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Abstract

In this thesis we have tried to identify the objects that correspond, at
large volume, to the fractional 2-branes in C"/Zy orbifolds,

We start with the fractional 2-branes in the C¥/Z5 orbifold. One may
easily construct such objects in the orbifold theory, The D-brane charges of these ob-
jects in the large volume basis can be computed by first determining the intersection
of these fractional two-branes with the fractional zero-branes and with themselves.
This can be easily done at the orbifold point. Subsetuently, using these intersection
numbers we can determine the large-volume charges of these fractional two-branes.

It turns out that these fractional two-branes have a *‘fractional’ frst Chern
class. Since the appearauce of a ‘fractional’ first Chern class is sotewhat surpris-
ing, we also show that these fractional two-branes have integer charges if we consider
them as objects living in the ambient nop-compact CY (the resolution of the orb-
ifold), which is a line bundle over a projective base, rather than on the projective
space itself.

In this thesis we also note a strong parallel between the relation of the
fractional two-branes (and more generally fractional 2p-branes) iu the orbifold theory
to the corresponding coherent sheaves at large volhume and the notion of the (uantuin
MeKay correspondence due to Martinee and Moore [40]. While there is nothing
quantum about the relation in our setting where space-time supersymumetry is not
broken, nevertheless the fractional two-branes in C"/Zxy appear closely related to
the fractional zero-branes of ©"!/Zy. the latter being the geometry assaciated
with the non-supersymmetric B-type branes in the work of Martinee and Mouore.
In the full set of coherent sheaves that correspond to the quanturn Zy orbit of
the fractional two-branes at large volume we are able to find the analogues of the
so-called 'Coulomb branes’ that they describe.

This fractional first Chern class ensures that in the case of fractional
2-branes of the T /Z; orbifold, when the large volume analogue of these objects are
restricted to the CY hypersurface, one of them precisely becames a zero-brane on

the CY hypersurface. One may note that if we began with objects that have integer

v



first Chern class on the ambient projective space space then we would always obtain
d zero-branes on the C'Y hypersurface, where d is the degree of the polynomial
equation describing the CY.

Finally we also identify the CFT description of states of the LG model
that correspond to fractional two-brane and four-brane states in the smbient non-
compact orbifold that are restricted to the CY hypersurface, This turns aut to be

i sub-class of the B-type permutation branes of the Gepner models [41].
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Chapter 1

Introduction

Over the past two decades string theory [1][2] has emerged as the leading candidate
for a quantun theory of gravity and possibly the sole framework for the unification
of all the known fundamental {orces. Strin gs are relativistic one dimensional abjects
with two distinet topological configurations - the closed loop (closed string) and the

open interval (open string),

1.1 Closed strings

The action of a free string in flat space is a generalisation of the action of a point
particle and is given by the invariant area of the world-sheet that the string EWeeps

out as it moves in spacetime, This is called the Nambu-Goto action.

5= f o/ — nuBaX 05X (1.1.1)

where the term inside the square root is the determinant of the induced metric an
the warld-sheet. Here 0 are coordinates on the world-sheet and X “(g!, 0%) denote
the coordinates of spacetime. One usually does not work with this action since it is
a non-polynomial action and is difficult to quantize. A better starting point is the

Polyakov action,

Q@ /'”;25'_ H__me'iauXp.-fiﬁ_.“{";rﬁm (1.1.2)



where one introduces an auxiliary field g.g which is the metric on the world-sheet.
The Polyakov action is a two dimensional action, and from the two dimensional
point of view the spacetime coordinates are scalar fields with the Lorentz cronp
acting like an internal symietry group. One can get back the Nambu-Goto action
from the Polyakov action by solving the equations of motion for Gng. Now this action
is invariant under local Weyl transformations Gheg = €% g as well as under world-
sheet coordinate reparametrization. As in any gauge theory one can fix these local
mvariances by choosing a gauge. One possible gauge choice is the conformal ZAlZE
i which gag = d,5. In this gauge the Polyakov action becomes the action of [
free scalar felds in two dimensions, where D is the spacetime dimension. The Weyl
and reparametrization invariances do not get completely fixed and there remains a
residual conformal invariance. Thus, in this gauge, we are lefl with a 2-dimensional
conformal field theory of free scalar fields, which is most naturally written in complex
cooridinates,

S = / d220. X X 1 (1.1.3)

where z,  are complex coordinates on the world-sheet.

Conformal invariance is the invariance under any holomorphie change of

!

coordinates 2’ = f(z) and 2 = f(3). These transformations are generated by the

vector fields L, = z"*'9. and similarly for the anti-holomorphic transformations
L, = #*1,. They satisfy the Virasoro algebra
[L“,, L?JIJ = l:.”' 1} "r”JLn-I-rm [Lfl: erzl: = {” = ﬂ“'jf’n-l Tl {11‘]}'
with [Liis L] = 0 [1:135)

The left moving and right moving modes of the strings carrespond to two indepen-
dent sectors. In the quantum theory, typically the above al zebra gets modified by a
cenfral extension which is of the form

c

[qu Lm] = ('”' = "”'}Ln-}-r.rl T 12

(mm® — m)bnsmo (1.1.6)

¢is a number called the central charge of the conformal field theory and the presence

of this central extension term implies that the classical symmetry is anomalous in

2



the quantum theory. Just as in any gauge theory the local invariances of the theory
are crucial for the decoupling of the negative norm states, that one has due to the
indefinite signature of the Lorentzian metric in tarcet space, and therefore to have
a unitary quantum theory.

The value of the central charge depends on the particular theory. For
instance each scalar field theory npon quantization will give rise to a central charge
¢ = L Further, a proper Fadeev-Popov quantization leads to a shost term, which
corresponds to a CFT of central charge ¢ = —26. So together we get a CFT of net
central charge e = D — 26, Then the condition for conformal invariance implies that
we restrict to [) = 26. Thus string theory quantized on flat space exists as unitary
quantuin theory only wheu the total spacetime dimension is 26.

One can generalise this to situations where the background metrie is

curved. In this case the action in the conformal gauge turns out to be
5 [ 828, X109 X" G ( X) (1.1.7)

The first point to notice about the action is that it corresponds to a
2-dimensional interacting field theory called the non linear sigma model(NLSM),
unlike the flat space case where the 2-dimensional theory was a free field theory

Like in any interacting quantum field theory the couplings of the theory, which
from the target space point of view are spacetime fields, flow with the change of
the world-sheet scale, and the flow is governed by the beta function equations. The
theory is conformally invariant for values of the couplings for whichi the beta function
vanishes. Remarkably these equations are the spacetime equations of motion for
the corresponding fields and in particular for the background metric Gy, Ba =10
is the vacuum Einstein equation (where o is the beta function for the coupling
Gu). Thus, in the elassical limit, string theory reproduces general relativity, More
generally one can consider string propagation in the presence ol other background
fields. Tn this case one gets Einstein's equation sourced by the energy-mormnentnm
tensor Tp,, of these fields, and also the equations of motion of these other background

fields.



The spectrum of string theory in flat space contains a massless spin two
particle. Kinematically this has the right property to be a graviton, the quantum
excitation of gravity. However to identify it with the graviton this is not enough
and one has to look at the dynamical properties of the gravitons. If one cotnputes
the 3-point and 4-point seattering amplitudes of these massless spint two fields in
string theory, then to lowest order it reproduces the interactions of aravitons in
perturbative general relativity, Thus even dynamically these spin two felds have
the properties of the gravitons, The other massless states of the spectrum are the
scalar dilaton and the two form antisymmetric Held B

The theory we have been considering till now is known as the bosonic
string. It is not realistic since it does not include any fermions. Moreover an analysis
of the spectrum reveals that the ground state of the bosonic string theory in D = 26
is tachyonic. Now in field theory the presence of a tachyonic exeitation iniplies that
the vacuum around which one is doing perturbation is unstable. Clearly free string
theory on flat space being unstable is not a very desirable property.

Both these defects (absence of fermions and presence of tachyons in Hat
space) can be remedied by making the theory supersvmmetric, We will not g0 into
the details of the action except to note that because of supersymmetry we now have
fermions in the world-sheet theory, This introduces different sectors. the Ramond
(R) sector and the Neveu-Schwarz (NS) sector in the theory corresponding to the
periodic and anti-periodic boundary conditions that can be imposed on the world-
sheet fermions. The R sector ground state is a space time fermion. Therefore there
are four sectors in the full theory obtained by taking a tensor product of states in
the holomorphie and anti-holomorphic sectors. These are the RR, NSNS, NS-R and
R-NS sectors. The RR and NSNS sector states are bosonic and the R-NS and NS-R
states are spacetime fevmions. Spacetime supersvinmetry is obtained by imposing
a (GS0)) projection on the states which basically removes the tachvon and leads to
matching of spacetime fermionic and bosonic states at each mass level. The ghost
structure of the theory also clianges, due to the introduction of the superghosts,

the supersymmetrie partners of the original ghosts. Each free fermion theory is



a CFT of central charge 1. The chosts and superghosts wow contribule a total

Cgn = —13. Then the condition of anomaly cancellation is D + %D =18=:0. 8B
we have D = 10, The spectrum of superstring theories has, like the bosonic theory,
a finite number of massless states and an infinite number of massive states. In the
supersymmetric theory there are more massless states than the bosonic theory. In
the bosonic theory the massless states were the scalar dilaton, the praviton and
the two form antisymmetric field By All higher form fields were massive, Tn the
supersymmetric case there are higher form massless states. These fields are sourced
by higher dimensional objects ealled D-branes, which we will deseribe later.
Luteractions in the theory are analogous to the higher loops in the point
particle theory. In string theory the loops are replaced by higher genus Riemann
surfaces with an extra handle for every acdditional loop. Unlike the point particle
case where there are several diagrams at any given loop, in string theory due to
conformal invariance there is essentially a unique diagram at each loop. Further
the string coupling (g.) which is the parameter which controls the perturbation
expansion is not an independent parameter, but rather is given by the vacuum
expectation value of the dilaton g, ~ e“%>. The scattering matrix for n external
fields involves a sum over Riemann surfaces with different number of handles, To
define the measure for the patli-integral for Riemann surfaces with handles, one has
to mod out by the diff x Weyl invariances. In the case of torus (1-loop) diagram
the inequivalent metrics are labelled by a complex parameter 7 called the modulus.
The domain of integration for r is the complex plane quotiented by the so-called
arth

modular transformations, ' = = where ad — be = 1. Invariance wnder modular

transformation is a very important property of string amplitudes which has no point
particle analogne, and it makes string amplitudes finite, removing the diversences
that would arise in a point-particle theory. This is because, due to this invariance,
the integration region in the parameter space is eutoff and the badly beliaved points
which results in divergences are removed. Similar considerations are applicable for
all genus g Riemann surfaces.

So we see that not only does string theory reproduce classical gravity, it

o



also desceribes the dynamics of small quantum gravity Huctuations around a classical
background giving finite results. Moreover it has also been shown that for certain
class of black holes, string theory ean corvect ly reproduce black hole entropy from
a statistical counting of states'. These are strong pieces of evidence suggesting that
string theory is a well-defined quantum theory of gravity.

Perturbatively there are five different types of consistent superstring the-
ories in flat spacetime with D = 1. Dependine on the amount of supersyumetry
they preserve and their spectrum, they are type A [type 1IB, type T and the het-
erotic SO(32) and Ey x Ey. We will not review the details of their construction here,
but simply note some of their properties. The type I theories have N = 2 spacetime
supersymmetry while the type I and the heterotic theories have N = 1 SUPErsyII-
metry. The spectrum of these theories are also different. While the tvpe ITA theory
has non-chiral spacetime fermions all the others have chiral fermions. The type 1
strings have both open and closed strings and has a gauge group SCN32), while the
two heterotic theories have SO(32) and Ea x £y gauge groups respectively,

Non-perturbatively these five different string thearies turn out to be re-
lated to each other and to another cleven dimensianal theory, whose low energy limit
is eleven dimensional supergravity, via various dualities. incl wling S-duality which is
essentially a non-perturbutive duality and T-duali ty which is a perturbative duality
which we will review in the next section.

Till now we have been discussing the case of string propagation in 10
or 26 flat spacetime directions: A more realistic solution would be one where the
target space is of the form Ay x Xg. MM, being the four dimensional Minkowski
spacetime and X being a compact manifold of small size. Before describing such
realistic compactifications, we will briefly discuss the string spectrum on a cirele. to

differentiate the stringy features from that of a point particle,

YW will not review these results here s they are not direetly related to work done in this thesis



1.1.1  String theory on a circle

If one of the spacetime coordinates is compactified to a cirele, then one has a free
field theory with periodic boundary conditions on the scalar field, This is a ¢ — 1
CFT for any value of the radius of the circle. Parameters such as this radius wi 1ich,
when changed, do not change the central charge of the CPT' are called the moduli
of the CFT (these are distinet from the moduli of the world-sheet Riemann surface
referred to earlier). The momentum of a quantum particle on a cirele is quantized
due to the condition of single valuedness of the wavefunetion and is given by p = %,
where n is an integer and 7 is the radius of the circle, However a string can have
potential energy stored in it by winding non trivially around the circle. This energy
will be proportional to the length of the string. Finally if it winds w times around

the cirele then the energy which will contribute to the mass m of a string state

. n* w* R? 2 =
e —— 4 — (N 4+ N =9 2.8
B R az u:r“{ ) -L8)

with  nw + N — N = () (1.1.9)

where o' is the string tension and N, N are the excitation levels of the left sand

right moving sectors of the string. From the above formula it is clear that the
spectrum of the string is invariant under interchange of n < m and simultaneously
taking A — ' = HT; Therefore the spectrum of a string compactified on a circle is
invariant under R — % This invariance is known as T-duality.

The massless state at a generie point of the moduli space 1.e at a arbitrary
value of the radius is given by the staten =m = Qand N = N = 1. At an arbitrary
point the theory has a {7(1) x U(1) symmetry., However at B = o' there are more

massless states

n=w=+I,N=0,N=1, n= —w=xl, N=1,N=0 (1.1.10)
=22, w=N=N=0, w=x+2n=N=N=0 (1.1.11)
It can be shown that at this value of the radius the theory has an SU(2) x SU(2)

symmetry. Therefore at the point ' = /o' there is a symmetry enhancement. This

discussion can be generalised to toroidal compactifications in higher dimension.

7
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1.2 String theory on orbifolds

In this thesis we will be discussing issues related to string theory on orbifolds as
well as Calabi-Yau manifolds. Unlike string theory with toroidal compactifications.
these compactifications reduce the target space superaymmetries,. This feature is
phenomenologically very important. We will therefore review string theory on orb-
ifolds as well as Calabi-Yau manifolds.

Comsider the quotient space C/Z,, where T is the complex plane and the

elements of the group Z, are Low,......,w" !, with w being the n'th root of unity.

This is a conical space with angle # = 2. To deseribe closed string theory in this

T

target space, the quotienting by 2, is implemented as a twisted boudary condition,
Z(0,7) = ' Z(2r, 1), =0, 1wn—1) (1.2.1)

where [ = 0 is the usual periodic boundary condition and { = 1. ..n — 1 are the
twisted boundarv conditions corresponding to the identifications after rotation by
elements of Z,,. Each boundary condition gives rise to a different sector of the theory.
Now it can be shown that the requitement of madular invariance of the partition
funetion in this case implies that all these different sectors (twisted + untwisted) be

atlded. ie., the full partition function is

n—1
4= Zuntlt-':.sfcd = E ‘Z:"Hz tudsted sootor [1-‘}2')
=1

In this thesis we will be interested primarily in the case of the C3/Z,, orhifalds, The

arbifold action on the coordinates is defined as follows,
Zt— vz 2 St 2 (1.2.3)

where w is the n'th root of unity, 29 = X ¥ 4ix2-1 J =1 to 3 are the complex
coordinates. If &+ 1+ = 0 mod({n) then the 7, group is a discrete subgroup of
SU(3) and the resulting four dimensional theory is supersymmetric. The spectrum
of the theory includes the untwisted sector and the twisted sectors and in eacl seetor
one looks for GSO invariant as well as 7, invariant states, Orbifolds of this kind can

be thought of as singular limits of some smooth “Calabi-Yau” manifolds to which

we turn to now.



1.3 String theory on Calabi-Yau Manifolds

It is well-known that if one wants to have N — I supersymmetry in £ = 4 in
heterotic string theory, then the compact manifold X must be a “Calabi-Yan®
manifold. In type TIB theories, compactification on Calabi-Yau manifolds leads to
an N = 2 theory in D= 4. Thp supersynunetry can be further reduced toa ¥V = 1
D = 4 world-volume theory on a D-brane extended along the four dimensional non-
compact spacetime. Therefore the study of string theory an Calabi-Yau manifolds
15 of physical significance,

A 2d dimensional Calabi-Yau manifold is a complex, Kahler manifold
which has SU(d) holonomy. We are of course interested in the case of d = 3. To

introduce” the notion of a Kaller manifold one has to first introduce the nofic:

of a Hermitian metric on g complex manifold. The components of a metric on A
complex manifold can be classilied as (97: 9555 By g5;). Here the (4, J) run over
the d complex coordinates and likewise the (4,7) run over the complex conjugate
coordinates, Symmetry and reality conditions mply g, = g, and g;; = G5 T = 0y
A metric is called Hermitian if tiy = g5 = 0. Given a Hermitian metric one can

define a form of type (1.1} as follows,

J = gdzt A dz, (1.3-1)

If J is closed i.e dJ = 0 then J is called a Kihler form and the manifold is called a
Kahler manifold. It can be shown that the condition of 5U(d) holanomy is equivalent
| to demanding that the manifold admits a Ricei flut metrie. Calabi conjectured that
a complex ahler manifold with vanishing first Chern class ¢; admits a unigue Rieei
flat metric. This theorem was proved later by Yau. This theorem is very useful
because while it is hard to cxplicitly check whether a metric is Ricei Hat, it |s easy
to check whether a given manifold has a vanishing first Chern class,

A particularly useful class of CY manifolds is that of algebraic CY man-
ifolds, where the manifold is the zero lacus of r complex polynomial equations in o

complex dimensional space (that is typically a weighted projective space) such that

*The discussion presented hero is based on il

4
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d —r = 3. The polynomials G nust obey a suitable ‘transversality condition’. The
primary example of a Calabi-Yau manifold that we will be dealing with in the thesis
is the quintic hyper-surface in P*, which is given by the equation G = Z:’_l i
where the Z; are the homogeneous coordinates of P,

Given a Calabi-Yau manifold with Ricei fAat metric i, ome can ask, what
metric perturbations dg will preserve the condition of Ricci flatness? i.e. if Riz(g) =
(0 then what are the perturbations such that Hi;(g+8g) = 07 These questions were
studied in detail in [8]. There are two possible types of metric deformations - Gids
dg; and their complex conjugates. The first type preserves the Hermitian nature
of the metric while the other deformation does not preserve the original Hermitian
structure. Demanding (g + dg) = 0 imposes restrictions on the metric. It {urms
out that the two types of deformations are assoeciated with the cohomology groups
of the manifold. The first type of deformations are associated to elements of the
cohomology group H;‘l while the second type are associated to elements of H;::'l. The
deformations dg;; are called the Kihler moduli while the deformations 8 gi; are called
complex structure moduli, because it can be shown that the new metrie after such
deformations are Hermitian with respect to a new complex structure. This means
that the new coordinates with respect to which the new metric s Kahler cannot
be obtained by a holomorphic coordinate transformation from the old coordinates.
The complex structure moduli are simply given in the algebraic case as all possible
deformations of the original equation by monormials of the same degree as the original
efation.

IF we consider a NLSM with Calabi-Yau manifold as the target space in
type IIB string theory, then at the fixed point the world-sheet theory has A" = (2. 2)
superconformal symmetry. The (2,2) supersymmetry condition is satisfied if the
target space is complex Kahler, while the conformal invariance comes from the
condition of Ricei Hatness as reviewed before. Gepner [10] showed how to construct
more string compactifications with world-sheet N = (2, 2) superconformal symmetry
based on exact CFTs without invoking a NLSM construction.

In the next section we will briefly highlight some features of the construc-
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tion of these models and their relation to the Calabi-Yan compactifications.

1.3.0.1  Gepner models, LG orbifolds and GLSM

The Gepner construction is based on a tensor product of n unitary superconformal

CFTs known as the superconformal minimal models. These N = (2.2) minimal

models are classified by their central charges ¢; = f%‘g The total central charge of
o432

the model is therefore given by

;1:1'-'..'2

T 3;\'-1-
&= Z]:

An N = 2 superconformal algebra is penerated by the stress energy tensor
T'(z), the superconformal generators G{z), G™(z) and a U(1) generator J(z). The
explicit algebra in terms of the modes of these operators and also a more detailed
review of Gepuer models is given chapter 7

For a compactification to four dimensions one has to have an internal
conformal field theory of ¢ = 9, since the four dimensional CFT corresponding to
spacetime will contribute ¢ = 6 and Can = —13. However to get a realistic string
theory it is not enough to have the right central charge. One has to also have a total
odd U(1) charge separately for the right as well left movers, This means that the
sum of the internal /(1) charges and the 7 (1) charges of the superfields associated
with the non-compact directions must be odd. This imposes the generalised GSO
projections, thus leading to a spacetime supersymmetric spectrun. Further a state
in the Gepner model must be a product of NS states from each sub-sector or of
Ramond (R) states of each sub-sector, F inally of course we also need to construct
a modular invariant partition function.

The minimal madels have a Lagrangian representation in terms of a
Landau-Ginzburg theory, This is a (2,2) world-sheet theory imvolving a single chiral
superfield with a superpotential term

W(d) = ph+2 (1.3.2)
3k

for the k'th minimal model with central charge ¢ = 5. This massive theory Hows
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in the IR regime to a fixed point. The critical theory is to be identified with the

minimal model at level & with central charge ¢, = %
The related Lagrangian description for the Gepner model is the Landay-
Ginzburg orbifold. This is obtained by considering n chiral superfields (notation as

in refs. [43, 44, 18]} &, with & Z; action (W= lem(fy, .o k) )
EK 4 fI'-', s w‘QE (i‘i'

where w = exp(i2r/K) is a K-th root of unity and Q; = K/(k; + 2). The model

has a quasi-homogeneous superpotential given by

mn

G(®) =) ah+2 (1.3.3)

1=

We will be focusing mainly on the case when n = m 4+ 2 for which ' = 3. (),.

We have mentioned above two seemingly different compactifications with
N=(2,2) world-sheet supersymmetry. The NLSM with a Calabi-Yan target space
and an abstract conformal field theory, the Gepner models or equivalently the LG
orbifolds. Gepner argued |10] that these seemingly different compactifications are
actually related. He conjectured that these abstract conformal field theory con-
pactifications were in the same maduli space as the geonetric compactifications on
Calabi-Yau manifolds, In particular the Gepner model given by a product of five
minimal models each of central charge ¢ = 2 and & =3 is in the same moduli space
as the NLSM for the quintic hypersurface in P4

A clear physical understanding of the correspondence between the Landau-
Ginzburg theory and the Calabi-Yau sigma models may be obtained via Witten's
construction of the gauged linear sigma model (GLSM) [43]. We will review the

GLSM construction [43] below for the example of the quintic hyper-surface on B

1.3.1 GLSM for the quintic hyper-surface on P!

The GLSM is a d = 2, N = 2 supersymuetric U(1) gauge theory coupled to a set
of chiral superficlds. The action is given by

5 = Skfﬂr_tm + IE"‘iJ'I’ oh S_u;m:yr_- T Sr,{:l “.3(”
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Where the first term is the kinetic term for the chiral fields and the Sgauge 18 the
kinetic term for the gauge fields. We will be needing only the explicit forms of Sy

and 5;g. In superfield notation it is
Sy = / !f:'rytfﬂ_!_dg_ ”;{F 0y, ...";.[3’5] {13"1}

where T is the superpotential term. The U{1) charges of the ®; and P fields are
(1,....1,-5), and
W = P.G(®y, ..., 83). (1.3.0)

where G = 3% | @%. S,, is the combination, Fayet-Tliopoulos D-term and # term,
) fi i
Sra=—r [ dy(—rD + —uvy) (1.3.7)
: 2m

where D is a real auxiliary Held appearing in the vector superfield and vy, 1s the
antisymmetric gauge field strength. We will be interested in studying the structure
of classical ground states of this theory.

For this reason we will be interested in the besonic potential which is
given by

U= |G(¢0)]* + [p* ) S5 2 i.,D“Jr?frrF{Z 7] + 25[p[*) (1.3.8)

: hy; 2e? ’
with D= —¢*(} " |&i|*— 5[p|* = ) (1.3.9)
i

Here o is a scalar field appearing in the twisted chiral multiplet, associated with the
gauge sector. Note that ficlds with lower case letters are scalar components of the
superfields appearing with corresponding capital letters,

For v > 0, the susy minimum U = 0 ig given by the solution nat all

¢ =0 and p = o = () with the constraint
>l = (1.3.10)
Also due to the /(1) gauge invariance of the theory we have

(@1r i 5) ~ (91, ..., e75) (1.3.11)
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The above two equations imply that the felds ¢; are coordinates of the
quintic hyper-surface &' = 0 in P, which is a Calabi-Yau manifold. Tn the linear
sigma model there are other fields not present in the Calabi-Yau NLSM, When we
consider the quantum field theory about this elassical sround state then these other
fields will have masses depending on v, However if we consider the Lmit + = 0 then
these other fields become very massive and drop out and so we recover the effective
quantum field theory of the Calabi-Yan NLSM. As we flow to the IR, + will get
renormalised and its value at the IR fixed point 7 will be the actnal Kihler modulus
of the Calabi-Yau in the NLSM. I we flow to the IR point then any non zero mass
dependence will drop out and the theory flows to a conformal fixed point of the
NLSM for finite values of r as well.

We can similarly argue for the case of r < 0. In this case we find that
for the ground state, all the ¢, = 0 and p = = . Parther there is an unbroken
L5 symmetry, because p has charge -5. Moreover from the form of the potential
the fields ¢; are massless Anctuations around this unique vacuum. A theory with a
unicue vacuum and some massless states is a LG theory (actually an LG orbifold
since the p-field which acquires a vev has a charge -5). As carlier the theory actually
describes the effective quantum field theory of LG orbifolds for lr| = 0, because of
suppression of the massive Huctuations. In the IR, the theory will How to the fixed
point of the LG orbifold for any value of r

Thus we see that the LG theory as well as the Calabi-Yan (CY) NLSM
can be thought of as two ‘phases’ of the GLSM with the interpolation given hy
varying + 2 0 to r < 0. Even though we talked only of the r moduli space, the
presence of the antisymmetric tensor field in string theory makes the actual moduli
space complex. In the GLSM this follows from the @ term with the complex modulus
givert by £ = % +ir. It can be shown that one can move from one ‘phase’ to another
in this complexified moduli space smoothly. Even though in terms of » it seems
that one has to go to negative values of r to reach the LG theory, it can be shown
(9], [7] that the physical radius 7 is always non-negative. Thus the LG theory can

be thought of as the analytic continuation of the CY NLSM to small but positive
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values of the physical Kéhler parameter. We shall sometimes refer to the r = 0
‘phase’ as the large volume phase and the r < 0 ‘phase’ as & non-geometric phase.

This analysis in terms of the GLSM makes the relationship between CY
NLSM and the LG orbifold description evident. They beloug to different phases of a
larger theory -the GLSM awd one can interpolate hetween them via non-conformal

theories.

1.3.2 GLSM for the C*/Z,

One can construct a linear sigma maodel for orbifolds. For instance for the C* /25, the
orbifold singularity can be resolved by blowing up the singular point by a compact
P* to give a non-compact Calabi-Yau, which is the total space of the line bundle
Op2(—3). Therefore the orbifold can be thought of as the limit in which the cyvele
F* shrinks to zero size. This picture can be captured through a GLSM (a brief
discussion of the GLSM in this case is given in [47]). In this case we will have a
U(1) sigma model with three chiral superfields ®,, i = 1,2, 3 with U(1) charge +1
each and a P field with charge —3 The bosonic potential for these scalar felds is
given by

V= (lenf* + léaf* + |s* = 3lpf* — r)? (1.3.12)

Where r is again the Fayet-Tliopoulos parameter, The r > () phase corresponds to
fhe blown up phase. In this phase not all ¢; can vanish. Tor + < 0 the p # (L
In this phase the exceptional divisor is blown down. In chapter 5 we will give the
description for the orhifold as well as the resolved space in terms of taric EeOIetTy.
The two descriptions. GLSM and torie geotmetry are related and one can read of the

toric data from the GLSM and vice-versa.

1.4 D-branes and open strings

When we want to describe open strings we have to impose boundary conditions at
the end points of the string. In fat space one usually imposes Newmani boundary

conditions on p + 1 directions and Dirichlet boundary conditions on the remaining
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d—p—1 directions. This would mean that the open string is forced to move on a p+1
dimensional sub-manifold. This deseribes the world volume of a p dimensional sub-
manifold along which the string moves-the Dp brane. The Dp-branes are dynamical
objects and source the massless higher form (RR) felds of the closed SUperstring
theory [11]. They are non-perturbative solitonic states of string theory with tension
(mass per unit volume) ~ yl There are other non-perturbative states in string
theory called the NS5 branes which carry the magnetic NS-NS B, charge. The
tension of these objects goes as &

A p+ 1 form potential Clysr conples to the world vohime of a Dy brane
through the term [ Dp Cyr1- where the integral is aver the world-volume of the brane.
This is a generalization of the electric coupling to a pomnt particle in four dimensions.
Therefore the Dp brane carries RR charge. Type [1A theory has odd dimensional
potentials in its spectrum and therefore even dimensional branes and similarly type
IIB theory has even dimensional potentials and odd dimensional branes.

Just as the quantum closed strings describe the metrie fuctuations around
the spacetime background, these open strings describe the Huctuations in geolmelry
of the D-branes on which they end.

The world volume action for these p+ 1 dimensional objects is called the
Born-Infield action and describes the dynamics of these branes.

The spectrum of an open string ending on a brane has n massless vee-
tor field along the direction of the brane and other massless scalars denoting the
fluctuations along the directions transverse to the brane.

This describes a supersymmetric U(1) gange theory living on the brane.

When one takes a configuration of N branes on top of each other then one Tets
N* massless gange fields. This is because in this case the strings with endpoints
on different branes also have massless fields in their spectrum, So in this case one
obtains a U{N) supersymumeric gauge theory. For a system of N parallel D-branes
there are N massless gauge fields coming from the spectrum of open strings with
endpoints on the same brane. In this case therefore one gets a (1) supersymmetric

gauge theory. From the world-volume field theory point of view this reduction of
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symmetry, when one takes the branes apart from each other, is really the Higgs
mechanism where the sealar field deseribing the separation of the branes in the
fransverse space acquires a vaciim expectation value.

We had seen that closed string theory on a circle has a T-duality invariant
spectrum. Under T-duality a p+4 1 dimensional brane becomes a p dimensional brane
when the T-duality direction is the direction along the brane and a p+2 brane if the
T-duality direction is transverse to the brane. The tree level open string disgram
contributing to the S matrix caleulations is the disk, and higher loops are introduced
by adding more boundaries, For instance the one-loop diagram is an annulus.

While the dynamics of D-branes at weak coupling are described in terms
of the seattering of open strings which end on them. the Dp branes also have a dual
closed string description. For example the one loop vacuum to vacuum amplitude of
a open string with endpoints on two branes can be viewed in the dual closed string
picture as a closed string exchange between two D-branes. In the closed string
picture D-branes are deseribed as boundary states in CF'T, For instance consider
a Dp-brane in Hat space. In the open string picture this corresponds to imposing
Neumann boundary conditions along p + 1 directions and Dirichlet boundary con-
ditions along the remaining 9 — p directions. The Dirichlet and Neumann bouwudary

conditions are
GX—o=0  Dirichlet
DX ey =0 Newmnann (1.4.1)
Similarly there are boundary conditions on the world-sheet fermions A,
A= f-’.r;r)_t'hr._; =0 Dirichlet
M+ indlea=0  Neumann (1.4.2)

where i = £1 and labels the spin structure, Then in the closed string channel the

boundary states are obtained as solutions to the equations

Xt =10,0)|B;n) =0 (1.4.3)
4, X't =0,0)|8;n) =0 (1.4.4)
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and the corresponding equations for the fermionic fields. From the world-sheet point
of view the X' (the spacetime coordinates) are free scalar fields and therefore can be
Fourier expanded into oscillator modes o @, as in any free field theory. Here the
two sets of oscillators correspond to Lhe quantization of the left and right moving

waves on the string. In terms of these modes equation 1.4.3 become,

(o), + & )| By =0

(o, — &, )| By =0 (1.4.5)

respectively. There are similar equations in terms for the fermionic modes as well,
These equations can be easily solved for |3), giving a solution in terms of coherent
states of the oscillators.

Since the D-brane is a bosonic stale, these cquation have to be solved
both in the NSNS as well as RR sectors. Thus one has four solutions for these
equations, |B:+)nsvs. |8 =)nsnss B +)gry |B;—)un. These boundary states
must be in the spectrum of the closed string theory in which it is embedded. So
one has to find the correct GSO invariant linear combination of these states in each
sector, Le. in the NSNS as well as RR seetors. As we discussed above a one loop open
string partition function can be thought of as a closed string exchange between two
D-branes. This condition imposes a further factorisation canstraint on the boundary
states. This can written as

A4 f v
- [5{1—‘;&—35-2*”“] = [{ﬂ{B

e | B) (1.4.6)

where 2 is the open string partition function, Hy, H., arve the apen and closed string
Hamiltonians respectively, £.0 are the open string time and closed string time respec-
tively and are related by the transformation ¢ = 7+ The factor % implements
the GSO projection in the open string theory,

Solving these constraints one gets a GSO invariant boundary state which
also has the right factorisation property,

One can readily generalize the above discussion to Dobranes on orbifolds.

In this case the closed string states must not only be GSO invariant but also be
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mvariant under the action of the orbifold group., Further as we mentioned earlier,
the theory has new sectors called the twisted sectors corresponding to the twisted
boundary conditions. Therefore one has equations like equation {1.4.5) in every
sector.  Further one has to specify a representation for the group action on the
Chan-Faton [actors. So one has boundary states in every sector |B: i ) g, Where m
labels the varions sectors, and a labels the representation of the aroup for its action
on the Chan-Paton factors,
The open string partition function is now given hy
1 dt, . 1=} .
e _Z /_” . o—2tHy {odi
2/ % ) (1.4.7)
Here g labels the elements of the discrete group T and |7] is the dimensionality of
the group. The sum over g normalised by |I'| ensures that one has only those states
which are invariant nnder the action of T,
Therefore one is looking for the correct linear combination of the bound-
ary states in each sector which will be GSO invariant as well as invariant under the

group actlon and also have the right factorisation property.
—iH. it
atBle™":|BY, = Z (1.4.8)

In a general CFT (without other chiral a lgebras) the relevant boundary

condition is
I'L{f', G'”t=n = TR“, U}|r=u {l'lﬂ]l

Here Tj, and T are the stress encrgy tensors for the left and right moving sectors.
This condition enforees that no momentum is transferred across the boundary of the
2d theory, In terms of the modes L,,, L, of the stress energy tensors. the bomndary

state is the solution of the equation condition
(Ly — L_,)|B) =0 (1.4.10)

These solutions are called the Ishibashi states. As before the condition for
correct factorisation of the eylinder amplitude between two boundary states in terms
of the one loop annulus partition function picks out the correct linear combination

of Ishibashi states. This state is called a Cardy state.
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1.5 Boundary states in Gepner models and bound-

ary conditions in LG orbifolds

These considerations readily generalize in the Gepner model to boundary states
which preserve half of the supersymmetry of the bulk theory. I a general CFT
with chiral algebra, apart from solving the equation (L.4.10), the boundary states

must also obey the condition,
(Wh — (=1)"W_,)|B) = 0 (1.5.1)

where i, is the conformal weight of the W(z) operator. If the extended algebra
has an automorphism group W(z) — QW(2), then one can consider a ‘twisted:

boundary condition

(W = (=1)"™QW_ ) |0B) =0 (1.5.2)

For instance in the case of the (2,2) superconformal algebra the automorphism group
takes J(z] — —J(z), where J(z) is the U(1) current and so it turns out that there
are two possible types of boundary states. The so called A branes correspond to the
‘twisted boundary condition” and the B branes to the other condition.

However we are looking for boundary states in the full Gepner model and

not in the individual minimal models. The condition is then

D (W — (1) W: )[B)y =0 (1.5.3)

i=1
Recknagel and Schomerus (RS) were the first to construct solutions to the above
equation. They took the simplifying ansatz that the boundary state is a tensor
product of the individual boundary state in each minimal model, |B) ~ TTi_, ®|B;).
where the |B;) are states in the individual minimal models. So the RS states are
simply the produet of boundary states in each minimal model.

The generators of symmetries in the Gepner model are given by the
sum of the generators of the individual minimal models. Thus the model is invari-
ant under the automorphism action generated by the permutation of the different

component minimal models. For example one can consider the permutation ZToup
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(12)(3)(4)(5), where one is permuting the first and second minimal models. In terms

of the boundary conditions this translates to looking for states for the equations

(Wo = (=L)"™W2 )| Bi) =0, (W2— (-1 W!)|Byy =0 (154)

and |B) ~ |BI}-;E:-|B-A}QI¢H|BT-} (1.5.5)

We will give more details of these construction in chapter 7,

One can similarly study the LG orbifold on a world-sheet with boundary
preserving half of the bulk supersymmetry, Depending on which linear combination
of the bulk supercharges ave preserved one can have two choices, bound ary conditions
that preserve A-type supersymmetry and those preserving B-type supersymmetry.
These correspond to the A-type and B-type branes in the Gepuer models. Suel
boundary conditions were studied in [13], Here it was shown that the linear boundary
conditions which preserve B-type supersymmetry are specified by a hermitian matrix
B which squares to identity, B* = 1 and is block diagonal (it mixes fields with

identical charges). The boundary conditions then take the form

(P)} §=0 . (Px) thy =0 (156)

where £, = (:,-i'+,+¢'r_ijf~.,f§ and 7, = (ty; —v_;)/v2 and the + and — signs label the
left and right moving components of the fermion . The matrices Py = (14 B)/2
and Pp = (1—8)/2 project onto the Neumann and Dirichlet directions respectively.
The matrix B which specifies the boundary conditions needs to satisfy an additional
condition due to the presence of the superpotential in the LG model.
ole
e

(Py)=0. (1.5.7)

In simple models invalving a single chiral field, the only possible condition is the
Dirichlet one®. This carries over to the case of several chiral superfields when one

imposes boundary conditions separately on each of the chiral superfields, i.e., the

*This assumes the absence of degrees of freedom other than those that come from the bulk LG

theory.




matrix 5 is taken to be diagonal. For LG orbifolds associated with Gepner models,
this implies that all the boundary states constructed by Reckn agel and Schomerus in
[15] must necessarily arise from Dirichlet conditions being imposed on all the chiral
superfields. Further, when the superpotential is degenerate at ¢; = 0, the condition

G = 0 implies that the RS states arise from the boundary condition ¢; = (0 for all i.

1.6 D-branes on Calabi-Yau manifolds

During the past five years, our understanding of the spectrum of D-branes (both A
and B-type) that appear in type Il compactifications on Calabi-Yau(CY) manifolds
has significantly improved. In the Gepner models these correspond to the A branes
and B branes that we diseussed in the last section. Some of the prosress has heen
achieved by relating geometric constructs such as branes wrapping geometric cyeles
of the Calabi-Yau space to boundary conditions in the LG orbifolds and boundary
states in the associated Gepner models. The first step in this context appeared in
[3] (see also [13] and [14] for a review).

In this thesis we will be interested in the B-type branes which in the
simplest cases carrespond to vector bundles on holomorphic eyele in the large volume
Calabi-Yau. More generally B-type branes are coherent sheaves on the CY which
can be thought of as bound states of those B-type branes which correspond fo
vector bundles on the whole CY. For instance a B-brane wrapping a 4-cycle on a
CY correspands to a D6-brane and an anti D6 brane with a 4-brane charge turned on
inside, Such bound states are represented naturally as the cohomology of complexes
of holomorphic vector bundles on the CY,

The method propesed to identify the large volume analogues for B-type
D-branes at the orbifold end was to analytically continue periods (identified with
the central charge of D-branes) from non-geometric regions to geometric regions and
then use this information to add geometric insight into the story. This method is
rather tedious but it lead the way to a simpler picture for the large-volume analogue

of the Recknagel-Schomerus (RS) boundary states in the Gepuer model [15]. From
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this emerged a connection with the McKay correspondence [18, 24, 25, 26, 27],

Based on the results for the C*/Z; orbifold [17], it was conjectured in
(18] that the fractional zero-branes on C"/I' (with T' a discrete abelian subgroup
of SU(n)) correspond at large volume to (exceptional) coherent sheaves that pri-
vide a natural basis for bundles on the exceptional divisor of the (possibly partial)
resolution of C"/T. A second conjecture in [18] was that the RS boundary states
(to be precise, the L; = () RS states) were given by the restriction of the fractional
zero-braues to the Calabi-Yan hypersurface, Thus the RS boundary states turned
. out to be restriction of vector bundles ar more generally coherent sheaves on the
ambient {weighted) projective space to the CY hypersurface. Substantial evidence
for this was provided in refs. [24, 25, 26).

However there are still several important aspects that are unclear and
need to be clarified further. Among these is the question of an explicit description
of B-type D-branes on Calabi-Yau manifolds that are not of this type. While the
exceptional coherent sheaves obtained from fractional zero-branes do provide a basis

for sheaves on the exceptional divisor of the resolution, this does not remain true

on restriction to the Calabi-Yau threefold. For the case of the quintie, one finds

that the bundles that are obtained by restriction span an index-25 sub-lattice of the
lattice of RR charges of the quintic. In particular, the zero-brane and two-brane
charges appear in multiples of 5 of the smallest possible value [18, 46]. Therefore
the Recknagel-Schomerus coustriction of boundary states in the Gepner model does
not have a state corresponding to the D0-brane on the CY manifold,

This suggests that one must generalise the Recknagel-Schomerus con-
struction to obtain new boundary states in the Gepner model or equivalently con-
sider more general boundary conditions in the LG arbifold. As was mentioned in
the previous subsection, the RS boundary states correspond to imposing Dirichlet
boundary conditions on all the fields in the LG orbifold. It is thus natural to consider
boundary conditions that impose Neumann boundary conditions not on individual
chiral fields (which is not possible), but on one or more linear combinations of fields

as given in equation (1.5.6). For instance, in the LG orbifold for the superpotential

23



given by the Fermat quintic, one such boundary condition is {see sec. 3.3.3 of [13])

(@1 +¢2) =0 , &=0 fori=34,5,

(1 —&) = 0 (1.6.1)

It i5 easy to see that the above boundary conditions satisfy the constraint (1.5.7) or
equivalently that ¢ = 0 on the boundary. Such branes will be referred to as frae-
teonal two-branes (the term fractional will be justified in the subsequent chapters),

A significant recent development in this direction has been the study of
B-type D-branes at the Landau-Ginzburg (LG) point in the Kihler moduli space of
a Calabi-Yau manifold. In the LG theory, it is possible to pravide a fairly explicit
description of B-type branes using boundary fermions and the technique of matrix
factorisation of polynomials [28]. This construction follows closely the conjecture of
Kontsevich regarding the categorical deseription of B-type branes in the LG theory.

In an interesting development it was shown in [29] that a new class of
fractional branes can in fact be defined in the LG theory. The D-brane charges
of these objects in terms of the charge basis at the large-volume point in Kihler
moduli space have been computed. Interestingly these fractional branes (in the LG
description) include an object that corresponds at large volume to a single zero brane
on the CY manifold. This is of particular interest since the Recknagel-Schomerus
construction of boundary states in the Gepner model for CY manifolds appear to
generically miss the DO-brane on the CY manifold. This DO-brane together with
others that are related to it by the quantum symmetry at the LG point are of course
only some examples of a large class of new branes that can be constructed using
the technique of matrix factorisation of the world-sheet superpoteutial of the LG
Lagrangian. This new approsach to B-type branes in the LG theory is die to several
authors [28, 29, 31, 52, 3.

We also note that, from a purely mathematical point of view, there have

been further developments in the categorical description of these B-type branes at

For completeness we may mention another major development in this new approach has been

the computation of the world-volume superpatential of such branes [34]
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the LG point and the derived equivalence of this category to the derived category of
coherent sheaves on the same CY at large volume appears to have been established,
This has been done in a series of papers by Orlov [33].

In this thesis we will investigate the new fractional branes, referred to
above, due to vef [29], by different methods without using the technique of matrix
factorisation and the introdnction of boundary fermions. Our aim in particular, is
to understand these states from a more transparently geometric point of view., The
key observation is that the new fractional branes essentially arise from considering
Neumann type boundary conditions on the fields of the LG theory. This is very
similar to the particular matrix factorisation that ref. [29] use in order to construct
their new fractional branes. Thus instead of the old fractional branes, which were
fractional zero-branes, located at the singular point. we now consider fractional
two-branes which are complex lines that pass through the fixed point.

Une may easily construet such objects in the orbifold theory without the
world-sheet superpotential. The D-brane charges of these objects in the large volume
basis can be computed by first determining the intersection of these fractional two-
branes with the fractional zero-branes and with themselves. This can be easily
done at the orbifold point. Subsequently, using these intersection numbers we can
determine the large-volume charges of these fractional two-branes,

It turns out that these fractional two-branes have a ‘fractional’ first Chern
class. This fractional first Chern class ensures that when these objects are restricted
to the CY hypersurface, one of them precisely becomes a zero-brane on the CY
hypersurface. One may note that if we began with objects that have integer first
Chern class on the ambient projective space then we would always obtain d zero-
branes on the CY hypersurface, where d is the degree of the pobymomial equation
describing the CY.

Since the appearance of a ‘fractional’ first Chern class is somewhat sur-
prising, we also show that these fractional two-branes have integer charges if we
consider them as objects living in the ambient non-compact CY, which is a line

bundle over a projective base, rather than on the projective space itsell. In the



GLSM description, the true ambient space provided by the fields of the theory is in
fact a non-compact CY. The CY itself comes from frst restricting to the (weighted)
projective spiace that is the base of the non-compact CY, and then restricting it to
the appropriate hypersurface. We also show that all the boundary states in the Ra-
mond sector corresponding to the fractional two-branes can be described using the
boundary conditions on the bulk world-sheet fermions. Tt was observed in [26] (sce
also [37]) that this in fact could be done for the fractional zero-branes themselves
and in this paper we extend this observation to the new fractional branes.

For definiteness, we illustrate our method in the case of the non-compact
orbifold C*/Z;, the corresponding CY hypersurface heing the elliptic eurve given hy
a degree three equation in P2, The extension to the case of the quintic is straight-
forward. We note also that these fractional two-branes in non-compact orbifolds
were earlier considered by Romelsherger[38] (for a discussion of the related bound-
ary state construction see also [39]) and the appearance of a ‘fractional’ first Clhern
class was noted indirectly. This was explained there by the interplay of the relative
homology of the ambient non-compact CY and the compact homology of the base
projective space. Our description of the fractional two-branes in the ambient non-
compact CY provides a clear toric description of the same phenomenon. In later
chapters we also give a toric description of the fractional two-branes for C%/Z: and
C*/Zq orbifolds.

In this thesis we also note a strong parallel between the relation of the
fractional two-branes (and more generally fractional 2p-branes) in the orbifold theory
to the corresponding coherent sheaves at large volume and the notion of the quantum
McKay correspondence due to Martinec and Moore [40]. While there is nothing
quantwn about the relation in our setting where space-tiime supersymmetry is not
broken, nevertheless the fractional two-branes in C*/Zy appear closely related to
the fractional zero-branes of C"~!/Zy. the latter being the geometry associated
with the non-supersymmetric B-type branes in the work of Martinee and Moore.
In the [ull set of coherent sheaves that correspond to the quantwin Zy orbit of

the fractional two-branes at large volume we are able to find the analogues of the
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so-called *Coulomb branes’ that they describe?®

Finally we alzo identify the CFT description of states of the LG model
that correspond to fractional two-brane and four-brane states in the ambient non-
compact orbifold that are restricted to the CY hypersurface. This turns out to be

a sub-class of the B-type permutation branes of the Gepner models [41].

1.7 Organization of the thesis

The organisation of the thesis is as follows:

I chapter 2 we describe the construction of fractional 2p-branes in orb-
ifolds of C"/Zy. We work out a master formula, equation. (2.1.15), for the inter-
section forms between Dp — Dy’ branes at the orhifold.

In chapter 3 the intersection forms involving fractional two-branes are
independently computed in the large volume for the case of C*/Z; orbifold. In fact
we will be able to identify the large volume analogue for these fractional two-branes.
The case of C*/Z, is worked out in some detail,

Chapter 4 discusses how, for instance, fractional two-branes in a super-
symmetric orbifold C"/Zy are related to fractional zero-branes on a related non-
supersymmetric orbifold C"~1/Z 5. We argue for the existence of a quantum McKay
correspondence which relates sheaves associated with fractional 2p-branes on C"/Z
to the sheaves associated with tautological bundles for (2n—2p)-branes on the same
orhifold.

In chapter 5 we continue with our discussion of the the large volume
analogues of the fractional two-branes in the framework of toric geometry for the
example of the C*/Zy orbilold, leaving the discussion for the C* /75 orbifold and the
C* /%7 orbifold for the appendices.

iWe could also have referred to the analogue of the quantum McKay correspondence in the case
at hand, of supersymmetric fractional-2p branes, by a different name, possibly as an ‘extended
MeKay correspondence’. However in order not to further increase jargon for what is a closely

related geomelric phenomenon we retain the nomenclature developed in [40].

27




Using the GLSM, chapter 6 gives a heuristic derivation of the large vol-
ume analogs of D-branes for a specific set of boundary conditions in the LG orhifold
for the Fermat quintic. We provide evidence that these are indeed the new fractional
branes obtained in reference [29].

Finally chapter 7 connects our results in the LG arbifold with boundary
conformal field theory, We provide evidence that the fractional two-branes and
a certain class of fractional four-branes on restriction to the compact Calabi-Yan
hypersurface are given by a sub-class of the permutation branes constructed in the
Gepner model [41].

We conclude in chapter 8 with a summary of our results and some com-

ments on unresalved issnes,
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Chapter 2

Fractional branes in the C"/Z

Orbifold

In this chapter we will be discussing the boundary state construction of fractionsal
2p branes in the C"/Zy orbifold. We first begin with some general considerations
of string theory and D-branes on orbifolds.

As was mentioned in the last chapter, the spectrum of elosed strings on
orbifolds of the type C4/Z, has an untwisted sector where one has the usual periodic
boundary conditions on the bosonic fields (which correspond to the coordinates of
the orbifold), as well as n — I twisted sectors. In this thesis we will be mainly
mterested in orbifolds of the type C*/%,,.

Let the complex coordinates of this space be Z°, (i = 1,2,3) and X' the
corresponding world-sheet fermions. The action of the group on the fields is given

by

gr Z' =W =g (2.0.1)
g: A — %N (2.0.2)

with @y +as 403 = 0 mod (2n). This action ensures that the theory has a unbroken
N = 2 supersymmetry in d = 4.
The NS-NS states in the twisted sectors of the theory have a direct HC-

metric interpretation. There is a complex massless sealar field in each twisted sector
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¢ (where k labels the &'th twisted scctor). Giving these fields a vev results in the
blowing-up of the orbifold. Similarly the RR fields in the twisted sectors can be
obtained from the Kaluza-Klein reduction of the BR fields in the resolved space
over the various blow-up cycles [5].

In the ecase of open strings ending on branes which are point-like along
the C4/T" orbifold (I' ¢ SU (d)), apart from specifying the action of the group on
the complex coordinates along the CT one has to specify the group action on
the Chan-Paton indices as well [4, 5, 47). The action of [' on the hosonic gauge
fields along the brane as well as on the scalar fields labelling the transverse complex

coordinates Z' along the C/T orbifold is given by

M) A 9(ga) " =A%, w=(1,.., 1)) (2.0.3)

W9l Z'(ga) ™" = Riga), 2" (2.0.4)

Where || is the dimension of the group, and v(g) is the representation of the group
['defining it’s action on the Chan-Patou indices (which have been suppressed in the
above equations) and R(g) is the d dimensional representation of the group defining
its action on the coordinates of C4/1".

Consider the case when + is an irreducible representation of T, For
['= Z, the irreps are one dimensional representations, and there is a D-brane
corresponding to every irreducible representation. The mass and RR charge of
these branes can be obtained, at tree level, by computing the one-poiut function of
the metric and the RR vertex operators respectively, on the disk with appropriate
boundary conditions. The mass of the brane turns out to be l-]n-fﬂ—_, and the RR charge

of the brane corresponding to the o'th representation is given by

”r-u. & e ! ; -
Wy = T e L {r?rﬂ (2.0.5)

Where d, is the dimension of the a'th irreducible representation, X (g = Tr{valgm))
is the character of the w'th representation and Qg and 2y, are the RR charges
of the brane corresponding to the untwisted and m'th twisted RR closed string

fields respectively. Since the mass and charges are fractional these branes are called
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fractional zero-branes. These branes are fixed at the orbifold singularity. This can
be seen from the group action on the fields Z° given in equation (2.0.3), by taking
7 to be one-dimensional.

After the singularity is resolved these fractional zero-branes can be iden-
tified [5, 6] with the branes wrapping the various cycles of the resolved Space,

Oue can construct boundary states for these fractional branes as has been

mentioned in chapter 1. This is what we will diseuss in the next section.

2.1 Fractional 2p-branes in C"/Zy

We will now discuss the case of fractional 2p-braney in € JZn. We will compute the
intersection numbers between the fractional Dp and Dp' branes. We will present
a master formula for the computation of the open string Witten-index for GpE
strings connecting a fractional 2p brane and a fractional 2p' brane in the C/Zy
orbifold. Though the computations are well-known and we will nse some of those
results, we will emphasise some non-trivial features of the calenlation that have
not attracted due attention earlier. Fractional 2p-branes on orbifolds have heen
considered, for instance in refs, [47, 48, 39, 49, 50, 38].

We choose the orbifold action given by

A
Py — € By

which we will compactly write as (v, 1, .., vy = #[{]‘.] Vg, ... iy fOr some integers
a, Further, the type IT GSO projection will require us to choose Y. v =0 mod
2. In fact, we will require something a little bit more stringent in the sequel. The
boundary states that we construct are similar in spirit to the ones constructed in
ref. [61] (see in particular section 4.1 for the discussion on the GSO projection) for
a single A" = 2 chiral multiplet. We will however not get into the details of the GSO
projection because we do not include the spacetime part. They can be included in

‘g straightforward fashion.
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2.1.1 Fractional zero-branes in C"/Zy

The case of fractional zero-branes has been discussed in great detail in the paper by
Diaconescu and Gomis[47].

We first write down the partition function for open strings stretched
between two zero-branes. In the opew-string channel, the amplitude in the m-th

twisted sector is given by [47] (the notation is as in [47] as well)

Jj.lf':l] — tr(gm LA E_':IF p—HH, )

T .j

dt oo T 2sin(mme; n(it) ,
q—t{Sﬁ"aE] ”2><H[ stai(rmay Jn( ] (2.1.1)

prie: &y (muy, it)
 rOs(ms, ity oy (Bl 0 ba(imw i)

In the above expression, the second line is the contribution from the

]
O
;‘-H?-&

world-sheet bosons and the third line is the contribution from the world-sheet
fermions. In the second line, Vi(872a't)"1/2 is from the bosonic zero-modes and
the other term is from the non-zero modes (see equation. (B.6) of [39], for in-
stance). Note that if either m = 0 or some particular vy = (), then we need to use

the following identity;

[Esiu[ﬁﬂl'ﬂ[ﬂ} o
Hl{”r .r] T}EI:TJ ‘

To go to the closed-string channel, we consider the modular transform of

the above amplitude,i.e., 7= it — —1/r = 2.

n=r

a0 2o =142 xﬂ ji/z 1 L5 (—3}95;11 W””’;J‘HW}% 7
B = Vildra) l T [2; -r,ri(Zi!J] XH[ By (—2ilmu, . 2i0) Q}

1

S [T (27 ) T (=20 f (Mt

J4=1 I=1 F=1

ks

In the above expression, r is the number of directions for which mus = 0. Thus,
- when m = 0, one has r = n and when m # 0, then r is the number of directions on

which the orbifolding group has no action. One looks for a (G50 projected) state
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B0, m}) in the m-th twisted sector for which!
oo

¢ =/{: dl ({BO, m| e | BO, m)) (2.1.3)
Sinee we will not need much detail, the dedicated reader may obtain the
precise form of the | B0, m)) from equations. (4.14-4.23) of [47] except for a small
difference. We remove the character (for the irrep [ of Zx) xi(g™) (as given in
equation (4.23) of [47]) since we wish to include as a part of the normalisation. 1t is
useful to note that | B0, m = 0)) is the boundary state for a zero-brane in flat-space,
The consistent boundary states are labelled hy the irreps of Zy (satisfving Cardy’s

consistency conditions) for the fractional zero branes are

MN=1
[BO: 1) =" ™ [BO,mY) I=0,1,... (N—1) (2,1.4)

=0

where -a;:E"] " = x{g™)IVN = e2HImiIN N is the normalisation for the fractional
zero-branes.  The DO0-brane charge comes from the RR charges in the nntwisted
sector and is 1/ the value in fat space — a 1/v/N from the normalisation r,'ilj.“] " and
another 1/v'N from the “renormalisation” of the charge in the orbifolded space[39].

The RR charge from the m-th twisted sector is

0] m ' gr” =
Q¥ =¥ (2.1.5)

2.1.2  Fractional 2p-branes

We will now consider the case where one imposes Neumann boundary conditions on
one of the fields on which the orbifold group has a non-trivial action. In COMpIL-
ing the annulus amplitude for open strings between two fractional 2p branes, the
bosonic and fermionic non-zero mode contributions are unchanged from that of the
zero-brane case, However, one has to treat the bosonic and fermionic zero-mode
separately. The contribution from the bosonic zero-modes to the open-string par-

tition function with a ¢" insertion is given for a fractional two-brane, for instance.

'This is not quite the boundary state that satisfies Cardy's condition ane hence we represent

it by | B0, mn}} rather than [B0, m} to avoid confusion.
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by:

Va(8rialt) 42 =1
bosonic zero-mode contribution = (2.1.6)

Amea't) A (A sin® rmw) ! om #
Vi(8m2at) "2 (4 sin® rmw)™! m £ 0

The m = 0 case is the samne as the one with no orbifolding. The m # 0 sectors
are similar to the zero-brane case that we just considered except, for an additional
factor of (dsin® wmey)=', This factor arises from the orbifold action on the bosonic

zero-mode in the open string partition function, which is given by [3Y]
{klg™ (k) = 6*((1— g™)k) = |1 — g™ "'62(E) = (Asin* (rmw)) ' E)  (2.1.7)

where ¢™ = e*™™ defines the group action, & is the two dimensional momentium
~vector along the orbifold plane with complex components Fooy ke and the eigen-values
of g™ action on k are e27m gyl p=% 0w Thuc afier mtegration over the & space
one gets the factor (4sin® mmp) L,

Putting all this together, one obtains the following changes in the ex-
pressions for AP (for fractional 2p-branes, the index a = 1,.. ., p runs over the

Neumann directions) with respect to the zero-brane case given earlier, i.e.. e
Vi(8ra't)™12 — Vins1 (Sma't) ~epH1/2 m =0

|]‘J
11 Vi [ J(4sin® mmw, )~ m A0
a=1

The anmilus amplitude for the 2p-brane in the untwisted (m = () sector is thus

2 1+ (=)F
AEJ—P} e m.(yrn ; :I F—..t.H,.)

, Sl T P— 1 2sin{mmy; (it ) /
7 T gty t2pe1)/2 \ i ] (218
“’“ﬁ TR A [ & (mu,. it) &1.8)

j=1
T (Balmvy it)\ yop ¢ falmuy, it)y 1 o1, it
| L T (]
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and in the m # 0 sectors

¥
Aiﬂzp] = {p (gm 1+ é_] o2ty )

E = u] T - L
= V H[4 “w.']I]2 i_ITTI-I/'”J_I / dt [S I"i JL} 1.-”I H [2 q]1'||:"r';rn,l_.r?},ali||i¢t}]

] 3 th (1, it )

[1—[ (I‘B’a :’;H;} it) ) H (Hﬂzzif:} ”])E (M)] (2.1.9)

nlit)

The boundary state is quite similar to the one for the fractional zero-

branes as given in equation. (2.1.4) with the following replacements:

182p:m =0) = |B2p)ja *pacs {(2.1.10)
|B2p:m#£0) = |BO,m), (2.1.11)

where the tilde represents the operation which switches the signs on the non-zero

modes in a manner suitable for a 2p-brane. With this, we can write the boundary

state for the fractional 2p-branes:

N

B2p:1)= > ¢ ™ |B2pom) I=0,1,...,(N—1) (2.1.12)

m=2pn

where

Sul2p) _ X;I:gm} B EEWiJ’m,"N
! VN I'IL] (—2¢sin oy ) VN [}Ll (—2i sin i) :

where we have included a constant phase factor of (—i) along with the 2 sin 7w

sinee it makes all intersection numbers being real. The above normalisation implies
that the m-th twisted sector part of the boundary state for a fractional two-brane will
be the same as the fractional branes with a multiplicative factor of {—2isin )
{for every Neumann boundary condition) and thus the RR-charee in the m-th
twisted sector of the two-brane is given by

r
(2 xe(g™) 1
‘ i _ X 2.1.13
o N % 2 sin iy, { )
where the index o runs over the Neumann directions and I = 1,.... ] " label the

fractional 2p-branes. Finally, the two-branes all carry 2p-brane RR L:im.rge from the

untwisted sector which is 1/N of the result in fat space.
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2.1.3 Intersection numbers

From the appendix of [39], one can see that computation of the open-string Witten
index is given by (equation.. (4.54) in [30])
n
o =3 (P ")y [T(-2isinwmu) (2.1.14)
Ll i=]
where i7" are the normalisations associated with the boundary condition f. Far the

fractional zero-branes, one has

gopm 1

|_|I' @ YI{HT”:I

where x1(9™) = exp(2numI) for Z,. Note that one amits the spacetime contribution

to this since it multiplies the above result by zero.

We can also work out the general formulae for the open-string Witten
index for open-strings that connect fractional 2p-branes to fractional 2p'-branes.
This generalises the expression existent in the literature for the case of fractional

zero-branes. A straightforward computation gives the following master formula for

the C*/Zy orbifold [39. 38]:

rl it N n - .
o _ +p-1 Z 2I-DN [ i (2sinmgeg)
net (2sinmiv,) [T, (2sin wjvy)
(2.1.15)

where the product in the denominator of the RHS runs over the p 1p') Neumann

directions alone and the prime indicates that the sum does not include terms that
have vanishing denominators — this happens when ju, become integers, One can
see that the intersection between fractional 2p-branes and fractional 2(n —p) branes

(obtained by exchanging Neumann and Dirichlet boundary conditions) is the identity

matrix.
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2.1.4 Intersection numbers — examples
2.1.4.1 CYZ,

The Z4 action is taken to be %[—FZ, —2,—=2] with the Neumann boundary condition
‘chosen on the first Geld when fractional two-branes are considered?, There are throe
[ractional zero and two-branes, which we will represent by SY and S7 respectively,
The quantum Z; acts on these branes by shifting { — I + 1 mod 3. We will write
the intersection numbers in terms of the generator g of the Ty and is represented by

the 3 dimensional shift matrix,

10
g9=10 0 1 (2.1.16)
D= b2

The master formula, equation (2.1.15) gives on using 2sin(7/3) = 2sin(27/3) = /3

Iﬁ.u _ _{1 _g}ﬁ
T = —p¥l=g)? (2.1,17)
" = gll-yg)

Note that in the expression for the intersection form ™2 between [ractional zero
‘and two-branes, the factor of g* can be gotten rid of by relabelling/shifting the 7
labels, of say, the fractional two-branes by two. Note that such a shift does not
affect 7%, This has to be kept in mind while comparing with the intersection form
for the coherent sheaves that we propose as candidates for the large-volume analogs

“of the fractional two-branes in the next subsection.

EP1.4.2 ©Z.

The Z action is taken to be 1[—4,—4,—4,—4, —4]. We will consider the cases

of fractional zero, two and four branes. Again, we will use the notation Sf, M with

If we choose the Neumann direction to have v = 1 rather than v = —2, the intersection

“mumbers are non-integral. This is related to the type 11 open-string GSO projection[51].
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1=1,2,3,4,5 mod 5 and the quantum 7, being senerated by g which takes szp} —

8. The various intersection matrices are siven by:

T o= (1 g
IU.? = _g:i{l_g:lvi
4 = —g(1-g)* (2.1.18)

IE.? _ g[:-[__g}?-
" = gl (1—-g)

M = —g(l-yg)
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Chapter 3

Coherent sheaves on the resolved

space - 1

3.1 B-type branes on Calabi-Yau manifolds

We will now discuss in greater detail the nature of the colierent sheaves that arise
from the continuation to large-volume of the fractional p-branes that we have been
studying at the orbifold point. For specificity we will focus on the case of fractional
zero-branes and fractional two-branes in the case of the blow-up of the orbifold
CYZy. In this case the manifold at large volume is the total space of the line
bundle O(—3) on P? which is a nen-compact Calabi-Yau manifold,

As we already mentioned in the introduction, some obvious B-type branes
on Calabi-Yau manifolds are branes wrapping holomorphic eyeles in this Calabi-
Yau manifold. The condition that the branes wrapping such holomorphic cyeles
Preserve soue supersynunetry imposes conditions on the gauge fields living on the
branes. These conditions imply that these B-branes are described by holomorphic
vector bundles [3, 12] (this means that the transition functions on the bundles are
Tolomorphic functions) with support on the appropriate cycles.

Holomorphic vector bundles on the eyeles of the Calabi-Yau manifold

(apart from the six-cycle) can equivalently be considered as coherent sheaves on the

Calabi-Yau. The charges of the B-type branes may be conveniently read off from
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from the Chern character of the corresponding bundle or sheaf, Thus given the
Chern character of a bundle (or sheaf)(£) for a 3-dimensional CY, the charges are

given by [24]

ng = chy(E) = rank of the bundle, ny = chy(E) = oy (E)

1 . ;
ne = ¢ha(E) = = Pf{E} — e[ E) and ny = chy(E) (3:1.1)

i
-

We note that correspondingly for a sheaf on P2,
ch{E) = ng + nad + npd* {3:1.2)

These charges are not identical to the RR charges but are an equivalent conveniont
basis.

We summarise in the table below how some simple examples of branes in
the total space of Qpz(—3) can be represented by coherent sheaves, or eruivalently

the corresponding complexes.

Object the askocidted shead Chern ch.
A 4-brane wrapping P* Oz 1
A 2-brane wrapping a P! c P O =[Oz -1) — Oxs] J— &
A point on F? by Opi = [Os2(~2) — 057 (—1) — Opt] J2

where J generates H*(P*. Z) and (J%)p: = 1. Note that we can always twist the 2-
brane by tensoring it with Qpz(n). This changes the J? part in the Chern character
for the 2-brane. To determine the Chern characters and hence the charges we need
to use the fact that the alternating sum of the Clern characters of objects in a

sequence is zero.

3.1.1 GLSM with boundary

The somewhat mathematical picture of B-branes that we just recalled briefly, can
be explicitly realized in a physical deseription in terms of the GLSM. In chapter

1 we had reviewed the GLSM construction for the specitic examples of the quintic
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hyper-surface on F* and the C*/Z; orbifold. Specitically for the second example, the
construction realized the C*/Z; orbifold and it's geometric resolution as different
phases of the GLSM lahelled by different values of r. By analytically continuing in
the r space one could interpolate between the orbifold point and the large volume
point. One can similarly study the analytic continuation of the D-branes between
the orbifold point and the large volume point. For this one needs to introduce a
GLSM with boundary, We will review the boundary GLSM construction of [44. 37]
in this section. In later sections we will use this to identifv the fractional zero-
branes and fractional two-branes as coherent sheaves in the large volume., We will
‘also need the boundary GLSM in chapter 6 for the identification of boundary states
in the Geprer model of the quintic with the coherent sheaves in the smooth quintic
Calabi-Yau,

For simplicity let us consider a GLSM without a superpotential. For the
boundary GLSM we need to introduce boundary conditions which preserve half of
the N = {2.2) supersymmetry, In the case of the B-type branes we must ensure
‘that the boundary conditions on the A" = (2,2) susy algebra in the matter sector is
given by equations(1.5.6 and 1.5.7). By consistency this also imposes conditions on
the pauge multiplet fields (44, 37]. For the analogue of the Chan-Paton factors one
has to introduce new boundary fermionic multiplets into the action, The bulk chiral
superfields (@) restricted to the boundary give rise to two boundary multiplets, a
boundary chiral multiplet @ with components (¢, 7), where 7 = (- — o, ) /2 and
a boundary fermionic multiplet with components (€ = (. +4:.)/V2, —F), where
o, Yy are the left and right moving components of the bulk fermion(restricted to
‘the boundary) and F'is a auxiliary feld. 1t must be ensured that the susy variations
of these terms cancel the terms coming from the bulk variations.

The action for the new Fermi multiplets superfields is given by [37],
1 B}
Sp = —5/ da"d* 011,11, (3.1.3)

where 8 is the boundary superspace coordinates. The Fermi multiplet satisties the

following equation

DI, = V2E,(d") (3.1.4)
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~where E{@') is a function of the @', The component expansion of the 11, is given by
- gy . o))
I, = m, + V201 — V2IED' + 00(—iDyrr + iz )
This reduces to the usnal chiral super field expansion for £ = 0,

We can also add a further superpotential term,

1
8 = 5 /rﬂm”dﬁ{l’laiﬂﬂﬁ:u —l.c (3.1.5)

where J*(®) (a=1,...,r)arer homogeneous polynomials of degree d, which satisfy
the constraint E,J* = (),

3.2 Fractional zero branes from Euler sequences

In this section we will use the boundary GLSM introduced in the previous section
to identify the fractional zero-hranes in the ©%/Z, orbifold as bundles on P, in the

resolved space.

The simplest way to obtain the orbifold peint! from the GLSM is to

Cconsider the limit e*r — —oc. In this limit, the fields in the vector multiplet

behave as Lagrange multipliers. The D-field imposes the D-term constraints and

the gauginos impose the constraint[44]:
Z Qt‘ﬁbi l.'-'Ijzl:i =10.

‘When one imposes Dirichlet boundary conditions on the fields, this equation imposes

& condition on the combination &, that is not sef to zero by the boundary conditions.

Thus, the gaugino constraint on the boundary is now

Z Qid:k; =0 (3.2.1)

It is important in what follows that these fermions &, play the role of the boundary
ions that are used to construet coherent sheaves associated with B-tvpe branes

at large volume The argument for this is based on two observations. First, the trivial

Yor the LG orbifold point in the quintic case
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line bundle Op: is one of the states obtained by a analytic contimmation of fractional
zero-branes to large volume [47] and hence arises from having Dirichlet houndary
conditions on all the fields in the orbifold. This implies that in analytically contin-
uing (in Kihler moduli space) the D-branes from the orbifold to the large volume
limit, all Dirichlet boundary conditions become Newmnann boundary conditions (see
also the discussion in [44]). Second, in the GLSM construction that realises B-tvpe
branes as colierent sheaves, the boundary condition at large volume relates the & to

the boundary fermions 7, via the boundary condition[37]

- -Ii-}lfll-
‘EI' == ?'Eﬁu {322)

where m, are the lowest fermionic components of the [1,. Thus for linear boundary
conditions the (J* oc @), the & and n, are identified,
This boundary condition appears for the eoherent sheaf given by the

following exact sequence
0—E—0% 4 o) =0 (3.2.3)

which corresponds to imposing the holomorphic constraint J*m, = 0 on v boundary
fermions, 7, (@ = 1,.... r}. considered as sections of @%". Thus we see that the
sequences and complexes that we describe have a clear physical realisation.

In the case of the C%/Z; orbifold one is left with three independent
fermionic multiplets on the boundary. In this case the gaugino constraint equa-
tion is

3
> i€ =0 (3.2.4)
i=l|

Treating this gaugino constraint as a degree one holomorphic constraintg,

that is setting J* = ¢ in (3.2.3), we get the Euler sequence on F?

0— Q1) — 0% - (1) =0

with the boundary condition

£ =im .
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Thus, one can indeed hypass the introduction of boundary fermions by treating the
{_'; as boundary fermions and the gaugino constraint as a holomorphic constraint.
Of course, we have three boundary states associated with the orbifold.
It turns out that the other two coherent sheaves are given by the following exact
sequences that can be derived from the Euler sequence (given for P below though

we only need the case of n = 2 Lere) associated with Q(p) = A"Q @ O(p)

ALy

0— 2(p) — O L p-1) @ O1) — 0 (3.2.5)

Note the appearance of the binomial coefficients (") in the above sequences, We

define

[b'f’H: V(1)  i=10,1,2 (3.2.6)

These branes S7 can be identified as the result of the analytic continuation to large-

volume of the fractional branes in the orbifold limit. Under the quantum Zs sym-

metry(generated by g), one has
g: 525", mod3

A basic test of this identification is based on the idea that we expect the intersections
of these branes (which is a topological quantity” computed by the open-string Witten
index) to be the same at the orbifold point and at large volume. At the arbifold
point the intersections can be readily computed from CFT techniques. For coherent
sheaves on o smooth CY we can compute the intersections using standard methads
from differential peometry. The two must agree as they indeed do.

The boundary fermion construction naturally leads to the spinor bundle
on £ rather than the coherent sheaf E. Tn the GLSM construction to obtain just the
«coherent sheaf we restrict to one-particle states in the corresponding boundary state.
It was observed in [37] (see sec. 5.3) that when £ is the cotangent bundle, the spinor

‘bundle decomposes at different fermion numbers® to the different fractional branes.

2t is the index of the Dirac operator counting the number of chiral fermions in the spectrum
-of open strings stretehing between these branes.
For the case of weighted projective spaces associated with one Kahler modulus Calabi-Yau

ifolds, one replaces the fermion number by the U(1) (Ex) charge.
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Thus, the monodromy about the orbifold point is realised by suitably changing the
restriction on the fermion number of the states. Thus, the three fractional branes
for the orbifold are in one-to-one correspondence with the states: (the vacuum |0)
satisfies £]0) = 0)

0y« &0} & &&lO)

subject to the condition 3~ GE = () being imposed 4,

3.2.1 Fractional two-branes in C*/7,

Let us now consider the case of fractional two-branes in the C%/Z; example. Let us
impose Neumann boundary conditions on (¢ — ¢2) and Dirichlet on (¢ + ¢a) and
¢y® . Away [from the orbifold point, thus there are two fermions (after eliminating

_:_;_f_g in favour of £): & and &. The gaugino constraint is
(1 +2)6s + a3 = 0. (3.2.7)

- Thus, when (¢ + ¢, ¢) # (0,0), the constraint removes one fermion and when
{qﬁi + o, 3) = (0,0) the constraint is trivially satisfied. This is possible on P2,
when @ — @2 % 0, Note that these conditions specily a two-brane (denoted below
by P) in the space Op,(—3) which is the resolution of the C? [Ty singularity.

This implies that the fermions are sections of the sheaf Fy given by the
following sequence

0—F—0% =5 001)— Xp— 0 (3.2.8)

The term involving X'p has been added to take care of the fact that (3.2.7) is trivially

satisfied on P. The following comments are in order here:

1. Xp, by definition, vanishes away from P, In particular, it vanishes on the

P! € P? where (¢ — ) = 0.

- 14 related abservation was made by Mayr in 126] where he referred to the fractional branes us
providing a fermionic hasis for branes

5We choose this boundary condition since this will be compatible to adding a superpotential
i) = ¢} + 93 + 0.
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2. Defining
{1 — Ph—i{ﬁ—)fplﬁj@[—lj — 0,
the sequence can be rewritien as
U= F - 0% S Reo(l)—0 (3.2.9)
3. By restricts to @Oz on the P! pot containing P,
4. The above sequence when restricted to the B! not. containing I becomes the
Euler sequence. Thus £l = £ (1).
5. Note that £} is however a sheaf on P2 even

though the sequence which gener-
ates it is reminiscent of the Buler sequence for P!,

The above identification suggests that the remaining fractional brines

n be given by exact sequences that on restriction to a P! not containing P ajve

he generalised Euler sequences of P!, The last seque

Anteresting. One can argue that Fy, = — ¥ @ O(1). That Fy must at lesst have & I

nee which generates £} is rather

s a factor is clear since the last sequence must restrict to zero on on the P! € P2 not

containing P. This is because there is no corresponding generalized Euler sequence

." appears on P!, The factor of (1) ean be deduced from the general pattern that

we observe in these sequences, We refer to £ as the Coulomb branch brane becanse
1 2

of this vanishing property on restriction to the P! not containing P. The remaining

branes (£, F) will be called as the Higgs branch branes. As will be explained later,

parallels the missing branes that one needed to make a correspondence (called

e quantum MeKay correspondence) between D-branes on a LON-SUpersymmetric
orbifold and D-branes on tle Hirzehruch-

and Moore

Jung resolution as considered by Martinee
[40]. This relationship will be made more precise in the next chapter,

Therefore finally we pet three fractional two-branes given by the se

00— Fy — Opz — AXp® Opz{—1) — 0 (3.2.10)
0= £ = 0F - F® Op(l) — 0 (3.2.11)
0— Fy = Opr — F @ Ope(1) — 0 (3.2.12)
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The main claim we make is that (=)' £7 can be identified with the analyvtic
continuation of the fractional two-branes § Ei] , that we constructed at the orbifold

end provided we take,

; of 5
ch(Xp) = 3 (up to J° terms) (3.2.13)

The main evidence we provide is the matching of the open-string Witten
index computed at the orbifold end with the intersection forms computed in the large
volume using the candidate objects we present here. The caleulation is presented in
the next section.

The Buler form associated with these fractional two-branes, £ have been
computed in the next section and are generically fractional. However, the intersec-
tion form which is obtained by antisymmetrisation of the Euler form is integral
I[lﬁ}. The integrality of the intersection form implies that the charge quantisation
condition 1s not violated.

The key point to note here is the assignment of a fractional 2-brane charge
to Xp. In later sections we will motivate the existence of such objects through a
tomputation in cohomalogy as well as K-theory. Further in chapter 5 we will describe

these objects in the framework of toric Eeometry,

3.3 Intersection matrices for C*/Z;

h__afﬂre we begin the intersection computation, we can write down a more general
form of the Chern character for X, Clearly while we require its leading term to be
of the form J/3, the J= termn may depend on whether we have twisted the ohject by

aline bundle @(n). Thus the general form will be

chd),) %c‘h[{‘_’]p:{m = 1) — Opz(im)]

_ é(t‘“r ':‘?L;l-lﬁ) (3.3.1)

=

47



Finally using these objects &), we rewrite the sequences that we wrote
® I‘!l T

down in the previous section for the three fractional two-branes as,

(] — .Fi;. =¥ f:}gt: — elgy_g ) @pﬂ[l] — ) [-332}
0— F — O = Fy@0pn(l) —0 (3.3.3)
0 — o — Op — F) @ Op2(1) — 0 (3.3.4)

In the first line, we have included the fractional contribution by inserting A, _, in
the first line of the above equation to complete the sequence.

We then obtain the following identifications

ch(Fy) = t:h[@_:;aj—t:l]{;-'t‘n_lj (3.3.5)
—ch(F) = ¢h[Op(1)— OF] — ch(X,) (3.3.6)
ch(Fy) = ch[Op — OF (1) + Op:(2)] — ch(Xpsy) (3.3.7)

The objects in the square brackets are non-fractional objects and hence correspornd
fo coherent sheaves on P2, Thus these terms must necessarily arise from the twisted
sectors of the boundary state. The contribution of the untwisted sector is contained
the term containing the A,

Now the Chern character add up as follows:

(2r 4+ 1)

ch(Fy — £y + Fy) = ch[O(2) — O(1)] = J + 5

J?

__'__m'-:'. we have kept the two contributions separate. Note that the X''s have sumimed

ip to give an object that Lias the Chern class of a two-brane on B2,

We now present the computation of various intersection matrices for the

coherent sheaves given by the sequences written out for fractional zero and two-

8. We present the Chern classes after restriction to the P2, The Chern classes

for the fractional zero-branes are given from the Euler sequences for P2

ch(si™) = 1 (3.3.8)
(0] J* ,

ch(S3°) = =2+ J+ w (3.3.9)
) J?

ch(S;") = 1—-J+ 5 (3.3.10)
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The Chern classes for the fractional two-branes are

eh(5H) = 91— % == @% (3.3.11)
; 2.J 1).J2 e
i.!h[.S-_l;‘._]J = -1+ s %— (3.3.12)
e J o (2m 4 1)J7
.5"] = - — - b h
cli{ S™) 3 5 (3.3.13)

The various Euler forms given below are obtained using the formula:

¥(E . F)= [ ch(E)* ¢h(F) Td(P*)

i)

0
NS slh — | _3 0 (3.3.14)
1

—m+d4 2mi] *-'J'?]L—l\'

v [ l
X(S?. 5 =2 | i —7 m+6 —m—2 (3.3.15)
-m+1 2m—1 —m )

- —=l=m —m- EN‘I
XEEH §H = % 2m—=2 2m+3 2m4+5 (3.3.16)
=m+35 —=m—-5 —m— :j)
—Gm -1 =] —3m -7
(5", 5 =$ —10 6mA4+11 3m+8 (3.3.17)
—dm+2 3m-—1 =

.

For bundles on & Calabi-Yau manifold these are antisymmetric. However, for bundles
on divisors or more generally sheaves, the intersection forni is obtained by explicitly

antisymmetrising the above(as explained in [16]), i.e., let
IE'.E)=x(EE) - x(E, E"

for any two sheaves E and £'. We will write these in terms of the elements (g) of

the Z; monodromy group, where as before ¢ 18 represented by the 3 dimensional



shift matrix.

01 0
g=10 01 (3.3.18)
1 00
In our case, we then get
I = IS0, 80 = (1 =y
M = I8, 88 = _(1— ¢? (3.3.19)
I =1{5".5%) = g(1-g)

These intersections mateh with the results of the Witten index computations at the
orbifold end presented in equation 2.1.17 up to shifts of g% in 797 as is discussed
there. Note that the dependence on m disappears in the intersection matrix and
s we cannot Ox its value. However, this is to be expected since a change in m is

obtained by twisting by (1), which is the monodromy at large volume. Since these

3.4 Cohomology and K-theory computations

In this section we will try to motivate the existence of ob jects with fractional two-

i
i

brane charge by a computation in cohomology as well as in the context of K- theory,

_4 1 Computation in cohomology

We shall now consider the basic two-cycles in M = Op2(—3) which is a non-compact

Qalabi-Yau and is the crepant resolution of the C3 /L orbifold.
‘[ There is one compact two-cyele given by a P! in P2

all



fractongl 2=brme

== sngulariy

redu|visg P2

Figure 3.1: A schemutic deseription of the fractional two-branes both before and

after the singularity is resolved.

O In addition, there are three non-compact two-cycles corresponding to the fibre
over P, These two-cycles intersect the boundary at infinity, which is 5% /Z;,

-~ onaoneeycle y € 5%/Z;. (4 is a element of Hy(S%/Z3,7) = 2.}

Consider a two-brane wrapping a non-compact two-cycle. What is the the TEprese-

In the case of non-compact manifolds the correct framework in which to
discuss D-brane charges is compact cohomology or equivalently relative cohomology.
For a non-compact manifold A7 with boundary N, the two-brane charges take values
i H2 o (MUZ) ~ HP (M, N, Z). A caleulation (given in appendix A) shows that
fhis is Z and since M has only one compact cyele, i.e., the P, the basic two-brane is

ol tained by wrapping a ' € P, Hence, J generates H2(M, N.Z). However objects

0= 25— Zy—0 (3.4.1)
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Let J' generate H*(Op2(—3);Z). The exact sequence above indicates that [J] ~
3[.!’] Thus if [J] is the charge basis of the 2-brane in the compact cohomology,
then a charge +1 2-brane in the compact cohomology would correspond to a charge
+3 2-brane in the [J'] basis. A single 2-brane wrapping the non-compact two-cyele
would have charge +1 in the [/'] basis or charge 1/3 in the [J] basis. Thus three
two-branes wrapping a non-compact two-cvele of M can give an object which is
equivalent” to a two-brane in F? as elements of H2(Op2(—3), S3/Za: 7). Tn many
ways, this is like the fractional zero-branes — the fractional zero-branes were localised

at the singularity and conldn't be moved away from there unless three of them were

taken to form a regular zero-brane,

Thus we have motivated the existence of objects with fractional two-
brane charge measured in the charge basis associated with the compact cohomology.
ﬁe can also perform an equivalent computation in the context of K-theory rather

than cohomology, showing again the existence of fractional two-brane charges, but

A useful reference for the computations of this section is [GE].

We will take as the manifold M, the disc bundle D(E) related to the

& 5The term equivalent can be made precise in the torie description of this geometry, where

the equivalence is a consequence of the linear equivalence of divisors adapted to the non-compact
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_ idle £ defined by taking all vectors v in E such that their inner product (defined

with respect to some appropriate Riemannian metric on E) (v, v) < 1. The bound-
ary of D(E) will be sphere bundle S({ F) made of vectors v in F such that {v,0) = 1,
By a standard argument, the relative K-groups K(D(E). $(E)) may be identified
the K-groups K&, E,) where Ej, is the complement of the zero-section of 5.
To compute the K-groups K (M, M ) for a compact manifold M with

boundary dM we may use the following six-term exact sequence:

KY'(M) — R"(OM) — K'(M,OM) — KYM) — (3.4.2)
— KYOM) — K°(M,aM) — K9(M).

In our case M = D(E), oM = S(E). For the case of the disc bundle since it

15 4 deformation retract of E itself and the K-group of a bundle is isomorphic to

the K-group of the base, we have K(D(E)) = K(P?). To compute K(S) we may
tompute it knowing the cohomelogy of S(E) = §5/Z,. Though strictly speaking

We may now do the computation, using the data on the E-groups of
S(E) and K (F?) (in particular, K'(P?) = 0, since all the odd cohomologies of P
e zero) to obtain the following shorter exact sequence:

0 K'(S%/Zs) — K"(O(~3), $%/Zs) — KO(P2) — K°(S®/2Z3) — 0. (3.4.3)

g the data

KP) =29 L& L KOS/ L) = 26 Ty 0 By KNS/ 2o) =T (3.44)
,tam the result

KM= (3.45)
-—;ﬂ.. QL Z 15 I the kernel of thﬂ map FI'UT.I] If“{.-‘l-f, dﬂ‘f} ‘o ffnlfF'!} Two of
£ factors in K°(M, 1) form part of the sequence of the Lype

0= BT g0, (3.4.6)

o



hat this shows is that if [./'] is the generator of K°(F?) and [J] is the generator
of KO(M, OM) then [J] ~ 3[J']. If we take the standard unit of 2-brane charges to

be given by [J], then a 1/3 charge in the [J] basis becomes an integer charge in the
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Chapter 4

The quantum McKay

correspondence

e now turn to the relaf ionship between the fractional 2-branes of the susy orbifold

Y Zy and the fractional zero-brane an a corresponding orbifold C"-1/Z.y, We

also argue that this provides a new way to understand the quantum MeKay

torrespondence, in a non-susy orbifold, due to Martinec and Moore by studying the

fractional 2-braue in the higher-dimensional orbifold.

It is useful to review some aspects of the classical MeKay correspondence

[19] that are relevant for our considerations. A mathematical review of this corre-

The classical McKay correspondence in two

dimensions

i}
Wy}



Let g be the elements of T and (2!, Z?), the complex coordinates of C2,

and the action of g on the coordinates be defined by
g Z'=Qie)7, i=1,2 (4.1.1)

The tensor product of the two dimensional representation @ with any

iirreducible representations R can be expanded in terms of the irreducible represen-
fations as follows.

Q& Ry = @A R, (4.1.2)
‘f-:: ckay observed that the » x r coefficient matrices AY can be identified with the
jacency matrix of the extended Dynkin diagram associated with a simply laced
Lie algebras Gp of rank + — 1, where 1 is the number of irreducible representations
I‘ We will be interested in cases where I' = Zy, which are related to the 4,_,
i ynk].u diagrams.

The resolution of the C*/T is a smooth ALE space Y, which has » — 1
exceptional 2-cycles ¢ Let op = =3 (dic;, where the d; are the dimensions of the
lous irreducible representations of T, Then the precise correspondence is that the

extended Cartan matrix of Gy, given by
Ok =985 = 4! (4,1.3)

B given by the negative of the intersection numbers between (er,¢s) where | =

01— 1.

There is a version of the MeKay correspondence due to lto and Nakamura



sections of /2. Here the subscript s stands for supersymmetric, sinee the blow-up

of supersymumetric orbifold singularities gives rise to a physical realization of the

1 ._'is subsection is hased on [40]. Cousider the following orbifold action on 2 {(with

toordinates (1, )
(@1 92) — (woi, whe) (4.2.1)

iere w = exp(2mi/n). The case when k = (n — 1) is a supersymmetric orbifold
and the orbifold is uniquely resolved by blowing up (n — 1) Ps whose intersec-
) matrix 1s —1 times the 4, Cartan matrix. For gencral NoN-supersymmetric
wik)s there is a manimal resolution known as the Hirzebruch-J ung resolution.
The resolution consists of v Pl's, where r is the number of terms in the continued

fraction expansion of n/fk:

; 1
E =il — S = [ﬂ-],ﬂ.g,.. i ,IT.]-] H'Ez}
|‘I'Ii: Hg ———q—
I'!_'J——Illlr-u:

Wlere o, > 2. There are other resolutions with more P's for which some of the
dy = 1. The supersymunetric case ocenrs when all a, = 2. One can check that

filn— 1) = [2"'); 3/1 = [3] and 5/3 = [2, 3] are minimal. The intersection matrix

a7
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Figure 4.1: The MeKay correspondence for C/Zy

e P!'s is given by the generalised Cartan matrix

CREr—
1 @y =1 - 0
I P 123)

B ome e a )
1 Fractional zero-branes on C*/Z,,
Jne can construct boundary states for zero-branes on the {507 Zniiy orbifold. Stan-
methods (analogous to our earlier discussion) lead to n boundary states which
we will call fractional zero-branes and label them 5P T=1,2.::0,m for-the non:
sipersymmetric case. In the supersymmetric orbifold we will label the fractional zero
es a5 5%, The zero-brane which ean move off the orbifold singularity is given hy
5} in the supersymumetric case and by 7 ;97 in the non-supersymmetric case.

These provide a basis for equivariant EK-theory of the arbifold:
Kz, (C?) = 2 ¢ ! (4.2.4)

e Z denotes the non-{ractional zero-brane that can move off the singularity and

i, the (n — 1) fractional branes that eanmot move off the singularity,

The supersymmetric case: the McKay correspondence

lie McKay correspoudence arises when one considers a resolution X of the sin-

ty in the supersymmetric orbifold C?/Zyin-1y. In this case we have a unique

o8



crepant (Calabi-Yau) resolution. One would like to know the precise objects, ie

coherent sheaves that correspond to the continuation to large volume of the frac-
tional zero-branes that we obtain at the orbifold point, We will focus on the cases
where there is a description of the resolution via the GLSM or equivalently, that the
tesolution of the orbifold admits a torie deseription.

The GLSM for the resolved orbifold will be given by considering (2 + )
chiral superfields and » abelian vectar multiplets{40], where + is the number of
terms in the continued fraction representation of the Hirzebruch-Jung resolution.
The orbifold limif is a special point in the Kihler moduli space. Another point
_'interest. is the large-volume point, which corresponds to the point in the moduli
space where all the P's that appear in the resolution have been blown-up to large
yolume.

In the supersymmetric case which happens when r = (n—1), 7 turn
out to be simple. (n —~ 1) of them are given by the line-bundles (D) (where D,
1,... ) represents the divisors associated with the r P''s) and the last one

e trivial line-bundle @y, These line bundles are called the tautological bundles

The fractional zero-branes furnish a basis for the equivariant K-group
the orbifold, ie., Ky (C°). Iu a similar fashion, it turns out that the the large-
me analogs of the fractional zero-branes S5 provide a basis for Ke(X), the

Ketheory group with compact support. One expects the isomorphism
jfz.u.[ﬁ:ﬁ} ~ j{r[X.]'l i

_ﬂ her, there exists an isomorphism between K¢(X) and K{X) (see figure 4.1},

42.3 The non-supersymmetric case: the quantum McKay

Correspondence

tinec and Moore[40] considered the case of non-supersymmetric orbifolds and

itempted to find the corresponding large-volume analogs of the Y. in such cases.
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Fractional 2p=branes |« 5] Tautological bundles
=P
on €Y7 N onC™ M2,

Figure 4.2: The proposed quantum McKay correspondence for ©0 JZonr

i

_ e natural candidates are the line-bundles ¢(D,) and the last one is the trivial
line-bundle @y. There arc (r + L) of them as in the supersymmetric case with the
only problem being that r+1 < n. So there are not encugh line-bundles to complete
en Ry, at large-volume. The r + 1 line-bundles are in one-to-one caorrespondence
h the so-called special representations of Z, in the mathematics literature[52).

1 We now review the resolution of this puzzle as given in [40]. We will

propose another means of resolving this puzzle in the next subseetion. The frame-

Hirzebruch-Jung resolution is not a crepant one, since (X} < 0. In the quantum

GLSM, the world-sheet FI parameters flow under the world-sheet renormalisation

moup[43]. The singularities are resolved in the IR,

The resolution proposed in [40] is that one must include branes from
all quantum vacua, In the IR, the theory Las two branches - the Higgs and the
Coulomb branches. The missing branes were identified with braues that appeared
in the Coulomb branch and were dubbed the Coulomb branch branes. In analogons

fishion, the tautological bundles in the Hirzebruch-Jung resolution were called the

Our idea is to embed the non-supersymmetric 2 /L) orbifold into a su-

pessymmetric orbifold in one higher dimension, i.e., C*/Z, . where we have added
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i third coordinate, denoted by ¢y, with the following Z, action:
¢y — w' 3, where (I + k + 1) =0 mod 2n . (4.2.5)

i, we cousider following fractional two-branes on C*/Z,: Impose Neumann
bo ﬂar}' conditions on ¢; and Dirichlet boundary conditions b = e = () on
id ¢, There will be n such fractional two-branes and we will label them Sﬁrﬂ.

Let X be the crepant resolution of C° [Zniry. It is clear that the the

ection 7+ X' — X is obtained by setting ¢ = 0. As discussed in the previous

ned using generalisations of the Euler sequences for the fractional zero-branes,
 one obtaius the following when one restricts the S to X

517 when I corresponds to special representations
a2, =4 ™ * " : (4.2.6)

0 ot hierwise

bis is consistent with our observation in the C%/Z, example where branes which
ippeared on restriction are those with support on the complex line given by
and @1 = ¢y = 0.' Thus, the field ¢y behaves like an order parameter with
0 corresponding to the Higgs branch branes and ¢y = 0 giving rise to the
mb branch branes of [40],

mes on X. In section 3.3, we liave provided the Chern classes for these objects,
identified Sg‘” as the Coulomb branch brane. What are the candidates for the
? In X , the P € F? given by ¢s = 0 is to be identified with the P! that

in the Hirzebruch-Jung resolution X of C*/Zy ;). The R, corresponding to
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special representations are Oy {—1) and @y, They are “dual” to S-F}]X and SEJ] -

'_'. he natural objects on j are the push-forward of the R's on JATIE
Rigy ~ J. [O%(—1)] and R, ~ 4. [0O] (4.2.7)

7 15 the inclusion map from X to X. The last object, R_.if] is a little bit more
ckier to explain, Its Chern character as well as the those of the above R, can he

worked out in the total space nsing the duality with the S}T’. An important point

More generally, we conjecture that the general quantuwm MeKay corre-
spondence works as follows (see figure 4.2). For the case of fractional 2p-branes
on C"/Zy (SE), the corresponding dual objects are the tautological bundles on
€/ Zy, the It}. Establishing this, especially for general N with n = 3 or for

i > 3 and general N would require further considerations beyond the preliminary

‘onsiderations of this thesis.
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Chapter 5

Coherent sheaves on the resolved

space -11

Inchapter 3 we discussed the large volume analogues of the fractional 2-branes in the
_ntext of the C*/Zy orbifolds. We argued there that they correspond to branes with
SUpport on some non-compact two eyele in the resolved space. However as noted
arlier, while the discussion there provided an intuitive geometric picture supported
by cohomological and k-theory arguments, the method was somewhat heuristic. In
particular the sequences we wrote down there were imprecisely defined. In this

._ apter we will try to make these statements precise within the framework of toric

geometry [59]. The discussion in the next section is based on [47, 18, 14].

10 zero size at the orbifold point. The idea behind [47] is to compute and compare
giplicitly the BPS central charges of the large volume D-hranes to the fractional

iranes at the orbifold limit (assuming that there exists a path in the moduli space
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‘along which the objects are stable). This analytic continuation has to be done in the
exact quantum moduli space of the world-sheet theory, To get the exact quantum
moduli gpace one has to s up the effect of world sheet instantons on the classical
geometry. This can be done by using the techniques of local mirror sytumetry and
50 one has to know the complex structure moduli space of the mirror geometry.
The complex structure moduli space of the mirror geometry has three sin-
gularities. The orbifold point where the theory is deseribed by the orbifold conformal
field theory, the ‘large volume point’, where the BPS central charge expression is
given by Z = J[r e FHEt (where w is the Kihler form and B, F are the usual B-

field and the gauge field strengths respectively) and finally the conifold paint where

cone of the BPS central charges vanish. At these singularities there is an associated
~monodromy action on the objects as one moves around these points, At the orhifold
- point this is the just the Zy symmetry which permutes the fractional branes anong
themselves, while at the large volume end the effect of the monodromy is that the
tensoring of the line bundles by a Of1). Using mirror symmetry techniques to find
the Z3 monodromy in the large volume basis, one can identify the large volume ana-

logues of the fractional zero branes, The bundles in the large volume corresponding

As is discussed in [18, 14] the main idea is to identify the large volume
analopues of a dual set of extended fractional branes which fills the whole C*/T

arbifold. Then using these new objects ane can identify the original fractional zero
nes themselves,

If ome takes the orbifold group I' to be abelian and it’s action on the
Chan-FPaton factors be defined by taking an irreducible representation of T, then

the bundle associated with these extended fractional branes (called the tautological
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bundles) turn out ta be line bundles ( R}). So we now have two sets of objects, the [t}
and the SY, the latter being the original fractional zero branes themselves. Also from
an analysis of the spectrum of strings stretehing between a pair of branes (R, S7),
one sees that the open string Witten index computed at the orbifold paint (which
we denote by (I, S7)) for these boundary conditions, is given by (B, 87) = 85
So from the above arguments we see that the R} are described by line
‘bundles which after blow-up should have support over the full resolved non-compact
space X. Also, the Witten index is a topological invariant and so must le equal
to the intersection forms computed between the large-volume analogue of these R}
and S given by the equation (5,1.1). Finally as seen in the C*/Zy exanmple using
mirror symmetry methods [47], the §7 form the basis for the bundles with support
‘on lower dimensional cycles. This suggests that the 5} corresponds to the classes of
the compactly supported K theory group K.(X).
In the mathematical literature it is known there exists a duality between
K (X)) and K{X). which is the Grothendeick group for coherent sheaves on X. For
‘abelian singnlarities K(X') is gencrated by line bundles. Also there is a natural

'Pﬂim:a_re duality between K{X) and K (X). If & are the generators of KX}, then

(B = / ch{R") ch(§]) Td(X) = & (5.1.1)

S0 it is natural to identify fff with the R*, which generate the K(X).

The idea therefore is to compute the Jt} [24, 26] and then compute ch( 2
using the relation

{Rp, 87) = 0} (5.1.2)
We are of course interested in the corresponding picture for the fractional
Z-branes. We denote the large volume analogues of the fractional two branes as 52,
Our aim here is to be able to give a toric description of these 57, We will do this by

ng an ansatz for the ch(S7) in terms of the toric divisors following [59]. Then we



This will enable us to justily the arguments of chapter 3, particularly the story of the
é%ﬁact.iunal‘ first. Chern class. We will also atleast partially justify the identification
of the objects themselves (as distinet from matching just the charges).

We will start with a brief introduction to toric geometry where we will
escribe how the orbifold spaces are encoded in the torie data. The explicit construe-
Jn of the fractional 2-branes in the toric framework is shown in the next section

for the example of C3/Z,. C* [Zs and CHZ-.

5.2 Toric Geometry - Basics

In this section, we will briefly review how to construct toric diagrams for orbifalds
88 well as to read off various information about the orbifold space from the toric

data. We will discuss the specific examples of €4 [ 23,03/ s and C*/Z orbifolds,

1 The C%/Z; orbifold

- consider the case of the C*/Zy orbifold with orbifold action 5[, 1,1, In the

toric geometry picture this orbifold is represented by the cone spanned by the vertices
vy = (L, 0,0), wa=(0,1,0), vy = (—1,-1,3) (5.2.1)

o see that this cone describes the C / Zg orbifold, we first construct the dual cone,
is done by the following procedure. If (a, b, ¢) is a vector in the dual cone, then
we look for those vectors such that the inner product of this with each of the above

Aertices is positive semidefinite. this gives the following inequalities.

a=20,b20 3¢c>b+a (5.2.2)

Now we have to solve these inequalities to get the basis vectors of the dual cone, All
other solutions to (a, b, ¢) can be written as a positive linear combination of these
 vectors and moreover no basis veclor can be expressed as a positive linear

mbination of any others. For the case at hand the solutions are given by the
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following 10 vectors.

vy =(0,0,1), vy = (3,0,1), v =(0,3,1), v, =(2.1,1)
ve = (1,21}, o= (1,1,1), vL = (2,0,1), v} = (0,2, 1)
vh = (1,0,1), v}y = (0,1,1) (5.2.3)

Each of these vectors is nssociated with a monomial. For example
'E_IJ] =27, v, = X (0.2.4)

Now we will digress a bit. Consider polynomials in two variables (U, V). Then the
domain over which these arbitrary polynomials are well defined swhich we denote
by C[U, V], is actually C?, so C[U, V] is the coordinate ring of C*. We will use
the shorthand notation C[I/, V] = CL Similarly if we look at the domain over
which polynomials of the variables (7.7, 01V ~1) are well defined it deseribes the
space (C*)7, because the fimetions are not defined at (U, V) = (0,0). Similarly if
we: consider polynomials in three variables (U, V, W), then C[U, V, W] = C% The
arbifold C*/Z3 with orbifold action 1[1,1,1] on (U, V, W) can be described as the
domain over which all polvonomials constructed out of variables, which are single

yalued on the orbifold, is defined, Therefore,

C¥/Zs = CIUP, V3, W3, UVW, UV?, VI, VW2, WV2, W2, Wi (5.2.5)

Now we can see how to read off the space from the data we obtained from the dual

€2, X32, Y32, XY Z, XY*7Z, XY Z,X?2,Y*Z, X Z,Y Z|. After changing variables
X =275 Y=2Xand Z =W we get
S, U°, V3, UV VAU, UV, UPW, VAW, UW2, VW2, ], This is the description of

C/Zy, that we saw carlier.
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5.2.1.1 Resolution of the orbifold

To resolve the orbifold, the strategy is to subdivide the cone into several smaller
cones by inserting more vectors in the interior of the cone such that for each sub-
cone the determinant of the generators of that particular cone, which is also the
volume of the particular cone, is one. One can casily see that this criteria is not
satisfied by the original cone itsell. For the case of the C*/Z3 orbifeld, this is

achieved by taking one more vector

=(0,0,1) (5.2.6)

which subdivides the cone ta three sub-cones, each of which have a unit determinant.
The new cone so obtained is given in Figure 5.1 Now as before construct the dual

cones for each of the cones, nnd as before we have the following inequalities.

cone 1 cone 2 Cone

1c>0, 020, 3c>a+b |20 520, 3c>a+b |e>0, ¢>0. b0

cand v = (1,—1,0) and vy =(~1,1,0) and o = (0,0,1)
E[Y"’Z", Yl X1 QX7 X Fx ClX,Y, Z]

= (03,1} vy = (0,=1.0) | v} = (3,0,1), 04 = (=1,0,0} | v} = (1,0,0), e, = (0, 1,0)

e divisor corresponding to vy is given by Z = 0 and is obtained by substituting

= M in the above. Then one has the following spaces C[X,Y], C[X !, ¥V X1,
i_i_}’"TX Y=l These are to be thought of as local coordinate patehes of some
ace. What space do these patches deseribe? They describe the space 2. This can
be seen by looking at the patches of P2 P2 is given by (U, V. W) ~ (AU, AV, AWV).
.'.ﬂ- we have three patehes given by the regions where U, V, W are individually non
. In each of these ;mhlw the coordinates can be taken to be (& %) (8 W)
). Defining X = n Cand Y = u , we have the following three patches (X, Y,
(X LY XD (VL XY Y s comparing with what we got from the toric analysis

e see that the space after resolution is indeed a P? so we see that, D, = P2
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(0,1,00
(1,0.0k

Figure 5.1: toric Diagram for the resolved C3/Z; orhifold
5.2.2 The C*/Z; orbifold

Now we consider the example of the C3/Z; orbifold with orbifold action [1,1:8].

1
5

-f*_['he vertices for the cone are given by

v =(1.0,0), va=(0,1,0), v3=(=1—13,5) (5.2.7)
Using the same method outlined before one can check that this is indeed the C3 /&
orbifold.
5.2.2.1 The resolved C¥{Zs

ollowing the process for resolution as described in the C¥/Z; example one finds

that one has to insert two vertices
vy = (0, —L1.2). w5 =(0.0,1) see Figure 5.2 (5.2.8)

side the cone to get the desired condition of unit determinant for the individual
ones. Now as belore construct the dual fans for cach of the cones, and as before

i have the following inequalities.

conel: e 20, a=20and b >0 (5.2.9)
e corresponding vertices are given by
vy =(1:0,0);65 = (0,1,0), vz =1{0,0,1) (5.2.10)
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' The space is given by C[X. Y, Z]

cone; ¢ =0, hez3b+aand b= 0 (5.2.11)
ﬁhﬂ corresponding vertices are given by

o) = (=1,0,0), vh = (=3,1,0), v, = (5,0,1) (5.2.12)
The space is given by C[X ' XY, X37]

coned:iec > 1), 2e = b and 5e = 3b+a (5.2.13)
'la corresponding vertices are given by

vy = (3, —1,0), 0, = (=1,2.1),0 = (—1,0,0) (5.2.14)
The space is given by C[X*Y ! V22X R

coned: 20> h, o> 0 and 5c> 3b+n (5.2.15)
:'g corresponding vertices are given by

vy = (0,5,3), vh = (1,-2,-1), v} =(0,-2,—1) (5.2.16)
The space is given by C[Y7Z3 XY 2z-1 y-2z2-1]

coned: ¢ 2 0,2c = band a > 0 {5.2.17)
"‘- corresponding vertices are given by

vy = (0,-1,0), v =(1,0,0), vf = (0,2,1) (5.2.18)

The space is given by C[X, 17!, v2Z]

Now the divisor Dy corresponding to wy is given by Dy = Z3Y = |,
ﬁnd out what space this divisor corresponds to one has to analyse all the cones
?Eﬁch this is a common point. These will be the coordinate patches of the
orresponding space. Since there are three cones surrounding this point, the corre-

ponding space should be a P2, This can be checked rigorously, exactly as before.
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To do this we substitute Dy = 0 in the cones (3), (4) and (5), Take Y?Z = A and
Dy = 0. We then get for the corresponding patches, CIAX 1 XY, C[A. X] and

C[XA™! A7 respectively. As noted earlier these are the patches of T2, so

Dy = P2 (5.2.19)

To find the space corresponding to D given by Z = () we similarly substitute Z = 0

in the patches (1).(2),(3),(5). We then get for the corresponding patches:
(1) CIX, Y], (2) CIX X%, (8) CIXPY L, XY, (5) ClY L. X] (5.2.20)

These are the coordinate patches associated with the space Fy. In general the space

j‘n has the following four coordinate patches|36],
(K057, () L X ey Y (XY V=R

So we see that

| ooy

[=l.=3.3)
[RREREN

5.2: toric Diagram for the resolved C* /Z; orbifold with orbifold action (1,3,1]
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5.2.3 The C*/Z; orbifold

Finally we will describe the Torie construction for the ©*/Z; orbifold. We will
‘consider the orbifold actions 1[5, 1, 1] and +{2.4,1].

5231 The ©%/Z; orbifold with orbifold action 1[5,1,1]

‘The orbifold is represented by the vertices:

vy = (L0, 0), ve= (0.1,0); 23 = (=5, =1,7), (5.2.22)
After resolution one has to add

t = {0,0:1), vy = (=1,0,2), vg=[-2,0, 3), see Figure 5.3

The coordinate patches corresponding to the various cones are:

conel: C[XTY®? X322 X W Z™?, cone2: ClY,X*z*, Xx227Y

coned: ClY ! X172 x-*y37-11 coned: ClY, X1, X*Z] (5.2.23)
coneS: C[Y~H X*Y5Z XY, cone6: C[X,Y, Z], coneT: ClY= XY=y 2
3 :'-u find the Divisors Dy, D, Dy one has to do a analyses of the various cones.

ssimilar to the one discussed above for the C*/Zy and C3/Zs orbifolds. The final

answer turns out to be;

Dy

-i'.?fl_- DS = ]F:’; E]Jd DE — Pﬂ { !

oAt
b=
=3
e
L

5.2.3.2 The C'/Z- orbifold with orbifold action 1[4,2,1]

In this case also one has three divisors on resolution, however the structure of the
diagrain is quite different (see Figure 5.4) The vertices are

vy = (1,0,0), wo =(0,1,0), vy =(—4,-2,7)

vr = (0.0,1), 15 = (=1,0,2), v = (—2, —1,4) (5.2.25)
'Ih coordinate patches corresponding to the various cones are:

conel: C[X, Y, Z], cone2: C[Y, X!, X?Z], coned: C[X 22, X {vZ2 XIZN
coned: C[Y°X ', X1y ~12% X227, coneb: CXY Y™z, v" 27

coneB: C[Y ™, XY™ Y1Z), cone?: ClY~, X~'¥2 X27] (5.2.26)
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From the analyses of the cones, the divisors Dy, Ds. Dy turn out to

Dy

i

Fa, Ds = Fs and Dg =T, (5.2.27)

/N
LR\

/ 4
///

onding to the divisors span a cone. All other triple intersections with three
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 Figure 5.4: torie Diagram for the resolved C? /Z- orbifold with orbifold action 2[4,2,1]

different divisors which do not span a cone vanish. So for example from Figure 5.1

one sees that
Dl'Dg'.U_] =1, U3'D2‘D4 == 1. D]'D3'D4 =1 {5328}

I this example of course these are the only triple intersections involving all different
divisors: However in other examples one can have triple intersections of different
divisors which do not span 2 cone which vanish, Now one Las to compute the other
riple intersections, which involve self-interseetions of divisors. To compute these,
‘e has to use the linear equivalence of divisors. There is an easy way to read off the
inear equivalences given a torie diagram. We will give an outline how to work out
the linear equivalence relations. In the example we are considering, the four basis

eetors satisly the relation,
Uy + 1 = 1y — 3'U4 =1 [5229}

linear equivalence relations can be abtained from comparing the coefficients of

the vertices. So we have

1
Dl LA Dg = .D3 o "Eﬂ.t (523{]}
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Now in other examples we will have more than one such relations like

Cequation 5.2.29. In those cases we will have to find the common solutions to all such

relations. The linear equivalences can be used to compute the triple intersections

involving self interscctions. For example in this case we have,

DiDy=D3-Dy= DiD, =1, (5.2:31)
DDy = D}-Dy = D}-Dy= -3 and D=9 (5.2.32)

The triple intersections for the C*/Z; are given in [59], while the triple

ntersections for the C*/Z: example are worked out in appendixB.

5.3 Fractional branes in C*/Z,

)
In this section we will give a description of the fractional zero branes as well as
fractional two branes in the C* /%y orbifold with arbifold action i[=2.-2,-2. in
the foric set-up. The toric dingram is given in Figure 5.1 The idea, as already
explained in the beginning of this chapter is that given the Hy, one can find the

th(S') from solving the equation,

/ ch(Ry) ch(S]) Td(X) =6 {(5:3.1)

1

D,
Td(X) = s S 5.3.2
T gl—exp{-ﬂi] (5:3:3)

_____

er dimensional eveles. As a check one can also compute (57, 57) and compare

result with the intersection forms computed at the orbifold end. Now we can

/' ch(SP) ch(S?) Td(X) = fy (5.3.3)



where [y, is the intersection forms as computed in the orbifold end. We take an
ansatz for the ch(S?) of the form

t:h[Sfj = Z a3y 4 Zb}h_,- + Eb;-ifig +etp (5.3.4)

i i il

Vhere we use the same symbol 1 to denote the class of the divisor D; and similarly
Ity denotes the class of the compact 2-cyele h;, f; denotes the class of a non-compact
eycle and similarly p denotes class of a point p’. We will now proceed with the
explicit construction.
The intersection forms computed at the orbifold end are given below.
he DO-D2 intersection has been multiplied by a factor of ¢72, to account, for the

change of basis in the large volume as compared to the orbifold end, as has been

noted in earlier chapters.

DO—D0=(1-—g)" D2—-D2=—y(1 —yg)and DO—D2=(1-—¢)* (5.3.5)

Ly = (S8

Ay = {(S2,5% (5.3.6)

Ry=0, Ri=0(D)), R =0(2D)) (5.3.7)

e the Ry one can compute the ch(S}'), as has been outlined in the beginning of

his section,
chSy = Dy + (3/2)h + gp
ch8) = =20y —2h—p
chSy =Dy +h/2+ ép (5.3.8)

these expressions for the ch(S?), one can now compute the ch(S?).
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In chaptrer 3, we saw that one of the fractional 2-branes was purely along a
non-compact 2-cyele. We will use this result to motivate an ansatz for the fractional

2-branes. We take the following ansatz for the fractional 2-branes,

{:hS{r‘; = a1y +aaDi-Dy+ u,;h + cap
¢hS} = b Dy +bsDy:Dy+ Bk + erp

chS; = 14Dy (5.3.9)

The form of equation (5.3.4) and subsequently equation (5.3.9) merits

some detailed comment. In general, the Chern character is a map from Ko(X) to

the Chow group with rational coefficients A*(X )y of the variety. By definition
A'(XN)g=8A"(X)g = dA, (X)) @Q

In the toric setting, the Chow group A(X) of X = X(a) (where & is
the corresponding fan). is generated by all the classes of the orbit closures Vi)
of (n — k) dimensional cones o of 4 (modulo relations). This allows a particularly
simple algorithm to write the most general Chern character in terms of all the
divisors [); which correspond to one dimensional cones and the intersection of these
divisors associated to orbit closures of higher dimensional cones spanned by thege
one-dimensional cones, These terms have co-efficients that we now try to fix.

The ansatz we make above is based on the fact that they solve the [, 4
equations. For instance the rank term must be zero. Nor are any Dy, Dy, Dy
allowed. The computation involves some trivial algebra that we do not present
here. Note, in particular, that the D,-Dy term corresponds to the fibre in the total
space of the bundle Op:(—3). This can be shown following [36], (chap. 3, section
31} The 53 would correspoud to the ‘Coloumb hrane’ of chapter 4. This form of
53 mutomatically solves all the 5,2 equations. Now using Ay = 1 we got a; = |
Similarly,A; 2 = —1 gives b = —1 Solving the remaining equations involving S

and S 1 we get

20y — Bay = -7

by — 6B = 5 (5.3.10)
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The remaining equation A, does not give any new relation, but is consistent with
the other equations, The ¢ remain undetermined.

The above equations (5.3.10) imply that we cannot explicitly solve for
all the variables and so we have to make a further choice.! The simplest choice we
‘can make I8 {o take the coefficient of the non-compact fibre to be 1. So we take

1y =bs = 1. We then get.

@ : 3h
chS; = Dy+ DD+ - +top

) i
L‘]iS; = —[h+ Di'Dg =|- T + &P

chS; = Dby (5.3.11)

In chapter 3 we argued. that the fractional two branes when continued
to large volume in the Kahler moduli space are described by sheaves which have

support on a non-compact two cyele, unlike the case of the fractional zero branes,

which are described by bundles with support on a compact two cyele. Further we
saw that one of them was purely along a non-compact direction, In this section we
have been able to realize these objects in the toric geometry framework. We have
not constructed them independently, rather we have used the results in chapter 3
to motivate our ansatz. However, the fact that we have been able to find consistent
solutions as in equation (5.3.11) for these objects in the toric framework ensures
that the constructions are mathematically well defined, unlike the sequences that
we wrote down in chapter 3.

In chapter 3 we had further argued that the charge of such a two brane

Dasis of the two brane with compact cohomology. In the toric geometry deseription

in these computations only in the presence of a compact divisor in one term,

IThis is simply a consequetice of the linear equivalence of the divisors.
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in the triple intersections. Then in the other terms we may tse linear equivalence.
In appendix C we will similarly redo the analysis for C% /&5 and C3/Z; orbifolds.
Indeed we can go further and identify the objects themselves using the
Chern character and the heuristic sequences we wrote down in chapter 3. If we
ignore the DDy term in the Chern eharacter of SE, 52, then we ecan show that
the rest of the terms correspond to the objects i,@pz and L(OF — 0(1). If
we refer back to the sequences for 57, S2 that we wrote down in chapter 3 and
the corresponding Chern characters on P2, we find that the objects Fp and Fy are
precisely ez and ﬁ};:_‘z —+ Ofl), if we ignore the fractional part. Fs was argued
to be purely of fractional Chern class and so corresponds to S2. Thus despite the
imprecisely defined sequences that we used, they appear to give the correct picture,

not enly for the charges (Chern characters) but also the objects themselves.
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Chapter 6

Fractional two-branes: the quintic

in P4

In this chapter, we will identify, the D-branes associated with the boundary condi-
tions given in Eq. (1.6.1) for the LG orbifold, in the large volume after restriction
o the quintie, following arguments similar to the ones used in chapter 3. These new
D-branes will be shown to have the same intersection numbers as those of the new
fractional branes proposed in [29], which were obtained by the techniques of matrix

:_Iactnrimtiun of the superpotential.

Hence we identify the DO brane on the quintic as one of the states ob-
tained on restriction of the large volume analogue of the fractional 2-branes associ-
ated to the boundary condition 1.6.1, on the quintic hypersurface. This, we believe,
provides geometric insight into the categorical construction of (29] in addition to
_:l_ﬂenr,if}*iug two apparently distinet approaches to D-branes on LG orbifolds. For

purposes of illustration, we first consider the case of the fractional zero-branes.

.1 Fractional zero-branes from Euler sequences

As has already been mentioned in chapter 1, the large volume analogue of the frac-
fonal zero-branes of C°/Z; (1o be identified with the Recknagel-Schomerus states on

ietion to the quintic) are obtained by imposing Dirichlet boundary conditions on
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all fields in the LG orbifold. Following the arguments of section 3.1.1 this leaves us
with five independent fermionic multiplets on the boundary. We will use the GLSM
to interpolate between the LG arbifold and the nonlinear sigima model(NLSM) as
we did in chapter 3 for the orbifold theory.

As was mentioned in section 3.2, the simplest way to obtain the LG
orbifold from the GLSM is to consider the limit e?r — —oc. The gaugino (of the

GLSM) constraint [44] for this case is

5
E Gﬁ“"ﬂl:ii =
i=1

When one imposes Diriefilet boundary conditions on all fields, the gaugino constraint

on the boundary becomes
Zﬁbigi=ﬂ (6.1.1)
:
where as before €, is the fermionic combination that is not set to zero by the boundary
conditions.
Following the argument in chapter 3, setting J° = g¢ gives us the Euler
sequence on P4

0— (1) = 0™ = (1) =0

with the boundary condition ',

& = im
We have five boundary states associated with the LG orbifold. Similar
to the orbifold case, the other four coherent sheaves are given by the following exact
gequences that can be derived from the Euler sequence associated with W(p) =
Q@ O(p)
0— (p) — O = P p—1)0O(1) —0 (6.1.2)

UThe fact that one can bypass the introduction of boundary fermions by treating the £ as
Boundary fermions and the gaugino constraint as a holomorphic constraint is also a hint why the
ix factorisation used in [20] must be equivalent to the boundary conditions considered in (13],

&t lenst for the case of linear factors



Finally as in the orbifold case, the five fractional branes for the (uintie

are in one-to-one correspondence with the states: (the vacuum |0} satisfies &, |0} = 0)

| 0y o &l0y L &E0) , E&EN0) E:&ErEi| 0}

subject to the condition ¢,£' = 0 being imposed.

Define following the notation of [29]

M, = i-]f';z;.,ﬂ:;:)‘ L i=0,1,2,3.4 (6.1:3)

quintic

These branes M; can be identified as the result of the analytic continuation to large-
volume of the RS states in the Gepner model for the quintic. Under the (uantim

Zs symmetry({generated by ¢, one has
g1 M= M, mod5

A basic check for this identification is the matching of the intersections
of the M; to the CFT computations of the intersections for the L; = 0 states [rom

among the RS states in the Gepner model,

6.2  Fractional two-branes from generalised Euler

sequences

We are now ready to discuss the case of fractional two-branes. The discussion is very

fsimilar to the discussion of the fractional 2-branes in chapter 3. As we have already

seen, the Newmann boundary condition on the combination (é; — @) is obtained

(91 + 2)61 + Z Gi&i =0 (6.2.1)



Thus, this is equivalent to having four boundary fermions sub ject to the one con-
dition above. Unlike the case of fractional zero-branes, we see that Eg. (6.2.1) is
trivially satisfied when ¢ + ¢y = 5 = ¢y = ¢5 = (. This is possible on P2, when
¢ — @2 # (L These conditions specify a two-brane (denoted below by ) in the
manifold which is the resolution of the C%/Z; singularity. Tt is trivial to see that
this two-brane restricts to a point on the quintic. Away from the two-brane I 2. Eq.
(6.2.1) does reduce the number of fermions to three, This implies that the fermions

are sections of the sheaf F) given by the following sequence

0= F =0 = 01— Xp—0 (6.2.2)

i

The term involving A has been added to take care of the fact that (6.2.1) is trivially
satisfied on P. Then [ollowing the arguments for the fractional 2-branes in chapter
done can write down the sequences for all the fractional hranes. Again one of them
s given by a sequence which when restricted to the F* not containing P becomes
the Euler sequence. The remaining fractional branes are given by exact sequences
that on restriction to a P* not containing P give the generalised Euler sequences of

P. Finally we can write the explicit sequences as
0= Fy—0 - X ®0O(=1) =0
0—F = 0% S Fao(l) —0
0— F = 0% S5 a0 —0 (6.2.3)
0= F—=0% < Fa0(1)—=0
0—=F—-0—=FKBa0(l)—=0
Qne can argue similar to chapter 3 that £y = —Xp @ @(3). That F; must at least
:1_1awe Ap as a factor is clear since the last sequence must restrict to zero on on the
P¥ € P not containing . This is because there is no corresponding generalized
r sequence that appears on P2, The factor of (3) can be deduced from the
neral pattern that we observe in these sequences. Keeping our previous notation,
will refer to £y as the Conlomb branch brane because of this vanishing property

restriction to the P* not containing P and the remaining branes (Fose. . F3) will

e called as the Higgs branch branes.
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The main claim we wish to make is that the new fractional branes of [29]

are to be identified with (a minus sign indicates an anti-brane)

F=(=H P =0.1,2.3;4 (6.2.4)
ctaintie
provided we choose
eh (Xp) | e = /5. (6.2.5]

where J generates the Kiihler class on the quintic and is normalised such tha
(S ) quintie = 5{J Ve = 5. Asa first check: we have verified that the Cliern classes of
the F; agree with those given by Ashok et. al. in [29]. (More details are provided

in appendix D.) We also propose that under the quantum Z- symmetry, one has
4 F,— F. imodb

In the orbifold case we motivated the existence of fractional charges by a
K-theory computation. We were also able to see this in the toric geometry as a con-
sequence of the linear equivalence of divisors. Here we will motivate the assignment
of the fractional Chern character for the object A} from another arguinent. It is

clear from a simple argnment that sheaves in the ambient projective space (obtained

from the fractional branes by blowing up the orbifold singularity) when restricted to
Lhe Calabi-Yau would fail to give objects that have the charge of a single zero-brane
on the CY. A two-brane wrapping a P! € P* (which intersects the quintic on a point
will have Chern character J% + aJ? for some a, On restricting this to the quintic,
We obtain an object with Chern character J* which has the charge of 5 zero-branes.
s if we need to produce an object with the charge of a single zero-brane on the
it appears that we must begin with a sheaf on P* whose Chern character has
eads off with a J*/5 term.

The five new fractional two branes for the quintic are in one-to-one cor-
sspondence with the states: (the vacuum [0) satisfies &|0) = 0 and i = 1,3,4.5

elow)
Fore |0) . Fy~&l0), Fo~&E[0), Fy~ EEE|0) ,  Fy ~ £166,65]0)
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subject to the modified gaugino constraint in Eq. (6.2.1) being imposed on them,
In the next chapter we will argue that in the Gepner model these new

fractional branes are described by the permutation branes [41]

ta)




Chapter 7

Landau-Ginzburg description of

permutation branes

7.1 Permutation branes

In the previons chapter we argued that the ‘new fractional branes’ of [20] correspond
to imposing the following boundary conditions on the fields of the LG orbifold

associated to the quintic CY,

Pt =0, ga=ds=¢d3=0

where the ¢; are the fields of the LG orbifold. As we discussed in the introduction.
the Recknagel-Schomerus states (with L, = 0) in the Gepner model for the quintic
correspond to imposing Dirichlet boundary conditions on every field of the LG orl-
_f;'bld. It is therefore of interest to ask what boundary states these new houndary
tondition of eq. (7.1.1) deseribe in the context of the Gepner models, 1n this chap-
ter we will argue that the new boundary conditions correspond to a subset of the
permutation branes of [41]. In the next section we will begin by recalling further

ails of the Gepner models as well as the Recknagel Schomerus (RS) branes and

permutation branes.



7.1.1 Gepner models in the bulk

Ag we mentioned earlier, Gepner models are tensor products of 7 unitary A" = (2,2)
super-conformal theories(SCFT), called the minimal models, with a total central
R SR .

charge e=37_, 25 -

The N = 2 super conformal algebra is

[y ] = (1 —=102) Lo & %[n” )80

(L. Jin] = =1dpm

s J] = FnBsnn

Ly GF] = (5 - 7)GE,

[Ja, G7] = G,

[ G = By b [F = 8 T %I{ri - %}E,urﬂ,{, (7.1.2)

where L, are the Virasoro generators, the G5 are the super-conformal generators
and the J, are the U{1] generators. Also n, m run over integers while r may be
mteger or half integer. The conformal weight and U(1) charges of the primary fields

are given by

At +2)—m? &

AR e AT

J‘F’-".I,.ﬁ ‘Ll:r{: 'I‘ 2} + 8

P m s .
'rJTrrz..q - -I\'.-E' 9 2 E?I-\_JI}

where [, m, s are integers defined in the range, 0 <1 < k, m € Lopgd, 8§ € Zn, aned 14
m+ s = eveu, with the further identification on the characters y!, _ that y! ==
xtfmfm.ﬂ. The states in the NS sector have s = +1 while the states in the R
sector have s = (1,2, The minimal models have a Zrta % Za symmetry, with the

ction on the primary fields given by

Ham |
|Ei.' + 21?:?!”15‘

q: q'ﬁin..“ = exp B ‘3551:.3 = [—ljst;i:inr_s (7.1.4)

0 be a consistent string compactification with four dimensional spacetime susy, one
15 to ensure that the total central charge ¢ = 9. Further one has to ensure that the

s in the product theory are products of fields with same spin structure, ie. all
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NS5 or all Ramond states. The G50 projection is implemented by projecting onto
states with odd total U{1) charge of the superconformal algebra, Gepuer showed
that & consistent modular invariant partition function can be constructed for such
models. Following the notation of [3] this is given by (in the lightcone cange)
Z=> Zd'.-a(—l}"“xi.x.p{r;}:h;.;.,an.an+gi;;J.-sjirn (7.1,5)
(), A B by
where A is the vector given by A = ({1}, et B = (Aot 81y008.] and
fi 1s a vector with value 2 at the position where ¢ has an entry s; and all other
values are zero, Similarly A, is a vector with all entries one, and by = 0,...19 and
by = (0,1). i,z label the transverse space time coordinates. yy ., is the product of
the characters of the spacetime part as well as the individual minimal models of the

Gepner model.

7.1.2 Boundary states in the Gepner models

In the context of B-type branes one is looking for those boundarv states which
preserve half of the supersymmetry of the bulk theory.
The super conformal algebra admit the following automorphism action

on the generators
QL =T, GF=GF (7.1.6)

Therefore there are two possible sets of Ishibashi conditions. and two possible types

of boundary states. These are called the A-branes and B-branes.

(Lp — L_y)|A-brane) = 0, (J,— J_n)|A-brane) = 0

(G +inG_,)|A-brane) = 0, (G} +inG_,)|A-brane) = 0, ras g

(Ln — L_,)|B-brane) = 0, (J,+ J_,)|B-brane) = 0
(G —I—{HE:HB—IJHHH} = 0, (G; +inG_,)|B-brane) = 0, (7.1.8)

nwhat follows we will restrict our attention to the B-branes in the specific example

[ the 3° Gepner models, which is in the same Kihler moduli space as the quintic

25



hyper-surface in P, The generators of the super conformal algebra of the product
theory is the sum of the generators in the individual theories and therefore we have

to solve the conditions
D (W + 6, )|B-branes) = 0 (7.1.9)
i=1.5

where the W are the generators of the symmetries, in this case Ly, .J,, GF and the

index e can be =1 or iy, ete.

7.1.2.1  Recknagel-Schomerus states of the quintic

Recknagel and Schomerus provided the first solution of the above conditions by
constructing boundary states [15] which were the product of boundary states in

cach of N = (2, 2) theories that make up the Gepner models. i.e,
[H’ —|—rrﬂ’ AIBG =0, i=1to5b
B) ~H|B,-} (7.1,10)
1=1

In [15] Recknagel and Schomerus constructed the boundary states which had the

correct. modular transformation properties. Their ansaty (for the internal part

alone )was

Y= dabaBYY A, p) (7.1.11)
g
M, e P
E};,H - _' bR H_ . ’3
; me‘ it et ) (7112)
. - (L+1)(1+1) :
c’l.\lId. |:L1|f:| = uT {?]Lj)

Here 45 imposes the U(1) integrality condition while the §y imposes the
condition that the Ishibashi state |A, p) is a part of the bulk spectrum. The label
‘A" denotes all the Cardy labels (L;, M,, S;). For B-type branes, the U{1) charge
of the holomorphic and anti-holomorphic sector are opposite. This implies that all
the m; are the same modulo (k +2 = 5). Also it is easily seen that the the

action of the Zs and Z, syunnetries on the boundary states takes M; — M; 4+ 5 and
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Si — 5,4+ 2 respectively, From the &4 condition it also follows that the physically
inequivalent boundary states are labelled by the single variable Af = > . M;. The
§=3,8=00r2 mod 4. However because of the Z, symmetry it is sufficient, 1o
take S = (. So in particular the Recknagel Schomerus states with L; = 0 is labelled
by a single variable M, 10,0,0.0,0: M),

7.1.2.2  Permutation branes of the quintic

The full super conformal algebra which is generated by the sum Zi’__l W(z), where
as before the W' denote the varjous SVIULetry generators, admits the following

permutation group action on the generators.

(12)(3)(4)(5) : [ WM — WD — iy, Wit - W =345
(123)4)(5) : [ WY — W2 — W — o W it =45
(1234)(5) : [ Wt — Wi — Wi et Wi W — W),
(12345) : [WD — Wi® — wi® _ @ _, o) Wil (7.1.14)

and combinations of these, Recknagel [41] constricted more general boundary states
called the permutation branes corresponding to ‘twisted gluing’ conditions where the
‘twisting” implies the action of these permutation groups on the generators,
(Wi + W) B) =0

o

1B) ~ []1B:) (7.1.15)

i=]
‘where w(i) can be any of the various permutation actions discussed above, In [41]
3'.Rec1ma,gel gave an ansatz for the boundary states of the permutation branes. For

the case of the permutation i (12)(3)(4)(5) the ansatz is :

5 .
: bl TMym T My W Sass Sas
|m(12)) = EBA:“' .a-lff.],Ll}exp{r.ﬁ}mxp[z-k—jgm]e:-:[;lff.r. 5 ) expli 5 31, . )

In this case, unlike the (RS) case, it is easv to see that for the B branes, the
condition that the holomorphie and anti-holomorphic sectors have opposite U(1)

charges implies that m, = —m v mod (k+2)  while for the other rmy are all
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equal  mod (k+2) So unlike the (RS) states, the permutation branes are labelled
by two variables [0,0,0,0: M: M) | where M = M, — M,

7.2 Fractional two-branes and permutation branes

We now turn to the consideration of a specific class of permutation branes, We
will argue that the boundary states for this are precisely the ones that should be
associated to the fractional 2-branes on the blow-up of C%/Z; that are then restricted
to the quintic.

Cousider the holomorphic involution 7 that permutes two fields !
T gy

The fixed point(s) of the action is ¢+ ¢a = 0, 3 = ¢y = b5 = 0 (this is a two-brane
which we called P which restricts to a point on the quintic @) as well as ¢, — ihe =1
(this is an six-brane which restricts to a four-brane on the quintic), Thus, we see
the appearance of the houndary conditions of equation (7.1.1) as one of the fixed
point sets of the holomorphic involution. This suggests that the permutation branes
of ref. [41], corresponding to 7 = (12)(3)(4)(5) may be the correct candidate for the
boundary states in the Gepner model that correspond to the boundary conditions
giver in equation (7.1.1). This leads to the following conjecture:

Conjecture: The B-type permutation branes labelled?
10,0,0,0, M, My, , 7= (12)(3)(4)(5)

of ref.[41] are the CFT boundary states for the boundary conditions given in equa-

tion. (1.6.1) associated with the fractional two-branes.

YThis is not a symmetry of the Gepner model or the NLSM but can be made inte one by
combining it with world-sheet paritv. Thus, this particular invalution has been considered o the
context of type ITB orientifolds.

We choose § = 0 and M, M to be even.
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7.2.1 Checks of the conjecture

A first check: Recall that we had obtained five fractional two-branes at large
volume in section 3. But. we have 25 boundary states since both M and M each
take 5 values, How can this make sense? In this regard it is useful to recall that

there is a (Zs)° symmetry in the minimal models as well as their corresponding LG

models which act as

3

]

gi: ¢—we gl =1,

where w is a non-trivial fifth-root of unity. Focusing on the (Z5)? which act on the
felds ¢ and ¢y, we see that the boundary condition (¢, + #) = () is invariant only
under the simultaneous action gyg. while g, or go or the combination Gigs - act as
boundary condition changing operalors. Thus, the 25 boundary states in the CFT

(of [41]) correspond to the five sets of boundary conditions:

S +uwid=0 ,a=0,12234 (

|
]
i
~ii

Thus, the M index can be identified with 2a.

A second check: Ref, [41] provides the intersection matrix between
the permutation branes {though the normalisation of the boundary states was not
fixed in that paper). The result which we quote here (after fixing the normalisation)
is the following: the intersection form is independent of M and is given by g(1—g)*.
It is easy to see that the fractional two-branes that we propose at large volume
also have the same intersection matrix (see appendix D). Since the intersection
form does depends on only the Chern character (equivalently, RR charges) of the
coherent sheaves, it will necessarily be independent of the M label. For instance, the
DO-branes obtained from the boundary conditions, (7.2.1), are located at different
points on the gquintic. However, their charges are identical.

A third check: A last check is to compute the intersection matrix
between the (12)(3)(4)(5) permutation boundary states and the RS boundary states
and show that it equals —(1 — ¢)" as obtained in the appendix D by computing
the intersection matrix between vector bundles corresponding to the RS states and

~coherent sheaves corresponding to the fractional two-branes. This is a little bit
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more subtle since it involves characters that are not present in the bulk/closed
string partition function. This issue has been discussed in a recent paper [42], s0 we
do not present any details but refer the reader to it for a more detailed discussion.
As is finally shown in there, the intersection matrix does take the form —(1—g)" as

predicted by the conjecture.

7.2.2 Other permutation branes

It is natural to see if other permutation branes can be obtained by considering other
linear boundary conditions involving more fields. One obvious candidate for the LG

houndary conditions associated with the permutation brane (12)(34)(5) is :

Ql- —|— f;.j.‘! == (.'tl3 + fl.rj‘.l = g:tnl == D’ . [Ill?..._-.-‘.-‘l:l

L

This will be a fractional four-brane and the open-string Witten index computation in
section 2.1 for fractional four-braues can be compared with the intersection matrices
for the (12)(34)(5) branes. The Coulomb branes have support on the hvpersurface
S corresponding to the conditions given in equation (7.2.2). This intersects the P*
on a M. The Coulomb branes will be given by Xs ® O(—1) and Ay & O, where X
is the sheal with support on the hypersurface § (and Chern class J?/5 reflecting
the fractional charge) and (@, @(1)) are the tautological bundles on P!, Tlus, their

Chern elasses will be

These restrict to a two-brane {of minimal charge) on the quintic. This is consisient
~with the Chern classes of the permutation branes labelled Vi and V) in equation.
(6.13) of [42]. The Higgs branes will be related to Euler sequences on P2, The
~other branes given in the aforementioned reference also seem to fit this. So this also
passes a similar set of checks. Thus. for the quintic, one is able to obtain objects
which reproduce the full spectrum of charges — the fractional two-branes of €7 S
providing the zero-brane and the fractional four-brane providing the two-brane.

Anaother interesting boundary condition in the LG orbifold is the frac-




tional four-brane given by
dytdntas=dy=ds=10.

This involves three fields and seems to be related to the permutation brane (123)(4)(5).
However, this runs into trouble in the first check® that we used in the earlier cases.
The permutation branes constructed in [41] do not have enough labels to account
for the 125 boundary states that one anticipates by considering the action of the
symmetries on this boundary condition. In this regard, we wish to point out that
for cyelic orbifelds[G1, 62], Zy with A > 2, there iz a fixed point resolution problew,
related to the fact that the different primaries in the orbifold theory have the same
character (see section 5 of [62]). This also suggests that the set of permutation
branes given in [41] may not be minimal and their resolution will provide us with
additional boundary states that may account for the 125 boundary states that we

predict. A further discussion of these issnes is outside the scope of this thesis,

"There is a subtlety even in the earlier examples with regard to other permutation branes with
- L # 0. It has been shown by the authors of [42] that the CFT states with L = | carrespond to (in
the L) to quadratic factors chosen in & particular order. However, in the LG there doesn’t seem

to be any reason to prefer the ordering. These issues have been discussed in [42],
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Chapter 8

Conclusion

8.1

Conclusion and some open questions

We first summarise the main results presented in this thesis,

O

O

We have provided evidence that the new fractional branes obtained in [20] us-
ing the method of matrix factorisation and boundary fermions can be realized
using the boundary conditions proposed in [13]. The methads used in this
thesis also lead to sequences describing the new fractional branes which CATTY
more information than Chern classes/RR charges. Asa consequence, we show
that fractional 2p-branes constructed in the non-compact Calabi-Yau restrict

to the compact Calabi-Yau hypersurface as well defined ohjects,

We also provided evidence that a sub-class of the permutation branes praposed
in [41] are related to the new fractional branes. This result has also been
independently obtained by Brunner and Gaberdiel recently[42]. In particular,
a detailed discussion of the permutation branes and the intersection matrices
amongst them has been provided in their paper. More recently Enger etal
[30] have further investigated the linear matrix factorisations associated to the
B-type permutation branes. They propose a correspondence between o special

class of linear matrix factorizations and arbitrary B-type permutation branes,
By embedding non-supersymmetric orbifolds inte supersymmetric orbifolds
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i one higher dimension, we propose a quantum McKay correspondence that
relates fractional 2Zp-branes on C"/Zy to (the push-forward of) tautological
bundles on C"/Zy branes in supersymmetric orbifolds. We also provide
an alternate explanation to the “missing” branes discussed by Martinec and

Moore in [40],

Another class of houndary conditions that can appear in these exam-
ples are those that are not linear, For instance, consider the boundary condition
(& +¢3) = 0 that is consistent with the & = 0 coudition, How does one construct
the boundary states corresponding to such a boundary condition? An added corm-
plication is that they do not seem to be minimal sub-manifolds. What ave their
intersection forms? In fact, it has been argued in [42] that in more complicated
examples, the addition of the analogue of the fractional two-branes and four-branes
that we have considered do not give rise to all possible RR charge vectors. Thus,
one may be forced to deal with such boundary conditions. However the Gepner
model for such examples typically involve minimal models with even level k. Here,
even the RS boundary states are not minimal in the Cardy sense, So the issue is
somewhat clouded by the need to ‘resolve’ the bhoundary states [61, 62],

Coming back to the case of the quintic — while it is indeed satisfying
fo find objects in the Gepner model/LG orbifold which provide all RR charges
that appear on the quintic, it cannot be the end of the story. The RS boundary
states were related to spherical objects (spherical in the sense that these objects
have only Hom(E, E) = Ext*(E, E) # 0) on the quintic even though they did not
span the lattice of RR charges. Oue would like to know, if there exists a basis
of, say, four spherical objects on the quintic that give rise to all possible charges
via bound state formation. In the framework of boundary fermions and matrix
factorisation the super potentials on these branes have been computed and their
relationship to obstruction theory has been discussed. It would be interesting to see
if those computations agree with an extension of the superpotential compntation
carried. out for the RS branes in the LG model in[63] to the case of the fractional

two-branes and four-branes.
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In this thesis, we have shown a parallel hetween fractional 2p-branes on
supersymmetric orbifolds and fractional zero-hranes on Lol-supersymimetric orb-
ifolds of dimensional lower by one, The Coulomb branes in the non-supersymnmetric
orbifolds have been identified with the minima of the quanfum superpotential of
twisted chiral superfields. The Coulamb branes, as we refer to them, anong the
fractional two-branes in our construction are associated with a chiral superfield,
It appears possible to make the connection between the two situations precise by
applying the Hori-Vafa map[64], which relates chiral superfields to twisted chiral
superficlds. This issue as well as an explanation for the change of basis proposed in
[53] will be discussed in [58].

Our reinterpretation of the quantum McKay correspondence will be use-
ful for non-supersymmetric orbifolds in higher dimensions such as C%/Z, [54. 53]
where there is no analogue of the Hirgebruch-J ung resolution via partial fractions.
There is also the problem of terminal singularities that can appear. At least in cases
where the higher dimensional supersymmetric orbifold admits a crepant resolution,
one will be able to use the embedding to study aspects of the HOI-SUPersy et ric

orbifold such as the possible end-points of tachyon condensation.




Appendix A

Some relevant cohomology groups

fOI‘ OIF)Q ( —3)

We consider a spacetime of the form B x M, where & represents the time direction
and M is non-compact. Let N be the boundary of M, The D-brane charges take
values in the relative cohomology H* (M, N; Z) [65]. These can be computed by

considering the long-exact sequence in cohomology:

o= HPY(MGZ) 2 HY(NIZ) — HPYYMONGE) S HPP(ALZ) — o (AL

The map j corresponds to restricting p-forms on M to the boundary N. Let us
choose M to be C*/Zy (or equivalently Op:(—3)). Then, one has N = M = ST

One has the following non-vanishing cohomologies for N and A,

HY(S®/Z4Z) = HYS*/23,Z) = Z,
HO(S*24;2) = H¥S/Z3:Z) =7 (A.0.2)
HP(Op(—33Z) = H™P%Z)=2Z , forp=0,1,2
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Using the above data, we obtain the long-exact sequence breaks into four shorter

BEUENCEs:

0 — HY(Op:(=3), 8°/23: ) — Z 5 Z — HYOpe(—3), 5°/Z4:Z) — 0 (A.0.3)
0— H*Op(~3), S°/23:Z) — B & By — HYOps(—3), 5%/ Z4; Z) — 0 (A.0.4)
0— HYOp(=3), 512 Z) — E L By — HYOpa(=3), 8%/Z5;Z) — 0 (A.0.5)

0— Z — H%Op(—3), 825 ) — 0 (A.0.6)

In the first equation above, the map j corresponds to restricting (constant) functions
on O (—3) to the boundary S%/Z;. Clearly, this is an isomorphism and hence we
obtain H%Ope(-3),5%/Z;Z) and H'(Op2(—3), 5°/Z4: %) both vanish. The last
equation implies that HS(Op(-3). 5%/Z4;Z) = Z. It can be shown that all odd
(relative) cohomologies vanish. Thus, the second and third equations above reduce
Lo

0 — H¥(Opx(—3),5%/Zs;2) 2T L 7 — 0 (for p=1,2)

This implies that both above relative cohomologies are Z with the first map a rep-

resenting multiplication by 3. Thus, one has the following result:

H¥(Op2(=3), 8°[25,Z) = Z_(for p=1,2,3)| (A.0.7)




Appendix B

Triple intersections for the (CS/Z?
orbifold

B.1 Triple intersections for the C*/Z- orbifold

In this appendix we will compute the triple intersections involving at least one
compact divisor for the C*/Z; orbifold with orbifold action 2[4.2.1]

The vertices of the toric diagram are given by (see Figure G.4):

Di = (1,0,0), Dy = (0,1,0), Dy = (-4, -2,7),

Dy =(0,0,1), D5 = (=1,0.2), Dy = (=2, —1, 4) (B.1.1)
The linear equivalences between the divisors are given by

lr.:-"[_ e ED:_}'F f,.)-],
DZ ol Eﬂi + ﬂﬁ:

Using these linear equivalences one can now find the various triple intersections.

L0



Triple intersections involving a single compact divisor

Dl'Dg'Dj - 1T DQ‘DH'D.; = ﬁ_. Dl‘D;;‘D.; — ﬂ
D]'Dg'ﬂn = [] D‘_:'Dg.‘ﬂ:j — 1_. Dl'D;s'Dﬁ = '[]
D]'.D*_J'D:‘. == []1 .Dj‘D:-_{‘Dﬁ - U DTD;;'DH = l {Bl3]

D.;'D.f = 2 .D‘lﬂi — U, D1DT: - ﬂ
D5-Di =0,D:-Df = 2, D5 D2 =)

Triple intersections involving two compact divisors

Dy DgDy = 1, D4 D5 Dy = 0, D Dg-Dy = 0
DyDg-Ds = 0, Dy Ds- Dy = 1, D Dy Dy = ()
D.{'Dﬁ'ﬂg = U, D.1'D5‘D3 == ﬂ_. Da‘DE‘D3 =1 {31_5]

DDy = -4, DDy = 0,D3Dy = —2

Di-Dy=~2,D3Dy= -4, DDy =0

DyDy=0,D%Dy = -2, D} Dy = —4 (B.1.6)
Triple intersections involving only compact divisors

D} =8, D%Ds =0, D4 Dg = -2,
D:Dy=—2 D=8 DD, =0,
DiDy=0,D5Ds = -2, 0% =8 Dy-D5-Dg = 1 (B.1,7)
Define (h, f, g) the cyeles of the various P?'s. Then we can write down the intersee-
tions of various divisors in terms of (&, f, g},
DyDy= Dy Dg=h.DsDy=Dy-Ds = f,DgD) = Dy Dy, = g
Dy = [+2h D:-Ds = 2f + g, Dg:D3 = h + 24,
DDy =0,D4-D5 =0, D5-D5 =0

Dj=-2f —4h Di=-2g~4f Dj = 2h—4g  (B.L8)
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The triple intersections involving the (k, f, q) are:

FL'D] = 11 f?-*D:g = D'-_ .h.D;; = U' Jli'.D'_i = —ET hDﬁ = 1, h-'DE; = f]
f’D] . ﬂ, fﬂj = lff'D;j, == U, f.D'q, — D,f*Dr, = —2'1 fDE = ].
gD =0.0Ds=0,9-Dy = 1,g Dy =1,¢g-D5 =0,4-Dyy = —2 (B.1.9)




Appendix C

Fractional branes in C?/Zs; and

C?/Z7 orbifolds

In this appendix we will study the torie description of the fractional D2 branes in

the C*/Z5 and C?/Z; orbifolds

C.1 Fractional branes in the C?/Z; orbifold

Here we consider the C*/Z; orbifold with the orbifold action +[-4,-4.-2], with the
orbifold action Z — w™Z along the brane in the 2-brane case, where w is the ffth
root of unity. The toric disgram is given in Figure 5.2. The intersection forms

compuited at the orbifold end are:

Dy—Do=(1-g)*(1 g%, Dy~ Ds=1+g— ¢* — g%, and

Dy —Da=q"—yq (C.1.1)
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The tantological bundles RY are already given in [59]. We will not write them down

here. The ch(S}) are given by,

: v 1d
f_'thJI = Dy+ D5+ (3/2)h + (5/2)f + TP
i
w4
chSy = —2D;— D5 —2h - (3/2)f - 3P

l
4'.'!15'5' = I+ h/24 5P

v
C][ES};: - —J'I_,:'r, |:¢':I'J."IEJ:'_I|II - Eﬁ

; 1
chS] = Dy+(3/2)f + L (£.1.2)

Here h is a cycle of the exceptional divisor P2, while f is the fibre of Fy and pdenotes
the class of a point in P2 The various triple intersections of various divisors are

given in [59] We take the following aunsatz for the chi(S?)
chS; = ai Dy + o} D + ayDy-Da + ah + alf f + eip

As in the C3%/Z;3 case we take the coefficient of the noncompact fibre to be 1. So

finally we get,

chS§ = DyDy+ eop

eS8y = Dy 04Dyt %ﬁ + ? +eyp
chS; = —D;+ Dy Dy— f} + f +tap

¢hS§ = Di-Dy+ f+egp

chS{ = —Dy+ DDy — i?f + eyp (C.1.3)

The ¢; remain undetermined as before. Comparison with the fractional 2-braes of
the C*/Z; orbifold suggests that the 55 is purely along the noncompact fibre given

by the intersection of the divisors, Dq-Da.

C.2  Fractional branes in the C*/Z- orbifold

We consider the example where the orbifold action is (4,2, —6] and the orhifold

action is given by Z — w7, along the direction of the brane in the 2-brane case.
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where w’ = 1. The Toric diagram is given in Figure 5.4

DO-D0 = —(1—g)(1-g)*(1 —g")
DO-D2 = —g—g*+g'+ ¢
D2-D2 = g4g°—g°—¢b e )

The tautological bundles 7 for this example are,

Ry = O, Ity = O(Dy), By = O( D)
fts = O(Dy+ Dy), By = O(Dy), Ry = QD) + Dy),
RE;= Q{Dl-f-ﬂg} [C‘EZ}

Then as before, one can solve for the ¢h(S?Y) by solving the equation,
(Ri SF) = (C.2.3)
Finally one has for the ch(SY)

¢h(Sy) = Dy+Ds+Ds+2(h+f+g)+2p

b(S)) = ~Dy— Dy~ f~2~2p

h(SY) = ~Dy—Di=h-2f~2p

ch{S5) = Di+f+ %p

ch(8]) = By~ Dy=h—=g= %p

ch(S)) = Dg+g+ %'P

ch{S{) = Dy+h+ %p (C.2.4)

where i, f and g are as defined in appendix B.

We take the following ansatz,
c¢h(S7) = oiDy+aiDs+alDe+ 601Dy + Vh+ bl + B g+ eip

As before, we take the coefficient by = 1 in all the equations. We can now solve for




the ch(S5?),

ch(S2)
ch(S7)
ch(S3)
ch(S3)
ch(53)
ch(53)
ch(S5)

=L+ Dy-Ds — h + eqp

DDy +eqp

Di+ D+ D+ Dy-Da+2(h+ f+g) +cap
Dy+Dy-Da+ 20+ [+ e3p

—Ds 4+ DDy +h— f4eyp

DDy + h+ exp

=Dy = Ds+Dh-Dy—h— g+ eqp

The ¢;'s are undetermined as earlier,
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Appendix D

Intersection matrices for the

quintic

The Chern character of the RS branes on the Fermat quintic @ € P! are obtained

[rom the generalised Euler sequences given in Eq. (6.1.2). One obtains

ch(My) = 1

ch(M;) = —-4+J+§—§

chiMy) = 6-3.70— J; | }?5

chiMz) = —4+3J— J; - ;
Jr J2

ch(My) = 1=J+ T

In the above J generates H7((), R) with the normalisation chosen to be (T =
5{J%z = 5. The Chern character for the new fractional branes are given in terms

of the sequences that we proposed in egs., (6.2.3). The only additional input is our



proposal that ch{Ap) = £,

4
chiF) = 1-— jT
i3]
N . J=
*..h(«-‘r| ] = —d+J4+ E = E
3
ch(Fs) = 3-2J+ @
1o
) II'.? ”r.'i
ch{Fy) = —1+J—?-- <0
—J3
chiF,) = =
b

The Euler form on the quintic is defined as
V(E, F) = / ch(E)* ch(F) TA(Q) .
Jo

The above formula leads to the following intersection matrices :

(0 5 —10 10 —5)
-5 0 5 =10 10
XMy M )= 10 -5 0 5 =10 —-(1-yg) (D.0.1)
—10 W -5 0 5
\ 5 =10 1 -5 0 J

XMy Fl=|4 -1 -1 4 —6|+——(1—g) (12.0.2)

X(FuFu)=13 -1 0 1 —3|+—g{l-gP (D.0.3)
-3 3 =1 0 1
\1 -3 3 -1 o0

where we have rewritten the matrices in terms of the generator g of the quantum

Zs symmetry. The last formula coincides with the intersection matrix compited
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between the L = 0 permutation branes for 7 = (12)345 given in the appendix of
[41].
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