}_{i j k} x_{0}^{i} x_{1}^{j} x_{2}^{k}
\end{aligned}
$$

As the degree of f is even from Lemma 2.1, we have that $f \in \operatorname{Im}(\theta)$. Also from Lemmas 2.2 and 2.3, we also know that for \tilde{f} with odd degree, we have $\tilde{f}_{i}=x_{i} . \tilde{f}$ for $0 \leq i \leq 2$ such that $Z(\tilde{f})=\cap_{i=0}^{2} Z\left(\tilde{f}_{i}\right)$ and that each $\tilde{f}_{i} \in \operatorname{Im}(\theta)$ for $i=0,1,2$. Like in Chapter 2 we also have, $\tilde{h}_{I}, \tilde{h}_{I I}, \tilde{h}_{I I I}$, and $\tilde{h}_{I V}$ such that

$$
\begin{aligned}
& \tilde{F}_{0}=x_{00} x_{12} \tilde{h}_{I}+x_{00} \tilde{h}_{I I}+x_{01} \tilde{h}_{I I I}+x_{02} \tilde{h}_{I V} \\
& \tilde{F}_{1}=x_{11} x_{02} \tilde{h}_{I}+x_{01} \tilde{h}_{I I}+x_{11} \tilde{h}_{I I I}+x_{12} \tilde{h}_{I V} \\
& \tilde{F}_{2}=x_{22} x_{01} \tilde{h}_{I}+x_{02} \tilde{h}_{I I}+x_{12} \tilde{h}_{I I I}+x_{22} \tilde{h}_{I V}
\end{aligned}
$$

Lemma 3.2: Let $G \in S$ such that G homogeneous and

$$
Z(\theta(F)) \cap Z\left(\theta\left(\tilde{F}_{0}\right)\right) \cap Z\left(\theta\left(\tilde{F}_{1}\right)\right) \cap Z\left(\theta\left(\tilde{F}_{2}\right)\right) \subset Z(\theta(G)) \subset \mathbb{P}^{2}
$$

. Then $G \in<F, \tilde{F}_{k}, \Delta_{i, j}: 0 \leq i \leq j \leq 2, k=0,1,2>$.
Proof:Let $\theta(G)=g$, then g is a homogeneous even degree polynomial and,

$$
\begin{gathered}
Z(f) \cap Z\left(\tilde{f}_{0}\right) \cap Z\left(\tilde{f}_{1}\right) \cap Z\left(\tilde{f}_{2}\right) \subset Z(g) \\
Z(f) \cap Z(\tilde{f}) \subset Z(g)
\end{gathered}
$$

$\Rightarrow g \in(f, \tilde{f})$ as \mathcal{C} and \mathcal{C}^{\prime} are irreducible curves and by assumption(i.e. $\mathcal{C} \cap \mathcal{C}^{\prime}$ is reduced. So

$$
g=f . h+\tilde{f} . \tilde{h} \text { for some } h \text { and } \tilde{h} \text { homogeneous in } K\left[x_{0}, x_{1}, x_{2}\right]
$$

Now as f and g are even degree homogeneous polynomials and \tilde{f} is homogeneous of odd degree, we get that degree of h is even and \tilde{h} is a odd degree polynomial hence, there exists $H \in S$, homogeneous such that $\theta(H)=h$ and $\tilde{h}=\sum_{i} \tilde{h}_{i} x_{i}$, where $\tilde{h}_{i} \in K\left[x_{0}, x_{1}, x_{2}\right], \tilde{h}_{i}$ homogeneous of even degree.
So there exists \tilde{H}_{i} s such that $\theta\left(\tilde{H}_{i}\right)=\tilde{h}_{i}$ for $i=0,1,2$
Thus we have

$$
\begin{aligned}
& \qquad\left(G-\left(F \cdot H+\sum_{i}\left(\tilde{F}_{i} \cdot \tilde{H}_{i}\right)\right)\right)=0 \\
& \text { hence, } G-\left(F \cdot H+\sum_{i}\left(\tilde{F}_{i} \cdot \tilde{H}_{i}\right)\right) \in \operatorname{ker}(\theta)
\end{aligned}
$$

So we get

$$
\begin{gathered}
G-\left(F . H+\sum_{i}\left(\tilde{F}_{i} . H_{i}^{\prime}\right)\right)=\sum_{0 \leq i \leq j \leq 2} \Delta_{i j} S_{i j} \text { for some } S_{i j} \in S, S_{i j} \text { homogeneous } \\
\Rightarrow G \in<F, \tilde{F}_{k}, \Delta_{i j}: 0 \leq i \leq j \leq 2 \text { and } k=0,1,2>
\end{gathered}
$$

This completes the proof of the lemma.
Theorem 3.2: Let $\mathcal{C}, \mathcal{C}^{\prime}$ be two irreducible curves of degrees say $d=2 m$ and

3.2. DEGREE OF \mathcal{C} IS EVEN AND DEGREE OF \mathcal{C}^{\prime} IS ODD

$d^{\prime}=2 m^{\prime}-1, m, m^{\prime} \geq 2$. Then the homogeneous coordinate ring $S / \mathcal{I}_{\sigma\left(\mathcal{C} \cap \mathcal{C}^{\prime}\right)}$ of $\left(\sigma(\mathcal{C}) \cap \sigma\left(\mathcal{C}^{\prime}\right)\right)$ in \mathbb{P}^{5} has the following minimal free graded resolution.

$$
\begin{align*}
0 \rightarrow & S\left(-m-m^{\prime}-4\right) \xrightarrow{Q_{5}} S(-m-4)^{\oplus 3} \oplus S\left(-m^{\prime}-4\right) \oplus S\left(-m-m^{\prime}-2\right)^{\oplus 6} \xrightarrow{Q_{4}} \\
& \xrightarrow{Q_{4}} S(-4)^{\oplus 3} \oplus S(-m-3)^{\oplus 8} \oplus S\left(-m^{\prime}-2\right)^{\oplus 6} \oplus S\left(-m-m^{\prime}-1\right)^{\oplus 8} \xrightarrow{Q_{3}} \\
& \xrightarrow{Q_{3}} S(-3)^{\oplus 8} \oplus S(-m-2)^{\oplus 6} \oplus S\left(-m^{\prime}-1\right)^{\oplus 8} \oplus S\left(-m-m^{\prime}\right)^{\oplus 3} \xrightarrow{Q_{2}} \tag{3.8}\\
& \xrightarrow{Q_{2}} S(-2)^{\oplus 6} \oplus S(-m) \oplus S\left(-m^{\prime}\right)^{\oplus 3} \xrightarrow{Q_{1}} S \rightarrow S / \mathcal{I}_{\sigma\left(\mathcal{C} \cap \mathcal{C}^{\prime}\right)} \rightarrow 0
\end{align*}
$$

Proof:

From Lemma 3.2, we get that

$$
Q_{1}=\left[\begin{array}{lllll}
{\left[M_{1}\right],} & F, & \tilde{F}_{0}, & \tilde{F}_{1}, & \tilde{F}_{2} \tag{3.9}
\end{array}\right]
$$

Now let
$A=\left[\left(A_{i j}\right)\right], A_{i j} \in S$, homogeneous for $0 \leq i \leq j \leq 2$ and,
$B \in S$, homogeneous, $\tilde{B}=\left[\begin{array}{ccc}\tilde{B}_{0}, & \tilde{B}_{1}, \quad \tilde{B}_{2}\end{array}\right], \tilde{B}_{i} \in S$, homogeneous for $i=0,1,2$, such that

$$
\sum_{i j}\left(A_{i j} \cdot \Delta_{i j}\right)+B \cdot F+\sum_{i}\left(\tilde{B}_{i} \cdot \tilde{F}_{i}\right)=0
$$

Now if $\tilde{B}_{i}=0$, for all $i=0,1,2$, then we have,

$$
\sum_{i j}\left(A_{i j} \cdot \Delta_{i j}\right)+B \cdot F=0
$$

By theorem 2.1 we get that
$\left[\left[A_{i j}\right], B\right] \in<\left[\left[W_{i}\right], 0\right],\left[U_{j k}\right] \quad: i=1, \ldots, 8,0 \leq j \leq k \leq 2>$.
Hence we get that
$\left[\left[A_{i j}\right], B,[\overline{0}]\right] \in<\left[\left[W_{i}\right], 0,[\overline{0}]\right],\left[\left[U_{j k}\right],[\overline{0}]\right]: i=1, \ldots, 8,0 \leq j \leq k \leq 2>$.
Similarly if $B=0$, by theorem 2.2 we get that $\left[\left[A_{i j}\right], 0,\left[\tilde{B}_{k}\right]\right] \in<\left[\left[W_{i}\right],[\overline{0}]\right],\left[\tilde{V}_{j}\right]: i, j=1, \ldots, 8>$.

Now we have,

$$
\left[\begin{array}{lll}
{\left[A_{i j}\right],} & 0, & {\left[\tilde{B}_{k}\right]}
\end{array}\right] \in\left\langle\left[\begin{array}{lll}
{\left[W_{i}\right],} & {[\overline{0}]}
\end{array}\right], \quad\left[\begin{array}{lll}
{\left[V_{j k}\right],} & 0, & {\left[\mathbf{Y}_{\mathbf{j k}}\right]}
\end{array}\right]\right\rangle
$$

for $i=1, \ldots, 8$ and $0 \leq j, k \leq 2,(j, k) \neq(0,2)$.
Now let $B \neq 0$ and $\tilde{B}_{i} \neq 0$ for some i.
Then we have,

$$
b . f+\sum_{i}\left(\tilde{b}_{i} . \tilde{f}_{i}\right)=0
$$

where $b=\theta(B)$ and $\tilde{b}_{i}=\theta\left(\tilde{B}_{i}\right)$ for $i=0,1,2$
Hence we have, $b \in<\tilde{f}>$ and $\sum_{i}\left(b_{i}^{\prime} \cdot x_{i}\right) \in<f>$,
but the degree of b is even, so $b \in\left\langle x_{i} \cdot \tilde{f}: i=0,1,2>\right.$. So we get,
$B=\sum_{i} C_{i} . \tilde{F}_{i}$.
This gives us that

$$
\left.\left[\begin{array}{lll}
B, & {\left[\tilde{B}_{0},\right.} & \tilde{B}_{1}, \\
\tilde{B}_{2}
\end{array}\right]\right] \in\left\langle\left[\begin{array}{cc}
\tilde{F}_{i}, & {\left[-F \cdot I_{i}^{3}\right]}
\end{array}\right]: \quad i=0,1,2\right\rangle
$$

Let $L_{i}=\left[\begin{array}{lll}{[\overline{0}]_{6},} & \tilde{F}_{i}, & {\left[-F . I_{i}^{3}\right]}\end{array}\right]$, where $[\overline{0}]_{i}$ is a $1 \times i$ zero-vector. Hence we get that

$$
\left[\left[A_{i j}\right], B,\left[\tilde{B}_{k}\right]\right] \in\left\langle\left[\begin{array}{lll}
{\left[W_{i}\right],} & 0, & {[\overline{0}]}
\end{array}\right], \quad\left[\begin{array}{ll}
{\left[U_{j k}\right],} & {[\overline{0}]}
\end{array}\right], \quad\left[\left[\tilde{V}_{l n}\right],[\overline{0}],\left[Y_{l n}\right]\right], \quad\left[L_{s}\right]\right\rangle
$$

CHAPTER 3. RESOLUTIONS OF VERONESE EMBEDDING OF COMPLETE INTERSECTIONS OF CURVES IN THE PLANE.

for $i=1, \ldots, 8,0 \leq j \leq k \leq 2,0 \leq l, n \leq 2((l, n) \neq(0,2))$ and $s=0,1,2$
Hence we get Q_{2}.
Now let
$A=\left[\begin{array}{ll}\left(A_{i}\right) & 1 \leq i \leq 8\end{array}\right]^{T}, A_{i} \in S$, homogeneous for $i=1, \ldots, 8$
$B=\left[\left(B_{i j}\right)_{0 \leq i \leq j \leq 2}\right]^{T}, B_{i j} \in S$, homogeneous for $0 \leq i \leq j \leq 2$
$\tilde{B}=\left[\begin{array}{ll}\left(\tilde{B}_{i j}\right) & 0 \leq i \leq j \leq 2\end{array}\right]^{T}, \tilde{B}_{i j} \in S$, homogeneous for $0 \leq i, j \leq 2$,
$C=\left[\begin{array}{lll}C_{0}, & C_{1}, & C_{2}\end{array}\right]^{T}, C_{i} \in S$, homogeneous for $i=0,1,2$.
such that

$$
\begin{array}{r}
\sum_{i=1, \ldots, 8} A_{i}\left[\begin{array}{lll}
{\left[W_{i}\right],} & 0, & \left.[\overline{0}]_{3}\right]+\sum_{0 \leq i \leq j \leq 2} B_{i j}\left[\left[U_{i j}\right],\right. \\
\left.+\sum_{0}\right]_{3}
\end{array}\right] \\
+\sum_{i j} \tilde{B}_{i j}\left[\begin{array}{lll}
{\left[\tilde{V}_{i j}\right],} & 0, & \left.\left[\mathbf{Y}_{\mathbf{i j}}\right]\right]+\sum_{i=0,1,2} C_{i} \cdot L_{i}=0
\end{array}\right. \tag{3.10}
\end{array}
$$

Consider the following cases:
(1)Let $B=[\overline{0}], \tilde{B}=[\overline{0}]$ and $C=[\overline{0}]$, then $A \in<G_{i}: i=1,2,3>$. Hence

$$
\left[\begin{array}{llll}
{\left[A_{i j}\right],} & 0, & {[\overline{0}],} & {[\overline{0}]}
\end{array}\right] \in<\left[\begin{array}{lll}
{\left[G_{i}\right],} & 0, & {[\overline{0}],}
\end{array}[\overline{0}]\right]>
$$

for $i=1,2,3$
(2)Let $\tilde{B}=[\overline{0}], C=[\overline{0}]$, but $B \neq[\overline{0}]$, then theorem 2.1 we get, $[[A],[B]] \in<$ $\left[G_{i}, 0\right],\left[H_{j}\right]: i=1,2,3, j=1, \ldots, 8>$. Hence,

$$
\left[\begin{array}{llll}
{\left[A_{i j}\right],} & B, & {[\overline{0}],} & {[\overline{0}]}
\end{array}\right] \in\left\langle\left[\begin{array}{llll}
{\left[G_{i}\right],} & {[\overline{0}],} & {[\overline{0}],} & {[\overline{0}]}
\end{array}\right],\left[\begin{array}{lll}
{\left[H_{j}\right],} & {[\overline{0}],} & {[\overline{0}]}
\end{array}\right]\right\rangle
$$

for $i=1,2,3$ and $j=1, \ldots, 8$
(3)Let $B=0, C=[\overline{0}]$, but $\tilde{B} \neq[\overline{0}]$, then like the previous case we get, $[[A],[\tilde{B}]] \in<$ $\left[G_{i}, 0\right],\left[K_{j}\right]: i=1,2,3 j=1, \ldots, 6>$. Hence
$\left.\left[\begin{array}{llll}{[A],} & {[\overline{0}],} & {[\tilde{B}],} & {[\overline{0}]}\end{array}\right] \in\left\langle\left[\begin{array}{lll}{\left[G_{i}\right],} & {[\overline{0}],} & {[\overline{0}]}\end{array}\right], \quad\left[\begin{array}{lll}{\left[\tilde{K}^{\prime \prime}\right.} \\ j\end{array}\right], \quad[\overline{0}], \quad\left[\mathbf{K}_{j}^{\prime}\right], \quad[\overline{0}]\right]\right\rangle$ for $i=1,2,3$ and $j=1 \ldots 6$
(4)Let $B \neq[\overline{0}]$ and $\tilde{B} \neq[\overline{0}]$, then we have ,

$$
\sum_{0 \leq i \leq j \leq 2}\left(B_{i j} \Delta_{i j}\right)+\sum_{i=0,1,2}\left(C_{i} \cdot \tilde{F}_{i}\right)=0
$$

Hence

$$
\sum_{i=0,1,2}\left(c_{i} \cdot \tilde{f}_{i}\right)=0
$$

where $c_{i}=\theta\left(C_{i}\right)$ for all $i=0,1,2$
So we get that $\left[C_{0}, \quad C_{1}, \quad C_{2}\right] \in\left\langle\mathbf{Y}_{\mathbf{i j}}: 0 \leq i, j \leq 2,(i, j) \neq(0,2)\right\rangle$. Hence,

$$
[C]=\sum_{k, l} D_{k l}\left[Y_{k l}\right] \text { where } D_{k l} \in S, \text { homogeneous for, } 0 \leq i, j \leq 2, \quad(l, k) \neq(0,2)
$$

So

$$
\sum_{i j}\left(B_{i j}\right) \cdot\left[\mathbf{Y}_{\mathbf{i} \mathbf{j}}\right]=\sum_{i j} F\left(D_{i j}\right)\left[\mathbf{Y}_{\mathbf{i j}}\right]
$$

3.2. DEGREE OF \mathcal{C} IS EVEN AND DEGREE OF \mathcal{C}^{\prime} IS ODD

Now if, $B_{i j}-F . D_{i j}=0$ for all i, j, then $\left(\left[B_{i j}\right],[C]\right) \in<[F . I]_{k}^{8},\left[Y_{k l}\right]>$,
where $k=2 i+j+1$ if $i=0,1$ and $k=6+j$ for $i=2$.
Hence we get that $([A],[B],[\tilde{B}],[C]) \in\left\langle\left[[\overline{0}], \quad\left[\tilde{V}_{i j}\right], \quad[F . I]_{k}^{8}, \quad\left[\mathbf{Y}_{\mathbf{i j}}\right]\right]\right\rangle$. Define,

$$
\mathcal{V}_{i j}=\left[\begin{array}{lll}
{[\overline{0}],} & -V_{i j}, & {\left[F . I_{k}^{8}\right],}
\end{array} \quad\left[\mathbf{Y}_{\mathbf{i j}}\right]\right],
$$

for $i, j=0,1,2$, and for $k=2 i+j+1$, if $i \neq 2$ and $k=6+j$ if $i=2$.
If not then, $\left[\left(B_{i j}-F . D_{i j}\right)\right] \in<K_{l}^{\prime}: 1 \leq l \leq 6>\left(\operatorname{Syz}^{1}\left(<\mathbf{Y}_{\mathbf{i j}}>\right)\right)$.
Hence we get Q_{3}
Let
$A=\left[\begin{array}{ll}\left(A_{i}\right) & 1 \leq i \leq 3\end{array}\right]^{T}, A_{i} \in S$, homogeneous for $i=1,2,3$
$B=\left[\left(B_{i}\right) \quad 1 \leq i \leq 8\right]^{T}, B_{i} \in S$, homogeneous for $i=1, \ldots 8$
$\tilde{B}=\left[\begin{array}{ll}\left(\tilde{B}_{i}\right) & 1 \leq i \leq 3\end{array}\right]^{T}, \tilde{B}_{i} \in S$, homogeneous for $i=1, \ldots, 6$,
$C=\left[\begin{array}{ll}C_{i j} & \\ 0 \leq i, j \leq 2\end{array}\right]^{T}, C_{i j} \in S$, homogeneous for $i, j=0,1,2$.
such that

$$
\left.\left.\left.\begin{array}{r}
\sum_{i=1,2,3} A_{i}\left[\begin{array}{llll}
{\left[G_{i}\right],} & {[\overline{0}]_{6},} & {[\overline{0}]_{8},} & {[\overline{0}]_{3}}
\end{array}\right]+\sum_{0 \leq i \leq j \leq 2} B_{i j}\left[\begin{array}{lll}
\left.H_{i}\right], & {[\overline{0}]_{8},} & {[\overline{0}]_{3}}
\end{array}\right]+ \\
\sum_{i} \tilde{B}_{i}\left[\begin{array}{lll}
{\left[\tilde{K}^{\prime \prime}\right.} \\
i
\end{array}\right], \tag{3.11}
\end{array}\right][\overline{0}]_{8}, \quad\left[\mathbf{K}_{\mathbf{i}}^{\prime}\right], \quad[\overline{0}]_{3}\right]+\sum_{i, j} C_{i j} .\left[\mathcal{V}_{i j}\right]=0\right) ~ \$
$$

Consider the following cases,
(1) $\tilde{B}=[\overline{0}]$, hence $B \neq[\overline{0}]$ and $C=[\overline{0}]$, then from Theorem 2.1, we get that

$$
[[A],[B]] \in\left\langle\left(\left[-F . I_{i}^{3}\right],\left[G_{i}\right]\right) \quad: i=1,2,3\right\rangle
$$

Hence $[[A],[B],[\tilde{B}],[C]] \in\left\langle\left[\begin{array}{lll}{\left[-F . I_{i}^{3}\right],} & \left.\left.\left[G_{i}\right], \quad[\overline{0}], \quad[\overline{0}]\right]: i=1,2,3\right\rangle\end{array}\right.\right.$
Denote $\left[\begin{array}{lll}{\left[-F . I_{i}^{3}\right],} & \left.\left[G_{i}\right], \quad[\overline{0}], \quad[\overline{0}]\right] \text { as }\left[\Im_{i}\right] \text { for } i=1,2,3\end{array}\right.$
(2) $B, C=[\overline{0}]$ and $\tilde{B} \neq[\overline{0}]$, then from theorem 2.1, we get that $[[A],[\tilde{B}]] \in\langle[\tilde{J}]\rangle$

Hence $[[A],[B],[\tilde{B}],[C]] \in\left\langle\left[\left[\tilde{J}^{\prime \prime}\right],[\overline{0}],\left[\mathbf{J}^{\prime}\right],[\overline{0}]\right]\right\rangle$
(3) $C \neq[\overline{0}]$, then we have, $\sum_{i j} C_{i j} .\left[\mathbf{Y}_{\mathbf{i j}}\right]=0$, hence $C \in<\left[\mathbf{K}_{\mathbf{i}}^{\prime}\right]: i=1, \ldots, 6>$.

Hence we have

$$
[[A],[B],[\tilde{B}],[C]] \in<\left[[\overline{0}],\left[\tilde{K^{\prime \prime}}{ }_{i}\right],\left[-F . I_{i}^{6}\right],\left[\mathbf{K}_{i}^{\prime}\right]\right]: i=i, \ldots, 6>
$$

Lets denote the above set of vectors as $\tilde{\mathcal{K}}_{i}, i=1, \ldots, 6$
Hence we have,
$\left[\begin{array}{llll}{[A],} & {[B],} & {[\tilde{B}],} & {[C]}\end{array}\right] \in<\left(\begin{array}{llll}{\left[\Im_{i}\right],} & {\left[\begin{array}{lll}\tilde{J}^{\prime \prime}, & {[\overline{0}],} & {\left[J^{\prime}\right],}\end{array}[\overline{0}]\right],} & \left.\left[\tilde{\mathcal{K}}_{j}\right]\right)>\end{array}\right.$
$i=1,2,3$, and $j=1, \ldots, 6$
Hence we get Q_{4}.
Let
$A=\left[\left(A_{i}\right)\right], A_{i} \in S$, homogeneous for $i=1,2,3$
$B \in S$, homogeneous. $C=\left[\left(C_{i}\right)\right], C_{i} \in S$, homogeneous for $i=1, \ldots, 6$, such that

$$
\begin{equation*}
\sum_{i=1,2,3} A_{i}\left[\Im_{i}\right]+B . J+\sum_{i} C_{i}\left[\tilde{\mathcal{K}}_{i}\right]=0 \tag{3.12}
\end{equation*}
$$

ChAPTER 3. RESOLUTIONS OF VERONESE EMBEDDING OF

 COMPLETE INTERSECTIONS OF CURVES IN THE PLANE.From theorem 2 and 3 in $[\mathrm{A}]$, we get that if $[C]=[\overline{0}]$ then $[A]$ and $[B]$ are also equal to $[\overline{0}]$. So $[C] \neq[\overline{0}]$, then we have $\sum_{i} C_{i} \cdot \mathbf{K}^{\prime}{ }_{i}=0$, hence $[C] \in\left\langle\mathbf{J}^{\prime}>\right.$.
Hence we have $\left.\left.\left[\begin{array}{lll}{[A],} & B, & {[C}\end{array}\right]\right] \in\left\langle\left[\begin{array}{lll}{\left[-\tilde{J}^{\prime \prime}\right.}\end{array}\right], \quad-F, \quad\left[\mathbf{J}^{\prime}\right]\right]\right\rangle$.
Hence we get Q_{5}.

3.3 Degrees of \mathcal{C} and \mathcal{C}^{\prime} are odd

Let the degrees of f, \tilde{f} be $2 m-1$ and $2 m^{\prime}-1$ respectively. Then we have,

$$
\begin{aligned}
f & =\sum_{i+j+k=2 m-1} a_{i j k} x_{0}^{i} x_{1}^{j} x_{2}^{k} \quad \text { and }, \\
\tilde{f} & =\sum_{i+j+k=2 m^{\prime}-1} \tilde{a}_{i j k} x_{0}^{i} x_{1}^{j} x_{2}^{k}
\end{aligned}
$$

Now let $f_{0}=x_{0} \cdot f, f_{1}=x_{1} \cdot f, f_{2}=x_{2} . f$. Similary define \tilde{f}_{i} for $i=0,1,2$
Then f_{i} and \tilde{f}_{i} are of even degree and hence according to Lemma 2.1, $f_{i}, \tilde{f}_{i} \in \operatorname{Im}(\theta)$ for $i=0,1,2$. Also like in Section 3.2, we have,

$$
\begin{aligned}
& F_{0}=x_{00} x_{12} h_{I}+x_{00} h_{I I}+x_{01} h_{I I I}+x_{02} h_{I V} \\
& F_{1}=x_{11} x_{02} h_{I}+x_{01} h_{I I}+x_{11} h_{I I I}+x_{12} h_{I V} \\
& F_{2}=x_{22} x_{01} h_{I}+x_{02} h_{I I}+x_{12} h_{I I I}+x_{22} h_{I V}
\end{aligned}
$$

Lemma 3.4: Let $G \in k\left[x_{00}, x_{01}, x_{02}, x_{11}, x_{12}, x_{22}\right]$ such that G homogeneous and $\left(\cap_{i} Z\left(\theta\left(F_{i}\right)\right)\right) \cap\left(\cap_{i} Z\left(\theta\left(\tilde{F}_{i}\right)\right)\right) \subset Z(\theta(G)) \subset \mathbb{P}^{2}$. Then $G \in<F_{k}, \tilde{F}_{k}, \Delta_{i, j}: 0 \leq k \leq 2,0 \leq$ $i \leq j \leq 2>$.
Proof: Now let $\theta(G)=g$, then degree (g) is even.

$$
\begin{gathered}
\left(\cap_{i} Z\left(f_{i}\right)\right) \cap\left(\cap_{i} Z\left(\tilde{f}_{i}\right)\right) \subset Z(g) \\
\quad \Rightarrow Z(f) \cap Z(\tilde{f}) \subset Z(g)
\end{gathered}
$$

$\Rightarrow g \in\left\langle f, \tilde{f}>\right.$ as \mathcal{C} and \mathcal{C}^{\prime} are irreducible curves and the assumption about the intersection of \mathcal{C} and \mathcal{C}^{\prime}.

$$
\begin{aligned}
\Rightarrow g & =f \cdot h+\tilde{f} \cdot \tilde{h} \text { for some } h, \tilde{h} \text { homogeneous } \in k\left[x_{0}, x_{1}, x_{2}\right] \\
& \Rightarrow h \neq 1 \text { as degree } f \text { is odd while degree } g \text { is even }
\end{aligned}
$$

Similarly $\tilde{h} \neq 1$, hence, $g=\sum_{i=0,1,2} f_{i} h_{i}+\sum_{i=0,1,2} \tilde{f}_{i} \tilde{h}_{i}$,
for some homogeneous polynomials $h_{i}, \tilde{h}_{i} \in k\left[x_{0}, x_{1}, x_{2}\right]$ with even degrees.

$$
\Rightarrow G=\sum_{i=0,1,2} F_{i} H_{i}+\sum_{i=0,1,2} \tilde{F}_{i} \tilde{H}_{i}, \text { where } \theta\left(H_{i}\right)=h_{i} \text { and } \theta\left(\tilde{H}_{i}\right)=\tilde{h}_{i},
$$

for all $i=0,1,2$ and such $H_{i} \mathrm{~S}$, and $\tilde{H}_{i} \mathrm{~S}$ exists as the degrees of both h_{i} and \tilde{h}_{i} are even from Lemma 2.1.

$$
\begin{aligned}
& \Rightarrow \theta\left(G-\sum_{i=0,1,2} F_{i} H_{i}+\sum_{i=0,1,2} \tilde{F}_{i} \tilde{H}_{i}\right)=0 \\
\Rightarrow & G-\left(\sum_{i=0,1,2} F_{i} H_{i}+\sum_{i=0,1,2} \tilde{F}_{i} \tilde{H}_{i}\right) \in \operatorname{ker}(\theta) \\
\Rightarrow & G=\sum_{i=0,1,2} F_{i} H_{i}+\sum_{i=0,1,2} \tilde{F}_{i} \tilde{H}_{i}+\sum_{i, j=0,1,2} \Delta_{i j} S_{i j}
\end{aligned}
$$

for some $S_{i j}$ homogeneous $\in k\left[x_{00}, \ldots, x_{22}\right]$

$$
\Rightarrow G \in<F_{k}, \tilde{F}_{k}, \Delta_{i j}: i, j, k=0,1,2>
$$

Theorem 3.3: Let \mathcal{C} and \mathcal{C}^{\prime} be two irreducible plane curves of odd degree say $d=$

CHAPTER 3. RESOLUTIONS OF VERONESE EMBEDDING OF COMPLETE INTERSECTIONS OF CURVES IN THE PLANE.

$2 m-1$ and $d^{\prime}=2 m^{\prime}-1$ for $m, m^{\prime} \geq 2$. The homogenous coordinate ring $S / \mathcal{I}_{\sigma\left(\mathcal{C} \cap \mathcal{C}^{\prime}\right)}$ of the intersection of $\sigma(\mathcal{C})$ and $\sigma\left(\mathcal{C}^{\prime}\right)$ in \mathbb{P}^{5} has the following minimal free graded resolution.

$$
\begin{align*}
0 \rightarrow & S\left(-m-m^{\prime}-3\right)^{\oplus 3} \xrightarrow{R_{5}} S(-m-4) \oplus S\left(-m^{\prime}-4\right) \oplus S\left(-m-m^{\prime}-2\right)^{\oplus 8} \xrightarrow{R_{4}} \\
& \xrightarrow[\rightarrow]{R_{4}} S(-4)^{\oplus 3} \oplus S(-m-2)^{\oplus 6} \oplus S\left(-m^{\prime}-2\right)^{\oplus 6} \oplus S\left(-m-m^{\prime}-1\right)^{\oplus 6} \xrightarrow{R_{3}} \\
& \xrightarrow{R_{3}} S(-3)^{\oplus 8} \oplus S(-m-1)^{\oplus 8} \oplus S\left(-m^{\prime}-1\right)^{\oplus 8} \oplus S\left(-m-m^{\prime}+1\right) \xrightarrow{R_{2}} \tag{3.13}\\
& \xrightarrow{R_{2}} S(-2)^{\oplus 6} \oplus S(-m)^{\oplus 3} \oplus S\left(-m^{\prime}\right)^{\oplus 3} \xrightarrow{R_{7}} S \rightarrow S / \mathcal{I}_{\sigma\left(\mathcal{C} \cap \mathcal{C}^{\prime}\right)} \rightarrow 0
\end{align*}
$$

Proof:

From lemma 3.2 and 3.4, it is clear that

$$
R_{1}=\left[\begin{array}{llllllllllll}
\Delta_{00}, & \Delta_{01}, & \Delta_{02}, & \Delta_{11}, & \Delta_{12}, & \Delta_{22}, & F_{0}, & F_{1}, & F_{2}, & \tilde{F}_{0}, & \tilde{F}_{1}, & \tilde{F}_{2}
\end{array}\right]
$$

Hence we get R_{1}
Now consider
$A=\left[\begin{array}{llllll}A_{00}, & A_{01}, & A_{02}, & A_{11}, & A_{12}, & A_{22}\end{array}\right], A_{i j} \in S$, homogeneous $\forall 0 \leq i \leq æ \leq$ 2 ,
$B=\left[\begin{array}{lll}B_{0}, & B_{1}, & B_{2}\end{array}\right]$ where $B_{k} \in S$, homogeneous, for $k=0,1,2$ and $\tilde{B}=\left[\begin{array}{ccc}\tilde{B}_{0}, & \tilde{B}_{1}, & \tilde{B}_{2}\end{array}\right]$ where $\tilde{B}_{l} \in S$, homogeneous, for $l=0,1,2$
such that

$$
\begin{equation*}
\sum_{i, j} A_{i j} \cdot \Delta_{i j}+\sum_{k} B_{k} \cdot F_{k}+\sum_{k} \tilde{B}_{k} \cdot \tilde{F}_{k}=0 \tag{3.14}
\end{equation*}
$$

Consider the following cases:
(1) $[B]=[\tilde{B}]=[\overline{0}]$, then we get that $[A] \in\left\langle W_{i}: i=1, \ldots, 8>\right.$. Hence we get

$$
\left.\left[\begin{array}{lll}
{[A],} & {[\overline{0}],} & {[\overline{0}]}
\end{array}\right] \in\left\langle\begin{array}{lllll}
{\left[W_{1},\right.} & \overline{0}, & \overline{0}]
\end{array}\right] \quad \ldots, \quad\left[\begin{array}{ccc}
W_{8}, & \overline{0}, & \overline{0}
\end{array}\right]\right\rangle
$$

(2) $[B] \neq[\overline{0}]$, but $[\tilde{B}]=[\overline{0}]$, then from $[\mathrm{A}]$ we get that

$$
\left[\begin{array}{lll}
{[A],} & {[B],} & {[\overline{0}]}
\end{array}\right] \in\left\langle\left[\begin{array}{lll}
V_{00}, & Y_{00}, & \overline{0}
\end{array}\right], \quad \ldots, \quad\left[\begin{array}{lll}
V_{22}, & Y_{22}, & \overline{0}
\end{array}\right],\right\rangle
$$

(3)Similarly for $[B]=[\overline{0}]$, but $[\tilde{B}] \neq[\overline{0}]$, we get that

$$
\left[\begin{array}{lll}
{[A],} & {[B],} & {[\overline{0}]}
\end{array}\right] \in\left\langle\left[\begin{array}{lll}
\tilde{V}_{00}, & \overline{0}, & \left.\mathbf{Y}_{\mathbf{0 0}}\right],
\end{array} \ldots, \quad\left[\begin{array}{ccc}
\tilde{V}_{22}, & \overline{0}, & \mathbf{Y}_{\mathbf{2 2}}
\end{array}\right],\right\rangle\right.
$$

(4) $B, \tilde{B} \neq[\overline{0}]$, hence we get that

$$
\theta\left(\sum_{k}\left(\left(B_{k} \cdot F_{k}\right)+\left(\tilde{B}_{k} \cdot \tilde{F}_{k}\right)\right)\right)=0
$$

Let $b_{k}=\theta\left(B_{k}\right)$ and $\tilde{b}_{k}=\theta\left(\tilde{B}_{k}\right)$. Now note that the degrees of b_{k} and \tilde{b}_{k} are even, for $k=0,1,2$
Hence we have that

$$
\sum_{k}\left(b_{k} \cdot x_{k}\right) \cdot f+\sum_{k}\left(\tilde{b}_{k} \cdot x_{k}\right) \cdot \tilde{f}=0
$$

3.3. DEGREES OF \mathcal{C} AND \mathcal{C}^{\prime} ARE ODD

Now as f and \tilde{f} are irreducible polynomials and by assumption that $\mathcal{C} \cap \mathcal{C}^{\prime}$ is reduced we get that

$$
\begin{equation*}
\sum_{k}\left(b_{k} \cdot x_{k}\right) \in<\tilde{f}>\text { and } \sum_{k}\left(\tilde{b}_{k} \cdot x_{k}\right) \in<f> \tag{3.15}
\end{equation*}
$$

To get b_{k} and \tilde{b}_{k} satisfying the above equation, consider the two vectors,

$$
\begin{gathered}
\left(h_{0}, h_{1}, h_{2}\right)=\left(\begin{array}{lll}
x_{1} \cdot x_{2} \cdot \theta\left(\tilde{h}_{I}\right)+\theta\left(\tilde{h}_{I I}\right), & \theta\left(\tilde{h}_{I I I}\right), & \theta\left(\tilde{h}_{I V}\right)
\end{array}\right) \\
\left(\tilde{h}_{0}, \tilde{h}_{1}, \tilde{h}_{2}\right)=\left(\begin{array}{lll}
-x_{1} \cdot x_{2} \cdot \theta\left(h_{I}\right)-\theta\left(h_{I I}\right), & -\theta\left(h_{I I I}\right), & -\theta\left(h_{I V}\right)
\end{array}\right)
\end{gathered}
$$

And let $[\mathrm{H}]=\left[\begin{array}{llll}x_{12} . \tilde{h}_{I}, & \tilde{h}_{I I}, & \tilde{h}_{I I I}, & \tilde{h}_{I V}\end{array}\right]$ and $[\tilde{\mathrm{H}}]=\left[\begin{array}{lll}-x_{12} . h_{I}-h_{I I}, & -h_{I I I}, & -h_{I V}\end{array}\right]$
Now substituting h_{i} as b_{i} and \tilde{h}_{i} as \tilde{b}_{i}, we get that $\sum_{i}\left(h_{i} \cdot x_{i}\right)=\tilde{f}$ and $\sum_{i}\left(\tilde{h}_{i} \cdot x_{i}\right)=-f$. So $\sum_{i}\left(h_{i} \cdot x_{i}\right) f+\sum_{i}\left(\tilde{h}_{i} \cdot x_{i}\right) \cdot \tilde{f}=0$

Now for any vectors satisfying (3.15) the following holds

$$
\sum_{i} b_{i} \cdot x_{i}=p . \tilde{f} \text { and } \sum_{i} \tilde{b}_{i} \cdot x_{i}=-p . f, \text { for some homogeneous } p \in S
$$

Notice that degree of p is even, as degree of b_{i} is even and degree of f is odd.
Hence we get that

$$
\sum_{i} b_{i} \cdot x_{i}=p \cdot\left(\sum_{i}\left(h_{i} \cdot x_{i}\right)\right) \text { and } \sum_{i} \tilde{b}_{i} \cdot x_{i}=p \cdot\left(\sum_{i}\left(\tilde{h}_{i} \cdot x_{i}\right)\right),
$$

So

$$
\sum_{i}\left(b_{i}-p \cdot h_{i}\right) \cdot x_{i}=0 \text { and } \sum_{i}\left(\tilde{b}_{i}-p \cdot \tilde{h}_{i}\right) x_{i}=0
$$

Hence

$$
\left(\left(b_{0}-p . h_{0}, b_{1}-p . h_{1}, b_{2}-p . h_{2}\right), \quad\left(\tilde{b}_{0}-p . \tilde{h}_{0}, \tilde{b}_{1}-p . \tilde{h}_{1}, \tilde{b}_{2}-p . \tilde{h}_{2}\right)\right) \in \operatorname{Syz}^{1}\left(x_{0}, x_{1}, x_{2}\right)
$$

Now using the same arguments as Theorem 2.2, we get that

$$
[B-P . H],\left[\tilde{B}-P . H^{\prime}\right] \in<\mathbf{Y}_{\mathbf{i j}}: 0 \leq i, j \leq 2>,
$$

where P such that $\theta(P)=p$.
Hence $[B] \in\left\langle\mathbf{Y}_{\mathbf{i j}}, H: 0 \leq i, j \leq 2\right\rangle$ and $[\tilde{B}] \in\left\langle\mathbf{Y}_{\mathbf{i j}}, \tilde{H}: 0 \leq i, j \leq 2\right\rangle$. Let $\mathcal{H}=$ $\left[\left(0, \quad \tau_{1}, \quad \tau_{2}, \quad 0, \quad 0, \quad 0\right), \quad H, \tilde{H}\right]$,
where $\tau_{1}=\tilde{h_{I}} \cdot h_{I V}-\tilde{h_{I V}} \cdot h_{I}$ and $\tau_{2}=\tilde{h_{I I I}} \cdot h_{I}-\tilde{h_{I}} \cdot h_{I I I}$, then we get

$$
\left[\begin{array}{ccc}
A, & B, & \tilde{B}
\end{array}\right] \in\left\langle\left[W_{i}, \overline{0}, \overline{0}\right], \quad\left[V_{j k}, \mathbf{Y}_{\mathbf{j k}}, \overline{0}\right], \quad\left[\tilde{V}_{j k}, \overline{0}, \mathbf{Y}_{\mathbf{j k}}\right], \quad[\mathcal{H}]\right\rangle
$$

for $i=1, \ldots, 8$, and $0 \leq j, k \leq 2,(j, k) \neq(0,2)$
Hence we get R_{2}
Consider
$A=\left[\left(A_{i}\right)\right], B=\left[\left(B_{j k}\right)\right], \tilde{B}=\left[\left(\tilde{B}_{j k}\right)\right]$ and C,
where $A_{i}, B_{j k}, \tilde{B}_{j k}, C \in S$, homogeneous, for $i=1, \ldots, 8, j, k=0,1,2$ and $(j, k) \neq$ $(0,2)$ such that

$$
\begin{equation*}
\sum_{i} A_{i} \cdot\left[W_{i}, \overline{0}, \overline{0}, 0\right]+\sum_{j k} B_{j k} \cdot\left[V_{j k}, \mathbf{Y}_{\mathbf{j k}}, \overline{0}, 0\right]+\sum_{j k} \tilde{B}_{j k} \cdot\left[\tilde{V}_{j k}, \overline{0}, \mathbf{Y}_{\mathbf{j k}}, 0\right]+C \cdot[\mathcal{H}]=0 \tag{3.16}
\end{equation*}
$$

CHAPTER 3. RESOLUTIONS OF VERONESE EMBEDDING OF COMPLETE INTERSECTIONS OF CURVES IN THE PLANE.

Like in the earlier part of this proof, we consider four cases
(1) $B=[\overline{0}]$ and $\tilde{B}=[\overline{0}]$, hence $C=0$, then we get that $[A] \in\left\langle G_{1}, G_{2}, G_{3}\right\rangle$

Hence $([A],[\overline{0}]) \in\left\langle\left[G_{1}, \overline{0}\right], \quad\left[G_{2}, \overline{0}\right], \quad\left[G_{3}, \overline{0}\right]\right\rangle$
(2) $B \neq[\overline{0}]$ but $\tilde{B}=[\overline{0}]$, then we get that $C=0$.

Then $[A, B] \in\left\langle\left[G_{i}, \overline{0}\right], \quad\left[K_{j}, \mathbf{K}_{\mathbf{j}}^{\prime}\right] \quad: i=1,2,3, j=1, \ldots, 6\right\rangle$.
Hence $[A, B, \overline{0}, 0] \in\left\langle\left[G_{i}, \overline{0}\right], \quad\left[K_{j}, \mathbf{K}^{\prime}{ }_{j}, \overline{0}, 0\right]: i=1,2,3, j, k=0,1,2\right\rangle$.
(3) $\tilde{B} \neq[\overline{0}]$ but $B=[\overline{0}]$, hence $C=0$. Similarly to case(2) we get,
$[A, \overline{0}, \tilde{B}, 0] \in\left\langle\left[G_{i}, \overline{0}\right],\left[\tilde{K}_{j}, \overline{0}, \mathbf{K}_{j}^{\prime}, 0\right]: i=1,2,3,1 \leq j \leq 6\right\rangle$.
(4)) $B, \tilde{B} \neq[\overline{0}]$, Then we have

$$
\begin{gather*}
\sum_{j k} B_{j k} \cdot \mathbf{Y}_{\mathbf{j k}}+C \cdot H=0 \text { and } \sum_{j k} \tilde{B}_{j k} \cdot \mathbf{Y}_{\mathbf{j k}}+C \cdot H^{\prime}=0 \tag{3.17}\\
\text { So }, \sum_{j k} x_{j} b_{j k} \cdot \mathbf{Y}_{\mathbf{k}}+c \cdot h=0 \text { and } \sum_{j k} x_{j} b_{j k}^{\prime} \cdot \mathbf{Y}_{\mathbf{k}}+c \cdot h^{\prime}=0 \tag{3.18}
\end{gather*}
$$

where $\left\langle Y_{0}, Y_{1}, Y_{2}\right\rangle=\operatorname{Syz}^{1}\left(x_{0}, x_{1}, x_{2}\right)$
(see Theorem 2.2)
Now multiplying (3.18) by $\left[x_{0}, x_{1}, x_{2}\right]^{T}$, we get

$$
c . f=c . \tilde{f}=0 \Rightarrow c=0 \Rightarrow C \in<\Delta_{i j}>
$$

Now substituting $C=\Delta_{i j}, \forall 0 \leq i \leq j \leq 2$ in (3.17), we get a set of six vectors, lets call them $\mathcal{D}_{i j}$. So we have

$$
\mathcal{D}_{i j}=\left[\begin{array}{ll}
\delta_{i j}, & \Delta_{i j}
\end{array}\right]
$$

Hence $[A, B, \tilde{B}, C] \in\left\langle\left[\begin{array}{lll}\left.\left[W_{i}, \overline{0}, \overline{0}\right], \quad\left[K_{j}, \mathbf{K}_{j}^{\prime}, \overline{0}, 0\right], \quad\left[\tilde{K}_{j}, \overline{0}, \mathbf{K}_{j}^{\prime},\right], \quad\left[\mathcal{D}_{k l}\right]\right\rangle\end{array}\right.\right.$ for $1 \leq i \leq 8,1 \leq j \leq 6,0 \leq k \leq l \leq 2$.
Hence we get R_{3}
Consider,

$$
A=\left[\left(A_{i}\right)\right], \quad B=\left[\left(B_{j}\right)\right], \quad \tilde{B}=\left[\left(\tilde{B}_{j}\right)\right], \quad C=\left[\left(C_{k l}\right)\right]
$$

where $A_{i}, B_{j}, \tilde{B}_{j}, C_{k l} \in S$, homogeneous, for $i=1,2,3, j=1, \ldots, 6$
and $0 \leq k \leq l \leq 2$ with $(k, l) \neq(0,2)$ such that

$$
\begin{equation*}
\sum_{i} A_{i} \cdot\left[G_{i}, \overline{0}, \overline{0}, \overline{0}\right]+\sum_{j} B_{j} \cdot\left[K_{j}^{\prime \prime}, \mathbf{K}_{\mathbf{j}}^{\prime}, \overline{0}, \overline{0}\right]+\sum_{j} \tilde{B}_{j} \cdot\left[\tilde{K}_{j}^{\prime \prime}, \overline{0}, \mathbf{K}_{\mathbf{j}}^{\prime}, \overline{0}\right]+\sum_{k, l} C_{k l} \cdot\left[\mathcal{D}_{k l}\right]=0 \tag{3.19}
\end{equation*}
$$

If we take similar cases as in the earlier part of the proof, we get
(1)If $C=\overline{0}$, then $[A, B, \tilde{B}, \overline{0}] \in\left\langle\left[J^{\prime \prime}, \mathbf{J}^{\prime}, \overline{0}, \overline{0}\right], \quad\left[\tilde{J^{\prime \prime}}, \overline{0}, \mathbf{J}^{\prime}, \overline{0}\right]\right\rangle$.
(2) $C \neq \overline{0}$, then $[C] \in\left\langle\left[W_{i}\right]: i=1, \ldots, 8\right\rangle$

Substituting $[C]=\left[W_{i}\right]$ for some i in (3.19), we get a set of 8 vectors

$$
W_{i}=\left[\left[\omega_{i}\right],\left[W_{i}\right]\right] .
$$

Hence we have,

$$
[A, B, \tilde{B}, C] \in\left\langle\left[\begin{array}{llll}
J^{\prime \prime}, & \mathbf{J}^{\prime}, & \overline{0}, & \overline{0}
\end{array}\right],\left[\begin{array}{lll}
\tilde{J}^{\prime \prime}, & \overline{0}, & \mathbf{J}^{\prime}, \\
\overline{0}
\end{array}\right],\left[\begin{array}{l}
W_{i}
\end{array}\right]\right\rangle
$$

for $1 \leq i \leq 8$.

3.3. DEGREES OF \mathcal{C} AND \mathcal{C}^{\prime} ARE ODD

Hence we get R_{4}
Let $A=\left[\begin{array}{ll}\left(A_{i}\right) & 1 \leq i \leq 8\end{array}\right], B, \tilde{B}$
where $A_{i}, B, \tilde{B} \in S$, homogeneous for $i=1, \ldots, 8$ such that

$$
\begin{equation*}
\sum_{i} A_{i} \cdot\left[\omega_{i}, W_{i}\right]+B \cdot\left[J^{\prime \prime}, \mathbf{J}^{\prime}, 0, \overline{0}\right]+\tilde{B} \cdot\left[\tilde{J^{\prime \prime}}, 0, \mathbf{J}^{\prime}, \overline{0}\right]=0 \tag{3.20}
\end{equation*}
$$

As the last rows of the last two vectors are zero we have $\sum_{i} A_{i} \cdot W_{i}=[\overline{0}]$
This implies that, $[A] \in\left\langle G_{k}: k=1,2,3\right\rangle$. Substituting this in (3.20), we get 3 vectors, let us call them Γ_{k}.

$$
\Gamma_{k}=\left[\mathrm{G}_{k}, G_{k}\right] \text { for } k=1,2,3
$$

So $[B, \tilde{B}, A] \in\left\langle\Gamma_{k}: k=1,2,3\right\rangle$
Hence we get R_{5}.

Recall from Chapter 2, that for \mathcal{C} a smooth (or irreducible) plane curve, the Veronese embedding of \mathbb{P}^{2} in \mathbb{P}^{5} gives an embedding $\mathcal{C} \stackrel{\sigma}{\hookrightarrow} \mathbb{P}^{5}$. In Chapter 2 we computed the syzygies of the homogeneous ideal $\mathcal{I}_{\sigma(\mathcal{C})}$ of this embedding of \mathcal{C} in \mathbb{P}^{5}. Now if the degree of \mathcal{C} is odd then from theorem 2.2, we have that the minimal graded free resolution of $S / \mathcal{I}_{\sigma(\mathcal{C})}$ is as follows:

$$
\begin{aligned}
0 \rightarrow S(-m-4) \xrightarrow{\beta_{4}^{\prime}} S(-4)^{\oplus 3} \oplus S(-m-2)^{\oplus 6} \xrightarrow{\beta_{3}^{\prime}} \\
\quad \stackrel{\beta_{3}^{\prime}}{\rightarrow} S(-3)^{\oplus 8} \oplus S(-m-1)^{\oplus 8} \xrightarrow{\beta_{2}^{\prime}} S(-2)^{\oplus 6} \oplus S^{\oplus 3}(-m) \xrightarrow{\beta_{1}^{\prime}} S \rightarrow S / \mathcal{I}_{\mathcal{C}} \rightarrow 0
\end{aligned}
$$

where

$$
\begin{aligned}
\beta_{1}^{\prime} & =\left[\begin{array}{lllllll}
\Delta_{00}, & \ldots, & \Delta_{22}, & F_{0}, & F_{1}, & F_{2}
\end{array}\right] \\
\beta_{2}^{\prime} & =\left[\begin{array}{lllllll}
{\left[W_{1}, \overline{0}\right],} & , \ldots, & {\left[W_{8}, \overline{0}\right]}
\end{array}\right] \\
\beta_{3}^{\prime} & =\left[\begin{array}{llllll}
{\left[Y_{1}^{\prime}, \overline{0}\right],} & ,\left[G_{2}^{\prime}, \overline{0}\right], & {\left[G_{3}^{\prime}, \overline{0}\right],} & {\left[\begin{array}{lllll}
{\left[K_{1}^{\prime}\right],} & \left.\left[K_{1}\right]\right], & \ldots, & {\left[Y_{8}^{\prime}\right],} & {\left[Y_{8}\right]}
\end{array}\right]} \\
\beta_{4}^{\prime} & =\left[\beta_{1}^{\prime}\right]^{T}
\end{array}\right.
\end{aligned}
$$

where
(1) W_{i} are matrices from equation (2.2)
(2) $G_{1}^{\prime}=G_{1}, \quad G_{2}^{\prime}=-G_{2}$ and $G_{3}^{\prime}=G_{3}$ from equation (2.3)
(3) $Y_{t_{s}}=G_{s_{t}}$, for all $s=1,2,3$ and $t=1, \ldots, 8$
(4) $K_{t_{s}}=W_{s_{t}}$, for all $t=1, \ldots, 6$ and $s=1, \ldots, 8$
(5) $\left\{\begin{array}{ccccccc}Y_{1}^{\prime} & =V_{00}, & Y_{2}^{\prime}=-V_{01}, & Y_{3}^{\prime}=-V_{10}, \quad Y_{4}^{\prime}=\left[\begin{array}{llll}x_{00} h_{I}, & 0, & , h_{I I I}, & -x_{11} h_{I},\end{array}, h_{I I},\right. & 0\end{array}\right]^{T}$
(5) $\begin{cases}Y_{5}^{\prime} & =-V_{12}, \quad Y_{6}^{\prime}=V_{20}, \quad Y_{7}^{\prime}=-V_{21}, \quad Y_{8}^{\prime}=V_{22}, ~\end{cases}$
(6) $K_{t_{s}}^{\prime}=Y_{s_{t}}^{\prime}$ for all $t=1, \ldots, 6$ and $s=1, \ldots, 8$
where $V_{i j}$ are matrices from Chapter 3.
Note that the $\beta_{i}^{\prime} \mathrm{s}$ in the above resolution are not the same as the $\beta_{i} \mathrm{~s}$ defined in Theorem 2.2. But because the above resolution is symmetric, columns of W_{i} 's and G_{i} 's are linearly independent and the fact that,

$$
\sum_{i} W_{i_{n}} \cdot Y_{i_{m}}^{\prime}+\sum_{j} Y_{j_{n}}^{\prime} \cdot W_{j_{m}}=0 \quad \forall \quad n, m=1, \ldots, 6
$$

gives us that the above $\beta_{i}^{\prime} \mathrm{s}$ also define a resolution.
Let us call the above exact sequence $\mathcal{P} \bullet$. So we have

$$
\mathcal{P} \bullet: 0 \rightarrow \mathcal{P}_{4} \rightarrow \mathcal{P}_{3} \rightarrow \mathcal{P}_{2} \rightarrow \mathcal{P}_{1} \rightarrow \mathcal{P}_{0}=S \rightarrow 0
$$

CHAPTER 4. DG -ALGEBRA

where $\operatorname{rank}\left(\mathcal{P}_{0}\right)=\operatorname{rank}(S)=1, \operatorname{rank}\left(\mathcal{P}_{1}\right)=9, \operatorname{rank}\left(\mathcal{P}_{2}\right)=16, \operatorname{rank}\left(\mathcal{P}_{3}\right)=9, \operatorname{rank}\left(\mathcal{P}_{4}\right)=1$ Let $\left\{e_{i}, e_{F_{n-1}}\right\}$ be basis of $\mathcal{P}_{1},\left\{e_{w_{s}}, e_{v_{s}}\right\}$ be basis of $\mathcal{P}_{2},\left\{e_{g_{n}}, e_{k_{i}}\right\}$ be basis of \mathcal{P}_{3}, $\left\{e_{\mathcal{J}}\right\}$ be basis of \mathcal{P}_{4}. where $i=1, \ldots, 6, n=1,2,3, s=1, \ldots, 8$.
In [KM] the authors prove that any symmetric resolution of length 4 has a DG algebra structure. Hence we know that the above resolution has a DG-algebra structure. In this chapter we will define a DG-algebra structure for the resolution, $\mathcal{P} \bullet$.
4.1. DEFINING (*)

4.1 Defining (*)

Let us define the multiplication $(*)$ on the above basis elements
where
$A_{i, j}, B_{i, s}, \mathcal{A}_{n-1, m-1}, \alpha_{i, n-1}^{\prime}$ are matrices given below and

$$
\begin{gathered}
\delta_{i s}= \begin{cases}1 & \text { if } i=s \\
0 & \text { otherwise }\end{cases} \\
A_{i}=\left[\left[A_{i, 1}\right], \quad \ldots \quad\left[A_{i, 6}\right]\right] \text { for } i=1, \ldots, 6
\end{gathered}
$$

$$
A_{1}=\left[\begin{array}{llllll}
0 & x_{12} & x_{11} & x_{02} & 0 & 0 \\
0 & 0 & 0 & x_{12} & x_{11} & 0 \\
0 & -x_{22} & -x_{12} & 0 & x_{02} & x_{01} \\
0 & 0 & 0 & 0 & 0 & x_{11} \\
0 & 0 & 0 & 0 & 0 & -x_{12} \\
0 & 0 & 0 & -x_{22} & -x_{12} & -x_{11} \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right], \quad A_{2}=\left[\begin{array}{llllll}
-x_{12} & 0 & x_{01} & 0 & 0 & 0 \\
0 & 0 & 0 & x_{02} & x_{01} & 0 \\
x_{22} & 0 & -x_{02} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & x_{01} \\
0 & 0 & 0 & 0 & 0 & -x_{02} \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -x_{22} & -x_{12} & -x_{11} \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\begin{align*}
& \text { (i) } \quad e_{i} * e_{j}=\sum_{t=1}^{8} A_{i, j_{s}} \cdot e_{w_{t}} \\
& \text { (ii) } \quad e_{i} * e_{w_{s}}=\sum_{t=1,2,3} B_{i, s_{t}} \cdot e_{g_{t}} \\
& \text { (iii) } e_{i} * e_{g_{s}}=0 \\
& \text { (iv) } \quad e_{w_{s}} * e_{w_{t}}=0 \\
& \text { (v) } \quad e_{i} * e_{F_{n-1}}=\sum_{t=1}^{8} B_{i, t_{n}} \cdot e_{v_{t}}+\sum_{t=1}^{8} \alpha_{i, n-1_{t}}^{\prime} \cdot e_{w_{t}} \tag{4.2}\\
& \text { (vi) } \quad e_{i} * e_{v_{s}}=\sum_{t=1}^{6} A_{i, t_{s}} \cdot e_{k_{t}}+\sum_{t=1}^{3} \alpha_{i, t-1_{s}}^{\prime} \cdot e_{g_{t}} \\
& \text { (vii) } \quad e_{F_{n-1}} * e_{F_{m-1}}=\sum_{t=1}^{8} \mathcal{A}_{n-1, m-1} . \cdot e_{v_{t}} \\
& \text { (viii) } \quad e_{F_{n-1}} * e_{v_{s}}=-\sum_{t=1}^{6} \alpha_{t, n-1_{s}}^{\prime} \cdot e_{k_{t}} \\
& (i x) \quad e_{F_{n-1}} * e_{w_{s}}=-\sum_{t=1}^{6} B_{t, s_{n}} \cdot e_{k_{t}} \\
& (x) \quad e_{i} * e_{k_{s}}=\delta_{i s} . e_{\mathcal{J}} \\
& \text { (xi) } \quad e_{F_{i-1}} * e_{k_{s}}=0 \\
& \text { (xii) } \quad e_{F_{i-1}} * e_{g_{s}}=\delta_{i s} \cdot e_{\mathcal{J}} \tag{4.3}\\
& \text { (xiii) } \quad e_{w_{i}} * e_{v_{s}}=-\delta_{i s} . e_{\mathcal{J}} \\
& \text { (xiv) } \quad e_{v_{s}} * e_{v_{t}}=0
\end{align*}
$$

CHAPTER 4. DG -ALGEBRA

$$
\begin{aligned}
& A_{3}=\left[\begin{array}{llllll}
-x_{11} & -x_{01} & 0 & -x_{00} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
x_{12} & x_{02} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & x_{02} & x_{01} \\
0 & 0 & 0 & x_{02} & 0 & 0 \\
0 & 0 & 0 & -x_{12} & 0 & 0 \\
0 & 0 & 0 & 0 & -x_{12} & -x_{11}
\end{array}\right], \quad A_{4}=\left[\begin{array}{llllll}
-x_{02} & 0 & x_{00} & 0 & 0 & 0 \\
-x_{12} & -x_{02} & 0 & 0 & x_{00} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & x_{00} \\
0 & 0 & 0 & 0 & 0 & 0 \\
x_{22} & 0 & -x_{02} & 0 & 0 & 0 \\
0 & -x_{22} & -x_{12} & 0 & -x_{02} & -x_{01} \\
0 & 0 & 0 & 0 & 0 & -x_{02}
\end{array}\right] \\
& A_{5}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
-x_{11} & -x_{01} & 0 & -x_{00} & 0 & 0 \\
-x_{02} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -x_{02} & 0 & 0 & x_{00} \\
x_{12} & 0 & 0 & 0 & 0 & 0 \\
0 & -x_{12} & 0 & x_{02} & 0 & 0 \\
0 & 0 & x_{12} & 0 & 0 & -x_{01}
\end{array}\right], \quad A_{6}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
-x_{01} & 0 & 0 & 0 & 0 & 0 \\
-x_{11} & -x_{01} & 0 & -x_{00} & 0 & 0 \\
x_{12} & x_{02} & -x_{01} & 0 & -x_{00} & 0 \\
x_{11} & 0 & 0 & 0 & 0 & 0 \\
0 & x_{11} & 0 & x_{01} & 0 & 0 \\
0 & 0 & x_{11} & x_{02} & x_{01} & 0
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
& B_{i}=\left[\left[B_{i, 1}\right], \ldots, \quad\left[B_{i, 8}\right]\right] \text { for } i=1, \ldots, 8 \\
& B_{1}=\left[\begin{array}{llllllll}
0 & 0 & 0 & -x_{12} & -x_{11} & 0 & x_{02} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & x_{12} & x_{11} \\
0 & 0 & 0 & 0 & 0 & 0 & x_{22} & x_{12}
\end{array}\right], \quad B_{2}=\left[\begin{array}{lllllll}
0 & 0 & 0 & -x_{02} & -x_{01} & -x_{02} & 0 \\
0 \\
0 & 0 & 0 & 0 & 0 & -x_{12} & 0 \\
0 & 0 & 0 & 0 & 0 & -x_{01} \\
0 & x_{22} & 0 & x_{02}
\end{array}\right] \\
& B_{3}=\left[\begin{array}{llllllll}
0 & x_{02} & 0 & x_{01} & 0 & 0 & 0 & 0 \\
0 & x_{12} & 0 & x_{11} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -x_{12} & -x_{02} & 0
\end{array}\right], \quad B_{4}=\left[\begin{array}{llllllll}
0 & 0 & x_{02} & 0 & -x_{00} & 0 & 0 & 0 \\
0 & 0 & x_{12} & x_{02} & 0 & 0 & 0 & x_{00} \\
0 & 0 & x_{22} & 0 & -x_{02} & 0 & 0 & 0
\end{array}\right] \\
& B_{5}=\left[\begin{array}{llllllll}
-x_{02} & 0 & 0 & x_{00} & 0 & 0 & 0 & 0 \\
-x_{12} & 0 & 0 & x_{01} & 0 & 0 & 0 & 0 \\
0 & 0 & x_{12} & x_{02} & 0 & x_{02} & 0 & 0
\end{array}\right], \quad B_{6}=\left[\begin{array}{llllllll}
-x_{01} & -x_{00} & 0 & 0 & 0 & 0 & 0 & 0 \\
-x_{11} & -x_{01} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -x_{02} & x_{11} & 0 & 0 & x_{01} & 0 & 0
\end{array}\right] \\
& \mathcal{A}_{0,1}=\left[\begin{array}{l}
-h_{I I} \\
h_{I I I} \\
x_{11} h_{I} \\
-h_{I V} \\
0 \\
0 \\
-x_{00} h_{I} \\
0
\end{array}\right], \quad \mathcal{A}_{0,2}=\left[\begin{array}{l}
-x_{22} h_{I} \\
0 \\
h_{I I} \\
-h_{I I I} \\
h_{I V} \\
-h_{I I I} \\
0 \\
-x_{00} h_{I}
\end{array}\right], \quad \mathcal{A}_{1,2}=\left[\begin{array}{l}
0 \\
-x_{22} h_{I} \\
0 \\
0 \\
x_{11} h_{I} \\
-h_{I I} \\
h_{I I} \\
-h_{I V}
\end{array}\right] \\
& \alpha_{i}^{\prime}=\left[\begin{array}{lll}
{\left[\alpha_{i, 0}^{\prime}\right]} & {\left[\alpha_{i, 1}^{\prime}\right]} & {\left[\alpha_{i, 2}^{\prime}\right]}
\end{array}\right]
\end{aligned}
$$

4.1. DEFINING (*)

$$
\begin{array}{ll}
\alpha_{1}^{\prime}=\left[\begin{array}{lll}
0 & -x_{11} h_{I} & -h_{I I} \\
x_{11} h_{I} & 0 & 0 \\
-h_{I I I} & -h_{I I} & -x_{22} h_{I} \\
0 & 0 & 0 \\
0 & 0 & 0 \\
-h_{I I} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad \alpha_{2}^{\prime}=\left[\begin{array}{lll}
x_{00} h_{I} & 0 & h_{I I I} \\
0 & -x_{11} h_{I} & 0 \\
0 & h_{I I I} & 0 \\
0 & 0 & -x_{22} h_{I} \\
0 & -x_{22} h_{I} & 0 \\
0 & 0 & 0 \\
-h_{I I} & 0 & 0 \\
-x_{22} h_{I} & 0 & 0
\end{array}\right] \\
\alpha_{3}^{\prime}=\left[\begin{array}{lll}
0 & 0 & -h_{I V} \\
0 & 0 & -x_{11} h_{I} \\
-x_{00} h_{I} & 0 & 0 \\
0 & 0 & 0 \\
0 & -h_{I I} & -x_{22} h_{I} \\
0 & -x_{11} h_{I} & 0 \\
-x_{11} h_{I} & 0 & 0 \\
-h_{I I} & 0 & 0 \\
0 & 0 & -x_{00} h_{I} \\
0 & 0 & -h_{I V} \\
0 & -x_{00} h_{I} & 0 \\
0 & 0 & 0 \\
0 & h_{I I I} & -x_{22} h_{I} \\
-x_{00} h_{I} & 0 & 0 \\
0 & -x_{11} h_{I} & 0 \\
h_{I I I} & 0 & x_{22} h_{I}
\end{array}\right], \quad \alpha_{4}^{\prime}=\left[\begin{array}{lll}
0 & -x_{00} h_{I} & 0 \\
x_{00} h_{I} & 0 & h_{I I I} \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & h_{I I I} & 0 \\
h_{I I I} & h_{I I} & 0 \\
0 & 0 & x_{22} h_{I}
\end{array}\right] \\
\alpha_{5}^{\prime}=\left[\begin{array}{llll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -h_{I V} \\
-x_{00} h_{I} & -h_{I V} & -h_{I I I} \\
0 & 0 & 0 \\
0 & 0 & x_{11} h_{I} \\
-h_{I V} & -x_{11} h_{I} & 0
\end{array}\right]
\end{array}
$$

CHAPTER 4. DG -ALGEBRA

4.2 Associativity

1.Check that

$$
\sum_{s=1}^{8} A_{i, j_{s}} \cdot B_{l, s_{t}}=\sum_{s=1}^{8} A_{j, l_{s}} \cdot B_{i, s_{t}} \text { for all } t=1,2,3 \text { and for all } 1 \leq i, j, k \leq 6
$$

This implies that $\left(e_{i} * e_{j}\right) * e_{l}=e_{i} *\left(e_{j} * e_{l}\right)$ for all $1 \leq i, j, k \leq 6$
2. Check that

$$
\sum_{s=1}^{8} B_{j, s_{l+1}} \cdot \alpha_{i, t-1_{s}}^{\prime}+\sum_{s=1}^{8} B_{i, s_{t}} \alpha_{i, t-1_{s}}^{\prime}=\sum_{s=1}^{8} A_{i, j_{s}} \mathcal{A}_{l, t-1_{s}}
$$

for all $1 \leq i, j \leq 6$ and $l=0,1,2$.
And, $\sum_{s=1}^{8} A_{i, j_{s}} . B_{t, s_{l+1}}=\sum_{s=1}^{8} A_{t, i_{s}} . B_{j, s_{l+1}}$ for all $1 \leq i, j, t \leq 6$ and $l=0,1,2$, by 1 . above
This implies that $\left(e_{i} * e_{j}\right) * e_{F_{l}}=e_{i} *\left(e_{j} * e_{F_{l}}\right)$ for all $1 \leq i, j \leq 6$ and $l=0,1,2$
3. Check that

$$
\sum_{s=1}^{8} \mathcal{A}_{0,1_{s}} \alpha_{t, 2_{s}}^{\prime}=\sum_{s=1}^{8} \mathcal{A}_{1,2_{s}} \alpha_{t, 0_{s}}^{\prime} \text { for all } 1 \leq t \leq 8
$$

This implies that $\left(e_{F_{0}} * e_{F_{1}}\right) * e_{F_{2}}=e_{F_{0}} *\left(e_{F_{1}} * e_{F_{2}}\right)$
4. Check that

$$
\left(e_{i} * e_{j}\right) * e_{v_{s}}=e_{i} *\left(e_{j} * e_{v_{s}}\right), \text { by 4.2.(i), 4.2.(vi), and } 4.3
$$

5. Check that

$$
\left(e_{i} * e_{F_{j}}\right) * e_{w_{s}}=e_{i} *\left(e_{F_{j}} * e_{w_{s}}\right), \text { by 4.2.(v), 4.2.(ix), and } 4.3
$$

6. Check that

$$
\left(e_{i} * e_{F_{j}}\right) * e_{v_{s}}=e_{i} *\left(e_{F_{j}} * e_{v_{s}}\right), \text { by 4.2.(v), 4.2.(viii), and } 4.3
$$

7.Check that

$$
\left(e_{F_{i}} * e_{F_{j}}\right) * e_{w_{s}}=e_{F_{i}} *\left(e_{F_{j}} * e_{w_{s}}\right), \text { by 4.2.(vii), 4.2.(ix), and } 4.3
$$

8. Check that

$$
\left(e_{F_{i}} * e_{F_{j}}\right) * e_{v_{s}}=e_{F_{i}} *\left(e_{F_{j}} * e_{v_{s}}\right)=0, \text { by 4.2.(vii), 4.2.(viii), and } 4.3
$$

Hence we get that $*$ is associative.
4.3. DEFINING ∂

4.3 Defining ∂

1) $\quad \partial\left(e_{2 i+j+1}\right)= \begin{cases}\Delta_{i j} & \text { when } 0 \leq i \leq j<2 \\ \Delta_{22} & i=j=2\end{cases}$
2) $\partial\left(e_{F_{n}}\right)=F_{n}$
3) $\partial\left(e_{w_{s}}\right)=\sum_{t=1}^{6} W_{s_{t}} e_{t}$
4) $\partial\left(e_{v_{s}}\right)=\sum_{t=1}^{3} G_{t_{s}}^{\prime} e_{F_{t-1}}+\sum_{t^{\prime}=1}^{6} Y_{s_{t}}^{\prime}$
5) $\partial\left(e_{g_{s}}\right)=\sum_{t=1}^{8} G_{s_{t}}^{\prime} e_{w_{t}}$
6) $\partial\left(e_{k_{s}}\right)=\sum_{t=1}^{8} W_{s_{t}} e_{v_{t}}+\sum_{t=1}^{8} Y_{s_{t}}^{\prime} e_{w_{t}}$
7) $\partial\left(e_{\mathcal{J}}\right)=\sum_{t=1}^{6}\left(\partial\left(e_{t}\right)\right) e_{k_{t}}+\sum_{t=1}^{3} F_{t-1} e_{g_{t}}$
where W_{i} as in equation (2.2), G_{j}^{\prime} as in equation (2.3), Y_{k}^{\prime} as inequation (4.1). To prove that ∂ is well-defined,
(1)To check that

$$
\partial\left(e_{i} * e_{j}\right)=\partial\left(\sum_{t, n} A_{i, j_{t}} e_{w_{t}}\right)
$$

Now $\left\{A_{i, j_{t}}\right\}$ is computed such that $\left[A_{i, j}\right]$ satisfies the following conditins,

$$
\begin{align*}
\sum_{t} A_{i, j_{t}} W_{t_{i}} & =-\Delta_{j} \\
\sum_{t} A_{i, j_{t}} W_{t_{j}} & =\Delta_{i} \tag{4.4}\\
\sum_{t} A_{i, j_{t}} W_{t_{n}} & =0 \text { for } n \neq i, j \text { and } n=1, \ldots, 6
\end{align*}
$$

(2)To check that

$$
\partial\left(e_{i} * e_{w_{s}}\right)=\partial\left(\sum_{t, n} B_{i, s_{t}} e_{w_{t}}\right)
$$

Now $\left\{B_{i, s_{t}}\right\}$ is computed such that $\left[B_{i, s}\right]$ satisfies the following conditions,

$$
\begin{align*}
\sum_{t} B_{i, s_{t}} G_{t_{s}}^{\prime} & =\Delta_{i}-\sum_{t} W_{s_{t}} A_{i, t_{s}} \\
\sum_{t} B_{i, s_{t}} G_{t_{n}}^{\prime} & =-\sum_{t} W_{s_{t}} A_{i, t_{n}} \text { for } n \neq i, j \text { and } n=1, \ldots, 8 \tag{4.5}
\end{align*}
$$

So you get that $\partial\left(e_{i} * e_{w_{s}}\right)=\partial\left(\sum_{t, n} B_{i, s_{t}} e_{w_{t}}\right)$
(3)To check that

$$
\partial\left(e_{i} * e_{g_{s}}\right)=\partial(0), \text { check that }
$$

CHAPTER 4. DG -ALGEBRA

$$
\begin{align*}
\sum_{t} B_{i, t_{s}} G_{s_{t}}^{\prime} & =\Delta_{i} \\
\sum_{t} B_{i, t_{s}} G_{s_{t}}^{\prime} & =0 \text { for } n \neq s \text { and } n=1,2,3 \tag{4.6}
\end{align*}
$$

(4)To check that

$$
\partial\left(e_{w_{i}} * e_{w_{j}}\right)=\partial(0), \text { check that }
$$

$$
\begin{equation*}
\sum_{t} W_{i_{t}} B_{t, j_{n}}+\sum_{t} W_{j_{t}} B_{t, i_{n}}=0 \text { for all } n=1,2,3 \tag{4.7}
\end{equation*}
$$

(5)To check that

$$
\partial\left(e_{i} * e_{F_{j}}\right)=\partial\left(\sum_{t} B_{i, t_{j+1}} e_{v_{t}}\right)+\partial\left(\sum_{t} \alpha_{i, j_{t}}^{\prime} e_{w_{t}}\right)
$$

Now from equation(4.6) we get that the coefficients of $e_{v_{n}}$ of both the sides are equal and further, $\left\{\alpha_{i, j}^{\prime}\right\}$ have computed such that $\left[\alpha_{i, j}^{\prime}\right]$ satisfy the following conditions,

$$
\begin{align*}
\sum_{t} \alpha_{i, j_{t}}^{\prime} W_{t_{i}} & =-F_{j}-\sum_{t} B_{i, t_{j+1}} Y_{t_{i}}^{\prime} \\
\sum_{t} \alpha_{i, j_{t}}^{\prime} W_{t_{n}} & =-\sum_{t} B_{i, t_{j+1}} Y_{t_{n}}^{\prime} \text { such that } n \neq i \text { and } n=1, \ldots, 6 \tag{4.8}
\end{align*}
$$

(6)To check that

$$
\partial\left(e_{F_{i}} * e_{F_{j}}\right)=\partial\left(\sum_{t} \mathcal{A}_{i, j_{t}} e_{v_{t}}\right)
$$

Now $\left\{\mathcal{A}_{i, j_{t}}\right\}$ have been computed such that $\left[\mathcal{A}_{i, j}\right]$ satisfy the following conditions

$$
\begin{align*}
& \sum_{t} \mathcal{A}_{i, j_{t}} G_{i+1_{t}}^{\prime}=-F_{j} \\
& \sum_{t} \mathcal{A}_{i, j_{t}} G_{j+1_{t}}^{\prime}=F_{i} \tag{4.9}\\
& \sum_{t} \mathcal{A}_{i, j_{t}} G_{n_{t}}^{\prime}=0 \text { for } n \neq i+1, j+1 \text { and } n=1,2,3 \\
& \qquad \sum_{t} \mathcal{A}_{i, j_{t}} Y_{t_{n^{\prime}}}^{\prime}=0 \text { for } n^{\prime}=1, \ldots, 6 \tag{4.10}
\end{align*}
$$

(7)To check

$$
\begin{gather*}
\partial\left(e_{F_{i}} * e_{v_{s}}\right)=\partial\left(-\sum_{t} \alpha_{t, i_{s}}^{\prime} e_{k_{t}}\right), \text { check that } \\
\sum_{t} \mathcal{A}_{i, t-1} G_{t_{s}}^{\prime}-\sum_{t} Y_{s_{t}}^{\prime} B_{t, s_{i+1}}-\sum_{t} \alpha_{t, i_{s}}^{\prime} W_{s_{t}}=F_{i} \\
\sum_{t} \mathcal{A}_{i, t-1_{n}} G_{t_{s}}^{\prime}-\sum_{t} Y_{s_{t}}^{\prime} B_{t, n_{i+1}}-\sum_{t} \alpha_{t, i_{s}}^{\prime} W_{n_{t}}=0 \text { for } n \neq s \text { and } n=1, \ldots, 8 \tag{4.11}\\
\sum_{t} \alpha_{t, i_{n}}^{\prime} Y_{s_{t}}^{\prime}+\sum_{t} \alpha_{t, i_{s}}^{\prime} Y_{n_{t}}^{\prime}=0 \text { for all } n=1, \ldots, 8 \tag{4.12}
\end{gather*}
$$

(8)To check

$$
\partial\left(e_{F_{i}} * e_{w_{s}}\right)=\partial\left(-\sum_{t} B_{t, s_{i+1}} e_{k_{t}}\right)+\partial\left(\sum_{t} \mathcal{A}_{i, t-1_{s}} e_{g_{t}}\right) \text { check that }
$$

from equation(4.11) we get that the coefficients of $e_{w_{n}}$ are equal for both the sides, and from equation(4.7) we get that the coefficients of $e_{v_{n}}$ on both the sides are equal.
(9)To check

$$
\partial\left(e_{i} * e_{k_{j}}\right)=\delta_{i j} \cdot e_{\mathcal{J}} \text { notice that }
$$

from equation(4.4) we get that the coefficients of $e_{k_{n}}$ are equal for both the sides, and similarly equation(4.8) gives us that the same holds for the coefficients of $e_{g_{n}}$.
(10)To check

$$
\partial\left(e_{F_{i-1}} * e_{g_{j}}\right)=\delta_{i j} \cdot e_{\mathcal{J}} \text { notice that }
$$

from equation(4.9) we get that the coefficients of $e_{k_{n}}$ are equal for both the sides, and similarly equation(4.6) gives us that the same holds for the coefficients of $e_{g_{n}}$.
(11)To check

$$
\partial\left(e_{F_{i-1}} * e_{k_{j}}\right)=0 \text { notice that }
$$

from equation(4.8) we get that the coefficients of $e_{k_{n}}$ are zero for the LHS, and similarly equation(4.10) gives us that the coefficients of $e_{g_{n}}$ of the LHS are zero.
(12)To check

$$
\partial\left(e_{w_{i}} * e_{v_{j}}\right)=-\delta_{i j} . e_{\mathcal{J}} \text { notice that }
$$

from equation(4.5) we get that the coefficients of $e_{k_{n}}$ are equal for both the sides, and similarly equation(4.11) gives us that the same holds for the coefficients of $e_{g_{n}}$.
(13)To check

$$
\partial\left(e_{v_{i}} * e_{v_{j}}\right)=0 \text { notice that }
$$

from equation(4.12) we get that the coefficients of $e_{g_{n}}$ are zero for the LHS, further check that

$$
\sum_{t} G_{t_{i}}^{\prime} \alpha_{n, t-1_{j}}^{\prime}+\sum_{t} G_{t_{j}}^{\prime} \alpha_{n, t-1_{i}}^{\prime}=\sum_{t} Y_{i_{t}}^{\prime} A_{t, n_{j}}+\sum_{t} Y_{j_{t}}^{\prime} A_{t, n_{i}} \text { for all } n=1, \ldots, 6
$$

This gives us that the coefficients of $e_{k_{n}}$ are zero.

Appendix

Here we record some observations by one of the referees about the calculations in the thesis.

1. If we have a short exact sequence sequence of finitely generated modules M_{1}, M_{2}, M_{3} over a polynomial ring,

$$
0 \longrightarrow M_{1} \longrightarrow M_{2} \longrightarrow M_{3} \longrightarrow 0
$$

and if we know the minimal free resolution of M_{1} and M_{2} we can build a free resolution of M_{3} which may not be minimal.
Therefore as a consequence, the matrices (or the maps) in the free resolution of M_{3} is built up from the free resolutions of on M_{1} and M_{2} will naturally be built up from the up in the free resolution of M_{3}. This is called the mapping cone. The free resolution built this way naturally turns out to be a complex, but also an exact sequence.
2. In our case in Theorem 2.1 we have the short exact sequence of ideals:

$$
0 \longrightarrow(\Delta \cap F)=F \Delta \longrightarrow \Delta \oplus(F) \longrightarrow(\Delta, F) \longrightarrow 0
$$

and the corresponding free resolution of $(\Delta \cap F)$ and $\Delta \oplus F$

where F_{i} and G_{i} are free modules.
The mapping cone gives the following free resolution for (Δ, F) :

$$
0 \longrightarrow F_{3} \longrightarrow F_{2} \oplus G_{3} \longrightarrow F_{1} \oplus G_{2} \longrightarrow G_{1} \longrightarrow(\Delta, F) \longrightarrow 0 .
$$

3. Similarly, once we know the free resolution in Theorem 2.1 and Theorem 2.2, the free resolution in Theorem 3.1, Theorem 3.2 and Theorem 3.3 can be built up from them.
4. Hence the maps (or matrices) in minimal free resolution of $\Delta=\left(\Delta_{00}, \ldots, \Delta_{22}\right)$ does appear in the Theorem 2.1, Theorem 2.2, Theorem 3.1, Theorem 3.2 and Theorem 3.3.
5. The interesting thing here is that all the free resolutions in Theorem 2.1, Theorem 2.2, Theorem 3.1, Theorem 3.2 and Theorem 3.3 are indeed minimal free resolutions which can be seen from the maps.

Theorem 2.1: Since the minimal free resolution for Δ is:

$$
0 \longrightarrow S(-4)^{3} \xrightarrow{\left[M_{3}\right]_{8 \times 3}} S(-3)^{8} \xrightarrow{\left[M_{2}\right]_{6 \times 8}} S(-2)^{6} \xrightarrow{\left[M_{1}\right]_{1 \times 6}} \Delta \longrightarrow 0,
$$

the minimal free resolution for $\Delta \cap(F)=F \Delta$ is:
$0 \longrightarrow S(-m-4)^{3} \xrightarrow{\left[M_{3}\right]_{8 \times 3}} S(-m-3)^{8} \xrightarrow{\left[M_{2}\right]_{6 \times 8}} S(-m-2)^{6} \xrightarrow{\left[F M_{1}\right]_{1 \times 6}} \Delta \cap F \longrightarrow 0$
where $\left[F M_{1}\right]_{1 \times 6}=\left[F \Delta_{00}, \ldots, F \Delta_{22}\right]$.

The minimal free resolution of (F) is

$$
0 \longrightarrow S(-m) \longrightarrow(F) \longrightarrow 0
$$

Therefore the minimal free resolution for $\Delta \oplus(F)$ is
$0 \longrightarrow S(-4)^{3} \xrightarrow{\left[M_{3}\right]_{8 \times 3}} S(-3)^{8} \xrightarrow{\left[\begin{array}{c}{\left[M_{2}\right]_{6 \times 8}} \\ {[0]_{1 \times 8}}\end{array}\right]} S(-2)^{6} \oplus S(-m) \xrightarrow{\left[F,\left[M_{1}\right]_{1 \times 6}\right]} \Delta^{6} \oplus(F) \longrightarrow 0$,

CHAPTER 5. APPENDIX

Hence we get the commutative diagram

Hence the maps can be given as block matrices as follows:

$$
\alpha_{1}=\left[\left[M_{1}\right]_{1 \times 6} F\right] \quad \alpha_{2}=\left[\begin{array}{rr}
-F I_{6 \times 6} & {\left[M_{2}\right]_{6 \times 8}} \\
{\left[M_{1}\right]_{1 \times 6}} & 0_{1 \times 8}
\end{array}\right] \alpha_{3}=\left[\begin{array}{rr}
{\left[M_{2}\right]_{6 \times 8}} & 0_{6 \times 3} \\
-F I_{8 \times 8} & {\left[M_{3}\right]_{8 \times 3}}
\end{array}\right] \quad \alpha_{4}=\left[\begin{array}{c}
{\left[M_{2}\right]_{8 \times 3}} \\
-F I_{3 \times 3}
\end{array}\right]
$$

Remark 2: The above argument can be used for Theorem 2.2, Theorem 3.1, Theorem 3.2 and Theorem 3.3.

Theorem 2.2:

$$
\begin{array}{r}
\beta_{1}=\left[\begin{array}{llll}
{\left[M_{1}\right]_{1 \times 6}} & F_{1} & F_{2} & F_{3}
\end{array}\right] \quad \beta_{2}=\left[\begin{array}{rl}
{\left[M_{2}\right]_{6 \times 8}} & {[V]_{6 \times 8}} \\
0_{3 \times 8} & {[Y]_{3 \times 6}}
\end{array}\right] \\
\beta_{3}=\left[\begin{array}{ll}
{\left[M_{3}\right]_{8 \times 3}} & -\left[V^{T}\right]_{8 \times 6} \\
0_{8 \times 3} & -\left[M_{2}\right]_{8 \times 6}^{T}
\end{array}\right] \quad \beta_{4}=\left[\begin{array}{r}
-\left[J^{\prime \prime}\right]_{8 \times 1} \\
{\left[J^{\prime}\right]_{6 \times 1}}
\end{array}\right]
\end{array}
$$

Remark 3 The complex in Theorem 3.1, can be built up from Theorem 2.1 as follows

Theorem 3.1:

We have the following commutative diagrams:

CHAPTER 5. APPENDIX

$$
\begin{aligned}
& \mathcal{P}_{1}=\left[\begin{array}{lll}
{\left[M_{1}\right]_{1 \times 6}} & F & \tilde{F}
\end{array}\right] \\
& \mathcal{P}_{2}=\left[\begin{array}{rrrr}
-\tilde{F} I_{6 \times 6} & {[0]_{6 \times 1}} & {[-F I]_{6 \times 6}} & {\left[M_{2}\right]_{6 \times 8}} \\
{[0]_{1 \times 6}} & {[F I]_{1 \times 1}} & {\left[M_{1}\right]_{1 \times 6}} & {[0]_{1 \times 8}} \\
{\left[M_{1}\right]_{1 \times 6}} & {[0]_{1 \times 6}} & {[\tilde{F}]_{1 \times 1}} & {[0]_{1 \times 8}}
\end{array}\right] \\
& \mathcal{P}_{3}=\left[\begin{array}{rrrr}
-F I_{8 \times 6} & {\left[M_{2}\right]_{6 \times 8}} & {[0]_{6 \times 8}} & {[0]_{6 \times 3}} \\
{\left[M_{1}\right]_{1 \times 6}} & {[0]_{1 \times 8}} & {[0]_{1 \times 8}} & {[0]_{1 \times 3}} \\
{[-\tilde{F} I]_{6 \times 6}} & {[0]_{6 \times 8}} & {\left[M_{2}\right]_{6 \times 8}} & {[0]_{6 \times 3}} \\
{[0]_{8 \times 6}} & -\tilde{F} I_{8 \times 8} & {[-F I]_{8 \times 8}} & {\left[M_{3}\right]_{8 \times 3}}
\end{array}\right] \quad \mathcal{P}_{4}=\left[\begin{array}{rrr}
{\left[M_{2}\right]_{6 \times 8}} & {[0]_{6 \times 3}} & {[0]_{6 \times 3}} \\
F I_{8 \times 8} & {\left[M_{3}\right]_{8 \times 3}} & {[0]_{6 \times 3}} \\
{[-\tilde{F} I]_{8 \times 8}} & {[0]_{8 \times 3}} & {[0]_{6 \times 3}} \\
{[0]_{3 \times 8}} & {[-\tilde{F} I]_{3 \times 3}} & {[0]_{6 \times 3}}
\end{array}\right] \\
& \mathcal{P}_{5}=\left[\begin{array}{l}
{\left[M_{3}\right]_{8 \times 3}} \\
{[F I]_{3 \times 3}} \\
{[-\widetilde{F} I]_{3 \times 3}}
\end{array}\right]
\end{aligned}
$$

Similarly, we can write the maps for Theorem 3.2 and Theorem 3.2.

Bibliography

[ACGH] E.Arbarello, M.Cornalba, P.A.Griffiths, J.Harris, Geometry of Algebraic Curves, no.267, Springer-Verlag New York, (1987)
[A] Luchezar L.Avramov, Infinite Free Resolutions, Six Lectures on Commutative Algebra, no.166,Birkhauser Verlag,1-118
[BH] W.Bruns, J.Herzog, Cohen Macaulay rings, no.39, Cambridge University Press,(1993)
[H] R.Hartshorne, Algebraic Geometry, no.52, Springer-Verlag New York,(1977)
[KM] A.R.Kustin, M.Miller, Algebra structures on minimal resolutions of Gorenstein rings of embedding codimension four, Math.Z., 173(1980), 171-184
[L] R.Lazarsfeld, A Sampling of Vector Bundle Techniques in the Study of Linear Series, Lectures on Riemann Surfaces, ICTP, World Scientific New York(1987) 500-559.
[OP] G.Ottaviani,R.Paoletti, Syzygies of Veronese embeddings, Compositio Math., 125(2001), 31-37

