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AbstratThis thesis has three parts. In the �rst part we take an irreduible urve C in
P

2. Then we use the Veronese map,(σ) to map it to P
5 and ompute the resolution of

σ(C).In the seond part we look at redued intersetion of two distint urves C and
C′ in P

2. And �nd the resolution of σ(C ∩ C′). In the third part we ompute expliitDi�erential graded algebra for one of the resolutions omputed ealier.Part 1Let C be a smooth irreduible homogeneous urve in P
2. Then we know that C isgiven by zeros of an irreduible homogeneous polynomial in 3-variables, i.e., C =

Z(f(x0, x1, x2)), f ∈ K [x0, x1, x2] is an irreduible homogeneous polynomial.Consider the embedding on P
2 in P

5 via the Veronese embedding σ, where σ(x, y, z) =
(x2, xy, xz, y2, yz, z2), this also gives an embedding of C in P

5.In this part of the thesis, we look at S/Iσ(C), the homogeneous oordinate ring of
σ(C) in P

5 and expliitly alulate the minimal graded free resolution of S/Iσ(C),where S is the homogeneous oordinate ring of P
5.Let the degree of C in P

2 be d,i.e, C be de�ned by an irreduible homogeneous poly-nomial, `f ' of degree d in K[x0, x1, x2]. Depending on the parity of d, we get thefollowing two results.Theorem 1: Let C be an irreduible urve of even degree say d = 2m, m ≥ 1.The homogeneous oordinate ring S/Iσ(C) of σ(C) in P
5 has the following minimalgraded free resolution:

0 →S(−m − 4)⊕3 α4→ S(−4)⊕3 ⊕ S(−m − 3)⊕8 α3→
α3→ S(−3)⊕8 ⊕ S(−m − 2)⊕6 α2→ S(−2)⊕6 ⊕ S(−m)

α1→ S → S/Iσ(C) → 0where αi's are matries of homogeneous polynomial entries with no non-zero salars[See Setion 2.1℄Theorem 2: Let C be an irreduible urve of odd degree say d = 2m − 1, for m ≥ 2.The homogeneous oordinate ring S/Iσ(C) of σ(C) in P
5 has the following minimalgraded free resolution:

0 →S(−m − 4)
β4→ S(−4)⊕3 ⊕ S(−m − 2)⊕6 β3→

β3→ S(−3)⊕8 ⊕ S(−m − 1)⊕8 β2→ S(−2)⊕6 ⊕ S⊕3(−m)
β1→ S → S/Iσ(C) → 0where βi's are matries of homogeneous polynomial entries with no non-zero salars[See Setion 2.2℄Corollary 1: Let C be a smooth, irreduible plane urve of degree d and L be theline bundle OC(2).(a)S/Iσ(C) is Gorenstein if `d' is odd and when `d' is even S/Iσ(C) is Cohen-Maulaybut not Gorenstein.(b)(C, L) satis�es property N0 for all d ≥ 2.()(C, L) satis�es N1 i� d = 3, 4.Part 2Consider two distint irreduible plane projetive urves, C and C′ of degrees d and d′respetively. Then by Bezout's theorem we know that C and C′ interset at d.d′ points6



ounted with multipliity.In the seond problem, we expliitly write down the minimal graded free resolution of
S/Iσ(C∩C′), where Iσ(C∩C′) is the ideal sheaf of σ(C ∩ C′). Depending on the paritiesof d and d′, we get the following three results.Theorem 3: Let C, C′ be two irreduible urves of even degree say d = 2m and
d′ = 2m′, m, m′ ≥ 1. The homogeneous oordinate ring S/Iσ(C∩C′) of σ(C ∩ C′) in P

5has the following minimal graded free resolution.
0 →S(−m − m′ − 4)⊕3 P5→ S(−m − 4)⊕3 ⊕ S(−m′ − 4)⊕3 ⊕ S(−m − m′ − 3)⊕8 P4→

P4→ S(−4)⊕3 ⊕ S(−m − 3)⊕8 ⊕ S(−m′ − 3)⊕8 ⊕ S(−m − m′ − 2)⊕6 P3→

P3→ S(−3)⊕8 ⊕ S(−m − 2)⊕6 ⊕ S(−m′ − 2)⊕6 ⊕ S(−m − m′)
P2→

P2→ S(−2)⊕6 ⊕ S(−m) ⊕ S(−m′)
P1→ S → S/Iσ(C∩C′) → 0where Pi's are matries with homogeneous polynomial entries with no non-zero salars[SeeSetion 3.1℄Theorem 4: Let C, C′ be two irreduible urves of degrees say d = 2m and d′ =

2m′ − 1, m, m′ ≥ 2. Then the homogeneous oordinate ring S/Iσ(C∩C′) of σ(C ∩ C′) in
P

5 has the following minimal graded free resolution.
0 →S(−m − m′ − 4)

Q5→ S(−m − 4)⊕3 ⊕ S(−m′ − 4) ⊕ S(−m − m′ − 2)⊕6 Q4→

Q4→ S(−4)⊕3 ⊕ S(−m − 3)⊕8 ⊕ S(−m′ − 2)⊕6 ⊕ S(−m − m′ − 1)⊕8 Q3→

Q3→ S(−3)⊕8 ⊕ S(−m − 2)⊕6 ⊕ S(−m′ − 1)⊕8 ⊕ S(−m − m′)⊕3 Q2→

Q2→ S(−2)⊕6 ⊕ S(−m) ⊕ S(−m′)⊕3 Q1→ S → S/Iσ(C∩C′) → 0whereQi's are matries with homogeneous polynomial entries with no non-zero salars[SeeSetion 3.2℄Theorem 5: Let C and C′ be two irreduible plane urves of odd degree say d = 2m−1and d′ = 2m′ − 1 for m, m′ ≥ 2. The oordinate ring S/Iσ(C∩C′) of σ(C ∩C′) in P
5 hasthe following minimal graded free resolution.

0 →S(−m − m′ − 3)⊕3 R5→ S(−m − 4) ⊕ S(−m′ − 4) ⊕ S(−m − m′ − 2)⊕8 R4→

R4→ S(−4)⊕3 ⊕ S(−m − 2)⊕6 ⊕ S(−m′ − 2)⊕6 ⊕ S(−m − m′ − 1)⊕6 R3→

R3→ S(−3)⊕8 ⊕ S(−m − 1)⊕8 ⊕ S(−m′ − 1)⊕8 ⊕ S(−m − m′ + 1)
R2→

R2→ S(−2)⊕6 ⊕ S(−m)⊕3 ⊕ S(−m′)⊕3 R1→ S → S/Iσ(C∩C′) → 0whereRi's are matries with homogeneous polynomial entries with no non-zero salars[SeeSetion 3.3℄Corollary 2: S/Iσ(C∩C′) is Gorenstein if degrees of C and C′ are of di�erent pari-ties and is Cohen-Maulay but not Gorenstein otherwise.Part 3 7



Consider the resolution in Theorem 2. Namely,
0 →S(−m − 4)

β4→ S(−4)⊕3 ⊕ S(−m − 2)⊕6 β3→

β3→ S(−3)⊕8 ⊕ S(−m − 1)⊕8 β2→ S(−2)⊕6 ⊕ S⊕3(−m)
β1→ S → S/Iσ(C) → 0Then

P • .0 → S(−m − 4)
β4→ S(−4)⊕3 ⊕ S(−m − 2)⊕6 β3→

β3→ S(−3)⊕8 ⊕ S(−m − 1)⊕8 β2→ S(−2)⊕6 ⊕ S⊕3(−m)
β1→ S → S/Iσ(C) → 0is a symmetri ayli omplex.In [KM℄, the author proves that any length 4, symmetri resolution has a DG Algebrastruture. Hene the above resolution has a DG Algebra struture.Theorem 3.1: We give an expliit DG Algebra struture to the above ayli omplex

P • .

8
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1Preliminaries
1.1 The d-Uple embeddingLet P

n be n-dimensional projetive spae over a �eld K. Then for d > 0, we an de�nea map σd: P
n → P

N , where N =
`

n+d

n

´

− 1, suh that for P̄ ∈ P
n,

σd(P̄ ) =
`

M0(P̄ ), . . . , MN (P̄ )
´where Mi's are degree d monomials whih form a basis of the vetor spae of all ho-mogeneous polynomials of degree d in n + 1 variables.This map whih is an embedding, is alled the d-Uple embedding.Now for n and N as above de�ne a map, θ suh that

θ : K[y0, . . . , yN ] → K[x0, . . . , xn]

θ(yi) = Mi(x0, . . . , xn)Then ker θ is a homogeneous prime ideal of K[y0, . . . , yN ] and Z(ker(θ)) is a projetivevariety of P
N and Z(ker(θ)) = σd(P

n).(See [H℄ for proof of the statement.)The 2-uple embedding of P
2 is alled the Veronese Embedding, and σ2(P

2) is alledthe Veronese Surfae. Now let us look at the map θ with n = 2 and N = 5. So we have
θ: K[y0, . . . , y5] → K[x0, x1, x2]To see this map more learly, we will hange the notations.Let us denote, K[y0, . . . , y5] as K[x00, x01, x02, x11, x12, x22] and
θ(xij) = xi.xj for 0 ≤ i ≤ j ≤ 2Then we see thatker(θ) = 〈∆ij : 0 ≤ i ≤ j ≤ 2〉, where

∆00 = x11x22 − x2
12

∆01 = x01x22 − x12x02

∆02 = x01x12 − x02x11

∆11 = x00x22 − x2
02

∆12 = x00x12 − x02x01

∆22 = x00x11 − x2
01.

(1.1)
1



CHAPTER 1. PRELIMINARIESHene we get that, {∆ij = 0 : 0 ≤ i ≤ j ≤ 2} are the 6 de�ning equations of theVeronese Surfae; In fat Z(ker(θ)) = σ(P2) as a projetive subvariety of P
5
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1.2. SYZYGIES AND MINIMAL FREE RESOLUTIONS1.2 Syzygies and minimal free resolutions
Note that as we will only look at homogeneous oordinate rings of projetive vari-eties and �nitely generated modules over them, our de�nitions and notations will beadapted aordingly. We know that the homogeneous oordinate ring of the projetivespae, P

n
K is the polynomial ring, S = K[x0, . . . , xn] in n + 1 variables, with all thevariables of degree one.Let M = ⊕d∈ZMd be a �nitely generated graded S-module with the dth gradedomponent Md. Now as M is �nitely generated, eah Md is �nite dimensional K-vetorspae.For any graded module, M , M(a) is the module M shifted( or `twisted') by a, where

a ∈ Z:
M(a)d = Ma+dA module M over a graded ring S is alled graded free S-module if M is deomposableas a diret sum of free S modules: M = ⊕iS(ai).Given homogeneous elements mi ∈ M of degree ai that generate M as an S-module,we de�ne a map from graded free S module F0 = ⊕iS(−ai) onto M , by sending the

ai
th degree generators to mi . Now if N is the kernel of this map, then the elementsof N are alled syzygies of M . We also know that N is �nitely generated graded

S-module, hene we an de�ne a map onto N from another graded free S-module, F1in same way. Continuing this way we an onstrut a sequene of maps of graded freemodule. This sequene is alled a graded free resolution of M .A omplex of graded S-modules
. . . → Fi

δi→ Fi−1 → . . .is alled minimal if for eah i, δi (Fi) ⊂ mFi−1, where m = (x0, . . . , xn), the onlyhomogeneous maximal ideal of S.Now we are in a position to state a theorem, whih we will use extensively in the�rst two problems.Theorem 1.1[OP℄ : The homogenous oordinate ring S/Iσ(P2) of σ(P2) in P
5 hasthe following minimal graded free resolution:

0 → S(−4)⊕3 M3→ S(−3)⊕8 M2→ S(−2)⊕6 M1→ S → S/Iσ(P2) → 0 (1.2)where,
M1 =

ˆ

∆00, ∆01, ∆02, , ∆11, ∆12, , ∆22

˜ (1.3)3



CHAPTER 1. PRELIMINARIES
M2 =

2

6

6

6

6

6

6

4

x02 0 x01 0 0 x00 0 0
−x12 x02 −x11 x01 0 0 x00 0
x22 0 x12 x02 x01 x02 0 x00

0 −x12 0 −x11 0 −x11 −x01 0
0 x22 0 0 −x11 x12 x02 −x01

0 0 0 x22 x12 0 0 x02

3

7

7

7

7

7

7

5

(1.4)and let
M2 =

ˆ

W1, W2, W3, W4, W5, W6, W7, W8

˜

M3 =

2

6

6

6

6

6

6

6

6

6

6

4

x01 −x00 0
−x11 x01 0
−x02 0 x00

x12 −x02 0
−x22 0 x02

0 x02 −x01

0 −x12 x11

0 x22 −x12

3

7

7

7

7

7

7

7

7

7

7

5

(1.5)and let
M3 =

ˆ

G1, G2, G3

˜

4



1.3. NP -PROPERTY1.3 Np-propertyLet X be a smooth irreduible projetive urve of genus g and L be an very ampleline bundle on X generated by global setions. Thus L determines a morphism
ΦL : X −→ P

`

H0(L)
´

= P
rwhere r = dim

`

H0(L)
´

− 1. If L is very ample then ΦL is an embedding.Let S denote the symmetri algebra, Sym.H0(L) on H0(L). So S is a homogeneousoordinate ring of P
r. Consider the graded ring

R = R(L) = ⊕mH0(X, Lm)assoiated to L. Then R is in a natural way a �nitely generated module over S, andso we an talk about its minimal graded free resolution.F• → R → 0 of R; i.e.,
0 → Fr−1

fr−1
→ . . . → F1

f1→ F0 → R → 0 (1.6)is exat where eah Fi is a diret sum of twists of S, that is,
Fi = ⊕jS(−ai,j),and hene in partiular the maps in equation(1.6) are given by matries of homo-geneous forms. Minimality in this ontext means that none of the entries in thesematries are non-zero onstants.De�nition: [L℄ For a integer p ≥ 0, we say that the line bundle L satis�es Property(Np) if

F0(L) = S and Fi(L) = ⊕S(−i − 1) for all 1 ≤ i ≤ pThe above de�nition means the following:
L sati�es N0 =⇒ ΦL embeds X as a projetively normal urve;
L sati�es N1 =⇒ N0 holds for L, and the homogeneous ideal

I of X is generated by quadris;
L satis�es N2 =⇒ N0 and N1 hold for X, and the module ofsyzygies among the quadris generators Qi ∈ I isspanned by relations of the form

P

LiQi = 0where the Li are linear polynomials;... ...
L sati�es Np =⇒ L satis�es Np−1 and the syzygiesamongst the generators of Fp−1 arelinear polynomials

5



CHAPTER 1. PRELIMINARIES1.4 Di�erential graded(DG) algebrasLet S be a ommutative ring.Let
P• . . . → P2 → P1 → P0 → 0be an ayli omplex of projetive S-modules with P0 = S. We an onsider P• as agraded module equipped with an endomorphism, ∂ : P• → P• of degree −1 satisfying

∂ ◦ ∂ = 0.In [BH℄, the authors give the following de�nition.The resolution, (P•, δ) is said to be a Di�erential graded(DG) algebra (or is saidto have a DG algebra struture) if we an de�ne an assoiative multipliation on P•satisfying the following onditions,
(i) Pn.Pm ⊂ Pn+m ∀n, m ≥ 0;
(ii) 1 ∈ P0 ats as the unit element i.e 1.a = a.1 = a ∀a ∈ P•;

(iii) a.b = (−1)deg(a).deg(b)b.a, for all homogeneous elements, a, b ∈ P•;
(iv) a.a = 0 for all odd degree elements, a;

(v) ∂(a.b) = ∂(a).b + (−1)deg(a)a.∂(b), for all homogeneous elements a, b ∈ P•.Proposition:[A℄ If A is a projetive resolution of a R-module, M , suh that A0 = Rand An = 0 for n ≥ 4, then A has a struture of DG algebra.Reall the resolution used in the previous setion.
0 → S(−4)⊕3 M3→ S(−3)⊕8 M2→ S(−2)⊕6 M1→ S → S/Iσ(P2) → 0Let us all the above resolution P•. Notie that this resolution is of length 3, andhene by the earlier proposition this an be given a DG-algebra struture.So we have P• : 0 → P3 → P2 → P1 → P0 = S → 0 where,rank(P1)= 6, with {ei : i = 1, . . . , 6} as the basis of P1rank(P2)= 8, with {ews : s = 1, . . . , 8} as the basis of P2rank(P3)= 3, with {egt : t = 1, 2, 3} as the basis of P3.Now with the following onditions,

(i) ei.ej =
X

s=1,...,8

Ai,jsews

(ii) ei.ews =
X

t=1,2,3

Bi,st.egt

(iii) ei.egt = 0 ∀ i = 1, . . . , 6 and t = 1, 2, 3

(iv) ews .ewt = 0 ∀ s, t = 1, . . . , 8

(v)
∂(e2i+j+1) = ∆ij i 6= 2, 0 ≤ i ≤ j ≤ 2
∂(e6) = ∆22

(vi) ∂(ews) =
X

i=1,...,6

Wsi
.ei

(vii) ∂(egt) =
X

s=1,...,8

(−1)t+1Gts .ews , 6



1.4. DIFFERENTIAL GRADED(DG) ALGEBRASand with [Ai,j ],[Bi,j ] matries from Chapter 4, we an hek that P• is a DG-algebra.These struture will be used extensively in the third part of this thesis.

7





2Resolutions of plane urves in theVeronese embedding.Reall from hapter 1, that the map
xij 7→ xi.xj for 0 ≤ i ≤ j ≤ 2 indues a homomorphism

θ : K[x00, x01, x02, x11, x12, x22] → K[x0, x1, x2] of graded ringsFrom this we get the following lemma.Lemma 2.1: If g ∈ K[x0, x1, x2] is a homogeneous polynomial of even degree(say
2n). Then g ∈ Im(θ), whih means that the subalgebra Im(θ) of K[x0, x1, x2] is gen-erated by even polynomials.Proof: Let

g =
X

i+j+k=2n

bijkxi
0x

j
1x

k
2 (2.1)Depending on the parities of i, j, k, we de�ne some homogeneous polynomials in Susing the oe�ients bijk appearing in (2.1) i.e., g = gI + gII + gIII + gIV with;

gI =
X

i+j+k=2n,
i,j,k all even bijkxi

0x
j
1x

k
2

gII =
X

i+j+k=2n,
i even, j,k odd bijkxi

0x
j
1x

k
2

gIII =
X

i+j+k=2n,
j even, i,k odd bijkxi

0x
j
1x

k
2

gIV =
X

i+j+k=2n,
k even, i,j odd bijkxi

0x
j
1x

k
2Case I : When i, j, k are all even, onsider

GI =
X

i+j+k=d
i,j,k even bijkx

i
2

00x
j
2

11x
k
2

22Notie that θ(GI) = gI 9



CHAPTER 2. RESOLUTIONS OF PLANE CURVES IN THE VERONESEEMBEDDING.Case II : When i is even, j and k odd, onsider
GII =

X

i+j+k=2n
i even

j,k odd bijkx
i
2

00x
j−1

2

11 x
k−1

2

22 x12Similarly as in Case I, θ(GII) = gIICase III : When i,k are odd and j is even, onsider
GIII =

X

i+j+k=2n
j even
i,k odd bijkx

i−1

2

00 x
j
2

11x
k−1

2

22 x02

θ(GIII) = gIIICase IV : When i,j are odd and k is even onsider,
GIV =

X

i+j+k=2n
k even
i,j odd bijkx

i−1

2

00 x
j−1

2

11 x
k
2

22x01

θ(GIV ) = gIVNow let
G = GI + GII + GIII + GIVThen θ(G) = g.Hene g ∈ Im(θ).From Setion (1.1), we also know that for the embedding, P

2 σ
→֒ P

5, Z(ker(θ)) =
σ(P2).Let C be a smooth(or irreduible) plane urve. Hene C is given by a irreduible poly-nomial in three variables. The Veronese embedding of P

2 in P
5 gives an embedding

C
σ
→֒ P

5. We will ompute the syzygies of the homogeneous ideal Iσ(C) of this em-bedding of C in P
5 using the resolution of the Veronese embedding talked about inChapter 1 . Let C be de�ned by the polynomial f of degree d in three variables. Let

C = Z (f(x0, x1, x2)) where, f =
X

i+j+k=d

aijkxi
0x

j
1x

k
2

10



2.1. DEGREE OF C IS EVEN2.1 Degree of C is evenWe have d is even(say 2m) and
f =

X

i+j+k=2m

aijkxi
0x

j
1x

k
2From Lemma 2.1, we get that f ∈ Im(θ). Let F be a homogeneous polynomial in

S suh that θ(F ) = f .Lemma 2.2: Let G ∈ S suh that, G homogeneous and Z(θ(F )) ⊂ Z(θ(G)) ⊂ P
2.Then G ∈< F, ∆i,j : 0 ≤ i ≤ j ≤ 2 >, where 〈F, ∆ij : 0 ≤ i ≤ j ≤ 2〉 is the homoge-neous ideal generated by F and ∆ij in S. i.e isProof : Let θ(G) = g, then g is a homogeneous polynomial of even degree and,

Z(f) ⊂ Z(g)Hene g ∈ (f). As C is an irreduible urve f is irreduible, hene,
g = f.h for some h homogeneous in K[x0, x1, x2]Now f and g are even degree implies that h is of even degree hene, by Lemma(2.1)we an �nd a homogeneous H ∈ S, suh that θ(H) = h.Thus θ(G) = θ(F ).θ(H) = θ(F.H),

⇒ θ(G − F.H) = 0

⇒ G − F.H ∈ ker(θ)

⇒ G − F.H =
X

0≤i≤j≤2

∆ijSij for some Sij ∈ S, Sij homogeneous
⇒ G ∈< F, ∆ij : 0 ≤ i ≤ j ≤ 2 >This ompletes the proof of the lemma.From now on we will denote M1, M2 and M3 from equations (1.4), (1.5) of setion(1.2)as below: The ith row of M2 will be Wi and the jth of M3 will be Gj , for 1 ≤ i ≤ 8and j = 1, 2, 3. So we have,

M2 =
ˆ

W1, W2, W3, W4, W5, W6, W7, W8

˜ (2.2)
M3 =

ˆ

G1, G2, G3

˜ (2.3)Theorem 2.1: Let C be an irreduible urve of even degree say d = 2m, m ≥ 1. Thehomogeneous o-ordinate ring S/Iσ(C) of σ(C) in P
5 has the following minimal freeresolution.

0 →S(−m − 4)⊕3 α4→ S(−4)⊕3 ⊕ S(−m − 3)⊕8 α3→
α3→ S(−3)⊕8 ⊕ S(−m − 2)⊕6 α2→ S(−2)⊕6 ⊕ S(−m)

α1→ S → S/Iσ(C) → 0
(2.4)where αi's are as follows,

α1 =
ˆ

[M1] , F
˜ (2.5)If

α′
2 =

2

6

6

6

6

6

6

4

−F 0 0 0 0 0 ∆00

0 −F 0 0 0 0 ∆01

0 0 −F 0 0 0 ∆02

0 0 0 −F 0 0 ∆11

0 0 0 0 −F 0 ∆12

0 0 0 0 0 −F ∆22

3

7

7

7

7

7

7

5 11



CHAPTER 2. RESOLUTIONS OF PLANE CURVES IN THE VERONESEEMBEDDING.write α′
2 as

α′
2 =

ˆ

U00, U01, U02, U11, U12, U22

˜TThen
α2 =

ˆ

W ′
1, W ′

2, W ′
3, W ′

4, W ′
5, W ′

6, W ′
7, W ′

8, U00, U01, U02, U11, U12, U22

˜(2.6)with
W ′

i =

»

Wi

0

–

∀i = 1, . . . , 8with Wi as in (2.1)That is,
α2 =

»

[M2] −FI6

0 [M1]

–If
Hi =

» ˆ

F.I8
i

˜

[Wi]

–with
Ik

i =
h

0, 0, . . . ,
ith position

1 , 0, . . . , 0

iT is a k × 1 vetorThen, α3 =
ˆ

G′
1, G′

2, G′
3, H1, . . . , H8

˜ (2.7)where
G′

i =

»

Gi

[0̄]

– for i = 1, 2, 3where Gi as in (2.2) and [0̄] is a 0 matrix of appropriate dimension.That is,
α3 =

»

[M3] FI8

0 [M2]

–Finally,
α4 =

» „ ˆ

−F.I3
1

˜

[G1]

«

,

„ ˆ

−F.I3
2

˜

[G2]

«

,

„ ˆ

−F.I3
3

˜

[G3]

« – (2.8)That is,
α4 =

»

−FI3

[M3]

–Proof : From Lemma 2.2, it is lear that
α1 =

ˆ

∆00, ∆01, ∆02, ∆11, ∆12, ∆22, F
˜Now onsider B ∈ S homogenous and

A =
ˆ

a00, a01, a02, a11, a12, a22

˜where aij ∈ S homogeneous suh that
X

i,j

aij .∆ij + B.F = 0

⇒ θ(B.F ) = 0

⇒ θ(B).f = 0

⇒ B ∈< ∆ij : 0 ≤ i ≤ j ≤ 2 > 12



2.1. DEGREE OF C IS EVENHene, B =
P

(bij∆ij) for some homogeneous polynomials bij ∈ S.
⇒
X

(aij + bij .F ).∆ij = 0Now if aij∆ij + bij .F = 0 for all (aij , bij) then suh a [A, B] is generated by Uij . Ifnot then,
⇒
P

(aij + bijF ) ∈ Syz1(< ∆ij : 0 ≤ i ≤ j ≤ 2 >)Hene, the relations between ∆ij and F are generated by Uij : 0 ≤ i ≤ j ≤ 2 and
W ′

k : k = 1, . . . , 8.Hene we get,
α2 =

ˆ

W ′
1, W ′

2, W ′
3, W ′

4, W ′
5, W ′

6, W ′
7, W ′

8, U00, U01, U02, U11, U12, U22

˜Now onsider
A =

ˆ

a00, a01, a02, a11, a12, a22

˜T
, aij ∈ S, aij homogeneous ∀0 ≤ i ≤ j ≤

2 and,
B =

ˆ

(bk)
˜

, bk ∈ S, homogeneoussuh that
X

0≤i≤j≤2

aij .Uij +
X

1≤k≤8

bk.W ′
k = 0

⇒
X

i,j

aij∆ij = 0as the last olumn of eah W ′
k, k = 1, . . . , 8 is zero and the last olumn of Uij is ∆ijfor 0 ≤ i ≤ j ≤ 2
⇒ A ∈< Wk : k = 1, . . . , 8 >Let A =

P

k
(ckWk), for some homogeneous polynomial, ck ∈ S

⇒ −
X

k

ckWkF.Id6 +
X

k

bkWk = 0where Idn is a n × n identity matrix.
⇒
X

i,k

Wk(−ckF + bk) = 0Hene if −ck.F +bk = 0 for all k, this implies bk = ck.F for all k then suh (bk, aij)are generated by<
ˆˆ

F.[I8
i ]
˜

, [Wi]
˜

> for i = 1, . . . , 8. If not then, [(−ckF + bk)Ik]k=1,...,6 ∈Syz1(< Wj : j = 1, . . . , 8 >).Hene the relations between W ′
k and Uij are generated by G′

i and Hk. Hene weget
α3 =

ˆ

G′
1, G′

2, G′
3, H1, . . . , H8

˜Now onsider
A =

ˆ

a1, a2, a3, a4, a5, a6, a7, a8

˜T
, ai ∈ S, homogeneous for i =

1, . . . , 8

B =
ˆ

(bk)
˜, bk ∈ S, homogeneous for k = 1, 2, 3 suh that

X

i

ai.Hi +
X

k

bk.G′
k = 0

⇒
X

i

aiWi = 0, 13



CHAPTER 2. RESOLUTIONS OF PLANE CURVES IN THE VERONESEEMBEDDING.as the last six olumns of eah G′
k, k = 1, 2, 3 are zero.

⇒ A ∈< Gk : k = 1, 2, 3 >Let A =
P

k
(ckGk), for some homogeneous polynomial, ck ∈ S.Then we have, P

k
(ckGk).(F.Id8) +

P

k
bk.Gk = 0

⇒
X

k

(ck.F.Id8 + bk) Gk = 0Now if ck.F + bk = 0 for every k, then bk = −ck.F for all p, then we an say that
([bp], [cp]) is generated by <

`ˆ

−F.I3
i

˜

,
ˆ

I3
i

˜´

: i = 1, 2, 3 >, hene ([bp], [ak]) is gener-ated by <
`ˆ

−F.I3
i

˜

, [Gi]
´

i = 1, 2, 3 >Also from Theorem 1.1, we have that G′
k : k = 0, 1, 2 are independent. HeneSyz1(< G′

i, Hj : i = 1, 2, 3 and j = 1, . . . 8 >) =<
`ˆ

−F.I3
i

˜

, [Gi]
´

: i = 1, 2, 3 >Hene,
α4 =

"

„ ˆ

−F.I3
i

˜

[Gi]

«

1≤i≤3

#

14



2.2. DEGREE OF C IS ODD2.2 Degree of C is oddReall
f =

X

i+j+k=d

aijkxi
0x

j
1x

k
2Now let f0 = x0.f , f1 = x1.f , f2 = x2.f . Then fn is of even degree and heneaording to Lemma 2.1, fn ∈ Im(θ) for n = 0, 1, 2. We have the following lemma.Lemma 2.3: Z(f) = Z(f0) ∩ Z(f1) ∩ Z(f2).Proof : Clearly, Z(f) ⊂ Z(f0) ∩ Z(f1) ∩ Z(f2)Also if ∃ p̄ = (p0, p1, p2) ∈ Z(f0) ∩ Z(f1) ∩ Z(f2) and p̄ /∈ Z(f). Then p̄ ∈

Z(xi) ∀i = 0, 1, 2. This implies pi = 0∀i = 0, 1, 2. But this ontradits the fat that
p̄ ∈ P

2. Hene Z(f) = Z(f0) ∩ Z(f1) ∩ Z(f2).In the same way as proof of Lemma 2.1, we split f in four parts depending on theparities of i,j,k.Case I: i, j, k are all odd. LetLet hI =
X

i,j,k

aijkx
i−1

2

00 x
j−1

2

11 x
k−1

2

22

F0
I =

X

i+j+k=d

aijkx
i+1

2

00 x
j−1

2

11 x
k−1

2

22 x12

F1
I =

X

i+j+k=d

aijkx
i−1

2

00 x
j+1

2

11 x
k−1

2

22 x02

F2
I =

X

i+j+k=d

aijkx
i−1

2

00 x
j−1

2

11 x
k+1

2

22 x01Then,
F0

I = x00x12hI

F1
I = x11x02hI

F2
I = x22x01hICase II: i odd, j even, k even. NowLet hII =

X

i,j,k

aijkx
i−1

2

00 x
j
2

11x
k
2

22

F0
II =

X

i+j+k=d

aijkx
i+1

2

00 x
j
2

11x
k
2

22

F1
II =

X

i+j+k=d

aijkx
i−1

2

00 x
j
2

11x
k
2

22x01

F2
II =

X

i+j+k=d

aijkx
i−1

2

00 x
j
2

11x
k
2

22x02Then,
F0

II = x00hII

F1
II = x01hII

F2
II = x02hII 15



CHAPTER 2. RESOLUTIONS OF PLANE CURVES IN THE VERONESEEMBEDDING.Case III: i even, j odd, k even. NowLet hIII =
X

i,j,k

aijkx
i
2

00x
j−1

2

11 x
k
2

22

F0
III =

X

i+j+k=d

aijkx
i
2

00x
j−1

2

11 x
k
2

22x01

F1
III =

X

i+j+k=d

aijkx
i
2

00x
j+1

2

11 x
k
2

22

F2
III =

X

i+j+k=d

aijkx
i
2

00x
j−1

2

11 x
k
2

22x12Then,
F0

III = x01hIII

F1
III = x11hIII

F2
III = x12hIIICase IV: i even, j even, k odd. NowLet hIV =
X

i,j,k

aijkx
i
2

00x
j
2

11x
k−1

2

22

F0
IV =

X

i+j+k=d

aijkx
i
2

00x
j
2

11x
k−1

2

22 x02

F1
IV =

X

i+j+k=d

aijkx
i
2

00x
j
2

11x
k−1

2

22 x12

F2
IV =

X

i+j+k=d

aijkx
i
2

00x
j−1

2

11 x
k+1

2

22Then,
F0

IV = x02hIV

F1
IV = x12hIV

F2
IV = x22hIVWrite Fn = Fn

I + Fn
II + Fn

III + Fn
IV ∀n = 0, 1, 2Also notie θ(Fn) = fn for n = 0, 1, 2Lemma 2.4: Let G ∈ k[x00, x01, x02, x11, x12, x22] be homogeneous and

Z(θ(F0)) ∩ Z(θ(F1)) ∩ Z(θ(F2)) ⊂ Z(θ(G)) ⊂ P
2Then G ∈< Fk, ∆i,j : 0 ≤ k ≤ 2, 0 ≤ i ≤ j ≤ 2 >.Proof : Now let θ(G) = g, then degree(g) is even.

Z(f0) ∩ Z(f1) ∩ Z(f2) ⊂ Z(g)

⇒ Z(f) ⊂ Z(g)

⇒ g ∈ (f) as C is an irreduible urve and f is irreduible 16



2.2. DEGREE OF C IS ODD
⇒ g = f.h for some h ∈ k[x0, x1, x2]

⇒ h 6= 1 as degree of f is odd while degree of g is even. Moreover h is an odd-degree polynomial
⇒ g =

X

i=0,1,2

fihi for some homogeneous polynomial hi ∈ k[x0, x1, x2],where degree of hi is even and h = x0h0 + x1h1 + x2h2Hene ⇒ G =
X

i=0,1,2

FiHi, where θ(Hi) = hi∀i = 0, 1, 2.Suh a Hi exists as the degree of hi is even.
⇒ θ(G −

X

i=0,1,2

FiHi) = 0

⇒ G −
X

i=0,1,2

FiHi ∈ ker(θ)

⇒ G =
X

i=0,1,2

FiHi +
X

i,j=0,1,2

∆ijSij for some Sij ∈ k[x00, . . . , x22]

Hence ⇒ G ∈< Fk, ∆ij : i, j, k = 0, 1, 2 >Theorem 2.2: Let C be an irreduible urve of odd degree say d = 2m−1, for m ≥ 2.The homogeneous oordinate ring S/IC of σ(C) in P
5 has the following resolution.

0 →S(−m − 4)
β4→ S(−4)⊕3 ⊕ S(−m − 2)⊕6 β3→

β3→ S(−3)⊕8 ⊕ S(−m − 1)⊕8 β2→ S(−2)⊕6 ⊕ S(−m)⊕3 β1→ S → S/IC → 0
(2.9)Proof :From Lemma 2.3 and Lemma 2.4, it is lear that

β1 =
ˆ

∆00, ∆01, ∆02, ∆11, ∆12, ∆22, F0, F1, F2

˜Now onsider A =
ˆ

a00, a01, a02, a11, a12, a22

˜, aij ∈ S, homogeneous ∀0 ≤
i ≤ æ ≤ 2 and b =

ˆ

b0, b1, b2

˜ where bl ∈ S, homogeneous, for k = 0, 1, 2 suhthat,
X

i,j

aij .∆ij +
X

k

bk.Fk = 0 (2.10)
⇒ θ(

X

k

(bk.Fk)) = 0

⇒
X

k

(θ(bk).fk) = 0

⇒
X

k

(θ(bk).f.xk) = 0

⇒
X

k

(θ(bk).xk) = 0Let θ(bk) = Bk, then degree of Bk is even. Then
B = (B0, B1, B2)

T ∈ Syz1(x0, x1, x2)Now by simple omputation we getSyz1(x0, x1, x2) =<

0

@

x1

−x0

0

1

A ,

0

@

x2

0
−x0

1

A ,

0

@

0
x2

−x1

1

A > 17



CHAPTER 2. RESOLUTIONS OF PLANE CURVES IN THE VERONESEEMBEDDING.hene B ∈< Y0, Y1, Y2 > where
Y0 =

`

x1, −x0, 0
´

Y1 =
`

x2, 0, −x0

´

Y2 =
`

0, x2, −x1

´But degree of Bk is even, hene, B ∈< xkYl : k, l = 0, 1, 2 >.Hene, (b0, b1, b2) ∈< Ylk : k, l = 0, 1, 2 >where
Y00 =

`

x01, −x00, 0
´

Y01 =
`

x11, −x01, 0
´

Y02 =
`

x12, −x02, 0
´

Y10 =
`

x02, 0, −x00

´

Y11 =
`

x12, 0, −x01

´

Y12 =
`

x22, 0, −x02

´

Y20 =
`

0, x02, −x01

´

Y21 =
`

0, x12, −x11

´

Y22 =
`

0, x22, −x12

´Also note that,
Y02 = Y11 − Y20Now substituting all Yij for i, j = 0, 1, 2 exept for Y02 for b in equation(2.8) weget, the following 8 vetors,Note that if A is a nXm matrix then by AT we denote the transpose of A.

V1 =
ˆ

0, 0, −x00hI , 0, hIV , hIII , [Y00]
˜T

V2 =
ˆ

0, 0, hIV , 0, −x11hI , −hII , [Y01]
˜T

V3 =
ˆ

0, x00hI , 0, hIV , hIII , 0, [Y10]
˜T

V4 =
ˆ

x00hI , hIV , 0, 0, −hII , −x22hI , [Y11]
˜T

V5 =
ˆ

0, −hIII , 0, −hII , −x22hI , 0, [Y12]
˜T

V6 =
ˆ

0, hIV , hIII , x11hI , 0, −x22hI , [Y20]
˜T

V7 =
ˆ

hIV , x11hI , −hII , 0, 0, 0, [Y21]
˜T

V8 =
ˆ

−hIII , −hII , x22hI , 0, 0, 0, [Y22]
˜TLet

β′
2 =

ˆ

[V1] , [V2] , [V3] , [V4] , [V5] , [V6] , [V7] , [V8]
˜ 18



2.2. DEGREE OF C IS ODDNow all the relations between Fn's and ∆ij 's are generated by Vk's and W ′
l 's and allthe relations between only ∆ij 's are generated by Wl's. Hene all relations between

Fn, ∆jk are generated by Vk, W ′
l .Hene Syz1(< Fn, ∆ij >) =< Vk, W ′

l : 1 ≤ k, l ≤ 8 > and
β2 =

`ˆ

W ′
1

˜ ˆ

W ′
2

˜

. . .
ˆ

W ′
8

˜

[V1] . . . [V8]
´where W ′

k = [[Wk] [0̄]] with [0̄] a 1 × 3 zero vetorNow onsider, Ā = (ai) with ai ∈ S homogeneous and B̄ = (bk) with bk ∈ S, ho-mogeneous
X

i

aiVi +
X

k

bkW ′
k = 0 (2.11)Let Ā = [a1, . . . , a8] and V= [V1, . . . , V8]

T then equation(2.11) an be written as
Ā. V +

X

k

bk.W ′
k = 0 (2.12)Now as all the entries in the last 3 olumns in eah of W ′

i are zero we have,
X

i

aiYij = 0.Now it an be omputed that Syz1(Yij) =< K′
l : 1 ≤ l ≤ 6 > where

K′
1 =

ˆ

x02, 0, −x01, 0, 0, x00, 0, 0
˜

K′
2 =

ˆ

x12, x02, −x11, −x01, 0, x01, x00, 0
˜

K′
3 =

ˆ

x22, 0, −x12, x02, −x01, 0, 0, x00

˜

K′
4 =

ˆ

0, x12, 0, −x11, 0, 0, x01, 0
˜

K′
5 =

ˆ

0, x22, 0, 0, −x11, −x12, x02, x01

˜

K′
6 =

ˆ

0, 0, 0, x22, −x12, −x22, 0, x02

˜Hene Ā =
P

l dl.K
′
l in equation (2.12), we get

8
X

l=1

dlK
′
l . V+

X

k

bkW ′
k = 0where dl are homogenous polynomials in S for all l = 1, . . . , 6. Simple alulation givesus that, ˆB̄,

P

l dlK
′
l

˜

∈ 〈Kl : l = 1, . . . , 6〉, where Kl's for 1 ≤ l ≤ 6 are as follows
K1 =

ˆ

0, 0, 0, x00hI , 0, 0, −hIV , hIII , [K′
1]
˜T

K2 =
ˆ

0, 0, x00hI , 0, −hIII , −hIV , x11hI , hII , [K′
2]
˜T

K3 =
ˆ

−x00hI , −hIV , 0, −hIII , 0, hIII , hII , x22hI , [K′
3]
˜T

K4 =
ˆ

0, 0, −hIV , −x11hI , hII , x11hI , 0, 0, [K′
4]
˜T

K5 =
ˆ

−hIV , −x11hI , hIII , hII ,−x22hI , 0, 0, 0 [K′
5]
˜T

K6 =
ˆ

hIII , hII , 0, 0, 0, −x22hI , 0, 0, [K′
6]
˜T 19



CHAPTER 2. RESOLUTIONS OF PLANE CURVES IN THE VERONESEEMBEDDING.Now all the relations between Vi's and W ′
j 's are generated by {Kl, G′

k, 1 ≤ l ≤ 6, k =
1, 2, 3} and all the relations between only W ′

j 's (whih are atually Wj) are generatedby G′
k's. Hene we have that all relations between {{Vi}, {W

′
j}} are generated by

{Kl,G′
k 1 ≤ l ≤ 6,k = 1, 2, 3 }. So, Syz1(< Vi, W

′
j >) =< Kl, G

′
k >. So we get that,

β3 =
ˆ

[G′
0] [G′

1] [G′
2] [K1] . . . [K6]

˜where, G′
i =

ˆ

[Gi] [0̄]
˜ where [0̄] is an appropriate dimensional zero matrix.Now onsider Ā = (Ai), suh that Ai ∈ S, homogeneous and B̄ = (Bk), suh that

Bk ∈ S, homogeneous suh that,
X

l

AlKl +
X

k

BkG′
k = 0 (2.13)Hene we have,

X

l

AlK
′T
l = 0(as the last eight olumns of G′

i's are zero entries)Now it an be omputed that Syz1(K′
l) =< J ′ > where,

J ′ =

2

6

6

6

6

6

6

4

J ′
1

J ′
2

J ′
3

J ′
4

J ′
5

J ′
6

3

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

4

x12
2 − x11x22

−x02x12 + x01x22

x11x02 − x01x12

x02
2 − x00x22

−x01x02 + x00x12

x01
2 − x00x11

3

7

7

7

7

7

7

5Like in the alulation of Kl's, substitute J ′ in equation(2.13). Then we get,
J =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

J1

J2

J3

J4

J5

J6

J7

J8

J9

3

7

7

7

7

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

4

−x00x12hI − x00hII − x01hIII − x02hIV

−x11x02hI + x01hII + x11hIII + x12hIV

−x01x22hI − x02hII − x12hIII − x22hIV

ˆ

[J ′]
˜

3

7

7

7

7

7

7

7

7

5Now all the relations between Kl's and G′
k's are generated by J and there are no rela-tions between only G′

k's as there are no non-trivial relations between Gk's. Hene all re-lations between Kl, G
′
k are generated by J . Hene Syz1(< Kl, G

′
k >) = 〈Ji : 1 ≤ i ≤ 9

〉. Hene
β4 = [J ]This ompletes the proof of the theorem.
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2.3. SOME REMARKS ON NP PROPERTIES ON PLANE CURVESUNDER VERONESE EMBEDDING2.3 Some remarks on Np properties on plane urvesunder Veronese embeddingDue to the expliit omputation of resolutions done in earlier setions we get someresults about Property Np of the line bundle, OC(2) of a plane urves, C with degree
d ≥ 2.Consider L = OC(2). Now OC(1) is very ample by de�nition. So L is very ampleand hene globally generated and so determines an embedding, ΦL suh that:

ΦL : C → P
5Also we have σ|C : C →֒ P

5. Hene we get the following diagram.
P

5

C

ΦL

P
2

σWe laim that the above diagram is ommutative.Notie that ΦL
∗(OP5(1)) = OC(2) and also σ∗(OP5(1)) = OP2(2). We have byde�nition of C →֒ P

2, that OC(1) = OP2
|C

(1). Hene we get that ΦL
∗(OP5(1)) =

σ|C
∗(OP5(1)) and so, we get that the above diagram is ommutative.Remark-1: C is as above with degree d, then (C, L) satis�es Property N0 for every

d ≥ 2.Proof: Now IC is the ideal sheaf of C in P
5 in P(H0(L))). Then we have thefollowing short exat sequene:

0 → IC → OP5 → OC → 0So for every n ∈ Z, we have
0 → IC(n) → OP5(n) → OC(2n) → 0Also as C →֒ P

2, we get a map from H0(P2,OP2(n)) → H0(C,OC(n)) for all n ∈ Z.Let this map be γn.To prove that (C, L) satis�es N0. We have to prove that the map, H0(P5,OP5(n))
ΦLn→

H0(C,OC(2n)) is surjetive for all n ∈ Z. Now we have the following ommutative di-agram.
H0(OP5(n))

σ̃n

Φ̃Ln

H0(OP2(2n))
γ2n

H0(OC(2n))Claim 1: H0(OP5(n))
σ̃n→ H0(OP2(2n)) surjets for all n.From [OP℄, we know that OPn (d) satis�es Property Np, ∀d ≥ p and ∀n. Hene wehave that OP2(2) satis�es N0, and so we have that σ̃n surjets for all n. 21



CHAPTER 2. RESOLUTIONS OF PLANE CURVES IN THE VERONESEEMBEDDING.Claim 2: γn surjets for all n.As C →֒ P
2, we get the following short exat sequene.

0 → OP2(−d) → OP2 → OC → 0for every n ∈ Z, we get the following long exat sequene:
0 → H0(OP2(n − d) → H0(OP2(n))

γn→ H0(OC(n)) →

→ H1(OP2(n − d)) → H1(OP2(n)) → H1(OC(n) → 0But,
H1(P2,OP2(n − d)) = 0 ∀n, d ∈ ZHene γn surjets for all n ∈ Z.So we get that Φ̃Ln surjets for all n. This implies that (C, L) satis�es Property

N0 for all plane urves, C with degree, d ≥ 2.Remark-2: If (C, L) as above, then L satis�es N1 i� degree of C = 3 or 4.Proof: A very ample line bundle L is said to satisfy property N1 if α1 from (A)has degree 2 entries, implying that IC is generated by quadris.Now if the urve C has even degree, d = 2m, then the degree of f is 2m. And fromlemma 1 we know that, IC =< F, ∆ij > where, degree (F ) is m and degree(∆ij) = 2.Hene for d = 4, IC is generated by quadris, moreover for any even d, d 6= 4, IC isannot be generated by quadris.Now if the urve C has odd degree, d = 2m − 1, then the degree of fi is 2m for
i = 0, 1, 2. Now from lemma 3, we know that IC =< F0, F1, F2, ∆ij >. where degree
(Fi) = m and degree(∆ij) = 2. Hene for d = 3, IC is generated by quadris,andmoreover for any odd d, d 6= 3, IC is annot be generated by quadris.Remark-3: Let (C, L) be as above, with degree(C) = 2m, m ≥ 1. Then (C, L)fails to satisfy Property N2, and hene Property Np, p ≥ 2.Proof: Let d = 4, then the matrix α2 has degree 2 entries, hene the resolution isnot linear. Hene suh a C fails to satisfy Property N2. And for d 6= 4 we know fromresult 2, that suh a C fails to satisfy Property Np for p ≥ 1. Hene we have the aboveresult.Remark-4: Let (C, L) be as above, with degree(C) = 3, then suh a C satis�esProperty N3 but fails to satisfy Property N4.Proof: Notie that, if the degree of C = 2m − 1, then degree(hi) = m − 1,for ∀i = II, III, IV and degree(hI) = m − 2.hi for i = I, II, III, IV as de�ned inChapter 2 Now when the degree(C) = 3, degree(hI) = 0 and degree(hi) = 1, for
∀i = II, III, IV , hene βi has linear entries, for i = 2, 3. So we have that the res-olution is linear till the third step while β4 has quadrati entries, implies that theresolution is not linear in the fourth step, whih implies that L satis�es N3 but fails22



2.3. SOME REMARKS ON NP PROPERTIES ON PLANE CURVESUNDER VERONESE EMBEDDINGto satisfy N4.Remark-5 For all plane urve, C, (degree ≥ 2), OC(2) fails to satisfy Np for p ≥ 4.Proof: With all but degree 3 and 4 urves failing to satisfy N1, degree 4 urvefailing to satisfy N2 and degree 3 urve failing to satify N4, we get the above result.
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3Resolutions of Veronese embedding ofomplete intersetions of urves in theplane.If C and C′ are two distint plane urves, then onsider, C ∩ C′ →֒ P
2 σ
→֒ P

5, where
P

2 →֒ P
5 is the Veronese embedding. We will ompute the syzygies of the homoge-neous ideal, Iσ(CC′) of σ (C ∩ C′) in P

5.Throughout we assume (C ∩ C′) is redued.Now let C be de�ned by the polynomial f of degree d in three variables, and C′be de�ned by f̃ of degree d′ in three variables. Hene
C = Z(f(x0, x1, x2)), C′ = Z(f̃(x0, x1, x2))Let us reall Theorem 2.1. and Theorem 2.2Theorem Let C be an irreduible urve of even degree say d = 2m, m ≥ 1. Thehomogeneous ideal Iσ(C) of σ(C) in P

5 has the following minimal free graded resolution.
0 →S(−m − 4)⊕3 α4→ S(−4)⊕3 ⊕ S(−m − 3)⊕8 α3→

α3→ S(−3)⊕8 ⊕ S(−m − 2)⊕6 α2→ S(−2)⊕6 ⊕ S(−m)
α1→ S → S/Iσ(C) → 0where

α1 =
ˆ

[M1] , F
˜

α2 =
ˆ

[Wi, 0], [Ujk]
˜where i = 1, . . . , 8 and 0 ≤ j ≤ k ≤ 2

α3 =
ˆ

[G′
i, 0̄], [Hj ]

˜where i = 1, 2, 3 and j = 1, . . . , 8.
α4 =

» „ ˆ

−F.I3
1

˜

[G1]

«

,

„ ˆ

−F.I3
2

˜

[G2]

«

,

„ ˆ

−F.I3
3

˜

[G3]

« –Also when we onsider the above resolution for the urve, C′, we will denote the ma-tries in the resolution with `∼'.Before realling Theorem 2.2, we introdue a hange in the notations for Vi, Ki and J25



CHAPTER 3. RESOLUTIONS OF VERONESE EMBEDDING OFCOMPLETE INTERSECTIONS OF CURVES IN THE PLANE.appearing in Theorem 2.2 for the sake of onvinene, so from now on we will denote
V1 =

ˆ

[V00], [Y00]
˜, V2 =

ˆ

[V01], [Y01]
˜, V3 =

ˆ

[V10], [Y10]
˜, V4 =

ˆ

[V11], [Y11]
˜,

V5 =
ˆ

[V12], [Y12]
˜, V6 =

ˆ

[V20], [Y20]
˜, V7 =

ˆ

[V21], [Y21]
˜, V8 =

ˆ

[V22], [Y22]
˜.

Ki =
ˆ

[K′′
i ], [K′

i]
˜, and, J =

ˆ

[J ′′], [J ′]
˜Hene we haveTheorem: Let C be an irreduible urve of odd degree say d = 2m − 1, for m ≥ 2.The ideal Iσ(C) of σ(C) in P

5 has the following minimal free graded resolution.
0 →S(−m − 4)

β4→ S(−4)⊕3 ⊕ S(−m − 2)⊕6 β3→

β3→ S(−3)⊕8 ⊕ S(−m − 1)⊕8 β2→ S(−2)⊕6 ⊕ S⊕3(−m)
β1→ S → S/Iσ(C) → 0where

β1 =
ˆ

∆00, ∆01, ∆02, ∆11, ∆12, ∆22, F0, F1, F2,
˜

β2 =
ˆ ˆ

Wi, 0̄
˜

,
ˆ

[Vjk], [Yjk]
˜ ˜where i = 1, . . . , 8 and 0 ≤ j, k ≤ 2 with (jk) 6= (02)

β3 =
ˆ ˆ

Gi, 0̄
˜

,
ˆ

[K1, K
′
j

˜ ˜where i = 1, 2, 3, j = 1, . . . , 6 and 0̄ is an appropriate dimensional zero matrix.
β4 =

ˆ

J
′′,J′˜Note that all the matries in bold print are independent of the urve onsidered. Alsolike in the ase of theorem 2.2, we will denote the matries ouring in the resolutionof C′ with a `∼'
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3.1. DEGREES OF C AND C′ ARE EVEN.3.1 Degrees of C and C ′ are even.In this ase d is even(say 2m), and d′ = 2m′.
f =

X

i+j+k=2m

aijkxi
0x

j
1x

k
2 and

f̃ =
X

i+j+k=2m′

ãijkxi
0x

j
1x

k
2As the degrees of f and f̃ are even, from Lemma 2.1, we have that f , f̃ ∈ Im(θ).Let F, F̃ ∈ S be homogeneous polynomials suh that θ(F ) = f and θ(F̃ ) = f̃Lemma 3.1: Let G ∈ S suh that G homogeneous and Z(θ(F ))∩Z(θ(F̃ )) ⊂ Z(θ(G)) ⊂

P
2. Then G ∈< F, F̃ , ∆i,j : 0 ≤ i ≤ j ≤ 2 >.Proof : Let θ(G) = g, then g is a homogeneous even degree polynomial and

Z(f) ∩ Z(f̃) ⊂ Z(g)

⇒ g ∈ (f, f̃) as C and C′ are irreduible urves and hene f and f̃ are irreduible.
⇒ g = f.h + f̃ .h̃ for some h and h̃ homogeneous, in K[x0, x1, x2]Now as f , f̃ and g are even degree homogeneous polynomials we get that h and h̃ areboth even degree polynomials hene ∃ H and H̃ ∈ S, homogeneous suh that θ(H) = hand θ(H̃) = h̃.Thus we have

θ
“

G − (F.H + F̃ .H̃)
”

= 0Hene G − F.H − F̃ .H̃ ∈ ker(θ)So we get G − F.H − F̃ .H̃ =
X

0≤i≤j≤2

∆ijSij for some Sij ∈ S, Sij homogeneous
⇒ G ∈< F, F̃ , ∆ij : 0 ≤ i ≤ j ≤ 2 >This ompletes the proof of the lemma.Theorem 3.1: Let C, C′ be two irreduible urves of even degree say d = 2m and

d′ = 2m′, m, m′ ≥ 1. The homogeneous oordinate ring S/Iσ(C∩C′) of σ(C ∩ C′) in P
5has the following minimal free graded resolution.

0 →S(−m − m′ − 4)⊕3 P5→ S(−m − 4)⊕3 ⊕ S(−m′ − 4)⊕3 ⊕ S(−m − m′ − 3)⊕8 P4→

P4→ S(−4)⊕3 ⊕ S(−m − 3)⊕8 ⊕ S(−m′ − 3)⊕8 ⊕ S(−m − m′ − 2)⊕6 P3→

P3→ S(−3)⊕8 ⊕ S(−m − 2)⊕6 ⊕ S(−m′ − 2)⊕6 ⊕ S(−m − m′)
P2→

P2→ S(−2)⊕6 ⊕ S(−m) ⊕ S(−m′)
P1→ S → S/Iσ(C∩C′) → 0 (3.1)where the matries Pi are given as follows:

P1 =
ˆ

[M1] , F, F̃
˜ (3.2)27



CHAPTER 3. RESOLUTIONS OF VERONESE EMBEDDING OFCOMPLETE INTERSECTIONS OF CURVES IN THE PLANE.Let
P2 =

2

6

6

6

6

6

6

4

−F 0 0 0 0 0 ∆00 0
0 −F 0 0 0 0 ∆01 0
0 0 −F 0 0 0 ∆02 0
0 0 0 −F 0 0 ∆11 0
0 0 0 0 −F 0 ∆12 0
0 0 0 0 0 −F ∆22 0

3

7

7

7

7

7

7

5Similarly we get̃
P2 =

2

6

6

6

6

6

6

4

−F̃ 0 0 0 0 0 0 ∆00

0 −F̃ 0 0 0 0 0 ∆01

0 0 −F̃ 0 0 0 0 ∆02

0 0 0 −F̃ 0 0 0 ∆11

0 0 0 0 −F̃ 0 0 ∆12

0 0 0 0 0 −F̃ 0 ∆22

3

7

7

7

7

7

7

5and
P2 =

ˆ

U00, U01, U02, U11, U12, U22

˜TWe have Ũij for 0 ≤ i ≤ j ≤ 2 and hene P̃2Also let
S =

ˆ

0 0 0 0 0 0 F̃ −F
˜T

P2 =
h

W ′
1, W ′

2, W ′
3, W ′

4, W ′
5, W ′

6, W ′
7, W ′

8, [P2] ,
h

P̃2

i

, [S ]
i(3.3)where

W ′
i =

2

4

Wi

0
0

3

5 ∀i = 1, . . . , 8with Wi as in equation (2.2) of Chapter 2.Let
Hi =

2

6

6

4

ˆ

F.I8
i

˜

[Wi]
[0̄]
0

3

7

7

5

H̃i =

2

6

6

6

4

h

F̃ .I8
i

i

[0̄]
[Wi]

0

3

7

7

7

5where i = 1, . . . 8 , [0̄] is a zero-matrix of appropriate dimension and
Ik

j =
h

0, 0, . . . ,
jth position

1 , 0, . . . , 0

iT is a k × 1 vetorLet
Lij =

2

6

6

6

4

[0̄]
h

−F̃ I6
2i+j+1

i

ˆ

FI6
2i+j+1

˜

∆ij

3

7

7

7

5

∀ 0 ≤ i ≤ j ≤ 2 28



3.1. DEGREES OF C AND C′ ARE EVEN.And let
L =

ˆ

[L00] , . . . , [L22]
˜

P3 =
ˆ

[G′
i]1≤i≤3, [Hj ]1≤j≤8, [H̃j ]1≤j≤8, [L]

˜ (3.4)where
G′

i =

»

Gi

[0̄]

– for i = 1, 2, 3where Gi as in equation(2.3) of Chapter 2 and [0̄] is a 0 matrix of appropriate dimen-sion, and j = 1, . . . , 8.We de�ne
P4 =

2

6

6

4

0

B

B

@

ˆ

−F.I3
1

˜

[G1]
[0̄]
[0̄]

1

C

C

A

,

0

B

B

@

ˆ

−F.I3
2

˜

[G2]
[0̄]
[0̄]

1

C

C

A

,

0

B

B

@

ˆ

−F.I3
3

˜

[G3]
[0̄]
[0̄]

1

C

C

A

3

7

7

5

P̃4 =

2

6

6

6

4

0

B

B

B

@

h

−F̃ .I3
1

i

[0̄]
[G1]
[0̄]

1

C

C

C

A

,

0

B

B

B

@

h

−F̃ .I3
2

i

[0̄]
[G2]
[0̄]

1

C

C

C

A

,

0

B

B

B

@

h

−F̃ .I3
3

i

[0̄]
[G3]
[0̄]

1

C

C

C

A

3

7

7

7

5And let
Wi =

2

6

6

6

4

[0̄]
h

−F̃ .I8
i

i

ˆ

F.I8
i

˜

[Wi]

3

7

7

7

5

i = 1, . . . , 8.Let
P4 =

ˆ

[P4] , [P ′
4] , [W1] , . . . , [W8]

˜ (3.5)And
Gi =

2

6

4

h

F̃ I3
i

i

ˆ

−FI3
i

˜

[Gi]

3

7

5

P5 =
ˆ

[G1] , [G2] , [G3]
˜ (3.6)Proof :From Lemma 3.1, it is lear that

P1 =
ˆ

∆00, ∆01, ∆02, ∆11, ∆12, ∆22, F, F̃
˜Now onsider

A =
ˆ

A00, A01, A02, A11, A12, A22

˜where aij ∈ S, homogeneous. And B, B′ ∈ S, homogeneous suh that
X

i,j

Aij .∆ij + B.F + B̃.F̃ = 0

⇒ θ(B.F + B̃.F̃ ) = 0

⇒ θ(B).f = −θ(B̃)f̃ 29



CHAPTER 3. RESOLUTIONS OF VERONESE EMBEDDING OFCOMPLETE INTERSECTIONS OF CURVES IN THE PLANE.Now if B = 0, then we get θ(B̃) = 0, hene B̃ ∈< ∆ij : 0 ≤ i ≤ j ≤ 2 >So we get, P̃2. Similar reasoning for B̃ = 0, gives us, P2.Now if B and B̃ both non-zero, we get,
θ(B) ∈< f̃ > and θ(B̃) ∈< f >So let θ(B) = p.f̃ , then θ(B̃) = −p.f , where p ∈ k[x0, x1, x2]. Degree of p is even,therefore ∃P ∈ S, suh that θ(P ) = p. Hene [B, B̃] ∈< S >. So we get that the rela-tions between ∆ij , F and F̃ are generated by Uij : 0 ≤ i ≤ j ≤ 2, Ũij : 0 ≤ i ≤ j ≤ 2, W ′

k : k = 1, . . . , 8 and SNow we get
P2 =

h

[W ′
i ]1≤i≤8, [P2] ,

h

P̃2

i

, [S ]
ifor i = 1, . . . , 8Now onsider

A = [Ak]1≤k≤8 , Ak ∈ S, Ak homogeneous ∀1 ≤ k ≤ 8 and
B =

ˆ

(Bij)
˜

, Bij ∈ S, homogeneous
B̃ =

ˆ

(B̃ij)
˜

, B̃ij ∈ S, homogeneousfor 0 ≤ i ≤ j ≤ 2, and D ∈ S homogeneous, suh that
X

1≤k≤8

Ak.W ′
k +

X

0≤i≤j≤2

Bij .Uij +
X

0≤i≤j≤2

B̃ij .Ũij + D.S = 0 (3.7)Now let B̃ij = 0 for all i, j, so D=0. Then we have
B ∈< Wk : k = 1, . . . , 8 >Hene from Theorem 2.1, we get that the relations between W ′

k and Uij are generatedby G′
i and Hk. Similarly, when Bij = 0, for all i, j, we get that all relations between

W ′
k and Ũij are generated by G′

i and H̃kNow if Bij , B̃kl 6= 0 for some i, j, k, l, then it is lear that D 6= 0 in (3.7) from thede�nitions of W ′
i , Uij ,and Ũij .So we have
X

ij

Bij∆ij + D.F̃ = 0 , X

ij

B̃ij∆ij − D.F = 0This implies that D ∈< ∆ij : 0 ≤ i ≤ j ≤ 2 >. So for some Cij ∈ S, homogeneous wehave D =
P

ij Cij∆ij and hene
X

ij

“

Bij + Cij .F̃
”

∆ij = 0 and X
ij

“

B̃ij − Cij .F
”

∆ij = 0If Bij − Cij .F̃ = 0 for all i, j and B̃ij + Cij .F = 0 for all i, j, then Cij .F̃ = Bij and
Cij .F = −B̃ij for all i, j then suh (Bij , B̃ij , Cij) are generated by < Hk, H̃k, Lij >for 0 ≤ i ≤ j ≤ 2 and k = 1, . . . , 8.And if not then P(B̃ij + Cij .F ) ∈ Syz1(< W ′

j : 1 ≤ j ≤ 8 >).Similarly P(Bij − Cij .F̃ ) ∈ Syz1(< W ′
j : 1 ≤ j ≤ 8 >).Hene the relations between {W ′

k, Uij , Ũij , J }are generated by G′
k : k = 1, 2, 3, Hi,

H̃i : 1 ≤ i ≤ 8 and Ljk : 0 ≤ j ≤ k ≤ 2.Hene
P3 =

ˆ

[G′
1], [G′

2], [G′
3], [Hi], [H̃i] [L]

˜ 30



3.1. DEGREES OF C AND C′ ARE EVEN.for i = 1, . . . , 8Now onsider
A =

ˆ

(Ai)
˜

1≤i≤3
Ai ∈ S homogeneous for i = 1, 2, 3

B =
ˆ

(Bj)
˜

1≤j≤8
and

B̃ =
ˆ

(B̃j)
˜

1≤j≤8
, where Bi and B̃i homogeneous in S for i = 1, . . . , 8,

C =
ˆ

(Ckl)
˜

1 ≤ k ≤ l ≤ 2,where Cij ∈ S homogeneous for 0 ≤ k ≤ l ≤ 2 suhthat
X

i

Ai.G
′
i +
X

i

Bi.Hi +
X

i

B̃i.H̃i +
X

i,j

Cij .Lij = 0Now if hB̃i = [0̄], then C = [0], hene we have
P

i
BiWi = 0 then, B ∈< Gp : p = 1, 2, 3 > Now theorem 2.2, we get P4. Similarly weget P̃4, when Bij = 0 for all (i, j)If B 6= [0] and B̃ 6= [0], then we have that Cij 6= 0 for some i, j. So we get that

P

i,j(Cij .∆ij) = 0. This implies that C ∈< Wk >, then with similar arguments as inthe proof of theorem 2.2, we get Wi for i = 1, . . . , 8.Hene we get
P4 =

h

[P4] ,
h

P̃4

i

, [W1] , . . . , [W8]
iNow let

B =
ˆ

(Bi)
˜

B̃ =
ˆ

(B̃i)
˜

A =
ˆ

(Aj)
˜suh that for i = 1, 2, 3, Bi,B̃i are homogeneous in S, and for j = 1, . . . , 8, Aj arehomogeneous in S

B.P4 + B̃.P̃4 +
X

i

Ai.Wi = 0Then we get that Pi Ai.Wi = 0, this implies that A ∈< Gk : k = 1, 2, 3 >, with thesame arguments as earlier we get, G1, G2, and G3. Hene
P5 =

ˆ

[G1] , [G2] , [G3]
˜

31



CHAPTER 3. RESOLUTIONS OF VERONESE EMBEDDING OFCOMPLETE INTERSECTIONS OF CURVES IN THE PLANE.3.2 Degree of C is even and degree of C ′ is oddlet d = 2m, and d′ = 2m′ − 1

f =
X

i+j+k=2m

aijkxi
0x

j
1x

k
2 and ,

f̃ =
X

i+j+k=2m′−1

ãijkxi
0x

j
1x

k
2As the degree of f is even from Lemma 2.1, we have that f ∈ Im(θ). Also fromLemmas 2.2 and 2.3, we also know that for f̃ with odd degree, we have f̃i = xi.f̃ for

0 ≤ i ≤ 2 suh that Z(f̃) = ∩2
i=0Z(f̃i) and that eah f̃i ∈ Im(θ) for i = 0, 1, 2.Like in Chapter 2 we also have, h̃I , h̃II , h̃III , and h̃IV suh that

F̃0 = x00x12h̃I + x00h̃II + x01h̃III + x02h̃IV

F̃1 = x11x02h̃I + x01h̃II + x11h̃III + x12h̃IV

F̃2 = x22x01h̃I + x02h̃II + x12h̃III + x22h̃IVLemma 3.2: Let G ∈ S suh that G homogeneous and
Z(θ(F )) ∩ Z(θ(F̃0)) ∩ Z(θ(F̃1)) ∩ Z(θ(F̃2)) ⊂ Z(θ(G)) ⊂ P

2. Then G ∈< F, F̃k, ∆i,j : 0 ≤ i ≤ j ≤ 2 , k = 0, 1, 2 >.Proof :Let θ(G) = g, then g is a homogeneous even degree polynomial and,
Z(f) ∩ Z(f̃0) ∩ Z(f̃1) ∩ Z(f̃2) ⊂ Z(g)

Z(f) ∩ Z(f̃) ⊂ Z(g)

⇒ g ∈ (f, f̃) as C and C′ are irreduible urves and by assumption(i.e. C ∩ C′ is redued. So
g = f.h + f̃ .h̃ for some h and h̃ homogeneous in K[x0, x1, x2]Now as f and g are even degree homogeneous polynomials and f̃ is homogeneousof odd degree, we get that degree of h is even and h̃ is a odd degree polynomialhene, there exists H ∈ S, homogeneous suh that θ(H) = h and h̃ =

P

i h̃ixi, where
h̃i ∈ K[x0, x1, x2], h̃i homogeneous of even degree.So there exists H̃is suh that θ(H̃i) = h̃i for i = 0, 1, 2Thus we have

θ

 

G −

 

F.H +
X

i

(F̃i.H̃i)

!!

= 0hene, G −

 

F.H +
X

i

(F̃i.H̃i)

!

∈ ker(θ)So we get
G −

 

F.H +
X

i

(F̃i.H
′
i)

!

=
X

0≤i≤j≤2

∆ijSij for some Sij ∈ S, Sij homogeneous
⇒ G ∈< F, F̃k, ∆ij : 0 ≤ i ≤ j ≤ 2 and k = 0, 1, 2 >This ompletes the proof of the lemma.Theorem 3.2: Let C, C′ be two irreduible urves of degrees say d = 2m and32



3.2. DEGREE OF C IS EVEN AND DEGREE OF C′ IS ODD
d′ = 2m′ − 1, m, m′ ≥ 2. Then the homogeneous oordinate ring S/Iσ(C∩C′) of
(σ(C) ∩ σ(C′)) in P

5 has the following minimal free graded resolution.
0 →S(−m − m′ − 4)

Q5→ S(−m − 4)⊕3 ⊕ S(−m′ − 4) ⊕ S(−m − m′ − 2)⊕6 Q4→

Q4→ S(−4)⊕3 ⊕ S(−m − 3)⊕8 ⊕ S(−m′ − 2)⊕6 ⊕ S(−m − m′ − 1)⊕8 Q3→

Q3→ S(−3)⊕8 ⊕ S(−m − 2)⊕6 ⊕ S(−m′ − 1)⊕8 ⊕ S(−m − m′)⊕3 Q2→

Q2→ S(−2)⊕6 ⊕ S(−m) ⊕ S(−m′)⊕3 Q1→ S → S/Iσ(C∩C′) → 0

(3.8)Proof:From Lemma 3.2, we get that
Q1 =

ˆ

[M1] , F, F̃0, F̃1, F̃2

˜ (3.9)Now let
A =

ˆ

(Aij)
˜, Aij ∈ S, homogeneous for 0 ≤ i ≤ j ≤ 2 and,

B ∈ S, homogeneous, B̃ =
ˆ

B̃0, B̃1, B̃2

˜

, B̃i ∈ S, homogeneous for i = 0, 1, 2,suh that
X

ij

(Aij .∆ij) + B.F +
X

i

(B̃i.F̃i) = 0Now if B̃i = 0, for all i = 0, 1, 2, then we have,
X

ij

(Aij .∆ij) + B.F = 0By theorem 2.1 we get that
[ [Aij ], B ] ∈< [ [Wi], 0], [Ujk] : i = 1, . . . , 8, 0 ≤ j ≤ k ≤ 2 >.Hene we get that
[[Aij ], B, [0̄]] ∈< [[Wi], 0, [0̄]] , [[Ujk], [0̄]] : i = 1, . . . , 8, 0 ≤ j ≤ k ≤ 2 >.Similarly if B = 0, by theorem 2.2 we get that
[[Aij ], 0, [B̃k]] ∈< [[Wi], [0̄]] , [Ṽj ] : i, j = 1, . . . , 8 >.Now we have,

h

[Aij ], 0, [B̃k]
i

∈
˙ ˆ

[Wi], [0̄]
˜

,
ˆ

[Vjk], 0, [Yjk]
˜ ¸for i = 1, . . . , 8 and 0 ≤ j, k ≤ 2, (j, k) 6= (0, 2).Now let B 6= 0 and B̃i 6= 0 for some i.Then we have,

b.f +
X

i

(b̃i.f̃i) = 0where b = θ(B) and b̃i = θ(B̃i) for i = 0, 1, 2Hene we have, b ∈< f̃ > and Pi(b
′
i.xi) ∈< f >,but the degree of b is even, so b ∈< xi.f̃ : i = 0, 1, 2 >. So we get,

B =
P

i Ci.F̃i.This gives us that
ˆ

B, [B̃0, B̃1, B̃2]
˜

∈
˙ˆ

F̃i, [−F.I3
i ]
˜

: i = 0, 1, 2
¸Let Li =

ˆ

[0̄]6, F̃i, [−F.I3
i ]
˜ , where [0̄]i is a 1× i zero-vetor. Hene we get that

h

[Aij ], B, [B̃k]
i

∈
˙ ˆ

[Wi], 0, [0̄]
˜

,
ˆ

[Ujk], [0̄]
˜

,
ˆ

[Ṽln], [0̄], [Yln]
˜

, [Ls]
¸33



CHAPTER 3. RESOLUTIONS OF VERONESE EMBEDDING OFCOMPLETE INTERSECTIONS OF CURVES IN THE PLANE.for i = 1, . . . , 8, 0 ≤ j ≤ k ≤ 2, 0 ≤ l, n ≤ 2 ((l, n) 6= (0, 2)) and s = 0, 1, 2Hene we get Q2.Now let
A =

h

(Ai) 1≤i≤8

iT

, Ai ∈ S, homogeneous for i = 1, . . . , 8

B =
h

(Bij) 0≤i≤j≤2

iT

, Bij ∈ S, homogeneous for 0 ≤ i ≤ j ≤ 2

B̃ =
h

(B̃ij) 0≤i≤j≤2

iT

, B̃ij ∈ S, homogeneous for 0 ≤ i, j ≤ 2,
C =

ˆ

C0, C1, C2

˜T
, Ci ∈ S, homogeneous for i = 0, 1, 2.suh that

X

i=1,...,8

Ai

ˆ

[Wi], 0, [0̄]3
˜

+
X

0≤i≤j≤2

Bij

ˆ

[Uij ], [0̄]3
˜

+
X

ij

B̃ij

ˆ

[Ṽij ], 0, [Yij]
˜

+
X

i=0,1,2

Ci.Li = 0
(3.10)Consider the following ases:(1)Let B = [0̄], B̃ = [0̄] and C = [0̄], then A ∈< Gi : i = 1, 2, 3 >. Hene

ˆ

[Aij ], 0, [0̄], [0̄]
˜

∈<
ˆ

[Gi], 0, [0̄], [0̄]
˜

>for i = 1, 2, 3(2)Let B̃ = [0̄], C = [0̄], but B 6= [0̄], then theorem 2.1 we get, [[A], [B]] ∈<
[Gi, 0] , [Hj ] : i = 1, 2, 3, j = 1, . . . , 8 >. Hene,

ˆ

[Aij ], B, [0̄], [0̄]
˜

∈
˙ˆ

[Gi], [0̄], [0̄], [0̄]
˜

,
ˆ

[Hj ], [0̄], [0̄]
˜¸for i = 1, 2, 3 and j = 1, . . . , 8(3)Let B = 0, C = [0̄], but B̃ 6= [0̄], then like the previous ase we get, [[A], [B̃]] ∈<

[Gi, 0] , [K̃j ] : i = 1, 2, 3 j = 1, . . . , 6 >. Hene
ˆ

[A], [0̄], [B̃], [0̄]
˜

∈
˙ ˆ

[Gi], [0̄], [0̄]
˜

,
ˆ

[K̃′′
j ], [0̄], [K′

j ], [0̄]
˜ ¸for i = 1, 2, 3 and j = 1 . . . 6(4)Let B 6= [0̄] and B̃ 6= [0̄], then we have ,

X

0≤i≤j≤2

(Bij∆ij) +
X

i=0,1,2

(Ci.F̃i) = 0Hene
X

i=0,1,2

(ci.f̃i) = 0where ci = θ(Ci) for all i = 0, 1, 2So we get that ˆ C0, C1, C2

˜

∈ 〈Yij : 0 ≤ i, j ≤ 2, (i, j) 6= (0, 2)〉. Hene,
[C] =

X

k,l

Dkl[Ykl] where Dkl ∈ S, homogeneous for, 0 ≤ i, j ≤ 2, (l, k) 6= (0, 2)So
X

ij

(Bij).[Yij] =
X

ij

F (Dij)[Yij] 34



3.2. DEGREE OF C IS EVEN AND DEGREE OF C′ IS ODDNow if, Bij − F.Dij = 0 for all i, j, then ([Bij ], [C]) ∈< [F.I ]8k, [Ykl] >,where k = 2i + j + 1 if i = 0, 1 and k = 6 + j for i = 2.Hene we get that ([A], [B], [B̃], [C]) ∈
˙ˆ

[0̄], [Ṽij ], [F.I ]8k, [Yij]
˜¸. De�ne,

Vij =
ˆ

[0̄], −Vij , [F.I8
k ], [Yij]

˜

,for i, j = 0, 1, 2, and for k = 2i + j + 1, if i 6= 2 and k = 6 + j if i = 2.If not then, [(Bij − F.Dij)] ∈< K′
l : 1 ≤ l ≤ 6 > ( Syz1(< Yij >)).Hene we get Q3.Let

A =
h

(Ai) 1≤i≤3

iT

, Ai ∈ S, homogeneous for i = 1, 2, 3

B =
h

(Bi) 1≤i≤8

iT

, Bi ∈ S, homogeneous for i = 1, . . . 8

B̃ =
h

(B̃i) 1≤i≤3

iT

, B̃i ∈ S, homogeneous for i = 1, . . . , 6,
C =

h

Cij 0≤i,j≤2

iT

, Cij ∈ S, homogeneous for i, j = 0, 1, 2.suh that
X

i=1,2,3

Ai

ˆ

[Gi], [0̄]6, [0̄]8, [0̄]3
˜

+
X

0≤i≤j≤2

Bij

ˆ

[Hi], [0̄]8, [0̄]3
˜

+

X

i

B̃i

ˆ

[K̃′′
i], [0̄]8, [K′

i], [0̄]3
˜

+
X

i,j

Cij . [Vij ] = 0
(3.11)Consider the following ases,(1)B̃ = [0̄], hene B 6= [0̄] and C = [0̄], then from Theorem 2.1, we get that

[[A], [B]] ∈
˙`

[−F.I3
i ], [Gi]

´

: i = 1, 2, 3
¸Hene h[A], [B], [B̃], [C]

i

∈
˙ˆ

[−F.I3
i ], [Gi], [0̄], [0̄]

˜

: i = 1, 2, 3
¸Denote ˆ [−F.I3

i ], [Gi], [0̄], [0̄]
˜ as [ℑi] for i = 1, 2, 3(2)B, C = [0̄] and B̃ 6= [0̄], then from theorem 2.1, we get that h[A], [B̃]

i

∈
D

[J̃ ]
EHene h[A], [B], [B̃], [C]

i

∈
Dh

[J̃ ′′], [0̄], [J′], [0̄]
iE(3)C 6= [0̄], then we have, Pij Cij .[Yij] = 0, hene C ∈< [K′

i] : i = 1, . . . , 6 >.Hene we have
h

[A], [B], [B̃], [C]
i

∈<
h

[0̄], [K̃′′
i], [−F.I6

i ], [K′
i]
i

: i = i, . . . , 6 >Lets denote the above set of vetors as K̃i, i = 1, . . . , 6Hene we have,
ˆ

[A], [B], [B̃], [C]
˜

∈<
“

[ℑi] ,
ˆ

J̃ ′′, [0̄], [J ′], [0̄]
˜

,
h

K̃j

i ”

>

i = 1, 2, 3, and j = 1, . . . , 6Hene we get Q4.Let
A =

ˆ

(Ai)
˜

, Ai ∈ S, homogeneous for i = 1, 2, 3
B ∈ S, homogeneous. C =

ˆ

(Ci)
˜

, Ci ∈ S, homogeneous for i = 1, . . . , 6, suh that
X

i=1,2,3

Ai[ℑi] + B.J +
X

i

Ci[K̃i] = 0 (3.12)35



CHAPTER 3. RESOLUTIONS OF VERONESE EMBEDDING OFCOMPLETE INTERSECTIONS OF CURVES IN THE PLANE.From theorem 2 and 3 in [A℄, we get that if [C] = [0̄] then [A] and [B] are alsoequal to [0̄]. So [C] 6= [0̄], then we have
P

i
Ci.K

′
i = 0, hene [C] ∈< J

′ >.Hene we have ˆ [A], B, [C]
˜

∈
˙ˆ

[−J̃ ′′], −F, [J′]
˜¸.Hene we get Q5.

36



3.3. DEGREES OF C AND C′ ARE ODD3.3 Degrees of C and C ′ are oddLet the degrees of f ,f̃ be 2m − 1 and 2m′ − 1 respetively. Then we have,
f =

X

i+j+k=2m−1

aijkxi
0x

j
1x

k
2 and,

f̃ =
X

i+j+k=2m′−1

ãijkxi
0x

j
1x

k
2Now let f0 = x0.f , f1 = x1.f , f2 = x2.f . Similary de�ne f̃i for i = 0, 1, 2Then fi and f̃i are of even degree and hene aording to Lemma 2.1, fi , f̃i ∈ Im(θ)for i = 0, 1, 2. Also like in Setion 3.2, we have,

F0 = x00x12hI + x00hII + x01hIII + x02hIV

F1 = x11x02hI + x01hII + x11hIII + x12hIV

F2 = x22x01hI + x02hII + x12hIII + x22hIVLemma 3.4: Let G ∈ k[x00, x01, x02, x11, x12, x22] suh that G homogeneous and
(∩iZ(θ(Fi)))∩(∩iZ(θ(F̃i))) ⊂ Z(θ(G)) ⊂ P

2. Then G ∈< Fk, F̃k, ∆i,j : 0 ≤ k ≤ 2, 0 ≤
i ≤ j ≤ 2 >.Proof : Now let θ(G) = g, then degree(g) is even.

(∩iZ(fi)) ∩ (∩iZ(f̃i)) ⊂ Z(g)

⇒ Z(f) ∩ Z(f̃) ⊂ Z(g)

⇒ g ∈< f, f̃ > as C and C′ are irreduible urves and the assumption about the inter-setion of C and C′.
⇒ g = f.h + f̃ .h̃ for some h, h̃ homogeneous ∈ k[x0, x1, x2]

⇒ h 6= 1 as degree f is odd while degree g is evenSimilarly h̃ 6= 1, hene, g =
P

i=0,1,2 fihi +
P

i=0,1,2 f̃ih̃i,for some homogeneous polynomials hi, h̃i ∈ k[x0, x1, x2] with even degrees.
⇒ G =

X

i=0,1,2

FiHi +
X

i=0,1,2

F̃iH̃i, where θ(Hi) = hi and θ(H̃i) = h̃i,for all i = 0, 1, 2 and suh His, and H̃is exists as the degrees of both hi and h̃i areeven from Lemma 2.1.
⇒ θ

 

G −
X

i=0,1,2

FiHi +
X

i=0,1,2

F̃iH̃i

!

= 0

⇒ G −

 

X

i=0,1,2

FiHi +
X

i=0,1,2

F̃iH̃i

!

∈ ker(θ)

⇒ G =
X

i=0,1,2

FiHi +
X

i=0,1,2

F̃iH̃i +
X

i,j=0,1,2

∆ijSijfor some Sij homogeneous ∈ k[x00, . . . , x22]

⇒ G ∈< Fk, F̃k, ∆ij : i, j, k = 0, 1, 2 >Theorem 3.3: Let C and C′ be two irreduible plane urves of odd degree say d =37



CHAPTER 3. RESOLUTIONS OF VERONESE EMBEDDING OFCOMPLETE INTERSECTIONS OF CURVES IN THE PLANE.
2m − 1 and d′ = 2m′ − 1 for m,m′ ≥ 2. The homogenous oordinate ring S/Iσ(C∩C′)of the intersetion of σ(C) and σ(C′) in P

5 has the following minimal free gradedresolution.
0 →S(−m − m′ − 3)⊕3 R5→ S(−m − 4) ⊕ S(−m′ − 4) ⊕ S(−m − m′ − 2)⊕8 R4→

R4→ S(−4)⊕3 ⊕ S(−m − 2)⊕6 ⊕ S(−m′ − 2)⊕6 ⊕ S(−m − m′ − 1)⊕6 R3→

R3→ S(−3)⊕8 ⊕ S(−m − 1)⊕8 ⊕ S(−m′ − 1)⊕8 ⊕ S(−m − m′ + 1)
R2→

R2→ S(−2)⊕6 ⊕ S(−m)⊕3 ⊕ S(−m′)⊕3 R1→ S → S/Iσ(C∩C′) → 0

(3.13)Proof :From lemma 3.2 and 3.4, it is lear that
R1 =

ˆ

∆00, ∆01, ∆02, ∆11, ∆12, ∆22, F0, F1, F2, F̃0, F̃1, F̃2

˜Hene we get R1Now onsider
A =

ˆ

A00, A01, A02, A11, A12, A22

˜, Aij ∈ S, homogeneous ∀0 ≤ i ≤ æ ≤
2,
B =

ˆ

B0, B1, B2

˜ where Bk ∈ S, homogeneous, for k = 0, 1, 2 and
B̃ =

ˆ

B̃0, B̃1, B̃2

˜ where B̃l ∈ S, homogeneous, for l = 0, 1, 2suh that
X

i,j

Aij .∆ij +
X

k

Bk.Fk +
X

k

B̃k.F̃k = 0 (3.14)Consider the following ases:(1)[B] = [B̃] = [0̄], then we get that [A] ∈< Wi : i = 1, . . . , 8 >. Hene we get
ˆ

[A], [0̄], [0̄]
˜

∈
˙ ˆ

W1, 0̄, 0̄
˜

, . . . ,
ˆ

W8, 0̄, 0̄
˜ ¸(2)[B] 6= [0̄], but [B̃] = [0̄], then from [A℄ we get that

ˆ

[A], [B], [0̄]
˜

∈
˙ ˆ

V00, Y00, 0̄
˜

, . . . ,
ˆ

V22, Y22, 0̄
˜

,
¸(3)Similarly for [B] = [0̄], but [B̃] 6= [0̄], we get that

ˆ

[A], [B], [0̄]
˜

∈
˙ ˆ

Ṽ00, 0̄, Y00

˜

, . . . ,
ˆ

Ṽ22, 0̄, Y22

˜

,
¸(4)B, B̃ 6= [0̄], hene we get that

θ

 

X

k

“

(Bk.Fk) + (B̃k.F̃k)
”

!

= 0Let bk = θ(Bk) and b̃k = θ(B̃k). Now note that the degrees of bk and b̃k are even, for
k = 0, 1, 2Hene we have that

X

k

(bk.xk).f +
X

k

(b̃k.xk).f̃ = 0 38



3.3. DEGREES OF C AND C′ ARE ODDNow as f and f̃ are irreduible polynomials and by assumption that C ∩ C′ is reduedwe get that
X

k

(bk.xk) ∈< f̃ > and X
k

(b̃k.xk) ∈< f > (3.15)To get bk and b̃k satisfying the above equation, onsider the two vetors ,
(h0, h1, h2) =

`

x1.x2.θ(h̃I) + θ(h̃II), θ(h̃III), θ(h̃IV )
´

“

h̃0, h̃1, h̃2

”

=
`

−x1.x2.θ(hI) − θ(hII), −θ(hIII), −θ(hIV )
´And let [H] =

ˆ

x12.h̃I , h̃II , h̃III , h̃IV

˜ and [H̃] =
ˆ

−x12.hI − hII , −hIII , −hIV

˜Now substituting hi as bi and h̃i as b̃i, we get thatPi(hi.xi) = f̃ andPi(h̃i.xi) = −f .So Pi(hi.xi)f +
P

i(h̃i.xi).f̃ = 0Now for any vetors satisfying (3.15) the following holds
X

i

bi.xi = p.f̃ and X
i

b̃i.xi = −p.f, for some homogeneous p ∈ SNotie that degree of p is even, as degree of bi is even and degree of f is odd.Hene we get that
X

i

bi.xi = p.(
X

i

(hi.xi)) and X
i

b̃i.xi = p.(
X

i

(h̃i.xi)),So
X

i

(bi − p.hi).xi = 0 and X
i

(b̃i − p.h̃i)xi = 0Hene
`

(b0 − p.h0, b1 − p.h1, b2 − p.h2) , (b̃0 − p.h̃0, b̃1 − p.h̃1, b̃2 − p.h̃2)
´

∈ Syz1(x0, x1, x2)Now using the same arguments as Theorem 2.2, we get that
[B − P.H ], [B̃ − P.H ′] ∈< Yij : 0 ≤ i, j ≤ 2 >,where P suh that θ(P ) = p.Hene [B] ∈ 〈Yij,H : 0 ≤ i, j ≤ 2〉 and [B̃] ∈< Yij, H̃ : 0 ≤ i, j ≤ 2 >. Let H =

[ ( 0, τ1, τ2, 0, 0, , 0 ), H , H̃ ],where τ1 = h̃I .hIV − ˜hIV .hI and τ2 = ˜hIII .hI − h̃I .hIII , then we get
ˆ

A, B, B̃
˜

∈
D

[Wi, 0̄, 0̄] , [Vjk,Yjk, 0̄] ,
h

Ṽjk, 0̄,Yjk

i

, [H]
Efor i = 1, . . . , 8,and 0 ≤ j, k ≤ 2, (j, k) 6= (0, 2)Hene we get R2Consider

A =
ˆ

(Ai)
˜, B =

ˆ

(Bjk)
˜, B̃ =

ˆ

(B̃jk)
˜ and C,where Ai,Bjk,B̃jk ,C ∈ S, homogeneous, for i = 1, . . . , 8 , j, k = 0, 1, 2 and (j, k) 6=

(0, 2) suh that
X

i

Ai.[Wi, 0̄, 0̄, 0]+
X

jk

Bjk.[Vjk,Yjk, 0̄, 0]+
X

jk

B̃jk.[Ṽjk, 0̄,Yjk, 0]+C.[H] = 0 (3.16)39



CHAPTER 3. RESOLUTIONS OF VERONESE EMBEDDING OFCOMPLETE INTERSECTIONS OF CURVES IN THE PLANE.Like in the earlier part of this proof, we onsider four ases(1) B = [0̄] and B̃ = [0̄], hene C = 0, then we get that [A] ∈ 〈G1, G2, G3〉Hene ([A], [0̄]) ∈
˙

[G1, 0̄], [G2, 0̄], [G3, 0̄]
¸(2)B 6= [0̄] but B̃ = [0̄], then we get that C = 0.Then [A, B] ∈

˙

[Gi, 0̄], [Kj ,K
′
j] : i = 1, 2, 3, j = 1, . . . , 6

¸.Hene [A, B, 0̄, 0] ∈
˙

[Gi, 0̄], [Kj ,K
′
j , 0̄, 0] : i = 1, 2, 3, j, k = 0, 1, 2

¸.(3)B̃ 6= [0̄] but B = [0̄], hene C = 0. Similarly to ase(2) we get,
[A, 0̄, B̃, 0] ∈

D

[Gi, 0̄], [K̃j , 0̄,K′
j , 0] : i = 1, 2, 3, 1 ≤ j ≤ 6

E.(4))B, B̃ 6= [0̄], Then we have
X

jk

Bjk.Yjk + C.H = 0 and X
jk

B̃jk.Yjk + C.H ′ = 0 (3.17)So ,
X

jk

xjbjk.Yk + c.h = 0 and X
jk

xjb
′
jk.Yk + c.h′ = 0 (3.18)where 〈Y0, Y1, Y2〉 = Syz1(x0, x1, x2)(see Theorem 2.2)Now multiplying (3.18) by [x0, x1, x2]

T , we get
c.f = c.f̃ = 0 ⇒ c = 0 ⇒ C ∈< ∆ij >Now substituting C = ∆ij , ∀0 ≤ i ≤ j ≤ 2 in (3.17), we get a set of six vetors, letsall them Dij . So we have

Dij =
ˆ

δij , ∆ij

˜Hene [A, B, B̃, C] ∈
D

[Wi, 0̄, 0̄] , [Kj , K
′
j , 0̄, 0] ,

h

K̃j , 0̄, K′
j ,
i

, [Dkl]
Efor 1 ≤ i ≤ 8, 1 ≤ j ≤ 6, 0 ≤ k ≤ l ≤ 2.Hene we get R3Consider,

A =
ˆ

(Ai)
˜

, B =
ˆ

(Bj)
˜

, B̃ =
ˆ

(B̃j)
˜

, C = [(Ckl)],where Ai,Bj ,B̃j ,Ckl ∈ S, homogeneous, for i = 1, 2, 3, j = 1, . . . , 6and 0 ≤ k ≤ l ≤ 2 with (k, l) 6= (0, 2) suh that
X

i

Ai.[Gi, 0̄, 0̄, 0̄] +
X

j

Bj .[K
′′
j ,K′

j, 0̄, 0̄] +
X

j

B̃j .[K̃
′′
j , 0̄,K′

j, 0̄] +
X

k,l

Ckl.[Dkl] = 0(3.19)If we take similar ases as in the earlier part of the proof, we get(1)If C = 0̄, then [A, B, B̃, 0̄] ∈
˙

[J ′′,J′, 0̄, 0̄], [J̃ ′′, 0̄,J′, 0̄]
¸.(2)C 6= 0̄, then [C] ∈ 〈[Wi] : i = 1, . . . , 8〉Substituting [C] = [Wi] for some i in (3.19), we get a set of 8 vetors

Wi = [[ωi], [Wi]] .Hene we have,
[A, B, B̃, C] ∈

˙ˆ

J ′′, J
′, 0̄, 0̄

˜

,
ˆ

J̃ ′′, 0̄, J
′, 0̄

˜

, [Wi]
¸for 1 ≤ i ≤ 8. 40



3.3. DEGREES OF C AND C′ ARE ODDHene we get R4Let A =
h

(Ai) 1≤i≤8

i, B, B̃where Ai, B, B̃ ∈ S, homogeneous for i = 1, . . . , 8 suh that
X

i

Ai.[ωi, Wi] + B.[J ′′,J′, 0, 0̄] + B̃.[J̃ ′′, 0, J′, 0̄] = 0 (3.20)As the last rows of the last two vetors are zero we haveX
i

Ai.Wi = [0̄]This implies that, [A] ∈ 〈Gk : k = 1, 2, 3〉. Substituting this in (3.20), we get 3 vetors,let us all them Γk.
Γk = [Gk, Gk] for k = 1, 2, 3So [B, B̃, A] ∈ 〈Γk : k = 1, 2, 3〉Hene we get R5.
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4DG -AlgebraReall from Chapter 2, that for C a smooth(or irreduible) plane urve, the Veroneseembedding of P
2 in P

5 gives an embedding C
σ
→֒ P

5. In Chapter 2 we omputed thesyzygies of the homogeneous ideal Iσ(C) of this embedding of C in P
5. Now if the degreeof C is odd then from theorem 2.2, we have that the minimal graded free resolution of

S/Iσ(C) is as follows:
0 →S(−m − 4)

β′
4→ S(−4)⊕3 ⊕ S(−m − 2)⊕6 β′

3→

β′
3→ S(−3)⊕8 ⊕ S(−m − 1)⊕8 β′

2→ S(−2)⊕6 ⊕ S⊕3(−m)
β′
1→ S → S/IC → 0where

β′
1 =

ˆ

∆00, . . . , ∆22, F0, F1, F2

˜

β′
2 =

ˆ

[W1, 0̄], , . . . , [W8, 0̄] , [ [Y ′
1 ], [Y1] ], . . . , [ [Y ′

8 ], [Y8] ]
˜

β′
3 =

ˆ

[G′
1, 0̄], , [G′

2, 0̄], [G′
3, 0̄] , [ [K′

1], [K1] ], . . . , [ [K′
6], [K6] ]

˜

β′
4 = [β′

1]
Twhere(1) Wi are matries from equation (2.2)(2) G′

1 = G1, G′
2 = −G2 and G′

3 = G3 from equation (2.3)(3) Yts = Gst , for all s = 1, 2, 3 and t = 1, . . . , 8(4) Kts = Wst , for all t = 1, . . . , 6 and s = 1, . . . , 8(5)  Y ′
1 = V00, Y ′

2 = −V01, Y ′
3 = −V10, Y ′

4 =
ˆ

x00hI , 0, ,−hIII , −x11hI , , hII , 0
˜T

Y ′
5 = −V12, Y ′

6 = V20, Y ′
7 = −V21, Y ′

8 = V22(6) K′
ts

= Y ′
st

for all t = 1, . . . , 6 and s = 1, . . . , 8

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;(4.1)where Vij are matries from Chapter 3.Note that the β′
is in the above resolution are not the same as the βis de�ned inTheorem 2.2. But beause the above resolution is symmetri, olumns of Wi's and

Gi's are linearly independent and the fat that,
X

i

Win .Y ′
im

+
X

j

Y ′
jn

.Wjm = 0 ∀ n, m = 1, . . . , 6gives us that the above β′
is also de�ne a resolution.Let us all the above exat sequene P•. So we have

P• : 0 → P4 → P3 → P2 → P1 → P0 = S → 0 43



CHAPTER 4. DG -ALGEBRAwhere rank (P0) = rank (S) = 1 , rank (P1) = 9, rank (P2) = 16, rank (P3) = 9, rank(P4) = 1Let {ei, eFn−1
} be basis of P1, {ews , evs} be basis of P2, {egn , eki

} be basis of P3,
{eJ } be basis of P4. where i = 1, . . . , 6, n = 1, 2, 3, s = 1, . . . , 8.In [KM℄ the authors prove that any symmetri resolution of length 4 has a DG algebrastruture. Hene we know that the above resolution has a DG-algebra struture. Inthis hapter we will de�ne a DG-algebra struture for the resolution, P•.
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4.1. DEFINING (∗)4.1 De�ning (∗)Let us de�ne the multipliation (∗) on the above basis elements
(i) ei ∗ ej =

8
X

t=1

Ai,js .ewt

(ii) ei ∗ ews =
X

t=1,2,3

Bi,st .egt

(iii) ei ∗ egs = 0

(iv) ews ∗ ewt = 0

(v) ei ∗ eFn−1
=

8
X

t=1

Bi,tn .evt +
8
X

t=1

α′
i,n−1t

.ewt (4.2)
(vi) ei ∗ evs =

6
X

t=1

Ai,ts .ekt +

3
X

t=1

α′
i,t−1s

.egt

(vii) eFn−1
∗ eFm−1

=
8
X

t=1

An−1,m−1t
.evt

(viii) eFn−1
∗ evs = −

6
X

t=1

α′
t,n−1s

.ekt

(ix) eFn−1
∗ ews = −

6
X

t=1

Bt,sn .ekt

(x) ei ∗ eks = δis.eJ

(xi) eFi−1
∗ eks = 0

(xii) eFi−1
∗ egs = δis.eJ (4.3)

(xiii) ewi
∗ evs = −δis.eJ

(xiv) evs ∗ evt = 0where
Ai,j , Bi,s, An−1,m−1, α′

i,n−1 are matries given below and
δis =



1 if i = s
0 otherwise

Ai =
ˆ

[Ai,1], . . . [Ai,6]
˜ for i = 1, . . . , 6

A1 =

2

6

6

6

6

6

6

6

6

6

6

4

0 x12 x11 x02 0 0
0 0 0 x12 x11 0
0 −x22 −x12 0 x02 x01

0 0 0 0 0 x11

0 0 0 0 0 −x12

0 0 0 −x22 −x12 −x11

0 0 0 0 0 0
0 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

5

, A2 =

2

6

6

6

6

6

6

6

6

6

6

4

−x12 0 x01 0 0 0
0 0 0 x02 x01 0
x22 0 −x02 0 0 0
0 0 0 0 0 x01

0 0 0 0 0 −x02

0 0 0 0 0 0
0 0 0 −x22 −x12 −x11

0 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

545



CHAPTER 4. DG -ALGEBRA
A3 =

2

6

6

6

6

6

6

6

6

6

6

4

−x11 −x01 0 −x00 0 0
0 0 0 0 0 0
x12 x02 0 0 0 0
0 0 0 0 0 0
0 0 0 0 x02 x01

0 0 0 x02 0 0
0 0 0 −x12 0 0
0 0 0 0 −x12 −x11

3

7

7

7

7

7

7

7

7

7

7

5

, A4 =

2

6

6

6

6

6

6

6

6

6

6

4

−x02 0 x00 0 0 0
−x12 −x02 0 0 x00 0
0 0 0 0 0 0
0 0 0 0 0 x00

0 0 0 0 0 0
x22 0 −x02 0 0 0
0 −x22 −x12 0 −x02 −x01

0 0 0 0 0 −x02

3

7

7

7

7

7

7

7

7

7

7

5

A5 =

2

6

6

6

6

6

6

6

6

6

6

4

0 0 0 0 0 0
−x11 −x01 0 −x00 0 0
−x02 0 0 0 0 0
0 0 0 0 0 0
0 0 −x02 0 0 x00

x12 0 0 0 0 0
0 −x12 0 x02 0 0
0 0 x12 0 0 −x01

3

7

7

7

7

7

7

7

7

7

7

5

, A6 =

2

6

6

6

6

6

6

6

6

6

6

4

0 0 0 0 0 0
0 0 0 0 0 0
−x01 0 0 0 0 0
−x11 −x01 0 −x00 0 0
x12 x02 −x01 0 −x00 0
x11 0 0 0 0 0
0 x11 0 x01 0 0
0 0 x11 x02 x01 0

3

7

7

7

7

7

7

7

7

7

7

5And
Bi =

ˆ

[Bi,1], . . . , [Bi,8]
˜ for i = 1, . . . , 8

B1 =

2

4

0 0 0 −x12 −x11 0 x02 0
0 0 0 0 0 0 x12 x11

0 0 0 0 0 0 x22 x12

3

5 , B2 =

2

4

0 0 0 −x02 −x01 −x02 0 0
0 0 0 0 0 −x12 0 x01

0 0 0 0 0 −x22 0 x02

3

5

B3 =

2

4

0 x02 0 x01 0 0 0 0
0 x12 0 x11 0 0 0 0
0 0 0 0 0 −x12 −x02 0

3

5 , B4 =

2

4

0 0 x02 0 −x00 0 0 0
0 0 x12 x02 0 0 0 x00

0 0 x22 0 −x02 0 0 0

3

5

B5 =

2

4

−x02 0 0 x00 0 0 0 0
−x12 0 0 x01 0 0 0 0
0 0 x12 x02 0 x02 0 0

3

5 , B6 =

2

4

−x01 −x00 0 0 0 0 0 0
−x11 −x01 0 0 0 0 0 0
0 −x02 x11 0 0 x01 0 0

3

5

A0,1 =

2

6

6

6

6

6

6

6

6

6

6

4

−hII

hIII

x11hI

−hIV

0
0
−x00hI

0

3

7

7

7

7

7

7

7

7

7

7

5

, A0,2 =

2

6

6

6

6

6

6

6

6

6

6

4

−x22hI

0
hII

−hIII

hIV

−hIII

0
−x00hI

3

7

7

7

7

7

7

7

7

7

7

5

, A1,2 =

2

6

6

6

6

6

6

6

6

6

6

4

0
−x22hI

0
0
x11hI

−hII

hIII

−hIV

3

7

7

7

7

7

7

7

7

7

7

5

α′
i =

ˆ

[α′
i,0] [α′

i,1] [α′
i,2]

˜ 46



4.1. DEFINING (∗)

α′
1 =

2

6

6

6

6

6

6

6

6

6

6

4

0 −x11hI −hII

x11hI 0 0
−hIII −hII −x22hI

0 0 0
0 0 0
−hII 0 0
0 0 0
0 0 0

3

7

7

7

7

7

7

7

7

7

7

5

, α′
2 =

2

6

6

6

6

6

6

6

6

6

6

4

x00hI 0 hIII

0 −x11hI 0
0 hIII 0
0 0 −x22hI

0 −x22hI 0
0 0 0
−hII 0 0
−x22hI 0 0

3

7

7

7

7

7

7

7

7

7

7

5

α′
3 =

2

6

6

6

6

6

6

6

6

6

6

4

0 0 −hIV

0 0 −x11hI

−x00hI 0 0
0 0 0
0 −hII −x22hI

0 −x11hI 0
−x11hI 0 0
−hII 0 0

3

7

7

7

7

7

7

7

7

7

7

5

, α′
4 =

2

6

6

6

6

6

6

6

6

6

6

4

0 −x00hI 0
x00hI 0 hIII

0 0 0
0 0 0
0 0 0
0 hIII 0
hIII hII 0
0 0 x22hI

3

7

7

7

7

7

7

7

7

7

7

5

α′
5 =

2

6

6

6

6

6

6

6

6

6

6

4

0 0 −x00hI

0 0 −hIV

0 −x00hI 0
0 0 0
0 hIII −x22hI

−x00hI 0 0
0 −x11hI 0
hIII 0 x22hI

3

7

7

7

7

7

7

7

7

7

7

5

, α′
6 =

2

6

6

6

6

6

6

6

6

6

6

4

0 0 0
0 0 0
0 0 0
0 0 −hIV

−x00hI −hIV −hIII

0 0 0
0 0 x11hI

−hIV −x11hI 0

3

7

7

7

7

7

7

7

7

7

7

5
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CHAPTER 4. DG -ALGEBRA4.2 Assoiativity1.Chek that
8
X

s=1

Ai,js .Bl,st =
8
X

s=1

Aj,ls .Bi,st for all t = 1, 2, 3 and for all 1 ≤ i, j, k ≤ 6This implies that (ei ∗ ej) ∗ el = ei ∗ (ej ∗ el) for all 1 ≤ i, j, k ≤ 62. Chek that
8
X

s=1

Bj,sl+1
.α′

i,t−1s
+

8
X

s=1

Bi,stα
′
i,t−1s

=
8
X

s=1

Ai,jsAl,t−1sfor all 1 ≤ i, j ≤ 6 and l = 0, 1, 2.And,

8
X

s=1

Ai,js .Bt,sl+1
=

8
X

s=1

At,is .Bj,sl+1
for all 1 ≤ i, j, t ≤ 6 and l = 0, 1, 2, by 1. aboveThis implies that (ei ∗ ej) ∗ eFl

= ei ∗ (ej ∗ eFl
) for all 1 ≤ i, j ≤ 6 and l = 0, 1, 23. Chek that

8
X

s=1

A0,1s α′
t,2s

=

8
X

s=1

A1,2sα′
t,0s

for all 1 ≤ t ≤ 8This implies that (eF0
∗ eF1

) ∗ eF2
= eF0

∗ (eF1
∗ eF2

)4.Chek that
(ei ∗ ej) ∗ evs = ei ∗ (ej ∗ evs) , by 4.2.(i), 4.2.(vi), and 4.35.Chek that

(ei ∗ eFj
) ∗ ews = ei ∗ (eFj

∗ ews ) , by 4.2.(v), 4.2.(ix), and 4.36.Chek that
(ei ∗ eFj

) ∗ evs = ei ∗ (eFj
∗ evs) , by 4.2.(v), 4.2.(viii), and 4.37.Chek that

(eFi
∗ eFj

) ∗ ews = eFi
∗ (eFj

∗ ews) , by 4.2.(vii), 4.2.(ix), and 4.38.Chek that
(eFi

∗ eFj
) ∗ evs = eFi

∗ (eFj
∗ evs) = 0 , by 4.2.(vii), 4.2.(viii), and 4.3Hene we get that ∗ is assoiative.
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4.3. DEFINING ∂4.3 De�ning ∂

1) ∂(e2i+j+1) =



∆ij when 0 ≤ i ≤ j < 2
∆22 i = j = 2

2) ∂(eFn) = Fn

3) ∂(ews) =
6
X

t=1

Wstet

4) ∂(evs) =
3
X

t=1

G′
ts

eFt−1
+

6
X

t′=1

Y ′
st

5) ∂(egs) =
8
X

t=1

G′
st

ewt

6) ∂(eks) =

8
X

t=1

Wstevt +

8
X

t=1

Y ′
st

ewt

7) ∂(eJ ) =
6
X

t=1

(∂(et)) ekt +
3
X

t=1

Ft−1egtwhere Wi as in equation (2.2), G′
j as in equation (2.3), Y ′

k as inequation (4.1).To prove that ∂ is well-de�ned,(1)To hek that
∂(ei ∗ ej) = ∂(

X

t,n

Ai,jtewt)Now {Ai,jt} is omputed suh that [Ai,j ] satis�es the following onditins,
X

t

Ai,jtWti
= −∆j

X

t

Ai,jtWtj
= ∆i (4.4)

X

t

Ai,jtWtn = 0 for n 6= i, j and n = 1, . . . , 6(2)To hek that
∂(ei ∗ ews) = ∂(

X

t,n

Bi,stewt)Now {Bi,st} is omputed suh that [Bi,s] satis�es the following onditions,
X

t

Bi,stG
′
ts

= ∆i −
X

t

WstAi,ts (4.5)
X

t

Bi,stG
′
tn

= −
X

t

WstAi,tn for n 6= i, j and n = 1, . . . , 8So you get that ∂(ei ∗ ews) = ∂(
X

t,n

Bi,stewt)(3)To hek that
∂(ei ∗ egs) = ∂(0), hek that 49



CHAPTER 4. DG -ALGEBRA
X

t

Bi,tsG′
st

= ∆i (4.6)
X

t

Bi,tsG′
st

= 0 for n 6= s and n = 1, 2, 3(4)To hek that
∂(ewi

∗ ewj
) = ∂(0), hek that

X

t

WitBt,jn
+
X

t

WjtBt,in
= 0 for all n = 1, 2, 3 (4.7)(5)To hek that

∂(ei ∗ eFj
) = ∂

 

X

t

Bi,tj+1
evt

!

+ ∂

 

X

t

α′
i,jt

ewt

!Now from equation(4.6) we get that the oe�ients of evn of both the sides areequal and further, {α′
i,j} have omputed suh that [α′

i,j ] satisfy the following ondi-tions,
X

t

α′
i,jt

Wti
= −Fj −

X

t

Bi,tj+1
Y ′

ti (4.8)
X

t

α′
i,jt

Wtn = −
X

t

Bi,tj+1
Y ′

tn
suh that n 6= i and n = 1, . . . , 6(6)To hek that

∂(eFi
∗ eFj

) = ∂(
X

t

Ai,jtevt)Now {Ai,jt} have been omputed suh that [Ai,j ] satisfy the following onditions
X

t

Ai,jt
G′

i+1t
= −Fj

X

t

Ai,jt
G′

j+1t
= Fi (4.9)

X

t

Ai,jt
G′

nt
= 0 for n 6= i + 1, j + 1 and n = 1, 2, 3

X

t

Ai,jt
Y ′

tn′ = 0 for n′ = 1, . . . , 6 (4.10)(7)To hek
∂(eFi

∗ evs) = ∂(−
X

t

α′
t,is

ekt), hek that
X

t

Ai,t−1s
G′

ts
−
X

t

Y ′
st

Bt,si+1
−
X

t

α′
t,is

Wst = Fi (4.11)
X

t

Ai,t−1n
G′

ts
−
X

t

Y ′
st

Bt,ni+1
−
X

t

α′
t,is

Wnt = 0 for n 6= s and n = 1, . . . , 8

X

t

α′
t,in

Y ′
st

+
X

t

α′
t,is

Y ′
nt

= 0 for all n = 1, . . . , 8, (4.12)50



4.3. DEFINING ∂(8)To hek
∂(eFi

∗ ews) = ∂

 

−
X

t

Bt,si+1
ekt

!

+ ∂(
X

t

Ai,t−1s
egt) hek thatfrom equation(4.11) we get that the oe�ients of ewn are equal for both the sides,and from equation(4.7) we get that the oe�ients of evn on both the sides are equal.(9)To hek

∂(ei ∗ ekj
) = δij .eJ notie thatfrom equation(4.4) we get that the oe�ients of ekn are equal for both the sides,andsimilarly equation(4.8) gives us that the same holds for the oe�ients of egn .(10)To hek

∂(eFi−1
∗ egj

) = δij .eJ notie thatfrom equation(4.9) we get that the oe�ients of ekn are equal for both the sides,andsimilarly equation(4.6) gives us that the same holds for the oe�ients of egn .(11)To hek
∂(eFi−1

∗ ekj
) = 0 notie thatfrom equation(4.8) we get that the oe�ients of ekn are zero for the LHS, and simi-larly equation(4.10) gives us that the oe�ients of egn of the LHS are zero.(12)To hek

∂(ewi
∗ evj

) = −δij .eJ notie thatfrom equation(4.5) we get that the oe�ients of ekn are equal for both the sides,andsimilarly equation(4.11) gives us that the same holds for the oe�ients of egn .(13)To hek
∂(evi

∗ evj
) = 0 notie thatfrom equation(4.12) we get that the oe�ients of egn are zero for the LHS, furtherhek that

X

t

G′
ti

α′
n,t−1j

+
X

t

G′
tj

α′
n,t−1i

=
X

t

Y ′
it

At,nj
+
X

t

Y ′
jt

At,ni
for all n = 1, . . . , 6This gives us that the oe�ients of ekn are zero.

51





5Appendix
Here we reord some observations by one of the referees about the alulations in thethesis.

1. If we have a short exat sequene sequene of �nitely generated modules M1, M2, M3over a polynomial ring,
0 −→ M1 −→ M2 −→ M3 −→ 0and if we know the minimal free resolution of M1 and M2 we an build a freeresolution of M3 whih may not be minimal.Therefore as a onsequene, the matries (or the maps) in the free resolution of

M3 is built up from the free resolutions of on M1 and M2 will naturally be builtup from the up in the free resolution of M3. This is alled the mapping one.The free resolution built this way naturally turns out to be a omplex, but alsoan exat sequene.2. In our ase in Theorem 2.1 we have the short exat sequene of ideals:
0 −→ (∆ ∩ F ) = F∆ −→ ∆ ⊕ (F ) −→ (∆, F ) −→ 0and the orresponding free resolution of (∆ ∩ F ) and ∆ ⊕ F

0 0

F3 G3

F2 G2

F1 G1

0 (∆ ∩ F ) = F∆ ∆ ⊕ (F ) (∆, F ) 0 53



CHAPTER 5. APPENDIXwhere Fi and Gi are free modules.The mapping one gives the following free resolution for (∆, F ):
0 −→ F3 −→ F2 ⊕ G3 −→ F1 ⊕ G2 −→ G1 −→ (∆, F ) −→ 0.3. Similarly, one we know the free resolution in Theorem 2.1 and Theorem 2.2,the free resolution in Theorem 3.1, Theorem 3.2 and Theorem 3.3 an be builtup from them.4. Hene the maps (or matries) in minimal free resolution of ∆ = (∆00, . . . , ∆22)does appear in the Theorem 2.1, Theorem 2.2, Theorem 3.1, Theorem 3.2 andTheorem 3.3.5. The interesting thing here is that all the free resolutions in Theorem 2.1, The-orem 2.2, Theorem 3.1, Theorem 3.2 and Theorem 3.3 are indeed minimal freeresolutions whih an be seen from the maps.
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Theorem 2.1: Sine the minimal free resolution for ∆ is:
0 S(−4)3

[M3]8×3

S(−3)8
[M2]6×8

S(−2)6
[M1]1×6

∆ 0,

the minimal free resolution for ∆ ∩ (F ) = F∆ is:
0 S(−m − 4)3

[M3]8×3

S(−m − 3)8
[M2]6×8

S(−m − 2)6
[F M1]1×6

∆ ∩ F 0where [FM1]1×6 = [F∆00, . . . , F∆22].The minimal free resolution of (F ) is
0 −→ S(−m) −→ (F ) −→ 0

Therefore the minimal free resolution for ∆ ⊕ (F ) is
0 S(−4)3

[M3]8×3

S(−3)8

2

4

[M2]6×8

[0]1×8

3

5

S(−2)6 ⊕ S(−m)
[F,[M1]1×6]

∆ ⊕ (F ) 0,55



CHAPTER 5. APPENDIXHene we get the ommutative diagram
0 S(−m − 4)3

[M3]8×3

F I3×3

S(−m − 3)8
[M2]6×8

F I8×8

S(−m − 2)6
[F M1]1×6

2

6

6

6

4

−FI6×6

[M1]1×6

3

7

7

7

5

∆ ∩ (F )

i

0

0 S(−4)3
[M3]8×3

S(−3)8

2

6

6

6

4

[M2]6×8

[0]1×8

3

7

7

7

5

S(−2)6 ⊕ S(−m)
[[M1]1×6,F ]

∆ ⊕ (F ) 0

0 S(−m − 4)3

2

6

6

6

4

[M3]8×3

[FI ]3×3

3

7

7

7

5

S(−m − 3)8 ⊕ S(−4)3

2

6

6

6

4

[M2]6×8 [0]6×3

[FI ]8×8 [M3]8×3

3

7

7

7

5

S(−m − 2)6 ⊕ S(−3)8

2

6

6

6

4

[−FI ]6×6 [M2]6×8

[M1]1×6 [0]1×8

3

7

7

7

5

S(−2)6 ⊕ S(−m)
[[M1]1×6,F ]

(∆, F ) 0,
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Hene the maps an be given as blok matries as follows:
α1 = [[M1]1×6 F ] α2 =

»

−FI6×6 [M2]6×8

[M1]1×6 01×8

–

α3 =

»

[M2]6×8 06×3

−FI8×8 [M3]8×3

–

α4 =

»

[M2]8×3

´−FI3×3

–

Remark 2: The above argument an be used for Theorem 2.2, Theorem 3.1, Theo-rem 3.2 and Theorem 3.3.Theorem 2.2:
β1 = [[M1]1×6 F1 F2 F3] β2 =

»

[M2]6×8 [V ]6×8

03×8 [Y ]3×6

–

β3 =

»

[M3]8×3 −[V T ]8×6

08×3 −[M2]
T
8×6

–

β4 =

»

−[J”]8×1

[J ′]6×1

–

Remark 3 The omplex in Theorem 3.1, an be built up from Theorem 2.1 asfollowsTheorem 3.1:We have the following ommutative diagrams: 57
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CHAPTER 5. APPENDIX
P1 =

h

[M1]1×6 F F̃
i

P2 =

2

4

−F̃ I6×6 [0]6×1 [−FI ]6×6 [M2]6×8

[0]1×6 [FI ]1×1 [M1]1×6 [0]1×8

[M1]1×6 [0]1×6 [F̃ ]1×1 [0]1×8

3

5

P3 =

2

6

6

4

−FI8×6 [M2]6×8 [0]6×8 [0]6×3

[M1]1×6 [0]1×8 [0]1×8 [0]1×3

[−F̃ I ]6×6 [0]6×8 [M2]6×8 [0]6×3

[0]8×6 −F̃ I8×8 [−FI ]8×8 [M3]8×3

3

7

7

5

P4 =

2

6

6

4

[M2]6×8 [0]6×3 [0]6×3

FI8×8 [M3]8×3 [0]6×3

[−F̃ I ]8×8 [0]8×3 [0]6×3

[0]3×8 [−F̃ I ]3×3 [0]6×3

3

7

7

5

P5 =

2

4

[M3]8×3

[FI ]3×3

[−F̃ I ]3×3

3

5Similarly, we an write the maps for Theorem 3.2 and Theorem 3.2.
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