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Notations

Symbaols

&

denotes the real line

5
i

Be denotes the n-dimensional Euclidean space over R, {€1,i:0,eq} 18 the
standard basis of B"

B U {—o0,+o¢}

|E|  is the Lebesgue measure of E c B"

E denotes the closure of E C 2" in the usual topelogy

0 denotes an open bounded subset of 3"

d  denotes the boundary of {2

£ CC ) denotes a bounded open subset © of ' such that {2 ¢

M{a, b Q) denotes, for 0 < @ < b, the class of all n % n matrices, 4 = Alz).
with L*(Q) entries such that,

alél® < A(z)E.£ < bj€]* aex VEERT

{ denctes the identity matrix

‘A denotes the transpose of a matrix A

Function Spaces

D(€) is the class of all infinitely differentiable functions on  with compact

Support

Vi



MOTATIONS vili

D'(82) is the topological dual of D(§2), the space of all distributions

L=(Q) is the space of all essentially bounded measurable functions and its
norm is denoted by ||| <.

LF(£2) is the space of all p-summable measurable functions and its norm is
denated b}' ”.glplgg l=p< DC:'J

WP is the collection of all LF(Y) functions such that all distributional
derivatives upto order m are also in LP(Q2) and its norm is denoted by
]
|-l weeemiay

Wa () is the closure of D(£2) in Wm2(1)
W=™({)) denotes the dual of W]™(0)) where p is such that :1) - i =1

Hg(£2) is the closure of D(Q) in W) = (HY(£) and its norm is denoted
By (|- g oy

H=H(1) is the dual space of H}(0)
General Conventions

V! denotes the topological dual (space of continuous linear functionals)
of the space V

{-,+) denotes the inner produet in the ambient Hilbert space
{vyvv denates the duality pairing between V' and V

—+ will denote the convergence in the strong topology of the space
= will denote the convergence in the weak topology of the space

B(x,r) denotes an open ball of radius r centred at ¢ in any normed linear
space

Cy 1s a generic positive constant independent of the parameters w.r.i
which a limit is taken; will be different in different inegualities

tdenotes the extension of a function by zero on the holes of 0 , See
page 11



Chapter 1

General Introduction

1.1 Homogenization

The theory of homogenization of partial differential equations is a COTICEpT
that deals with the study of the macroscopic behaviour of a compasite
medium through its micrescopic properties. The origin of the word is re-
lated to the question of replacing a heterogeneous medium by a fictitious
homogeneous one (the ‘homogenized' material). The known and unknown
quantities in the study of physical or mechanical processes in a medium with
microstructure depend on a small parameter = = ﬁ where L is the macro-
scopic scale length of the dimension of a specimen of the medium and { is the
characteristic length of the medium configuration. The study of the limit,
as £ — 0, is the aim of the mathematical theory of homogenization. Though
the case £ — 0 has no real physical meaning, it is important as a tool for
numerical computations.

We shall now illustrate this notion with an example.

Consider a beam made of a homogeneous material with uniform cross
section oceupying £ with v > 0, a constant, representing the elastic property
of the material. Then, to study its torsional rigidity we need to solve the
following homogeneous Dirichlet problem:

—div(vVu(z)) = 2in 0 (111}
u = 0 on g o
Since v is constant, the above equation can be rewritten as
—vAuy = 20 .
f T (1.1.2)
u = 0 on 8
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This is a classical second order elliptic boundary value problem and ad-
mits a unigue solution.

If we consider the situation where a larse number of fibres of different
materials with reduced thickness are introduced along the length of the bean,
then + takes different values in each component of the composite, i.e., ¥ is
a4 function which is discontinuous in £, To simplify, suppose we consider
a beam made of two fibres of two different materials, the cross-section of
one oceupying the subdomain €y and the other Oy, with 0, N0, = @ and
£ =€) U,y U (89 NadQs) then problem (1.1.2) is replaced by

—diviAVu) = 2inQ X
{ v = (0 on dfl. 1:1.8)
where A(z) = ~v(z) with
Y v M relly . .
ME) =9 (1,1.4)

va if & Oy,
where 5, is the elastic property of the material occupving (%, for i = 1, 2.
Suppose we now progressively increase the number of fibres while reducing
their thickness then the coefficients of the matrix A odeillate rapidly. Thus,
when we try to solve the problem numerically, we need to use a very fine
grid or mesh to get a good approximation of the solution, and this is very
expensive. The mathematical theory of homogenization ‘averages out’ the
heterogeneities and studies an ‘equivalent’ homogeneous fctitious material
whose behaviour reflects that of the original material, when the numhber of
fibres is very large.

Homogenization, as a mathematical discipline, tock shape only in the
last three decades but the physical ideas of homogenization date back at
least to [Poi22, Mos50, Max73, Cla79, Ray92]. A very good historical record
of works related to homogenization until 1975 can be found in [Bab76] and
the references therein,

An abstract theory of homogenization was introduced by S. Spagnolo
in a paper of 1967 (cf [Spa67]) under the name of G-convergence' (also
cf. [Spa68, GST3, SpaT6]) and further generalised as /{-convergence by L. Tar-
tar in [Tar77] and developed by F. Murat and L. Tartar (cf. [Mur78b, MT7]).
There is also & variational theory of homogenization, known as [-convergence,

"The terminology dencting the convergence of Green's operators for boundary problems



CHAPTER 1. GENERAL INTRODUCTION 3

proposed by Ennio De Giorgl in a sequence of papers (el (G573, GiaTh,
GEFT3]). For a thorough introduction to this theory we refer to [Gio84, Att84,
D}»IEJ.%, BDO8]. The wide spread application and theory of homogenization
can also be found in [BLPT8, JKO9%4, Hord7, CD99. CPYY),

1.2 Periodic Homogenization

We shall, in this section, illustrate homogenization in a periodic framework.
The periodic framework models the case where the heterogeneities are very
small with respect to the size of Q and are evenly distributed. This is
a realistic assumption for large class of applications. The periodicity can
be represented by a small parameter =. A very nice exposition on periodic
homogenization is the book [BLPTS]. Also the recent book by Cioranescu
and Donato ([CD99]) is dedicated to the study of asymptotic analysis for
periodic structures,

We shall now introduce the geometric model of 4 periodic mixture. Let
us assume that Y'(= [0, 1], for example) is a reference cell (or period) in B"
Let A = (ay) € M(a, b, Y) bean x n matrix that has ¥ -periodic entries,
48 iy tak& equal value on opposite faces of Y. If we now partition B" into
cells of size £ by translating the cell £Y" then we have a partition of Q into
=-cells (el Fig. 1.1}. The funection ay; now gives the function af ) = a;(%)
on the cell £} and can be translated to each of the other cells. T}_HJ.‘-, we get
a periodically oscillating function, with period , on 3", Define A. = (af.],
which is in M{a. b, £2). '

We now introduce the auxiliary periodic function defined an the reference
cell ¥ which is useful in identifying the ‘limit’ homogenized matrix Ay For
R B n, let w; be the unique solution of the follawing problem:

—div({A(y)Vuy) =0 in¥

= (wily) —y)dy =0 (1.2.1)
i ¥

it — 4fs is Y-periodic.

The following theorem describes the asvmptotic behaviour of a second
order elliptic system with periodic coefficients. The proof of this thecrem
can be found in [CD9Y].
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Figure 1.1: partition of {2 into =-cells

£

Theorem 1.2.1. Let f € H YQ) and u. be the solution of
S 3 ;
. j{ﬂﬁﬁjzfznﬂ
! oT; M dr;
u. =0 ondfl,

Then
we — uy weakly in H;(Q) and
ANVu. — AgVug weakly in (L30))",
where ug is the unique solution of
'-'?
r? £ 0 Eun, .
- = bl — — IEE
:';1 ”75& s 5%] I h

uy =40 ondi)

and Ag = (al,) s constant, elliptic and given by

L chur; chw
] 7 1 s -
. = — E Ll |"_.{ ) § = I ..... .
o ./; R ay, YT E

[ R

&
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The homogenized coeficients a?. depend only on the matrix A, and not
on the other data f and 0.

Remark 1.2.1. In the one dimensional (for example, sav, ¥ = 0, 1]} periodic
case, Ap is given by

"4“ J .4.['-!'
In fact, in the one dimensional case, the periodicity of Aly) does not play a
fundamental role in the above result. Thus. for the non periodic one dimen-
1

siomal case, one can deduce that the limiting coefficient 4, is 3= Where A" i

the weak® limit of .sz in L>(1). D

In the rest of the chapter we shall very briefly recall the basic notions
of H-convergence, Hy-convergence and [-convergence, Most of the results
included in this chapter form a base to the thesis. Those of which are already
available in the literature have been stated without proof,

1.3 H-Convergence

Let A. € M(a, b Q) for some small parameter = and let = H Y. Then,
the second order elliptic problem

—div(A. Vi) =f im0 a1
(1.3.1)
u, =0 ondi}
has a unigue solution satisfving the estimate
. 1. ,
el oy < E:HHH-l{EJ- (1.3.2)
Hence there exists a subsequence such that
U — up weakly in Hy(D2). (1,3.3)

The unigueness of u, follows from (1 3.2:]. The bounded elliptic operator
A = —dn[ A V) from H}(Q) =m;0 H~4(Q) is an isomorphism and the norm
of (\A.)~" is not larger than a™? (cf. (1.3.2)).
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Remark 1.3.1. The unique weak solution u. of (1.3.1) can also be charac-
terized as the minimiser of

. dk :
Je(v) =5 | AVeVude = (£,0) gy gio

<Jn
in H3(0). O
Definition 1.3.1. A sequence {A.} of elerents of M(a. b, () H-converges
te an element Aq of M(a'. ¥, 1) (denoted as A. 5 Ag) iff for any f €
H-HQ). the solution u. of (1.3.1) is such that

u. — ug weakly in H3(Q) and (1.3.4a)

A Vu, = AgVug weakly in (L*(0))™, (1.3.4b)

where uy is the unigue solution of

{ —div({AgVuy) =f in (1.3.5)

g = {1 andfl
]

The matrix Ag is called the H-limit of the sequence {A4.}. The notion of
H-convergence can also be interpreted as a statement about the convergence
of the operators (A, )~ when both the spaces H(Q) and H1(Q) are endowed
with the weak topologies. In other words, A, A Ag is equivalent to the
convergence of the inverse operators in the following sense:

(AZ'f9) = (Ag'f.9) Yfige HT(Q)

where the operator Ay = —div(4,V).
The following theorem briefly lists some of the principal properties of
H-convergence. For a proof of this we refer to [CD99, MT97].

Theorem 1.3.1. (Uniqueness) The H-limit of @ H-converging sequence
{A} € M(a. b, Q) is unigque.

(Transpose) If A, % Ag then 'A, 2 14,

(Compactness) For any given sequence A. in M(a. b.Q), there erists a
subsequence {AL} and Ag € M(a. 2, Q) such that A 2 A,

[
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(Energy convergence) [f A, =i Aq then
/AE‘EM;,?MZ- dx — /;‘L“?uu.?uu dx (1.3.6)
Jo Jo

where w. and wy are, respectively, the unigue solution of (1.3.1) and
(1.3.5). O

Remark 1.3.2. The energy convergence stated in the abave theorem is also
valid when, in (1.3.1), instead of a fixed f, one has f. € H-'{Q) such that
fe — f strongly in H1(Q), O

The energy convergence also amounts to saving that the quadratic forms
associated with the operators converge, Le., {Au.u.) — {Agug. ug). In
section §1.5 (cf. Lemma 1.5.1), we will observe that this is actually subjeet
ta & special type of convergence called the I-convergence.

The energy functional (cf. (1.3.6)) involves a product of two weakly con-
verging sequences and we have claimed that the limit of the product is equal
to the product of the limit. This property does not hold in general. One of
the main tools for getting across such difficulties is the theory of compensated
compactness due to F. Murat and L. Tartar (cf. [Mur78a, Mur79, Tar79]).
The following result is one of the first results of this theory and is very useful.

Theorem 1.3.2 (div-curl lemma). Let u, and v. be two sequences in
(L3(2))" such that

e — Ug weakly in [LE{H}'J“

v, — vy weakly in (L*(02))".
If {divu.} is compact in HHQ) and {curlv.} is bounded in (L2(§1))m%",
then

Ul — Uply weak™ in D'(0),

We have from (1.3.4a) that
Vi, — Vug weakly in (L*(Q))".

In general, the above convergence is not strong. However, by adjusting the
term Vug, we get a strong convergence (¢f. Theorem 1.3.3). This adjustment
is done by introducing the corrector matrix,
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The corrector matrices are obtained by looking for functions Xt e HY(0),
for 1 < i < n, with the following properties:

XL — a; weakly in HY{Q),
AVt — Age; weakly in (L2, {1.3.7)
div{A.Vx!) converges strongly in H-1{Q),

One procedure to build a function with above properties is by defining Yi €
HY (Y, for 1 < i< n, as a solution of

—div(A,Vxt) = —div(Age) in ¢
{ div{A. Vxt) div{Age;) in (1.3.8)

M= on of.

Then the corrector matrix D, € (L*(Q))"*" is defined as D.e; = Vx: for
1 <4 < n. Some interesting properties of the corrector functions are given by
the following propesition, the proof of which can be found in [CD99, MT97].

Proposition 1.3.1. Let A. € M(a,b,Q), x! be a function with properties
(1.3.7) and D.e; = Vxi. Also, let A, H-converge to Ay, then the following
are true:

(o) D. — T weakly in (L2((1))#n,
(b) A.D, — Ay weakly in (L3(Q))"*"

(¢) *D.A.D. — Ap weak® in [D'(2)]™m,

|

The interest of the correctar matrix I, is the following theorem:
Theorem 1.3.3 (cf. [CD99]). IFA. 2 Ay, then
Vu, — D.Vug — 0 strongly in (L1(0))".

Moreover, if D. € (LT, | Dellqpremyy € Co for 2 € v < H4oc and
Vg € (L))", 2 < s < 40, then

Vi, — D.Vug — 0 strongly in (LHO)),

where t = min {2, ol C
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A question of similar interest is to know the limit of |V |53q- One
knows that this quantity is uniformly bounded and hence. at least for a
subsequence, converges. We know that the limit is not ||V |2 o, since we
know from the above theorem that w. does not converge to wug strongly in
Hi(Q). We would like to know the limit and whether it can be expressed
i terms of the function wy. More generally, the problem can be framed as
identifying the limit of [, B, Vu, Vu,dz where B. is a family of matrices in
M{e,d, ). More precisely, does there exist a matrix B' € M(c, d', €] such
that, at least for a subsequence, we have

fB__._?u:..'UuE rEJ:—~] B'Vuy Vug dr?
0 0

The convergence question posed above i3 answered when B. = A, (cf.
(1.3.6)), in which case, it has been observed that B* = Ay, the H-limit of

A.. The general problem was studied by Kesavan and Rajesh in [KRO2].

Proposition 1.3.2. Let A, € M(a. b)), B. € M{c.d, Q) and Xt be a
funetion unth properties (1.3.7) and D,e, = Vx.. Also, let A, H-converge to
Ao, then the following are true;

{a} There exists a B* (depending only on {4,} and {B.}) such that

‘D.B.D, - B* weak® in (D'(£2))"*". (1.3.9)

(b) If B- = A, for all =, then B* = A,.
(c) If B.'s are symmetric, then B* is symmetric.
(d) B* € M (c,d(2)%0). !

The existence of the matix B*, mentioned in the above proposition, was
shown by Kesavan and Vanninathan, for the periodic case (ef. (KVT7]), and
by Kesavan and Saint Jean Paulin in the general case (¢f. [KP97]), in the
process of homogenizing an optimal control problem.

It was observed that the required B' is actually the B obtained in Propo-
sition 1.3.2 and thus

[Hi?w.:,"?'-ua dr — f B Vg Vg dr. (1.3.10)
40 L
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Therefore, if C' is the positive square root of the matrix B* when B. = I, for
all £ = 0, then
IV g — ICVualq

An explicit formula for the matrix B* can be found in §3.4.

In this section, we introduced the notion of H-convergence and the results
on f-convergence are valid when the data converges strongly in H —H(6).
We will see in §3.3 that the notion of H-convergence can be applied to the
case when data is from the positive cone of H~?(Q2) and converzes weakly
in H7'(Q), however, the energy convergence [ails, in general (¢f Remark
3.3.1).

1.4 Hy-Convergence

In this seetion, we shall introduce the theory of homogenization developed
for perforated domains. Perforated domains are domains with holes. The
common feature of problems posed over perforated domains is that the fune-
tions are defined over different domains Q. (wiz. € minus the perforations).
Mathematically speaking, we consider a family of closed subsets 5. © ) and
set £, = (1Y S., which we call the perforated domain. A detailed exposition
of homogenization on perforated media can be found in {CP99],

There are two kinds of boundary conditions one could consider on the
boundaries of the holes. The first is the Dirichlet boundary condition on
the boundaries of the holes. The other case is to consider a Neumann type
boundary condition on the boundaries of the holes and a Dirichlet (or any
other) condition on the global boundary &Q. Both these cases were studied
in the periodic case (cf. [CP79, CM97]}). It was soon realised that to study
the convergence of the solutions in these cases, one has to first extend these
functions suitably on 00

In the case of homogeneous Dirichlet boundary conditions we have the
trivial extension by zero over the holes. However. there are other kinds
of difficulties in this case (cf. [CM97, DMM04]). In the case of Newmann
type boundary condition the existence of a uniformlv bounded prolongation
operator is presumed from H(Q.) to H}(Q). For this case, the notion of H-
convergence was extended to the perforated domains. called Hy-convergence,
by Briane, Damlamian, Donato in [BDD96],

We shall now introduce some machinery required for Hy-convergence, Let
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¥z denote the characteristic function of the set . in (2,

Pt e 1 ifxefl
XE =V 0 itz e s

Observe that (for a subsequence) x. — y, weak® in L=(0). Some properties
specific to y, and yq are proved in Lemuma 4.1.1 and Lemma 5.2.1. If f- is
a function defined on €., we denote by f. its extension by zere across the
holes. to all of £2.

The dificulty specific to the perforated case, in contrast to the case where
impurities exist instead of holes, is the inability to obtain estimates on the
whole of £. A natural way to get around this difficulty is to assume the
existence of extension operators which extend the salutions to 2.

H 1. There exists, for each = = ), an ectension operator
PV, — HIO)
where V. = {u € H'(Q,) | u =0 on 00}, such that, for every uw e V).
Poulg, = w and |[V Pt o0 < G| Vu|a0,
where the constant Cy is independent of =.

The above hypothesis represents a condition on the regularity of the hales
and the way they approach the boundary d0. Such extension aperators
can be explicitly constructed in the case of periodic distribution of holes
(ef. [CPT9, CP39]). The space V. is the solution space of the syvstem (1.4,1)
and, given (H1), we can define the norm on V; as, |lujly. = IVullzn,. The
independence of Hy-convergence from the extension operator is taken care of
by the following hypothesis (cf. [BDDY6, Lemma 2.1]):

H 2. Every weak® limit point in L=(Q) of {x.} is positive a.e. in 1),

We say that the family of holes {5.} is an admissible family of holes in
0, if the conditions (H1) and (H2) are satisfied. Throughout this thesis S,
will denote an admissible familv of holes in €

Definition 1.4.1. A sequence { A, } of elements of M(a, b, 1) H-converges
to an element Aq of M(a', ¥, Q) iff for any f € H~YN), the solution u. of

—div(A.Vu.) =P f in.
ANu.n, =0 on db. (T.4.1)

i, =) on (02,
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(where n, is the unit outward normal on 45, and P HY) — V! denates
the adjomnt of P.) is such that

FPou, — wg weakly in Hj ()  and (1.4.2a)
ANV — AV weakly in (LEH(Q)Y, (1.4.2b)
where uy is the unigue solution of (1.3.3). [T

The matrix Ay is, then, said to he the Hy-limit of {A.}. Analogous to
the theory of H-convergence, if A, Hy-converges to A, then the energies
COTIVErge. e,

f A Vu. Vu. dr —*[rin?b‘..{]-?ﬂq}l’fr. (1.4.3)
0, 0

Moreover, 4, € M Zr, “r'—', {1} and the local property of Hy-limit is given b
the following proposition.

Proposition 1.4.1 (Local Property). Let A, and B- be two SCUENCES in

Mia, b, Q) that satisfy A, 22 Ay and B. 2 B, and ave such that A, = B.
on w '\ S;, where w is an open set contained in . Then 4y = By on w.

i s
We now clarify the case of varying right side in the definition of Hy-

convergence.

Theorem 1.4.1. Let f. — f weakly in L*(Q) and let u. € Vo be the solution
of

—divid. V) =1 il
ANu-n, =0 onds, (1.4.4]
U, =0 on d0Q,

them Fou. — wy wenkly in Hi(Q) where ug is the solution of (1.3.5) and 4,
ts the Hy-limit of {A.}. O

If the right-hand side of (1.4.4) involves fixed f € L*(0), then we must
take f. = x.f which will converge weakly in L*(Q2) to xpf. The proof of
this result can be found in [BDDY6] and the above theorem can be proved
by rephrasing this proof suitably.
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The notion of correctors was also developed for the theory of Hy con-
vergence (cf. [BDD96]) The corrector matrices are obtained by looking for
functions p! € HYQ), for 1 < ¢ < n, with the following properties:

pt =y weakly in HY(()),
AV i — Age, weakly in (L2(0))", (1.4.5)
div(x-A: Vi) converges strongly in H—1((}),

We shall now detail one procedure to build a function with above properties.
Let €' be a bounded open subset of B" such that 3 cc €. Let Y ="{PN S,
Then the family of holes, 5., is also admissible for . This can be seen by
extending F;, obtained in (H1}, by zero in £\ 0. We denote this extension
operator on (¥ by P, itself. The matrix 4., as a function, can be extended
to £F by defining it to be af in '\, Q, and denote the extension by A, itself.
Clearly, A. € M(a. b, ¥) and the Hy limit of A, in € is denoted by A
Then, by Proposition 1.4.1, A’ restricted to ) is Ay, the Hy-limit in €. Let
@ € DY) with =1 in Q. Then, we define pi € HY Q) for 1 <4< n, as
a solution of

~div(A Vi) = Pr(—div(A'V(ez))) in
ANVpin, =0 o1 A5, (1.4.6)
ut =0 on A0’

Then, by Hy-convergence, we have P. pt weakly converging to ¢x; in H1(§)
and hence to x; when restricted to 1. We now define the corrector matris?
D, € (L*Q))™" is defined as D.e, = V(F.pul) for 1 < i < n. Some prop-
erties of the corrector functions are given by the following proposition, the
proof of which can be found in [BDDY6).

Proposition 1.4.2. Let A, € M(a,b. ), pi be a function with properties
(1.4.5) and D. is the corrector matriz as defined ahove. Also, let A, Hy-
converge ta Ag, then the following are true:

(a) D. — I weakly in (L3(Q))"*",
(b} x-A.D. — Ay weakly in (L*[Q))"=",

(e} xD.A.D, = Ay weak™ in [D'(02)]"%", O

*Cantion: Same notation 3. for correctors is being emploved in both H and Hy con-
vergenees
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(uestions similar to those posed in the previous section regarding the
convergence of Vu. can be posed here ton. The existence of the matix® 52
for the perforated case was shown by Kesavan and Saint Jean Paulin (cf.
IKP94]), in the process of homogenizing an optimal control problem.

Proposition 1.4.3. Let A. € M{a.b.Q), B, £ M(c, d,0), 1t be a function
with properties (1.4.5) and D, is the corrector matriz as de fined above. Also,
let A. Hy-converge to Ay, then the following are true-

(a) There erists a matriz B (depending only on {A:} and {B.}) such that
Xe'D.B:D. — B* weak* in (D'(2))™". (1.4.7)
(b) If B. = A, for all =, then B* = A,

(¢} If B, s are symmetric, then B* is symmetric.

(d) B e M (. d(2).0). O
‘0
Moreover, the energy functional converges, i.¢.,
] BNy Nu.dr — / BV Vug dr, (1.4.8)
1. 3!

where uy is the solution of (1.3.5). In particular, if ¢ denotes the positive
square root of the matrix B* when B. = I, for all £ > 0, then we have that

|"Uut.|_:jﬂr — ||ff.“~?nu_'!jﬂ_

1.5 ['-Convergence

The notion of I-convergence was introduced by Ennio De Glorgi in a se-
quence of papers (cf. [GST3, Gio75, GF75]). An excellent account of this
concept is the book of Dal Maso [DM93]. In this section we will introduce
the sequential notion of T-limit and K-limit (Kuratowski) in a topological
space for completeness sake. We shall also give simple proofs of some im-
portant results. Let us point out that all the [-limits and K-limits used in
this thesis are of sequential kind and the space X, in this section, denotes a
topological vector space.

Caution: Same notation B? is being employed in both perforated and non-perforated
case
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Definition 1.5.1. A function F : X — B iz sequentially lower semi-
continuous (Isc) at a point z € X if

F(z) < liminf F(z,)
fi— a0
for every sequence {x,} converging to r € X
F' 15 sequentially lower semicontinuous on X if F s sequentially
lower semicontinuous at each point x € X. C

Definition 1.5.2. A set E of X is sequentially compact {f cvery sequence
m B has o subsequence which converges to a point of E. Ll

Definition 1.5.3. 4 function F: X - Z is sequentially coercive on X
if the closure of the set {x € X : F(z) <t} is sequentially compact in X for
every t € K, [

Remark 1.5.1. If I is sequentially coercive on X, then every sequence {x,}

in X with limmsupF({z,) < +oc hasa convergent subsequence in Y ]
l—=x0

Remark 1.5.2. Let X be a reflexive Banach space. A function F: X — &

is sequentially coercive in the weak topology of X if and only if F{zr) tends

to 4o as ||z|| tends to +oc. ]

Definition 1.5.4. A minimizing sequence for £ in X is a sequence {r, )
i X such that

inf F(y)= lim F(x,)

veX fe—co

O

Theorem 1.5.1. Assume that the function £ X — B 15 coercive and lower
semicontinuous. Then F oattains a mintmum in X U

Definition 1.5.5. We say that a function F: X — R is convex if
Pt +(1—1)y) < tF(z) + (1 - )F(y)

for every £ € (0,1) and for every .y € X such that Flr) < 400 and
Fly) < +oa, E]
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Definition 1.5.6. We say that a function F : X — & 43 strictly convex
if F' 15 not identically ~oo and

Fliz +{1 = ty) < tF(z)+ (1 - ()
for everyt € (0.1) and for every =,y € X such that z # 4. Fiz) < +o0 and
Fily) < +o0. O
Proposition 1.5.1. Let F': X — E be a strictly conver function. Then F

has at most one minimum point in X, L

Let {F,} be a sequence of functions from X in to B and let {E.} bea
sequence of subsets of X
Definition 1.5.7. A function F is said to be the sequential [-limit af Fy
(denoled as F, =5 F) w.r.i the topology of X, if the following two conditions
are satisfied:

(i) For every x € X and for every sequence { To} converging to x in X, we
have
liminf F(zx,) = F(x),
n—oe
(1) For every x € X, there exists a segquence {z.} converging to ¢ in X
(called the U-realising sequence) such that

i 7 (£.) = F{z).

Jlsﬂ .
Lemma 1.5.1. /f 4, & Ap then J. =5 J in the weak topology of H)
where

Jil:u}=/fi._,?u.\7u.d:r
0

and
J(u) =/Jiu?u.'\7-u dr.
Ly

Proof. Let u € Hy(Q) and let w, € H}(Q) for all £ be a sequence such that
we — 1 weakly in Hj(Q). Let v, € H}(Q) be the sclution of

—div(A. Va.) = —div( A, Vi), (1.5.1)
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Then, it follows from H-convergence that w, — u weakly in Hi(2) and
Jo AV Vu. dr — [, AyVu.Vudr. Thus, we have shown that there exists
a {u.} in Hl[fh converging weakly to u in Hi(0}) such that

lim () = J(u).

Also, it follows from Remark 1.3.1 that

]

: 1
3/4‘45?%'.5-?'&-‘: ria:—f.dn??i.?TL'; de = Effi:-'?u;_.vu__. dr
i £ 0

— f AgVu.Vu, dr
0

and taking liminf on both sides of above inequality we have

liminf Jo(w.) = J{u).

g—i]

Hence J. % J in the weak topology of HH(Q), @

Definition 1.5.8. A point x € X is said to be in the sequential K- lower
limit, &', of E, (denoted by K-liminf, . E,) w.rt the topology in X, if
and only if there exists a k € N and a sequence {z.} converging to © in X
such that =, € E,,, foralln > k.

Definition 1.5.9. A point = € X is said to be in the sequential K- upper
limit, E", of E, (denoted by K-limsup, ,__ F, o) w.rt the topology in X, if
and only if there exists a subsequence {E, .} of {E,} and a sequence {zr}
converging to r in X such that z, € E,, for all k € N,

Definition 1. 5 10. A set E is said to be the sequential K-limit of £,

(denoted as E, o E) w.r.t the topolagy in X, if the following two conditions
are satisfied:

(i) For every x € E there exists a k € W and a sequence {2} converging
to = in X such thatx, € E,, foralln > k.

(it) If {E,. } is a subsequence of {En} and {x}} is a sequence converging to
T in X such that o, € B, for allk €N, thenz € F, [l

| .
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Let J, : E, — B be a sequence of functionals on E. € X having a
minimiser x; € E,. Let F, : X — & be defined as,
: Jilz) =z € E, _
‘.|';]’j — . oy -[P._).‘l:
Fnlz) { +ax e X\ E. (142)
The following lemma is, essentially, Corollary 7.20 of [DM93] and generalises
Lemma 2.1.1 and Proposition 2.1.1 of [Raj00]. We state and prove it here,
under the sequential characterization of [-limits, in a form suitable for the
kind of functionals as given in (1.5.2).

Lemma 1.5.2. Let F, ¢ P and xn — =" in X. Define the set £ as
follows, £ ={r € X | F(z) < +oc}. If & is non-empty, then z* € £ and is
a mummiser of F on £, Also, Fy(zo) — F(z*).

: . > 2 N B .
Proof. £ being non-empty, we can choose a = € £, Now, since £, - [ ip
X, there exists a sequence x, — z in X such that

B ) = Fig) & 460,

Ti—+2C

Hence there exists a ng € M such that =, € E,, forall n > ny. Also, since
i — ' in X, we have

biyiint Fo let)y 2% F%*), (1.5.3)
n—0c
Since 7, is the minimiser of F),. we have Fulzy) £ Fylz,) for all n. Therefore

Filz") < liminf £, (z}) < liminf F(z,) = lim Fultn) = Flz) '« Lo,
Tl—=DC — N—0g
Hence z* € £ and, since = € £ was arbitrary, we have shown that =* mini-
mizes F in £.
Again by the hypothesis, since z* € £, there exists a sequence y, — r°
in X such that
i Fu(yn) = Fiz”)
Flr==C

and y, € £, for all n > &k for some k € M. Taking limit supremum on both
sides of the inequality, Fi(z}) < F,(y.), we have,

limsup F,(z;) < limsup I, (y,) = lim F,(y,) = F(z"),
n—o0 Tl oo

Now combining with the inequality (1.5.3) we have, lim,,_, Eilxl)l= El=*).
L1
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Remark 1.5.3. We observe that the set £ defined in the above lemma satis-

fies the property of Definition 1.5.8, i.e., we have £ € E' = K- lim inf SR
. 5 -F't-fm; 4 —~ s
In particular, if E, =" E we have £ C E (¢f. Open Problem 1 in page

05). [
Lemma 1.5.3. Let E, Kae Eandre X\ E. Then,

(o) there exists ng such that F,(z) = +oo, for all n > T,

(b) If r, — 2 in X, we have lim inf Folzn) = +o0.

Proof. Suppose for all n € N, there exists Ma 20 such that F,. (1) < +co:
then we have a subsequence {E... } such that = € Eo, and hence r € E, a
contradiction. This proves (a),

Suppose lim inf F,,(z,) < +oc, then we have a subsequence {x,, } of {x,}
such that Iy, (2., ) < +2c, for all & Thus T, € Enand z,, — z. Then. by
definition, we have z € £, a contradiction, This proves (b). |

1.6 Summary of the Thesis

The aim of this thesis is to analyse the asymptotic behaviour of various
classes of optimal control problems. In Chapter 1, some preliminary con-
cepts necessary for the thesis have been introduced. Most of the results in
this chapter have been stated without proof, but with zood references. In
Chapter 2, the notion of control problems is introduced and a brief review of
the existing literature on the homogenization of optimal control problems is
given. It surveys some of the existing results in the literature and highlights
the difficulties presented by some of these problems, which are taken up in
later chapters. In Chapter 3, the asymptotic behaviour of a class of opti-
mal control problems with varving control sets and the corresponding low
cost control problems is studied. This chapter attempts to answer the open
problems posed in [KP02|. In Chapter 4, the asymptotic behaviour of low
cost control problems on perforated domains is studied. In Chapter 3 and
Chapter 4, the results detailed in Chapter 2 are extended and improved. In
Chapter 5, an optimal control problem with constraints an state is studied.



Chapter 2

Introducing Control Problems

2.1 Introducing control problems

The theory of optimal control is a part of optimization theory. Qur interest
will be in the asymptotic behaviour of optimal control problems zoverned
by elliptic partial differential equations with appropriate boundary condi-
tions. The term control was coined by Pontryagin and his collaborators
{cf. [PBGM62]) in the context of problems defined by ordinary differential
equations.

The general form of the optimal contral problem that would be of interest
to us is the following. Let H be a Hilbert space denoting the state space, U
another Hilbert space denoting the control space and {7, the set of admissible
controls, be a closed convex subset of . For # € [/, the cost functional is
given as

J(8) = T(u(8)) + NS(0)

where u — T'(u) is a functional on the state space, H, with values in
R,

e ff — 5(f) is a functional on the control space, I, with values in B.
o N =0 is the cost of the control and

e & — u(f) is given by the state equation Au = f + B8 where f € H'
(the dual of H), A+ H — H' and B: U — H'.

The optimal control problem is to minimise the cost functional J over
| the control set /. The case where 7 = I is referred to as the unconstrained

20

N



CHAPTER 2. INTRODUCING CONTROL PROBLEMS 21

case. It is a well known fact from the calenlus of variations that for a co-
ercive, lower semicontinuous and strictly convex function J - U/ — B there
exists a unique £* € U that minimises J over I/ (¢f. Theorem 1.5.1 and
Proposition 1.5.1). Such an element 8* € U is called the optimal control. For
a detailed study of eptimal control problems governed by partial differential
equations we refer to the boeks [Lia7l, Lio81] of Lions. In this thesis, we
consider optimal control problems governed by second order elliptic partial
differential equations, which we will now describe.

Let A€ M{a,b. Q) and B € M(c.d, ). and assume that 3 is symmetrie,
Let U  L*(f}) be a closed convex subset. Let f € L*(Q) be a given function
and N > 0 be a given constant. The basic optimal control problem is the
following: Find 8* U7 such that

J(67) = min J(8),

Al

where the cost functional, J(#), is defined by

Lf s
J(8) == BVuNuds +—103,,
S 2Ja 2 e

and the state u = u(#) is the weak solution in HI(Q) of the boundary value

problem -
{ ~div(AVu) =f+6 inQ (2.1.1)

1w =10 on 2.

It follows from Theorem 1.5.1 and Proposition 1.5.1 that for the problem
posed above there exists a unique optimal control. Our interest will be in
the asymptotic analysis of the above problem when A = A, and B = B..
i.e., when the coefficients vary rapidly with a parameter, £ > (), which tends
to zero. We shall consider the situations where (2 is fixed (non-perforated
material} as well as the case where (1 varies with = (perforated material).

2.2 Fixed Cost of the Control

In this section, we give a survey of results on the asymptotic behaviour
‘of optimal control problem of the above form in both perforated and non-

perforated domains.
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2.2.1 Non-perforated Domains

Let A, € M(a.h Q) and B. € Me. d.$}) be two sequences of matrices,
where the B,'s are assumed to be symmetric. For each g, there exists a
unique optimal control 8 such that

J.(87) = min J.(8)
j"[&f} E}?ﬁ} "F. {HJI

where the cost functional, J.(f), is defined by

) 1 i'.""r. o . ¥
Jo(8) = = Lﬂavuc.?u; dr + = ||0]zq (2:2.1)

and the state u, = u.(#) is the weak solution in H}(Q) of the boundary value
prablem
—divid.Vu,) =f+8 in0
{ . =] on af (222 '
forf el
Let us now introduce the adjoint system and the optimality condition
related to (2.2.1)-(2.2.2) which plays an important role in the identification

of the limit problem. The minimiser 0 is characterised by the optimality
condition

/ (B-VulViu —wl) + NG (0—€))dz >0, VoeU
1

where u; € Hj((), called the optimal state, is the state corresponding to 6.
The above condition can be rewritten as

/ (P +NEE—6)de >0 WHel, (2:2.3)
<11

using the adjoint optimal state p! € H}(Q) given as the weak solution of

~div(tAVpr) = —div(B.Val) in O o
{ Pt =0 on 861, (2-24)

‘The optimality condition (2.2.3) actually implies that 62 is the projection in
\L3(Q) of =E= on U.

The natural questions that arise in the study of the asymptotic behaviour
of the above system are:
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(a) Does the optimal control #! converge, in a suitable topology, to some
limit function 677

{b) In case of (a) being true, is #* the optimal contral of some limit problem
of the same (or similar) type as (2.2.1)-(2.2.2)7

{¢) Can the convergence of #7 to #* be suitably strengthened?

We have already described the concept of perindic homogenization in
§1.2. The questions that were posed above on the asviptotic behaviour of
optimal control problems were answered for the system (2.2.1) (2.2.2) in the
periodic case by Kesavan and Vanninathan (ef. [KV77]). Let A. 1[ ) and
B: = B(Z) where A = {::11_?] and B = [-?JUJ are matrices with } perlodm
coefficients, defined on a reference cell ¥ C B™ with B svimmetric. For
1 =i < n, define v; analogous to w; by replacing A with B in (1.2.1). Let
Ay be the hcmmcremzed limit matrix as given by (1.2.2) and let By = {h” ) i5
the homogenized limit matrix r‘urrpwondmg to B. (replace a by b and w, by
vy in (1.2.2)). Define the matrix B* = (! ] by

" N, — ;) dw,
b;.zhﬁ?.¢/flf vl g,
LR v Jk dyy 51#: Y

It was shown in [KV77] that §" is the optimal control of the problem:

1&11{11 J(#)

where

J(8) =

1
zfngv%h+ 1612, (2.2:5)

where up = uy(#) solves

—div(AgVuy) =f+6 in D g
{ wg =0 on A€, \AE8)
The optimal control problem described in (2.2.1)- (2.2.2) was studied

by Kesavan and Saint Jean Paulin for the general non-perforated case (cf.
[KP97]). They showed the existence of a matrix B* such that the limit of
the optimal controls is the optimal control of the system (2.2.5)-(2.2.6).

In the process they had actually homogenized the adjoint equation (2.2. 4).
i spite of the right hand side being bounded only in H- H€2). Tt was also ob-
Eerved that the weak convergence of the optimal controls 87 can be upgraded

|
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to strong convergence in L*($2). The result of [KP97| is summarised in the

following theorem.

Theorem 2.2.1 (cf. [KP97]). (i) For given f € L*Q)) and 6 € L%(Q),
let (u..p.) € HYHQ) x HIQ) be the weak solution of the system

—div(A:Vu) =f+8 D
—div(*A.Vp, — B,Vu.) =0 inQ (%
u. =p. =1 on J02

!'\..-
I
= |

and lef u. — uy and p. — py weakly in HYQ). Then there exists a
matriz B* (depending only on the A, 's and B, 's ) such that

"AVp. — BV, — *AgVpy — B*Vuy

weakly in (L*(Q))" and the pair (ug, py) € HIQ) x HY(Q) is the solution
of
—di‘r'{“"lqv?lg) =f+8 inQ
—div{*4aVps — B*Vua) =10 in {2 (4
g =My = ¥ o 5

where Ag is the H-limit of A..

L
[0
o2

(it) Let 82 — 8* weakly in LX) then 6° € U is the optimal control of
the system (2.2.5)-(2.2.6) where Ay is now the H-limit of A.. Further,
0 — 8% strongly in L*(Q) and J.(62) — J(0*). Also. §* verifies the
hmit optimality condition,

/{p' L NEWO—0)dz >0 Vel (2.2.9)
i1

where p° 15 the weak limit of p! in Hi(§Y) that solves the equation

{—div[l_sl.;.?p*} = —div(B'Vu') in 0

P =0 on 8. 210y

=
| S |

- Remark 2.2.1. The result (i) in the above theorem does not require the hy-

pothesis that B. are symmetric. The weak convergence (for a subsequence)
'h}'pmhusis of the optimal controls in (ii) can be established from the el
lipticity and houndedness assumptions on A, and B.. In the case of low
cost control, we are unable to deduce the weak convergence of the optimal
pantrols. 2
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Let us point out that in the problems described above, the admissible
control set U is independent of . One can then pose the following question:

P 1. What happens when the admissible set [/ is varying with =7

In the case of (P1), since the control set is varving, the usual argurnent
for existence of bound for 82 in L*(Q) fails and one also has to identify the
control set of the limit problem. Also, if possible, one has to improve the
convergence of the optimal controls. We shall address this question in 53,1
of the next chapter.

2.2.2 Perforated domains

Let 4. € M(a, b Q) and B, € M(c. d, ) be two sequences of matrices, where
the I.’s are assumed to be symmetric. Let (), be as defined in §1.4. Let
U. C L3(9.) be a closed convex subset. Let f € L) be a given function
and N > () be a given constant. For each =, the optimal control problem

min J,.[6.),

HeEL,

where the cost functional, J.(6,), is defined by

1 N .
;5 [ BETTLE.?H_; I'jl T 7 |||E‘|£ ”%In( (22;. ] :|

= L

J(8.) =

and the state #. = u,.(#,) is the weak solution in Ve of the boundary value
problem

—div(AV,) =Ff+6, in0y
ANun, =0 on (5. (2.2:.12)
u. =10 on @02,

(where n. is the unit outward normal on 45,) has a unique optimal control
'I-H': in U;. The adjoint system of (2.2.11)-(2.2.12) is given as

—div(*A.Vp.) = —div(B.Vu,) in .
(*A.Vp. — B.Vu.}n, =0 on a5, (2.2.13)

i B =1 on (0.

~ The optimal control problem deseribed in (2.2.11)-{2.2.12) was studied
by Kesavan and Saint Jean Paulin in [KP99], Thf 2y L.‘mv. ed the existence of
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a matrix 5 such that the limit of the optimal controls is the optimal control
of a limit system.

It can be shown that 57‘ the extension of 82 by zero on the holes of . is
a bounded sequence in L*(Q) and hence, for a subsequence, H- — " weakly
in L3(£1). Let Ay hrs- the Hy-limit of A., and let yp be the weak™ limit of X

in L>(€2) (cf. §1.4). Then the following theorem of [KP99] summarises the
asymptotic I-whau iour of the state-adjoint system.

Theorem 2.2.2 (cf. [KFQQ] Let f € L3(Q) and 8. € L*(0).) be such

that {.} is bounded in L () and let (ue,p.) € Ve x V. be the weak solution

of the system (2.2.12)-(2.2.13) then there exists @ matriz B* and functions
8. L*(Q) and up, py € HL(QY) such that (for a subsequence )

Feu. — ug weakly in H} ()
P.p. = py weakly in H}(()
6. — 0 weakly in L‘JQQ)

and the pair (ug.po) € HY () x HHQ) is the solution of

—divl:fig?u[]]l — ‘r_';}f +f inQ
—di‘r’(!:’lnv:ﬂg — B:?'U[]} =] i 0 [231—1"
g =py =0 om (5

O

In [KP99], Kesavan and Saint Jean Paulin considered the problem (2.2.11)
solving (2.2.12) with the admissible control set U of obstacle type, In partic-
ular, when the control set U is the positive cone of L3(€).) they proved the

following result.

Theorem 2.2.3. In addition to (H1)-(H2) assume the following:

CH 3. Ifxe — xo dn L¥(Q) weak®, then x5! € L=(0).

Given 0 — 8% weakly in L*(2) then 8* is in the limit admissible set U, the
positive cone of L*(Q), and is the optimal control of the limit systemn

_92
J'r{f'.‘}l;l El/'BTI'iq "F'u“a'.r-l—?j_lk—n{i,t [ ]':I

(]
Lt
on
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where wg = uy(0) solves

—di(AgVug) =vof +8 in 0 —_—
{ Up = 1] art E?ﬂ {2“”:.]
in U. Further, 6 — X" — 0 strongly in L*(Q) and J.(0) — J(6"), |

In both the subsections of this section, we dealt with problems where the
cost of the control NV (fixed cost) was independent of £, A question that can
be asked at this juncture is;

P 2. What happens when the cost of the control, N, is dependent on the
parameter £, say, N = =7 Study these problems in both perforated and
non-perforated settings.

The question posed in (P2) addresses a class of problems called low cost
control problems. In this case too, similar to the varying control set Caze,
the arsument far existence of bound for 2 in Lﬂiﬂj fails (cf. Remark 2.2.1),
Thus, the ideas of [KP97] do not carry over to this case. Moreaver, the
optimal controls 8 are seen to converge only in the weak topology of the
dual of some hlE‘"]‘lE" order Sobolev space and it has not been possible to
improve this convergence. Due to this, tackling the problem for an arbitrary
control set U is difficult. In §2.3, we shall introduce the low cost control
problem and give an overview of the existing literature. We shall address
these problems for the non-perforated case in §3,2 of next chapter and for
the perforated case in Chapter 4.

2.3 Low Cost Controls

The notion of low cost control was introduced by J. L. Lions in [LioT3]. Lions
had originally called it cheap control and the current terminclogy was used
by Kesavan and Saint Jean Paulin in [KP02]. The terminology is due to the
fact that the cost of the control (ef. N in (2.2.1)) is of the order of = that
tends to zero.

2.3.1 Control and State on Domain

The cost functional 1, is defined as follows:

y -
Je(8) = 5 /ﬂ B,Vu:. Vu.dz + 5 [0]3 (2.3.1)
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and the state u. = u.(f) is the weak solution in H}{Q) of the boundary value
problem (2.2.2), In other words, we have set NV = ¢ in the system (2.2.1)-
(2.2.2). Of course, the two parameters involved in the coefficients and the
cost of the control could be of different orders, but we shall nat consider such
situations in this thesis.

The low cost control problems were addressed by Kesavan and Saint
Jean Paulin in [KP02]. They had considered the case where the admis-
sible control set [/ is the positive cone in L*(Q) (the set of non-negative
functions in L*(Q)), ie, U = {6 € L*Q) | 4 > O ae in Q} and the term
JoB:Vu,.Vu, dr in the cost functional replaced by [te||3 o Thus, the cost
functional is given by

Eo E i
J-(0) = 5““4:”%.:1 + §||ﬂ||§,n.~ (2.3.2)

where the state u. € H}(Q?) is the weak solution of (2.2.2). The result of
[KP02] is summarised in the following theorem.

Theorem 2.3.1 (cf. [KP02, Theorem 2.1]). If
U={#el*0)|6>0 ae inQ}

18 the admissible control set for the system (2.3.2) solving (2.2.2), then there
exists u* and §° such that

ul — u* weakly in H}()) and strongly in L*(Q), (2.3.3)
€107 — 0 weakly in HY(Q) and strongly in L*(0), (2.3.4)
4 I, & i

LO) =5l (235)

and for a subsequence, 8 — 0" weakly in H7'(Q). (2.3.6)

Further, u* is the projection of 0 on to K in LFQ), 1 e, u" € K and
fu‘[u—-u.'}d;c >0 YoeeK
0

e t 3 a sequence v, € Hi(Q) st v. — v in H}(Q),
g {v € Hy(S) | —div(A.Vv.) € L2(Q) and is > f ae in O

d K is the closure of K in L*(5). =
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In the above theorem though the limit optimal state, u*, was shown to
satisfy a kind of variational inequality, no relation was noted between u* and
#* and the description of the set. & i5 somewhat complicated. Also, the limit
control, #° was not given as an optimal control of a homogenized problem.
One also observes that, in contrast to the limit cost functional (2.2.5), the
possible limit cost funcrional of the system (2.3.2) solving (2.2.2)

1 2 ”
J18) = 3.'|“':ﬂ}|lﬁ.n (2.3.7]

may not be coercive in the weak topology of L2(02) (cf. Example 2.3.1 ). Thus
J may not have a minimiser in U7, In spite of these difficulties, the problem
(2.3.2) solving (2.2.2) is settled in §3.5. The problem (2.3.1) solving (2.2.2)
is taken up in §3.4.

Brample 2.3.1. The cost functional J as defined in (2.3.7) is not coercive, in
general, in the weak topology of L*(£1). We give a ane-dimensional example to
observe this fact. Let £ = (—1,1). Let p. denote the sequence of mollifiers
defined as,

. ke~ len e .
plz) = { WP (T) H (2.3.8)
0. lzl = &

where k=! = [ ey X0 (ﬁ) dr, o that Jll pe(zhde = 1. We now observe

that |'[,:.=5||:j*lf_gllJ — oo ag s — 0.

Y o ke .
f p(z)de = — EXD (q———j) dr
el £ £ T |I.:

Putting # = —, we have

in | 5

K —2
= — EXD (—) dy — +o0 as 2 — (.

Using the mollifiers as controls we define w. as the solution of

d .

- r_i:.:'; =p, in 0={-1,1)
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such that u.(—1) = u.(1) = 0. Hence

)= [ s

and |u (-1 < 1+ [ul(2)]. Integrating both sides over (—1.1), we have

b

Qu.(-1)| <2+ [j lu(z)l dr < 2+ (/l [u;,’z) V2.

-1

By the variational formulation of the equation, we have

] 1
[ 1@Pds= [ pode < i
s | J—1
and hence

elloot-1y < 1+ Jul(=1)]

1 1| E%
< 1+1+—([ -u:',l)
V2 NS 7

2

S = =11}

1
7

Now, since u.(z) = [* ul(y)dy, we have

e |

e ()] € lulllseorylz+ 1] € 2l s =11y

L
Hence, [|it. ]| oo, -1.1) < 4Tﬁ||lu=_|i::o_.[—1,”' The (positive) root of the quadratic
Lequation o’ — 20 — 4 = 0 is 2y/2 and so II|H€”::¢~[-1.1} = 8 and hence

t
ljuellai-11) = ( I ugm)’ < 8v2. Thus; [jucl|a_1y) is bounded while
il x:.[i{q.i} — oc. Thus, J as defined in (2.3.7) is not coercive in the weak
topology of L*(—~1,1) (cf. Remark 1.5.2). O

2.3.2 Control and State on Boundary

A variant of the system (2.3.2) and (2.2.2) was considered by Kesavan and
it Jean Paulin in [KP02] with Neumann boundary condition in the state
equation and the admissible control set being a subset of L2(99), In this
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case, the control # appears in the boundary condition of the state equation
and thus the cost funetional is given as

1 . £ i
J(0) = Sl an + S 18113 o0 (2.3.9)
2 2

where the state u. € H'(£2) is the weak solution of

{ —div(A. Vi) +u. =0 in 0

ANuwv =[+8& ond EZ.E.IDJ

where v is the unit outward normal an 8¢,

The asymptotic behaviour of the system (2.3.9)-{2.3.10) was studied in
[KP02] when the admissible set U7 is the positive cone of L2(80). Let 62, as
usual, denote the optimal control of the system then the result of [KP02] is

summarised in the following theorem.

Theorem 2.3.2 (cf. [KP02, Theorem 3.1]). If
U={#eL*o)|8>0ae ondQ}

is the admissible control set for the system (2.3.9)-(2.3.10), then there ETi5ts
u* and 0" € U satisfying the homogenized problem:

—div(4pVu') +u =0 in i
B { AgVu'wy = f+6 onadQ F2311)
such that
w — " weakly in H'/2(0Q) and strongly in L*(80Q),  (2.3.12

)

E%E?; — 0 weakly in H'*(AQ) and strongly in L(812), (2.3.13)
e 1 4

I (6) — g”“ ||ian (2.3.14)

and 6. — 0 weakly in HV2(00)  (2.3.15)

all that H2(86Y) is the range of the trace map v 1 HYQ) — L(89) and
2(3Q) is its dual). Further, v’ € K and

fu'[v—u"}dcr&{] Yo e K
&y
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where K is the set of all traces of elements of

—div(AgVu)+v =0 in 0
R X
{"EH{QH AVewy =f+0 ondQ f‘”E’EU}

and K is the closure of K in L2(69). O

In contrast to the control on domain case, in boundary control it was

possible to express the limit optimal state and limit optimal control in terms
of the homogenized operator.

2.4 Summary

In this chapter a class of control problems has been introduced and a brief
survey has been done on the homogenization results available in the litera-
ture. The difficulties involved in its study have been indicated and the open
problems have been listed. In §2.2, we introduced control problems with
fixed cost of control. We stated the results available for these problems in
‘both perforated and non-perforated domains, We concluded the section by
highlighting some difficulties involved and save referenices to later chapters
‘where the problems are addressed afresk. In §2.3, we introduced low cost
control problems and stated results available in the literature. The results
of low cost contral for the non-perforated case will be improved in the next
;s_{_:h&pter. In Chapter 4, the low cost control problems for perforated domains
‘are treated.




Chapter 3

Control Problems on
Non-Perforated Domains

In this chapter we attempt to answer the problems (P1) and (P2) posed in the
‘previous chapter (page 25 and 27 respectively). In §3.1, we study the problem
(P1), i.e., we study the homogenization of system (2.2.1)-(2.2.2) when the
‘admissible control set I7 is dependent on =, In the rest of the chapter we
study the low cost control problems on the non-perforated domains (part of
the question posed in ( P2j).

In this chapter, 4. € M(a,b,), B. € Mle, d. 1) be two sequences of
‘matrices and B* is as defined in (1.3.0).
ol |

3.1 Varying Control Set

N
L6)= [p B.Vu,.Vu.ds + 3 |0]3q, for 6 € UL, (3.1.1)

e the state u. = u.(8) is the weak solution in H1(Q) of the boundary

problem
—div(A.Vu,) =f4+60 inQ .
{ e =10 on &), 31
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Let 67 be the minimiser of J. on U-. i.e., 87 € L. is the solution of the optimal
control problem

Jo(62) = min L, ().

Even to begin addressing this problem in a fashion similar to that of the
fixed control set case, we need to have an extra hypothesis that there exists
asequence . € U, such that {6.} is bounded in L2(Q), Given this extra
}n;,rputhesls we can show the weak convergence of the optimal controls (for a
ﬁthsequenca} as follows: Since # is the optimal control, we have

iV 7
S 182130 < J(62) < 0), W e U

and hence, in particular
N o
_E"Hﬁ.r'“iﬂ = JEEEE}

for the 6. whose existence has been assumed. Therefore

N 1 N ;
— 0B < = / B.Vut, Vu. dr + = |6, )2
) 2 ), 3

i d ) N

1 < "||HE||3fl[m T _||5‘l 30

< —||f—1—!? ”2ﬂ+ ||'5]I Hzn

s, 07 is bounded in L2(Q2) and hence, for a subsequence (still denoted by
£),0: — 6" in L*(Q) for some 6.

ark 3.1.1. Let A, = Ay If 6, — @ weakly in L2(Q) then w,, the
on of (3.1.2}, converges (weakly in H3(Q)) to ug = ug(#), the unique
lution of

—div(AgVuy) =f+6 in 0 ;
{ wp =0  ond \3:1:3)
1 E e
—/Bg?ui.vusdﬂs o 2 it (3.1.4)
2 /o 2.0

sult is a consequence of Theorem 2.2.1(i) (ef. also {1.3.10)). |
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If one can establish a stronger conversence result of the optimal controlst,

then the theorem below states that the results of |[KP97] are also valid when
the admissible set I depends on the parameter ¢,

Let F. denote the extension of .J. to the extended real line, i.e.,

[ L) e, )
Felf) = { +oo if 6 € LA\ .. (3.1.5)

Theorem 3.1.1. Assume that U, the sequential K -limit of {U.} in the strong

topology of L*(Y), exists and that 62 — 6* strongly in L2(Q)). Let J be defined
on [ as,

i § N y
10) =5 [ BVuTude + S ol roev (316
1

where 1wy = ug(0) solves {3.1.3). Let

[ J) fber 7
(8 _{ to0 iff e LAQ)\ U, (8.1.7)

Then F. D9 B i the strong topology of L*(Q). Also 8" is the unigue min-
‘imiser of J in [

}’roaf We begin by showing the [-convergence of the extended functionals
in L¥(9).
Step 1: Let {6.} be a sequence in L?()) such that 4. — @ strongly in L%(Q2),
10 ¢ U, then by Lemma 1.5.3(b), we have lim inf FL(f,) = +oc — Fi{a).

If0 € U and 8, ¢ U, for small &, then again liminf F,{6.) = +oc > F(8).
But if € U/ and there exists a subsequence {#..} such that 6. & U._ then

liminf £, (6:) = liminf 1, (0.,) = lim J, (6, ).

Ep—t

Thus, by Remark 3.1.1 and the strong convergence of 4., we have
lim J.. (6,) = J(6) = F(6).

2 Let # ¢ U. Hence () = +-00. Then we choose f. = # [or all = and,
emma 1.5.3(a), there exists a 6 > 0 such that F,{f.) = +oc forall = < 4.

¢f. Open Problem 2 in page 95
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Now. les 6 € {/. Since U is the strong K-limit of U/, in L), there
exists a ¢ > () and a sequence #. such that 6, — ¢ strongly in L*(2) and
f. € U., ¥z < 4. Therefore, Remark 3.1.1 and the strong convergence of 4.

together imply that

lim F,(8) = lim J.(6.) = J(8) = F(8),

Thus, we have shown that £, Le strongly in L2()).
Step 3: We dedure from the hypothesis on 7 that #* € [/, Tt now follows from
Lemma 1.5.2 that #° € I/ is the minimiser of J over I/ and JE — J(87).

The uniqueness of 8~ follows from the fact that .J is strictly convex. O

~ One observes from the above theorem that for the results of [KF97| to
be valid for the system (3.1.1)-(3.1.2) with varying admissible set. one needs
to improve the convergence of the optimal controls? and identify the strong
K-limit of [7., if it exists,

We now prove some results, under the weak convergence hypothesis of
tlle aptimal controls, which are useful when the convergence of the optimal
controls cannot be improved. Let U’ be the (possibly empty) strong K-lower
mit of U, in £3(0), e, I = K-liminf._ 40, in the strong topology of
L}(02). For the next theorem, let J be defined on I" by the equation (3.1.6)

Eﬁeurem 3.1.2. Let the minimisers 07 — 0* weakly in L*(Q)} for a subse-
quence, then the following are equivalent:

' B — 8° strongly in L*(Q).

In the case of any one of the above being true, 8° is the unique minimiser of

Fon L.

. (a) = (b): Let 0* € U". Then it follows from the definition of {7’
i there exists a & > () and a sequence {6.} such that ., — g* strongly in
IA(Q) and 0. € U,, ¥z < §. Since,

J(02) < J.(0), ¥oel.,

2ef. Open Problem 2 in page 95
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we have in particular,

Jo(07) < J.(8,).
Taking limsup both sides. we obtain (cf. Remark 3.1.1)

limsup J.(62) < J(#*)

=i}

and by the weak lower semi-continuity of the L2-norm we dedurce
J(#7) < lim i{l}f J(87) < limsup J.(62) < J(8°).

£}
Thus, J.(6;) — J{£") and (b) holds.

(b) = (c): Let J.(6:) — J(6"). We need to show that #7 — & strongly in

Lz[ﬁ} Remark 3.1.1 implies that the first term of J.(87) converges to the

first term of J(0°), thus we deduce that 1021120 — 116*(13.0, which combined
with the weak conver

gence of #, implies that 8 — #* strongly in L2(0).
Thus (¢) holds.

(¢} == (a): Given (c). (a) follows from the definition of 1"

- We now show that if 6~ € I, it is the minimiser of J over ['. Lot & elr
'ﬁéfa;n arbitrary control. then there exists a § > 0 and a sequence #, such that
6. — 0 strongly in L2(Q) and §. € U, V= < 6. We know that.

Je(8) < J.(8), VBel.
and hence, in particular,

i Jo(62) < J.(6.).
Now, taking limit both sides implies that

J() < J(8), woel

5, 0" is the minimiser of J over U” and the uniqueness follows from the
t convexity of J. H

the corollary below, we show that one can actually improve the weak
vergence of the optimal controls if §* € I/, The proof of the corollary is
similar to the proof of Theorem 3.1.2, except that L is now replaced
. For the corollary below, let J on U be defined as in (3.1.6)

ary 3.1.1. Assume that U, the strong K-limit of U, in L), exists
the minimisers 07 — §° weakly in L*(Q) for a subsequence, then

if and only if 87 — 6 strongly in L*() and in this case 07 is the
que minimiser of J in U,

37
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3.2 Low Cost Control Problems

Let the admissible set U be a closed convex subset of L*(§1). Consider the
low cost control problem

1 £ .
L) = [1 BV, Vuede + £ 0], (3.2.1)

where the state u, = u.(f) is the weak solution in Hy () of the boundary
value problem (3.1.2).

Theorem 3.2.1. If the minimisers 82 of the system (8.2.1) solving (3.1.2)
15 bounded in L), then 87 — 6% weakly in L¥(Q)), where 8% is the unigue
minimiser of J on U where J is given by

J{8) = : / B'Vu Vuds
2 Ja

(3.2.2)
and u € Hy(2) is the solution of (3.1.3).

f. Since {7} is bounded in L3(0), I€}202)|2 5 — 0. Let, for a subse-
ience, #7 — §°. Thus, passing to the limit in

_ J67) < J(0), WOeU
we deduce using Remark 3.1.1,

J(87) < J(8), WoeU

efore, 07 is a minimiser of J over {7 and the uniqueness follows from the

convexity of J. It follows from the uniqueness of #* that #: — ¢ for
ntire sequence.

O
ark 3.2.1. In contrast to the fixed cost case; the limit cost functional .J

ned in (3.2.2) is not coercive, in general (of. Remark 2.3.1), and hence

1ot possess a minimiser in U. But if J has a minimiser, say 8°. then it
que and satisfies the optimality condition

/p"[ﬁ' —8Mdr >0, ¥Woeclr
a
p" is the solution of

{ =div(*AyVp') = —div(B*Vu') in Q

D -.} o
o=l on ot} {dd l]
id u* is the state corresponding to §°.



CHAFTER 3. CONTROL PROBLEMS ON MON-PERFOAATED DOMAINSG 34

As was noted in the last chapter, the main difficulty in the study of low

cost control problems is the presence of a small order parameter in the cost
functional. Moreover, one is unable to show that the minimisers {6} are
-bounded in L*(12) (the hyvpothesis of Theorem 3.2.1), even by other means.
‘Thus, carrying over the ideas of ‘fixed cost of control’ is out of question. Also,
for the same reason, tackling the low cost control problem in an arbitrary
‘closed convex subset 7 of L7(Q)) becomes difficult®. We, however, ohserve
that the problem turns out to be quite trivial for two cases of 7.

Case 1. THE CASE WHERE —f € U/ FOR THE GIVEN FUNCTION f € L%({2).
If —f € U then its corresponding state is zero, Thus,

¢ \ : &
§||V“§|z-§,ﬂ < J(8) < J(-]) = §|.f.'|§,n

and [0 30 < 1(80) < L(—f) = S| l3a

 Therefore, we deduce that u — 0 strongly in Hj(Q) and that the sequence
{0} is bounded in £2((2). Hence, by Theorem 3.2.1, 82 — 0° weakly in L*(52),
gw, by H-convergence, we have u* = 0 and §* = —f. Also the convergence
ig‘wa.hd for the whale sequence. We now note that the convergence is, in fact,
strong by observing that,

limsup 67|30 < [1£|3q < liminf 0730

ce, 18230 — [|/]l5a. Thus, 82 — —f strongly in L(£2). Also note that
) — 0, which is the minimum of J over U.

2, THE CASE WHEN U 18 BOUNDED IN L*(Q2). If U is bounded in L?{(})

the optimal controls #7 are bounded in L*(02) and thus the results of
m 3.2.1 hold.

hough we are unable to prove the strong convergence of the optimal
rol, in general, we can do so when the bounded admissible set U is a ball
dius R in L*(£2). Such an improvement of convergence of the optimal
was proved for the unit ball in [KP02] for a different low cost control
We show the same for the system ({3.2.1) solving (3.1.2) using
ent argument, which also throws some light on much more general
ed control sets U7

Open Problem 3 in page 93
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Theorem 3.2.2. Let U be a bounded admassible set in L3(0Y) such that

-fg
U, then the optimal controls 87 € AU for = small encugh and its weak limit
& edU,

Proof. Suppose 4 & JU, then for some r > () there exists a ball B{f:,r)cU
and thus,

0 +tnel WneB(0,1)and |t| <
Using this in the optimality condition

[0 -0aez0 wer,
2

(3.2.5)
we have, for 0 < t < r

tf{p;—l—r:‘ﬁ;]ﬂd:r?:ﬂ vn € B(0,1).
0

;h_a'.nging n to —n, we deduce casily that 2 = —_-EEK and hence pI — 0 strongly
I L*(§2) which implies that u" = 0 and 02 — §* = — f. This contradicts the
fact that —f ¢ [/

- We now show that if —f & U/, then 6 € 8U. Suppose §* € AU, then for
some 1 > () there exists a ball B(0”,r) € U and thus,

*+inel ¥YneB(0,1) and |t| <1

Using this in (3.2.3) we have, for 0 < ¢ « T,

t/ pndz >0 Yne B(0,1)
¥

\"fagain this yields p* = 0 which in turn implies 4* =0 and #* = —f € U
h contradicts our hvpothesis.

ollary 8.2.1. Let U be the ball in L*(Q) centred at 0 of radius R. If

, then ||02]on = |87 ]lann = R (for & small enough) and thus 88 — §°
y in L¥(92).

st control problem (3.2.1) solving (3.1.2) and observed in the process
At one requires more information on optimal controls. The behaviour of
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the low cost control problems for an arbitrary admissible set U is unknown®.
The case where U is the positive cone of L¥(Q), ie., U = {f & L38) | 6 >
Dae in Q} was considered by Kesavan and Saint Jean Paulin (ef. [KP0O2])
for cost functionals different from (3.2.1). However, they were unable to

identify the limit for those systems due to the very weak convergence of the
‘optimal controls. Their results

] are described in the previous chapter (cf,
§2.3). In the rest of the chapter

we develop the necessary tools and study
‘the asymptotic hehaviour of some low cost control problems when [7 is the

tive cone of L*(Q). In the next section, we present results very crucial
the homogenization of low cost control problems on the positive cone and

nt some elementary results on the closure of the positive cone in various
- spaces.

L

3.3 Data from the positive cone of !
In this section, we prove some results that will be useful in the sequel. To

~we shall state a result called Meyers’ regularity result. whaose proof
can be found in [BLP78, Page 38| (or ef. [Mey3])

Theorem 3.3.1. Let A ¢ Mia,b, Q) and u € HYQ) be the solution of

. —div(AVy) =f inf 5 3
{ u =0 ondfQ, (9.3.1)

e f € H Q). There exists a number p > 2 (which depends on a, b,

and on the dimension n) such that if f € W='P(QQ), then the solution u
belongs to Wy P(Q) and satisfies

||u.!|1-i’1.ll""[ﬂj = GD||f||W'1-Pfﬂl

2 Cy depends on the same quantities as p does /.

The highlight of the above theorem, other than the regularity aspect, is
and Cy will be independent of z, if the equation involves ascillating

cients, say A., and also that the p is same for '4 instead of A in the
‘equation abave.

We shall now state a result proved by F. Murat (cf, [Mur81]) which plays
ial role in the results proved in §3.5 and §3.4.

pen Problem 3 in page 95
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‘Theorem 3.3.2 (F. Murat, 1981). Let Q be an open subset of B™. Con-
sider a sequence {g.} C H YQ) such that

4. = g weakly in H=1Q)
md ge = i f{}-r all =, then

g — g Strongly in W{l;c]'”{ﬂ]. Vg < 2

@g. — og strongly in W‘L‘?{ﬂ}, Vg < 2 and Vo € D(D).

O
The following is a H-convergence result for weak data from the positive

cone of H~'(Q2). We now prove the theorem in a particular case. The theorem
i its full generality is stated and proved in [DMM0M4, Theorem 3.1]

Theorem 3.3.3.

5 Let {A.} be a sequence of matrices in Mia, b Q) which
-converges to ¢ matriz Ap and let f € H-HQ), Ifu. € HI(D) is the weak
solution of

—div(A, Vi) =f+g4 inh i
{ e =10 on d11, (3:3:d)
with g. — g weakly in H=Y{) and g. s belong to the positive cone of H=Y{Q).

w, — ug weakly in HX(S) (3.3.4)
ANV — AgVuy weakly in (L2(Q))", o
where ug € H} () is the unigue solution of
"dl‘rl:Anvun:j = f"‘i‘g‘ in £ 5
{ g =10 on G, (3.3.5)

vof. Observe that there exists a subsequence (still denoted by &) such that
u, — ug weakly in H}(Q)

AV, — o weakly in (L¥(Q))".

ety now, v € D(€)) and let v. € H}(Q) be the solution of

{ —div(* A Vi) = —div(*4;Ve) in 0

) 3.3:6
v, 0 on 91, (3:3.6)
Sef. Open Problem 4 in page 96
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gﬁnm the sequence {'A.} H-converges to Ay, we have

v, — v weakly in H}(Q) (3.2.7)
*4. Vo, — "4, Ve weakly in (L3(Q))" (3.3.8)
; by Theorem 3.3.1 (since v € D(Q) and the constant Cj ohtained there
i8 independent of =), we have
v: — v weakly in Wy®(Q) for some p > 2. (3.3.9)

b Ll’—'t (S P[ﬂ} Using v.0 as test function in (3.3.3), and w,¢ as test
function in (3.3.6), we have

.{f+§£TU£¢)H—1{Q},H[]}{H‘,| = {—d-i‘-’[:t,"j;uv'lfj,u£{§>H_1fﬂ}IH&m]

4

~ / (*A. V. Vo), dr (3.3.10)
i

+ [ AV Vo iz
L

g-— g in H4Q) and g. > 0 a.e, by Theorem 3.3.2, we have
— g strongly in W~19(Q) for every g < 2 and for every i € D),

 choose 1 in D) which is equal to 1 in a neighbourhood of supp(e)
ch that 1/p+1/q =1 for the p obtained in (3.3.9), Then passing to
in (3.3.10), the left hand side becomes,

.{f-l-ﬂa,ﬂs@j'g—lm},ﬂg{m = 51__13% (ULf + g:), V) -1y m30)
= (W +9), v gy e
= 4090 5-vayaym)
ssing to the limit in (3.3.10) gives

'fm‘ﬁ}H'il:m,H&{m — (—d_i‘l.’[:t.'%vl?:l,untﬁ}—L[tﬂnvﬁ.vé}uﬂdz
—|—f{o‘.‘?¢)vdm
o
= f{tﬂavv,vuu:l@di+f|:f]’.?{;5:]t' dx
L) 0

= f{AﬂVuﬂ.?v}érﬁ:—i—f{a‘,‘i?céjtrdm;
0 0
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Since —div(o) = f + g in D'((}), we deduce that

]{cr.?u}édj: = /(Au?uu.?v]qi:d:r,
) 0o

for every ¢ and v in D(N). Since, for every r € 0, v can be chosen such that
Vu(z) coincides with any vector of 2", we have ¢ = A,Vug ae. in . The

i{mqueneaa of the limits in (3.3.4) implies that the convergences hold for the
Eht:re sequence. O

Hamark 3.3.1. We note that, in general, the energy functional does not
converge for weakly converging data (from the positive cone) in H(02),

ven if the coefficients are fixed, as the following example shows. Let O =
=1,1) CR. Define u, : Q — R as

M2 ffre(—1,-1+¢%,
w;lw)= Lz fre[-1+£1-¢%,
== oifre(l1-:41)

then its first derivative u! is given as

1 ifre(-1,-1+:2Y,
wisy=910 ifze|[-1+e%1—£%,

2 ifre(l-¢1)
e that the distribution —w) = 1{(d_;.2 + 48, ) > 0 is in the positive
e of H71(0)) and converges weakly to 0. Also u. = 5(92) and w, —

y in Hy(Q), while the associated energy functional |||} = 2 is a
bant independent of =, O

‘We now prove some results which seem to be intuitively obvious but do
pear to have been proved anywhere in the available literature.

\ distribution is said to be non- negative if it takes non-negative values
non-negative test functions. Now, if f,g € L*(Q)) are non-negative
early, [, fgdr > 0. At this juncture one is interested to know if a
atement is also valid in the dual of Hj(Q), v.e., if w > 0in H1(Q)
0in Hy(%) then is it true that (w,v),_ syae) = 07 The answer

to observe in the case when € = R" than in the case of a bownded
ot 11 B™,
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The basic idea for the 0 = B" case is that for any v € H{®") such that
v = 0 there exists a sequence of positive test functions converging strongly to
v in Hi(R"). These positive test functions are obtained by the convolution
of v with the mollifiers (cf, (2.3.8)) and then using the cut-off function
technique to make the support compact, i e.. define vp(x) = Gulz)(pey # v)(2)
where the cut-off function ((z) = Cle/k) for a function ¢ D(R™) such
that 0 < (< 1,(=10n B(0,1) and Supp(¢)c B(0,2). This a standard
technique in the theory of Sobolev spaces to prove results on the entire space
'B™. But these techniques break down when € js a bounded open subset of
- R". This difficulty is overcome by Propesition 3.3.1.

One knows that H}(12) is the closure of D(2) in H'(Q). In the following
proposition we prove that for a given positive H
equence of positive H! functions with com
o the given function in £},

.
)

fanction we can extract a
pact support in 2 which converges

‘Proposition 3.3.1. Let ) C B” te a bounded domain. Let v e HI(D)

and
U
¥
K

0 then there exists a sequence {1} C Hy(Q) such that v, — v in HY{Q),
Wy 20 for all n and W, has compact support in 0,

;.-}-.': .f Since v € HI(D), there exists a sequence {¢,} C D(Q) such that
=010 H5(Q). In particalar, ¢, — v in L*(0) and hence || = 1| = v
| . f[ﬂj Thus, for a subsequence,

®, + o, —vae in

B, —On — v ae in

ore, @7 — v a.e. in Q and ¢ — 0 aein Q.

serve that (¢ |* < |¢q[* and |¢,|> — v? ae. in Q. Now,

Qand [, [¢.|7dr — Jpvtdr < +oc
e convergence theorem that ||

AVonlia = V05130 + [V651Rq — [VulZa, we deduce chat
ounded in Hj(9). Thus, for a subsequence, @, — ¢ in H}() and

in L*(Q). Then from the previous paragraph we conclude @ = (.
der,

since |7 [* — )
, 1t follows from the generalised
[3q — 0. Thus, ¢ — v strongly in

oe

caglleee

1l

IV (v — ¢a) — Vor |20

IV~ 60l + 9510 -2

Vi —o,).Vo dz.
0o
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Since the first and last term on the right hand side goes to zero as n tends
to infinity, we have

lim V(v —¢f)|3= lim Vo7 |3q =1 sav. B33
n—0o ! n—oo !
Then by passing to the limit in both sides of

V(v —enllin = |Viv-al)+Verl2,

V0= 630+ 1967 130 +2 [ Vo~ 67). V05 d,
£
‘we have,

0=2014+2lim [ Vu.V¢ dz.

neo ta
Since ¢ — 0 weakly in H}(), we have deduced that | = 0. Thus, proving
that (cf. (3.3.11))

&, — v strongly in H(Q).
e Supp(¢y; ) C Supp(gy), by choosing i, = @n, we have proved our

O

-] T

ri

Remark 3.3.2. In the result proved above if we choose 1, = v — (v
then, in addition to the properties proved above, we also have that 0 Sy <
rall n. Since, v— o — 0 strongly in H}(Q) we have IV {v—ab,)|[5a— 0
Alse
' V(v =8 Non < IV —6f) 30 — 0.
ce Y, — v strongly in Hj((2) and by definition 0 < ), < v, O

osition 3.3.2. Let 1 C R" be a bounded domain. Let g € HHQ)
h that g > 0 and let w € HY(Q) be such that u > 0 ae. in Q then
2 0, where (:,-) denotes the duality between H=(Q) and H}(0)

Let v € H}(f2) be such that v > 0 ae. in  and Supp(v) is compact
If p. denotes the mollifiers. then Supp(p. #v) C B(0,g)+ Supplv) c 0

€ and is compact. Now, p. ¥ v — v strongly in H}(Q). Moreover,
€D() and p. = v > 0 in Q. Since (g, . = U -y Hin) = 0, passing
Jimit we have {g.v) () 30y = 0.

ven u € Hy(f) such that uw > 0 a.e. in €2, by Proposition 3.3.1, there
a sequence {v,} C Hy(Q) with compact support in © such that v, > (1

nand vy, — wstrongly in H;(Q). The argument in the above paragraph

1.-'i:ha,t (g,vn}hr_h:ﬂ}ﬂu:{m 2 0 for all n and hence {g,u)

H-Y Ry 2

O
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- We shall now prove a result which shows the equivalence of the above
result to a statement on the closure of the positive cone,

I Jlgqpqsitinn 3.3.3. Let  C R" be a bounded domain. The following state-
ments are true and are equivalent:

:fi,]' The closure of the positive cone of L*(Q) in H~YQ) is the positive cone
o f 1),

(ii) The closure of the positive cone of D(Q) in HL(Q) is the positive cone
R of ().

fj}-'ff-g € HNQ) is such that g > 0 and u € H(S) is such that u > 0
a.e. in 2 then (g, u) > 0.

(i) = (iii}: Let g € A7'() be such that ¢ > O and u € H(8Y) is
hat v > 0 ae. in (0. By (i), there exists a sequence {g.} C L*(Q)) such
gn = 0 a.e. in O for all n and g, — g strongly in H{§)). Therefore,

dz > 0 and i.e., {g;,. ”}H-‘{EJJ&‘.{ﬂ} = 0 and by passing to the limit we
9: W E-vq)mi = 0.

ili) = (i): Suppaose (i) is false. Then there exists a g € H ) such
> 0ae and g not in the H~'-closure of the positive cone of L0,

by Hahn-Banach separation theorem, there exists a F in the dual of
) and a a € R such that

) Flg) << F(f), ¥fe L) and f > 0 ae in Q.

Since H ‘i{ﬂ} is a reflexive space, there exists u € H} () such that

}-H—lfn},r;&_(m <a< {f-'“:’H-l[n]_H;[ﬂ] _

= /fu dr, ¥ f € L*{Q)
8
s.t. f 2 0ae in O

cing f by nf, we have {f, u)H_:,:mﬂém} >2 Yne N and hence

};H—'J.EHLHUL[Q] = /1; IU EI!.I.' :i ] "'G"f e Lz{ﬂ] Ei.Ili.'l f E [ ae. inEE

u>0ae inQ Now, by chouosing f = 0, we deduce that a < 0
e {g‘, u}ﬂ'—l[n}lH&{ﬂ} < ) which contradiets (1ii).
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(ii) = (iii): Let g and u satisfy the hypotheses of (iii). By (i), there
exists a sequence {u,} C D(Q) such that u, > 0 ae. for all n and u, — u
‘strongly in HJ(9)). Since (g, tn) - ey = 0 for all n, we have on the
it (g, 1) -1 g0y, 511y = 0, thus proving (111}

(iif) == (ii): Suppese (ii} is false. Then there exists a u = I 5 (€2) such
‘that u > 0 a.e. and u not in the Hj-closure of the positive cone of D).

' Thus, by Hahn-Banach separation theorem, there exists a g € H— Y1) and
‘ao € R such that

i \.{g,u};{-ltﬂ]tﬁlﬁfﬂ] L {5?1 ?-':*H-l{ﬂj,!!émh Yuv e 'D{ﬂ} and v > () a.e. in 0.
.Ipﬂ. replacing v by nv, we have (g, v) H-Umuiioy > 5 Vn € N and hence

. {g'I'LF)H_II:ﬂ].H.Hﬂ] =0 Yuee D[:ﬂ-:] and v = 0 ae in .

erefore, g > 0 a.e. in . Now, by choosing v = 0, we deduce that & < 0
d hence (9, w)ar-vym), m1 (e < 0 which contradicts (iii).

Observe that Pmpm:tmn 3.3.2 proves (iii) of Proposition 3.3.3 and hence
all the three equivalent statements are true. O

1

Dirichlet type integral in cost
After the necessary tools developed in the previous section, we are now in
ion to address the problem (3.2.1) solving (3.1.2) defined in §3.2. To
the memory of the readers, we recall that our aim was to study the
otic behaviour of the system (3.2.1) solving (3.1.2) for an arbitrary
ible set U in L*(Q2). We had, however, remarked that the problem is
or an arbitrary control set in L?((). The approach used by [KP97] in
d cost case was to homogenize the optimality system (consisting of
e and adjoint state equations) and then showing the convergence of
ergy. However, in the case of weakly converging data {even fram the
ive cone), we cannot expect, in general, the convergence of the EIETEY
mark 3.3.1). Thus we are still not in a position to establish a limit
al control problem for the positive cone case” in spite of the machinery
oped in the previous section. However, in this section, we prove a
sult analogous to Theorem 2.2.1(i) when the data is from the positive cone

lﬁ}pen Problem 3 in page 95
Open Problem 3 in page 95
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it -.-H"l{ﬂ}, wherein we homogenize the optimality system which has weak
converging data in H (1),
- To begin, we recall the corrector functions x: defined in (1.3.8) satisfying

the properties (1.3.7). We now define a set of test functions 13,; = H&( (1), for
1< i< n, which solves

—div(*A VL) =div(B.Vyi) in 0
{ # =0 on 0. (3-4.1)

bserve that {wi} converges weakly in H3(2), up to a subsequence, say
function 4 and {*A.Vu! + 'B,Vx'} converges weakly, say to 7, in

Q))". Note that divr{ =0, for 1 <i < n. It was shown in [KP97] that

ey = 7 —' 45Vl The following lemma sheds some light on the regularity

he functions ! and 1.

mma 3.4.1. There exists a p > 2 for which the corrector Junetions {y'}

ned in (1.3.8) are bounded in W%(Q) and the functions {ul} are bounded
57(0).

f Let i = —wl + zi. Now, since —div(Age;) +div{A.e;) is bounded
o WP for all 1 < p < oo, it follows from Theorem 3.3.1 [ Meyers’
ty result), that {w!} is bounded in W;*(Q2) for some p > 2. Thus !
ed in WHP(Q) for the same p > 2. Nate that p is independent of the
er &, since A, € M(a, b, Q).
, since {x!} is bounded in W12((), we have div(*B-Vx!) bounded in
Q). Thus, again by Theorem 3.3.1, Ut is bounded in WiP(Q), Note
he p obtained in the Meyers' result is same for both A-and 4. O

We now prove the most important thesrem of this section. We recall that
1 3.3.3 is actually the H-convergence result for the weak data from
tive cone of H~'({2). The following theorem is the H ~COTIVErZence

I a system of equations involving two set of matrix coefficients with
k data from positive cone.

3.4.1. Let A. € M(a, b, Q) and B, € M(e. d, Q). For a given se-

0. from the positive cone of H='(Q) converging weakly to § in -] (82},
) be the solution of

—div(4.Vu,)
—div(*A.Vp. — B.Vu,)
U: = p.

1

in §1 (3.4.2)
an 'l

f4+6 inQ
0
{
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then
i = Lﬂg}vp{} 5 anun
where zp, py and uy are the weak limits of z. = 'A.Vp. — B.Vu,, pe and u,
in (L))", H3(R) and HI(Q) respectively, Thus (uy. po) € HH(€2) x HQ)
solves
—div(AsVuy) =f+8 in
—div(*AgVpp — B*Vuy) =10 in £ (3.4.3)
ug=py =10 on o1
where Ay is the H-limit of A. and B* is same as the one obtained in (1.3:9).
Proof. Tt is obvious that {u.} and {p.} are bounded sequences in H!(0) and
{2z} bounded in (L*(Q))". Thus, for a subsequence,
u, = ug weakly in Hj(Q)
P — po weakly in H}(Q)
z, = z9 weakly in (L*(2))"
Also & = A.Vu, is bounded in (L?(2))". Hence £, — &, weakly in (L2(£2))",
Under the given hypotheses, it now follows from Theorem 3.3.3 that
& = AgVup and
—di‘f"(finv?ﬁg] = f - E’J
where Ap is the A-limit of {A.}.

Let ¢ € D{€2) be an arbitrary function. Using x'o as a test function in
the second equation of (3.4.2), we get

f ‘A V5.V (xi6) dr = f B,V V(xi6) dz.
i 0
which vields

0 = [ (A~ B.Yu) (Vo) de + | Ap (V)b da
4 2

I

—/B_,‘E'us,{?x;];édr

L4

= fzi.(?qb};;;dj:ﬁ—]Aa?xl.[qujcghd;ra—f‘B_;-'\?}{i.lf?uEmd:c
1! 0 0

1 0 = fzc.{?qﬁ}x’sci-r— /'djv{:i:?.‘{i}ﬁsérfx—[.ﬁ!z?xi.f?qﬁ}pi dz
1 o 12 0

= / 'B,Vx:.(Vu e dr. (3.4.4)
L3
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Now using ©i¢ as a test function in the state equation carresponding to u.
(cf. (3.4.2)), we have

L{fﬁ—ﬂ}@é@dﬂ: /1}:45?1&5,{??-,":}:,&-'; dﬂ:—i—_/i;.#lf‘?u.r(‘?ﬁ;]édx
= /55.‘?.;5-45;_:' dr + /‘Afvw;'.?ugqidr
1 i
= & Noyidr — /;1 div(*A, Vil ju. o d
= L AU (V6 )u di
= ﬁ{E.T¢tu; dx—/ﬂdlv(fﬂf?xi}ufadz
- [ 49 (Vo an
Ju+ayuods = [ &voutas- [Boiuedr  @as)
- fﬂ BV (Ve dz — fﬂ ‘AL (Vo)u, de.

Subtracting (3.4.4) from (3.4.5), we get

: fn (f + 8. ads = f £V d — / Bt

/fiw (A-Vxi)p mdz+j AVx.(Vo)p-dx
—f [A;‘Fu}Eﬂ—LBE"'?x'E].{?é]lusdz. (3.4.6)
0

It was observed in Lemma 3.4.1 that the corrector functions {11} is bounded
%(Q) for some p > 2. Since f, — 0 in H- Q) and . > 0 ae. in Q, by

Theorem 3.3.2, we have

& Et — ¢f strongly in W14(Q) for every g < 2 and for every v D).

gb us choose 4 in D(£)) which is equal to 1 in a neighbourhood of supp(o)
and ¢ such that 1/p + 1/g = 1 for the p obtained in Lemma 3.4.1, Then
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while passing to the imit in (3.4.6), the left hand side becomes,

. PUR SO SO © e S 4
iy U +0hiods = i [ futoda +lim (80, 016), 0,

=—=il 1

B ./1; figgde + lim (¥, ??:".iﬁ":’)w—=-q{er.WJ'Ptﬂ}
= \f+8 ‘r'%‘-“f’);:—l(ﬂ}.ﬁ&tm'
Thus passing to the limit in (3.4.6), we get

(.f + Hrﬂ‘étﬁ)}ff—l{ﬂ}rﬁ"ﬂl{ﬂj = Lgllvﬁéw;l dz — zﬂ-v{fﬁ'xi dr
i

+_/f;div(;-‘-1ge1-}pndrrc£r+L,4Def.?¢pudz
—fT5~v¢5Hn da.
0
Using integration by parts and the fact that
divzg = 0 = divry and — divgy = —div(4gVug) = f + 8,
we derive

zp-; = "AaVpn-€ + AV Vg — . Vg,

Now, from the definition of B*, we can write
= *Anvp{; - Bﬂvug.
and thus (ug, pu) € H}(Q) x H3(S)) solves (3.4.3). |

The result proved above is an example of the homogenization of a system

there the data converges only weakly in H7'(€2). So far, in this section, the
thesis that 5. is symmetric was not required.
- In the rest of this section, we shall highlight the difficulty involved in the
y of the asymptotic behaviour of the optimal control problem (3.2.1)
lving (3.1.2), when the admissible control set I is the positive cone in
Q). 1t is known that for this optimal control problem there exists a
ue optimal control 7 € UV such that

'IE{E;I;] — lgélg} J;'{E;,:'
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and let u! be state corresponding to 62, Due to the small order of the cost of
control, one is unable to check whether 8 is bounded in L*(Q) or not. Thus,
one is farced to look for other means of homogenizing the optimality system.
The following theorem is a step towards such an approach when the positive
cone of L*(Q) is the control set of the optimal problem.

We now introduce the adjoint state p, € H}(D) as the weak solution of

(3.4.7)

—div(*A.Vp:) = —div(B.Vu,) in
p: =0 on 4l

Observe that pZ, the adjoint state corresponding to u:, is bounded in I1}(0)
and thus, for a subsequence, converges to some p°.

Theorem 3.4.2. If U = {# € L*(Q) | § = 0 ae. inQ} is the admissible
control set for the system (3.2.1) solving (3.1.2) and V' is the positive cone
of H=1(€2), then there exists u* and 6* such that, for o subsequence,

ul — ' weakly in Hy(Q) and strongly in L*(€2), (3.4.8)
pi = p" weakly in Hy(Q) and strongly in L3(Q), (3.4.9)
167 — 0 weakly in L2(0), (3.4.10)
02 — 8" € V weakly in H'{Q), (3.4.11)

i 1 " Livegr o -
JE{E:.:I —F E]DH“?H. Nu'dr — E{H e }H_]fﬂ}.ﬂd{ﬂ]' {3412}

Further, p* € U, [,p:6:dx <0 and the pair (u*,p*) solves the homogenized
system

—div(AgVu*) =f+6 inf
—div(*4,Vp" — B'Vur) =0 in 0 (3.4.13)
w=p' =0 on i,

Proof. It is easy Lo observe that, for a fixed ¢ € U, u.{#) is bounded uniformly
in Hj(Q). Therefore, u: is bounded in HE(f1) and =4/202 is bounded in L),
Moreover, for v € H}Q), we have

f&;wri:c = fﬂ:.?u;.?vdx—]fvdm
0 0 £

< (Ol mgny + 1l v a g
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Thus, 8! is bounded in H~'(}), Thus. there exists ©*. 8 and & such that,
for a subsequence,

ul —u' weakly in H}(02),
£307 — ¢ weakly in L3()),
0 — 8* weakly in H1(0).
Since #7 is bounded in H “HQ), we in fact have # = 0 and thus
E'}E’; — ) weakly in Lz(ﬂj.

It then follows from Theorem 3.4.1 that (u*, p') solves (3.4.13). Now, consider
the optimality condition associated with the optimal problem, given as

[o+eo-adez0, wev (3.4.14)
]

It follows from the above inequality that =67 is the projection of —p:on U
in L}(Q), e, 87 = =~Hp2) . Thus we can rewrite (3.4.14), as

/p_:ﬁ' dr + /{Elﬂﬂgj{almﬁ?j dr =0, VY8el
0 0

since f,(p? + £6:)6: dz = (. Passing to the limit, we deduce that
f pOdr >0, YoeU
Thus, proving that p* > (), ie., p" € U, Also the fact that
| #i82dz = ~clezia <o

implies that [, pidZ dz < 0,
Consider

JuB) = —LBE?HQ.VH;[‘L'I:‘*!-g”ﬁ;”g.ﬂ

L | —

E x
_ §/l;[f+6?:)p; nfr—'gl.'ﬂé'liin

e fp* dr

.40

l : - - A 1 E:: -

= 3_/;;5 ?u N I'l‘rI— 5{ o7 >H‘]{ﬂ‘].}fél:ﬂ}‘
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(w41
£

Hence, (3.4.12) holds. O

From the fact that both p* and 6 are non-negative, we know that

0P a2 0.

Also, as observed in the above theorem, (@2, pl) 20y 12 < 0. Given these,
one would expect (@ ") -0, sty = 0 (the optimality condition for the
limit system) but we have no means of arriving at this resuls, which keeps
the problem open®. If (6", 0"} -1 (0) 43¢0y = O then #° is the unique optimal
control of the problem

J(8) = % L B ug. Vg dz (3.4.15)

over the set V', the positive cone of H ‘l[ﬂ-}, where uy € Hé[ﬂ] solves

—div(AgVug) =f+0 in 0 ;
{ wy =0  ond. (9:4:16)

Further, J.(67) — J(6*) and the convergences (3.4.8). (3.4.9), (3.4.10) and
(3.4.11) holds for the entire sequence.

To see this, if iﬁ‘sp')ﬁ-lm).ng(nj = 0 then, by (3.4.12), J.(682) — J(6*).
Since #; is the minimizer of J. over U, by passing to the limit in

J(B) < J(9), WeU
we deduce using Remark 3.1.1,
J(B*) < J(8), Yoel.
Now, since V' is the strong closure of I/ in H-1(0}), we actually have.
J(0°) < JB), ¥ew

Thus 0* minimises J over V. The strict convexity of J implies the unigqueness
of §* and thus the convergences hold for the entire sequence,

it Open Problem 3 in page 95
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3.5 L’-norm of state in cost

So far, our interest was in the study of a system involving Dirichlet-type
integral in the cost functional. Though some interesting results are proved,
one is unable to completely settle the problem. However, we now change the
cost functional (cf. (3.5.1)) and note that pne can improve upon the results
described in Theorem 2.3.1 using the machinery developed in §3.3. which we
proceed to do in this section.

Consider the system

1 £
Je(8) = Slluclia + 516150, (3.5.1)

where the state u.(#) € H}(Q) is the weak solution of {3.1.2). Studying
the limit system of the problem defined above is still open® for an arbitrary

‘admissible set U in L*(Q2). However, we settle the problem for the case of
the positive cone.

Let the admissible control set I be the positive cone in L8, ie.,
U={#ec L) |0§>0ae in Q}.

We shall now introduce the adjoint problem and the optimality condition
-associated with the above described system.

The minimizer 07 is characterised by the optimality condition
I' 4

[t +e0-a) a0, wer. (s
n
‘Where u. is the state corresponding to 8. We can rewrite the optimality
‘condition as
/fp; +ed )0 —02)de>0 VoeUl,

n

o

using the adjoint optimal state pr € Hi(Q) given as the weak solution of

~-div(*A.Vp!) =u? inQ .
{ p. =0 onaf. 38.3)

lulllzg < Jo(87) < J.(6), Vo € U.

9¢f, Open Problem 5 in page 96
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(]
|

Therefare

LR 1 E
lZllzn < E”“s|.'2.n+§“§”§,n

1 1 B
503 §||Hs_!|irlgm} - §||'9||§,ﬂ

1 ; 1
< £||f + Bl50 + §|||5'||§,n~

Thus, since {u} is bounded in L*(Q), by H-convergence, there exists a
matrix Ay (called the H-limit of {A.}) such that

-div(*AVp*) =u* mn Q .
{ P =0 onén (S5

and p! — p* weakly in H1(D),

The problem (3.5.1) solving (3.1.2) was studied in [KP02] when the set
U is the positive cone of L*(£2) and their results are recalled in §2.3. In the
following theorem, we establish a relation between u* and 8* and show 07 as

an optimal control of a homogenized problem.

‘Theorem 3.5.1. IfU = {# € L2(Q) | # > 0 a.e. in 01} is the admissible
control set for the system (3.5.1) solving (3.1.2), then there exist u® and 0*
such that

(a)

u; — u” weakly in Hy(€2) and strongly in L*(02), (3:8:5)

2367 — 0 weakly in HMS) and strongly in I2(). (3.5.6)
B ‘] = =

Je07) = Sl (3.5.7)

(b) 02 — 8" weakly in H=X(Q) for the entire SEQUEnCE.
e) u” solves

; { —div({A4; V")
| W

i

f+68 inQ o
(] on 0 (3.5.8)

I

5

where, now, 8* € H=1(Q).

ii) g% is the unigue minimizer of J(#) = L w(8)|2,, over V, the positive
- cone of H=1(0).
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(e) u* is the projection of U on to K’ in L), ie, u" € K and
/

/ uly—u)de >0 Yee K
0
where
K'={ve H}{(Q) | =div(4sVv) — f & v}

Proof. (a) follows from Theorem 2.3.1. Also, (b) holds for a subsequence (cf.

(2.3.6)) and by Theorem 3.8.3 we have that 4* is the solution of (3.5.8), thus
proving (c).

It follows from Proposition 3.3.3 that V is the strong closure of [ in
H~Y(Q). Observe that V is a closed convex subset of & Q). Thus, V is
also the weak closure of {7 in H-1(Q) and hence 4* € V. We know that,

Je(02) < J.(8), Vel (3.5.9)
Therefore, passing to the limit as £ goes to 0 we have

J(8*) < J(@), YoeU
and hence

J(0°) < J(B), veeV. (3.5.10)

By the strict convexity of .J, #* is the unique minimizer of J over V', thus
proving (d). The uniqueness of #* implies (b).

Let K7 denote the closure of K in L*(02). This is then a closed convex
subset of L2(Q2). Observe that u* € K’ K, since 8* € V. Let 0 € U and
v(¢) be the solution of

{ mdw(_éuvvj :}f +6 ;11 %n. (3.5.11)

Then passing to the limit in the optimality condition (3.5.2) and noting that
u, — v(#) in HL{£), we have

f w(v(f) —udr >0 Yoel,

o

et v € K' and let § = —div(4sVe) — f. Then there exists a SEQUence
:En} C U such that 6, — @ strongly in H=1{12), Let v, € K' be the states
orresponding to f, for which the above inequality holds. Thus,

/u‘{’v -u')dr>0 Yve K

S

d a simple density argument proves (e).
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Remark 3.5.1. Since §* is a unique minimizer of J over V', it is characterised
by the condition

{0 —6.p")y iy =0 Vel

Now, by choosing f# = 0 and 8 = 26°, we deduce {8*13"}11'—1{!1).?{.%(5‘!} =0, Also,
by choosing # = 8" + 7, for arbitrary n € V, we get {”'p-}ﬂ"{m.ﬂaiﬂ} =0
implying that p* > 0 a.e. in (), '

Remark 3.5.2. We now observe that the X' we defined in the above theorem
is same as the A defined in Theorem 2.3.1. 1. e, K'=K. Let v € K then
there exists a sequence {v.} C H}(0) such that v, — o weakly in H}(()
and #. = —div(A.Vuv.) — f € [7. Then. by Theorem 3.3.3, it follows that
v € K' for some # € V' which comes as the weak limit of 6, in H~! (£2). Thus,
K C K' Now, letve K'and # € V. Then there exists a sequence {0.) U
such that #. — 6 strongly in H-1(Q). Set v. to be the solution of

—div(A.Vv.) = f+0. in 5
{ e =0 o &9, (9512}

and thus v, — v weakly in H}($2). Hence, we have shown v € & and therefore
K'c K. O

Remark 3.5.3. The highlight of Theorem 3.5.1 is the result (d). We con-
clude that the optimal controls #; converge weakly in H ~H) to #* which is
& unique optimal control for the problem of minimising

1 ,
J(8) = 5 llmo(f) 2.0

over the set |, the positive cone of 1)), where u, € HE(€Y) solves (3.4.16).
Further, J.(8Z) — J(#*). This was a problem open in [KP02] (ef. Theorem
2.3.1). They were also unable to estabilsh the relation between u* and #*.
Also, the description of the set K’ was bit quite complicated.

3.6 Summary

In this chapter, the questions (P1) and (P2} posed in the previous chapter
are answered for some particular cases or under certain assumptions. In §3.1,
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the problem (P1) is answered under certain assumptions. In the rest of the
chapter the machinery required to address problem (P2) was developed and
the case where the cost functional involves the L2-norm of the state variable,
a problem left open in [KP02], is settled for the positive cone case (ef. §3.5).
The problem is still apen for an arbitrary admissible set!?, Also; the case
with Dirichlet-type integral in the cost functional is still unsettled!, in spite
of relaxing the control set, even for the positive cone case. It was shown in
[KRO2, Theorem 2.1] that when the optimal controls are bounded in LA,
the homogenization of the state-adjoint system (3.4.2) implies the conver-
gence of energy. However, we have shown in this chapter that this result is

no longer valid when the optimal controls are bounded only in - ) (ef.
Remark 3.3.1).

10ef, Open Problem 3 in page 9_{5-
ef. Open Problem 3 in page 95




Chapter 4

Low Cost Controls on
Perforated Domains

In this chapter, we study the asymptotic behaviour of low cost control prob-
lems on perforated domains. The fixed cost of the control case for the perfo-
rated domain was studied in [KP99] which is described in §2.2.2. A general
introduction on the perforated domains can be found in 61.4.
Let 2 C R" be a bounded domain and let S, C 0 be a family of closed
subsets (called the ‘holes'). Let 0, = 02\ 8. represent the perforated domain,
Let U, C L*(f),), the set of admissible controls, be a closed convex set

and let f £ L?(£)) be given. We note that the homogenization of the system

1 £
M) =5 [ BVuVudetZ0le, Vhet, (101

where the state u. = u.(8.) € V. is the weak solution of

—div(A. Vi) =f+8, inQ,
AVu.n. =0 on 385, (4.0.2)
e =1 on i

is still open! and we will not study this system in this chapter. However,
will consider the system with the cost functional involving L%norm of
ate and see il this can be homogenized as has been done for the non-
periorated case (cf. Chapter3). In this chapter, we shall consider the cases

. both the control and state are given in the domain (cf. §4.1) and are
on the boundary (cf. §4.2),

=

“¢f. Open Problem & in page 96
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4.1 Control and State on the domain

In this section, we consider the perforated version of the system {2.3.2) solv-
ing (2.2.2). Before we describe the problem, we recall some notations in
troduced in §1.4. Let y. denote the characteristic function of the set Q. in

Q,
(x) = I ifref,
XA = 0 ifzes,

and let xp be a weak™ limit of y. in L=(Q). The extension of a function an
(2. by zero on the holes of 0 is denoted with a ~in the superscript. We shall
now prove a result which will be useful in the sequel.

It is easy to observe that when a sequence f. — f strongly in L*(Q) then

we have [, x.f.dr — [, xof dz. We shall now prove a lemma that discusses
about the L*-norm convergence of y, f

Lemma 4.1.1. If f. — [ strongly in L*(0)) then Ixefellza — o xof*de.

Proof. Since f. — fin L*(Q), we have ||f.|00 — ||fll2q and (for a subse-
quence) f.(r) — f(z) pointwise a.c. (since the limit is independent of the
subsequence, the convergence occurs for the entire sequence). Equivalently,
we have || fZ]li0 — ||f*]10. Now, it can be shown as a consequence of Ego-
roff's theorem and Fatou's lemma (cf. [Rud87, Exercise 17(h), page 73]) that
f2 = f? strongly in LY{Q). Thus, we have (recall that il =nl;

e follZ g = fﬂ_ yifdii=s [z i
L

using the L>(Q2) weak™ convergence of {x.}. O

We now state the problem we are interested in: For a given 8. € [, the
~cost functional is given by

1 5 B
Je(f:) = 5”“5“'},!’3: + 5“95”5.{1; {‘1-1-”

~where the state u. = u.(f.) € V. is the weak solution of (4.0.2). Recall from
fldthat V. = {ue HY{2) |u=0on d0}. For u € V., we define the norm
on 'V, as, [lufli. = |[Vullsn,. Let P be the extension operator as assumed in
page 11, then the following lemma shows that it is bounded in H{Q).
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Lemma 4.1.2. [f there exists. for each £, B € U such that { 675} iy hounded
in L*(Q) then {Pou.} is bounded in Hi(

Proof. By the ellipticity of A.,

EI'.HILEHE: < AN, NVu.dr
.
= f (f + 6. dr
2,

/Exaf +8.)Pou, dz
Il

E ||X=_'f + 'EI_-_' E,Ql.lpeuE”E.ﬂ
< Collxef +6:ll20| VPt 2n
% C =, :
.”UEHE'E < FUHX:JP 20 Bﬁ'ii’..ﬂ”?quE[li.ﬂ-

Therefore, by (H1) (in page 11), we have
||?F5u5,'|:::1ﬂ = CU”“:”%Q

[N -
S e +GllaallV P a0
and thus.
| i Cﬁ T
VB0 < ?”Xsf + . llan

showing that {F.u.} is bounded in H3(Q). Note that the constant Cj is
generic and is not fixed in the above inequalities. J

The problem (4.1.1) solving (4.0.2) admits a unique optimal solution,

which minimizes J. in U, and is denoted by 8. The corresponding optimal
states is denoted by o’

=t

We now introduce the adjoint optimal state pl € V; as the weak solution
of the problem

—div(*A.Vpl) =ul inQ.
‘ANVptn. =0 onds. (4.1.2)
i =0 andf,
Then the optimality condition

-/ [uZ{u. — ul) + £02(0, — 02)dz >0 V6, el. {4.1.3)

=L
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can be rewritten as
f (Pl +202)(8, — 82)ede >0 Y6, € (1.,
2.

We observe that 6} is the projection in L3(Q,) of £ onto U..

Lemma 4.1.3. If there emists, for each = > 0, 6. € U, such that {6.} is
bounded in L*(R2), then we have both {y.P.u}, {'/%0:} bounded in LE(Q)
and { P.pf} bounded in H}(Q).

FProof. Tt [ollows from (4.1.1) that

l - - T
3 lucllza, < J(62) < Jm) WneU..

In particular, for 8. from the hypothesis,

: S
Fllca, = J(6.)

1 o 1 o
= 5““:”5.&, + 5 118:1I30,

O 13,0

Since the RHS of the above inequality is bounded (from Lemma 4.1.2), we
have [|x. Poul[l3g (= [|ul]3q,) is bounded. Similarly, we also have

1 1
= slxPulia+ |

E & " T
§||'9=-i|§,n, = J-':[HEJ = JEE??}' Ynel,
and arguing as above, we have
Laen T T I
”E”Hﬂlg,n = I|5’§:”§,m < ||XEPEU'E|!§,Q i ||5}r:||22.n

is bounded. Now by ellipticity of A, we have,

allplllf, < fm A, Vpi.Vp:dz

= / uopl dz

/mﬁ@mmﬁ
9

< xePovl|lsnll Baplllan
< Gullx-Poul)on|VEp 20
& ,, .
llpzlly, < fHXcP:“:-Hz.ﬂ”?PePEHM-
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Therefore, by (H1) {in page 11), we have

|?ﬂp;”§,ﬂ < Gollpfilt
=

Ch ; , .
F ”X.‘:P:sus ||2,ﬂ|i vP_’P& Il‘i.ﬂ.‘

and thus,
i - Cﬂ &
INPepl|lan < —a-|.'?(.spsus||2_ﬂ

showing that { P.p!} is bounded in H} (). Note that, as usual, the constant
Ch is generic and varies in the above inequalities, 0

It now follows from Lemma 4.1.3 that, up to a subsequence,

2 — ¢’ weakly in L2(Q) (4.1.4)
xeloul = o weakly in L*(Q2) (4.1.5)
Fepl — p* weakly in Hy(2) and strongly in L*(Q). (4.1.6)

We observe that the adjoint equation (4.1.2) can be rewritten in the followin g
way:

‘A.Vpin =0 an a5, (4.1.7)
p. =10 on dil.

Thus, under the hypothesis of Lemma 4.1.3, we can homogenize the adjoint
equation (4.1.2) (cf. [KP99, Proposition 2.1]). In other words, by the theary
of Hy-convergence, there exists a matrix 4, such that (up to a subsequence)
A; Hy-converges to 4y and p* is the solution of.

{ ~div(*A.Vp!) =x.Ful inQ,

—div(*4,Vp') =v' inQ |
{ P =0 ondid (4.1.8)

:_I_JEE us now extend the admissible set to the space L*(Q) in the following way:
U. = {6 € L}(Q) | 6. € U.} € LX),

‘Theorem 4.1.1. Let Ay be the Hy-limit of {A:} and let the sequential K-
limit of {U:} in the weak topology of L*(0) exist, denoted by U. Also let
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the optimal controls H;' converge to 8 weakly in L*(Q), then 6° is the unigue

mimimizer of
1 ;
Ji8) = —/xg|u|‘aﬂ’:c
2 Ja

mn U, where u=u(fl) € Hj(N) 15 the weak solution of,

{ —div(AeVu) =xof +8 w0
0

1 an Ak, (4.1.9)

Further
Feul — u” weakly in Hi(Y) and strongly in L*(Q0),
Jel07) — J(8°),
' = you* and ' =0.

Proof. The fact that 8 = 0 follows from the weak convergence hypothesis of
the optimal controls . Now, since U/ is the sequential K-limit of {U.}, we
have 0* € U. Also, for any given # € U, there exists a § > 0 and a sequence
{0-} such that 6, — § weakly in L3(2) and 6. € UL, ¥ < §. Naw. since fx
is the minimizer of J. in U,, we have, for = < §.

J(82) < J.(6,)

(we denote the restriction of £. to (2, by 8. itself). Taking limit on both sides
of the above inequality, we have

oy I # [ 7w |l s ok Z o3
E%i [|IXEPEUE||§,9 + 5|r'5'5|l§,n] = ll_lﬁl]g [“XsFeus”iﬂ +e||0:]|5.q] -

It now follows from the theory of Hy-convergence (cf. [KP99, Proposition
2.1]) that P.ul — u* and Pou, — u weakly in H}((2) where the u* and i are
the solutions of the homogenized problem (4.1.9) corresponding to 87 and #,
respectively. Thus, v’ = yqu'. Hence, it now follows from Lemma 4.1.1 that

1 I
-fmlu"lszzi—fmluigdz,
2 Ja 2 Jn

Le. J(0*) < J(#). Since # € U/ was arbitrary, we have shown that #° is the
minimiser of J over U. The uniqueness of §* is proved by passing to the limit
in (4.1.3). Observe that (4.1.3) can be rewritten in the following way:

j[xEPEu;{Ptuf — Poul) + =62 (6. — o) dr >0 Vi, L
a
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where #. is as chosen abave that converges to 8 weakly in L7(0)). Now passing
to the limit in the above inequality, we have

/ Xou'(u—u")dr >0 Yue GU)
I

where (7 is the map # — u, where u is the solution of (4.1.9). Note that,
since U7 is closed and convex, G(U) is a closed convex subset of £2(02) and
thus we have u” as a projection of 0 onto G(I7) in L3(§1) where du = ypdz.
Thus, from the uniqueness of 4™ follows the uniqueness of §*. O

Remark 4.1.1. We observe that the optimality condition involving the ad-
joint state

f (pr+=02)(8, — 8)dz >0 V8. el
‘

can be rewritten in the following way:
fl:PEp; + =62)(0. — Bl dz >0 VB el.
0

and by passing to the limit, we obtain the optimality condition for the limit
system

[p'{l‘?— 8 )de >0, Yoel
Ja
where p* is the solution of (4.1.8) with u' = yu’.

We observe that one is, in general, unable to verify the weak convergence
hypothesis of the optimal controls as in Theorem 4.1.1 for the svstem (4.1.1)
solving (4.0.2). However, we shall observe some trivial cases of the above
‘mentioned system. Observe that, under the hypothesis of Theorem 4.1.1, if
-'.,—gmf € U then by uniqueness of #*, we have 8" = —ypf and u* = 0,

Corollary 4.1.1. Under the hypothesis of Theorem 4,1.1, if —xof & U then
8t coU.

FProof Suppase #* ¢ 9U, then for some r > 0 there exists a ball B(f*,r) ¢ U.

" +tnell vneB(0,1)andt <

Using this in the optimality condition of the limit system,

/p"f@—é‘*']dm >0, VoelU
1]
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t/p‘néﬂ-
L

Hence, p* = 0 which in turn implies «v* = 0 and thus §* = —-xof € U, a
contradiction. Thus, 7 € 4. ]

we have, ¥p € B(0,1)

Proposition 4.1.1, If there exisis a § > 0 such that —f € ., ¥z < 48, then

Pl — 0 weakly in H} ()
O — 8" = —xpf weakly in L3(02)
J(67) = 0.

Proof. It follows from the hypothesis that J.(62) < J.(—f), ¥z < 6. Thus,

“| }th._-u |r"rﬂ t |i'§“|l2ﬂ H}Lef”':n

Hence, we deduce that . P.ul — 0 strongly in L2(Q) and g2 — 0° weakly(for
a subsequence) in L*({2). Also, we have, J.(#7) — 0. It now follows from
the theory of Hy-convergence that Foul — u* weakly in HY{Q) and hence
we observe that " = 0 and 6* = —ygf. also the convergence of the optimal
states holds for the entire sequence. il

As we observe from the results developed so far that one lacks information
on the optimal controls when the admissible sets are arbitrary. We now
consider the case of the positive cone as the admissible set and hope to
establish stronger convergence results for u! and 6] without any hypothesis
on the optimal controls.

Theorem 4.1.2. Let U, = {f € L) | 6 > Oae. inQ}. Then { P’}
bounded in H;(0)) and hence we hm.ae (for a subsequence),

Poug — u* weakly in Hy(Q) and strongly in L(Q) (4.1.10)
Bz — 8" weakly in H 1(0) (4.1.11)
1 )
J=(07) — 5 [ Xolu'["dz. (4:1:12)
0

-'.'Further u' = yu', 8'=0 and p~ > 0.
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Proof. Since U. is the positive cone, we have =6 = (p)~ in Q.. Observe
that &6} = x.F.(p!)” = x.(F.p})” in Q. The hypothesis of Lemma 4.1.3 is
satisfied by U. (since 0 £ U, for all ). Hence the conversences in (4.1.4)
(4.1.5) and (4.1.6) are valid.

Using u! as a test function in the weak form of the state equation satisfied
by ul, we have

ANulVulde = [ (f+02)uldx
J1, 0,

= [ﬂ XefPoulde +271 | (pl)~uldz.

i

Now using (p2)~ as a test function in the weak form of the adjoint equa-
tion (4.1.8), we have

L (i) urde = [ AV Varde= - | A6y Ve
oIk il 1

and hence we derive the equality,

[ AVul V! dz+e" / AN V(p) dz = / Xef Pl dz. (4.1.13)
- 11, 9]

Since (by Lemma 4.1.3) {x.Pu} is bounded in L3(£)), we deduce from
(4.1.13) that {P.u’} and {~"?P.(p;)~} are bounded in H}(Q). Therefore,
for a subsequence, (4.1.10) holds and

e '?P.(p:)” — q weakly in H}(Q) and strongly in LX(Q).  (4.1.14)

Hence
¥eFoul — ypu® weakly in L*()

and by (4.1.5) it follows that u' = yyu*. Also
e Pulpl)” = xog weakly in L3(Q2)

e, 2
£'/%02 — xoq weakly in L2(Q).

i )

Thercfore, by (4.1.4), we have 0 = xoq.
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For v € H}(Q)., consider

E?;’!t: dr

4]

/ vdx
i e

.qfvﬂg,vﬂdl'—[x:f’udit'
3!

{4
i
[Jfo.

< (bllulllv + Collefllan) ol g2y

Hence, it follows that {6*} is bounded in & ~H{€2) and thus there exists a
8* € H=1(f2) such that (4.1.11) holds. Consequently,

£20x — 0 strongly in H™YQ)

and thus ' = yy¢ = 0. Now, since et = Xe(Fepl)™ in 0 we have, using
(4.1.6) .
etz = xo(p*)™ weakly in L3(Q).
:Themfnrg xo(p")~ = 0 which implies (p*)~ = 0 and hence p* =10
It now follows from (4.1.10) and Lemma 4.1.1 that

31120, = lxePauliZq — / xolu' [ dz

and from (4.1.14} and Lemma 4.1.1 that
“EUEE‘EL@_Q =lle 'i"uXEPE{P:}_”%,n =5 ~/5f.1 Xog~ dz = 0,

Since J.(67) = § (14213, + |26z {30 (4.1.12) holds. &
I

Remark 4.1.2. The penultimate line in the above proof shows that, in fact,
:!.‘i — 0 strongly in L*()). Also, since §* and p" are positive, we have
p'}H-:{n}IH&{Q} > 0. On the other hand, observe that fn! (pZ+=62)8" de =
d hence [, pl8fdz = ~gl|f2]|3q, < 0. Thus fﬂxp;HE-‘ dr < (0, But
are unable to conclude that (0", %) r-s0) m3ey < 0, owing to the weak
convergences of p! in Hj(€1) and & in H-1(0). O]

Remark 4.1.3. Using pl as a test function in the state equation (4.0.2)
orresponding to f7 and u! as a test function in the adjoint-state equation




CHAPTER 4. LOW COST CONTROLS ON PERFORATED DOMAINS 71

(4.1.2), for the case U. as in Theorem 4£.1.2, we have

fxs{ﬂu:]zd;r:—- (ufdr = [.45?1;;.?;};5!1
0

1173 il

- L{f 602 dx

= [xsppiio—c [ (@pa
%]

£k
Passing to the limit as ¢ — 0, it follows that

f il = [ voio"d,
il S0

This result is erucial in the sense that it hints to the fact that one can have
(8%, p" -ty miiey = 0, if one could homogenize the state equation (4.0.2)
with the controls #. O

The absence of the result equivalent to Theorem 3.3.3 for the Newmann
boundary condition problem hinders one from writing down the limit control
problem for (4.1.1) solving (4.0.2) as was done for the non-perforated case in
§3.5, which keeps the problem still open.

Due to the nature of the problem we do not have the uniqueness charac-
terization of #*, in general. We compensate this lack by proving a uniqueness
characterization of u*.

Let us define the set,

S I v, € V, st. o, = wvin Hg(8),
E= {L € H;(Q) | —div(A. V.)€ L2(§.) and is > fae in ()

and let F, a closed convex set in L3{), denote the norm-closure of £ in
L3(Q). Tt follows from (4.1.10) that u* € E € E and hence £ is non-empty.
Let G, : L*(€2.) — V. be the map . — . where u, is the solution of (4.0.2),

Proposition 4.1.2. Let U, be as given in Theorem 4.1.2. Then E is the

K-limit of the sets . = P.G.(U.) in the weak topology of H} ().

Proof. (a) Let v € E. We need to find a n > 0 and a sequence v. — v in
H3 () such that v. € E., ¥e < n.
Given v € E, by definition of E| there exists w. € V. s.t. P, — v
in H}(Q). Set . = —div(A,Vuw.) — f. Hence, by definition of £.
0, € U, Ve. Therefore w. = G.(f.). Now, choose 1. = Pa,, ¥z,
Hence our claim.
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(b) Suppose v. € E. and v. — v in H1(Q), then we need to show that

veE B,
Let v, = Pw. where w, € G.(U,) € V.. Note that, in fact, w, is v
restricted to (). . Also, 6. = —div(A4,Vuw.) — fis in U/, and hence

—div(A.Vw.) £ L*(£).). Hence our claim,
Thus, we have shown that E. 2 E in the weak topology of H}(C}). O

Remark 4.1.4. In the non-perforated case the ahove proposition reduces to
saying that G.(U) = E in the weak topology of H2(€) where,
U={#el*)]|6>0ae. in it

Ju: € H3() st v, — v in HLD),
~div(A,Vu.) € L2(Q) and is > fae in D

and G, : L*(Q) — HJ(Q2) is the map 6. — u, where u, is the solution of the
counterpart of (4.0.2) in the non-perforated case. 1

E= {u € Hy(9) |

Them:em 4.1.3. If U. is as in Theorem 4.1.2, then u® is the prajection of ()
onto £ wn L2(Q) where dip = yodr. In other words,

f xou'(v —u*)dr >0 Woeg k.
0
Proof. Let v € E and set §, = ~div(A, V. ) — f. Then we have 6, € U, and

arguing as in Theorem 4.1.2 we prove 6. is bounded in H—(0)). Using this
B in (4.1.3) we have,

1%

j;; [ui{v, — ul) + =0;(6. — 02)] dor 0

ie. / u:vsd:tr—i—s/ 00, dr > f {u;}zd.?:—i-ff (62)2 dur
2 1, (2 Jo,
ie. ]XEPEu;Ert:E dﬁ:—l—:’]i‘iﬁ;‘i dx > /xf{ﬂu;}gir45[[§;]3dx.
a 0 Ja 0

whence, on passing to the limit

f;{uu’t:dm = ]xn(-u'}zdm.
0 0

Since v € E was arbitrary we have,

f xou'(v = u)dz >0 YoeE
a
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and by simple density argument we have the inequality for all v £ E. O

Remark 4.1.5. By the uniqueness of u*, the convergence in (4.1.4) and
(4.1.10} holds for the entire sequence and nn‘r just for a subsequence. O

Let us now consider the cases where f has a sign. If f < 0 ae in
Q. Then —f € U, (as defined in Theorem 4.1,2) and hence the result of
proposition 4.1.1 holds. Moreover, from (4.1.13), we have P.u! — 0 stronsly
in Hi().

Observe that the weak maximum principle remains valid for the state
equation (4.0.2] due to the homogeneous Dirichlet boundary condition on 80
and the homogeneous Neumann boundary condition on the holes. If f=0
a.e. in (! and since 2 > 0 ae. in 0., it follows from the weak maximum
principle that u} = 0 a.e. in Q.. Thus by using the weak maximum principle
for the adjoint equation 4.1.2, we have p! > 0 a.e. in §). and hence & =0in
£2,. Thus, #* = 0 and the state eguation becomes

—diviA.Vul) =f inQ,

A:Vuln, =0 ondSs, (4.1.15)
u! =0 on d0.

Then, by Hy convergence, it follows that u” is the solution of the homogenized
problem

(4.1.16)

—div(ApVu*) = ypf in
w* =0 on 0.

Theorem 4.1.4. Let U. = L2(0.) then we have, u' = § = " =0 and

Fou; — 0 strongly in H} (Q)

F.pl — 0 strongly in H ()

1200 — 0 strongly in L)

B — 0" weakly in L*(Q) and 8 = —y,f

J(8) — 0
Pmuf Since —f restricted to Q. is in U. = L*((2,), the results of propo-
sition 4.1.1 stays valid. Also, the convergences (4.1.4), (4.1. 5) and (4.1.6)
remain valid. It follows from the strong convergence of Fou? that «' = 0 and

hence p" = 0. Now, since {#!} is bounded in L*(Q}, we haw glege
strongly in L*(0) aﬂd thus # = 0.
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Also, from the optimality condition, we have £67 = —p; in . and hence

EE.\T_: = —X:Fepl In £, An argument similar to the one in theorem 4.1.2 gives
the equality corresponding to (4.1.13), ie.,

f AETH;:?-u;cfrnhE"I[ .qsﬁp;.?;J;d:ﬁ=/x5fﬂu;dx,
i 0 0

4

We deduce from the above equality that Pp? — 0 and Foul — 0 strongly in
Hi (). 4

4.2 Control and State on Boundary

In this section, we consider the case of perforated domain for the boundary
control problem described in §2.3. To begin we need to reformulate the notion
of admissible family of holes. For this section, the family of holes, {5.}, is
said to be admissible in 0 if, along with (H2) (in page 11), the following is
satisfied:

H 4. There erists, for each = > 0, an extension operator
Q. : H(,) — HYQ)
such that, for every u € H'(Q,),
Q:ula, = u and ||Q.ul o < Collu|[ 10,y
where Cy 15 independent of =.

Such family of admissible holes has been considered by Hruslov in [Hru79].
We note that the holes allowed by (H2) and (H4) is not very different from
those allowed by (H2) and (H1) (in page 11). We can, in fact, construct
Q- from the extension operatar P. obtained in (H1), provided we have the
following:

H 5. There exists a positive constant Cy independent of £ such that for cvery

ue HY(Q.),

(Recall that 13(8Q) is the range of the trace map v : H(Q) — L2(80) ).
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To see this, assume (H5). Let u € HY(€,). Since u restricted to 91 is in
Hz(09), there exists a v € HY() such that

0l 3¢ay < Callul] (4.2.1)

#hany

Thus, w — v € 1. Then, by (H1), P{u—1v) € HHD). Define Q.u =
Folu—uv)+v. Then v restricted to 17 is same as (J-u restricted to J0, which
is u restricted to d0). Now, consider

Qv = [|Pelu—v) + vl gy
< [Pelu = o)l ivny + ol ey
= ([ Belu =)l g2 + [lollarign
= Collu—vllv + |1v]lae
< Colllullv +llellv) + vl
= Golllully, + [Vollan) + vl e
< Callully, + Cillw)l .-

Therefore, by (4.2.1), we have

Q1| gy < Cﬂ|JU||V;‘|'C:H“||H5mm

and then by, (H5),

Collullv, + Cillul g,

|Qeu| iy <
< COolluflgn,)-

Thus, we have constructed a @, such that (H4) is valid.

Conversely, if (H4) is valid then we always have (H5). To see this. note
that for u € H'(Q), u restricted to A0 is same as Q.u restricted to G0,
Now, it follows from trace theory that, for Q.u € H'(£),

”u”H'fffan} < Coll@=uullgr1ay
and from (H4), it follows that

In short, for state equations with Neumann (or more general) condition on
the boundary @€} in perforated domains, the discussion above suggests that
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the admissible family of holes are required to satisfy either (H2) and (H4)
or, equivalently, (H1). (H2) and (H5). To maintain consistency throughout
the section, we shall work with the hypotheses (H2) and (H4),

We now state the optimal control problem to be studied in this section.
Let U, C L*(80) and f € L*(A0) be given. For 4, € U, the cost functional
is given by,

, 1 £
Je(0.) = 5”“5“3,@;1 + S 10:)3 20 (4.2.2)

where the state u. = w, (6.} in H'(€.) is the unique solution of

—diviA-Vu,) +u. =0 in £,
AVu.n, =0 on s, (4.2.3)
ANVuw,.v = f+6. ond)

- and » are the unit outward normal on 8S. and 80, respectively.

~We now prove a result analogous to Lemma 4.1.2. Assume that there
exists a sequence f; € [, such that {0.} is bounded in L2(#9). We then
show that {u.(f.)} is bounded in H(L). To see this, observe that by the
ellipticity of A,

|1 riﬂ{ﬂ:} < / A NVu, Vi, ds:+/ u.|? dr

e i,

= f (A ds
&0

=< |.|Jr+E£||IE.3$!.J|TLE“2.SQ

= “f 3 HEHE.EQ”QEMEHHHE{EQ}

2 )
||U:||:&r1[n,; = —u”f + E}E”E,HIHQEEE“HIERL

a

Therefore, by (H4), we have

||Qaﬂ:”irt(m S Gﬂ|lr“f||l?‘-r1{ﬂ[]
C
S =2UF A+ Bl pnl Qe sy

and thus,

Co
Qe || oy < ?Hf + 8 |[2,00
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showing that {Q,u.(6.)} is bounded in f *(©2) and hence its trace is bounded
in HY2(9Q) and L*(80Q). Note that the constant Cy is generic and is not
fixed in the above inequalities.

As usual, the problem (4.2.2)-(4.2.3) admits a unique optimal solution,
which minimizes J, in [, and is denoted by 87. The corresponding optimal
states is denoted by uZ. Also, the adjoint optimal state pi e HY L) is given
as the weak solution of the problem

—div(*A.Vpl) +p: =0 inQ.
‘A.Vpin, =0 onds, (4.2.4)
FAVply =u on @)

Then the optimality condition

f [l —ul) +e82(6. — 82)]de >0 o L (4.2.
ap

[
o]
—

can be rewritten as
/ (p: +=02)(8. — ﬁ*;}dr:r =0 Y8, 1.
an

and hence £07 is the projection in L2(86) of —p? onto U,
Also, a proof similar to the one of Lemma 4.1.3, with obvious changes,
will prove the following:

Lemma 4.2.1. If there exists, for each = > 0, 8, € U, such that {6.} is
bounded in L*(99)) then we have both {u?}, {2/ %6:} bounded in L2(A0) and
{Q.p2} bounded in HY(Q),

It now follows from Lemma 4.2.1 that, up to a subsequence,
1297 — & weakly in L2(80) (4.2.6)

u; = u' weakly in L*(80) (4,2.7)
Q:p: — p* weakly in HY(Q) and hence we have
p: — p* weakly in H'3(A0) and strongly in L?(80).
Under the hypothesis of Lemma 4.2.1, we can homogenize the adjoint-state
equation (4.2.4) (cf. [KP89, Proposition 2.1]). By the theory of Hy conver-
gence there exists a matrix Ay such that A, Hy-converges to Ag and p” is the
solution of,

(4.2.8)

(4.2.9)

~div(*AsVp") + yop" =0 in D
‘AgVpty = on an,
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An argument analogous to the one in the proof of Theorem 4.1.1 will
prove the [ollowing theorem.

Theorem 4.2.1. Let Ay be the Hy-limit of {A.} and let the sequential K-
limit of {U.} in the weak topology of L2(A) exist, denated by 7. Also let the
optimal controls 07 converge to 07 weakly in L2(80)), then 87 is the unigue
menimizer of

1

J{ﬁ}:afmuﬂda

in U, where u=u(f) € HY(Q) is the weak solution of,

—diviAsVu) +xou =10 in {2
AgVuwr = f+8 ondfl

Further u' = u* and & = 0.

(4.2.10)

We now establish stronger convergence results for ul and €7 and ho-

mogenize the system when the admissible control set is the positive cone of
L2(a).

Theorem 4.2.2. Let U = {# € L}3Q) | 8 = Oa.e. on 0}, for all = > 0.
Then Q.uX — u* weakly in HY(Q) and hence,

ul = u” =" weakly in H'Y2(80) and strongly in LAo)  (4.2.11)
B2 — 6° weakly in H~V2(80)  (4.2.12)
V20— ¢ = 0 weakly in HY?(80) strongly in L?(98))  (4.2.13)
Lo — 2 [ wrde (42149
2 Jon
Further, u™ and #° satisfy the homogenized problem as in (4.2,10).

Proof. Since U is the positive cone. we have 8] = (pI)” ae in 8. The
hypothesis of Lemma 4.2.1 is satisfied by U (since 0 € U). Hence the con-
vergences in (4.2.6), (4.2.7) and (4.2.8) are valid.

Now computing, as done in the proof of Theorem 4.1.2. we derive the
equality

ac(ul i)+ a((p2) ", (01)7) = [ fulde (4.2.15)
a0

where

a-(v, w]=/ AE'\?ﬁ.Turci;a—l—f vw dr

£ il.'




CHAPTER 4. LOW COST CONTROLS ON PERFORATED DOMAINS 74

is the bilinear form on A'(0L) x HY(.).

Since (cf. Lemma 4.2.1) {u!} is bounded in L*(80) | we deduce from
{4.2.15) that {Q.u’} and {e7Y20Q.(pz)~} are bounded in H(Q). Therefore,
for a subsequence, (4.2.11) holds and (4.2.6) holds weakly in H'2(30Q) and
strongly in L*(80) . To show # = 0, we shall show that f: is bounded in
H='12(90). We have for v € HY{(0Q)

1

/ flvdo = a.(ul.v) - fvde.
A0 an
Therefore, (82, 1) - Yo a3 o) is bounded uniformly wr.t, = for each W,

since any v € H'/2(90) can be continuously lifted to a v & H'(Q). Hence 4:
is bounded in HY2(30)), thus, (4.2.12) holds for some §* £ H-Y3(g0) and
also §' = 0. Thus we have shown (4.2.13), and (4.2.14) follows from (4.2.11)
and (4.2,13). Moreover, since 8 = 0, we have that #* > 0 in the sense of
H12(0)).
It follows from the Hy-conversence that
(A-Vuz) — 4,Vu" weakly in (L),

Let v € H'(£)). Then, by passing to the limit in

/ﬂ:""dg = /A:V'ME-?L'dz—i-/ uwvder— | fudo
a1 . ) fa0

f{ﬁ;j.?vdm.vfﬁjﬁu;xzvdm—/ fude
o i8] an

I

we have,
("::"‘11'}},_5(5“]_&,*{3“] = _/!;Ag'i?u'.?vdz—l-/f;xgu'udm— & fudea
= /—div[ﬂn?u’}.?vdj:—i--/qu"u dx
0 0
+/ AV wodo — fude
ETs! an

and hence for all v € H'(Q),

AgVu'wido = {8, v) —!—/ Sfuda.
/aﬂ ‘adomaton T |

Thus, #* and u* satisfy the homogenized problem as in (4.2.10). O




CHAPTER 4. LOW COST CONTROLS ON PEAFORATED DOMAINS a0

Remark 4.2.1. Using p! as a test function in the state equation for 1! and
u; as a test function in the adjoint-state equation, for I as in Theorem 4,2.3
we have

f{u;jﬂdazu:[u;,p;;u == fﬂf+£*;}p:dﬂ
a0 fit T

. f,m Fiitidiy ~ fmw; 2 dar

Passing to the limit as = — 0, it {ollows that
f (u*)’de= [ fp'dz. (4.2.16)
an a0
Since, we could homogenize the state equation, it follows that
fptdo+ {E"p-}ﬁ—i{an},ﬂi{ﬂm — .[n AoVu" Vp'de + fn xou'p" dr

_ f ‘AgVpt v do
e

= fa (u*)* do.

ey

Hence, using (4.2.16), we deduce that (6, p*) (, O

H-tan) aian

We now study the unconstrained control set case.
Theorem 4.2.3. Let U = L*(00) then we have, W' = # = p* = 0 and

Geul — v = 0 strongly in H'(Q)
-
J(82) — 0.

Proof. Since 0 € U, we have from Lemma 4.2.1 that the CONVErgences in
(4.2.6), (4.2.7) and (4.2.8) are valid. Also, by the optimality condition, we
have =07 = p! a.e. in Q.

The analogous equality of (4.2.15) will be,

ac(uz,u8) + e au(plpl) = [ fulde
a9t
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It follows from the above equality that p* = 0 and from the homogenized ad-
joint equation, it follows that «' = 0. Hence, by above equality and (4.2.7),
we have QQ.ul — u® = Ostrongly in H'(Q). Also, we have e~1/20Q.p7 —
0 strongly in H'(€2) and hence, by (4.2.6), # = 0. Thus #* = —f and
J(82) — 0. a

4.3 Summary

In this chapter, low tost control problems on perforated domains are con-
gidered (P2), Two types of problems are addressed: The case where the
state and control are given on the domain (ef. §4.1) and the case where the
state and control are given on the boundary of the domain (cf. §4.2). The
asymptotic behaviour is studied when the admissible control set is the pos-
itive cone. Due to the absence of the result equivalent to Thearem 3.3.3 for
the Neumann boundary condition problen, one is unable to write down the
limit system for these problems as was done for the non-perforated case in
§3.5, which keeps the problem still open,

It would be interesting to study the fixed cost case and low cost contrel
case for perforated domains with Dirichlet boundary conditions on the hales?.
The periodic case of this problem with fixed coefficients has been studied in
[Raj00)].

“cf. Open Problem 7 in page 96




Chapter 5

Control Problems with State
Constraints

5o far, in this thesis, we have been studying optimal control problems with
constraints only on the control. In this chapter, we shall study the asymptotic
behaviour of optimal control problems with constraints on the state. We shall
study the problem with fixed cost and low cost contral in both perforated
and non-perforated case.

5.1 Non-Perforated Case

We consider a state-constraint optimal contral problem in non-perforated do-
mains, where the admissible set varies with the parameter. We shall consider
the two cases where the cost of the control is, respectively, dependent and
independent of =.

Let f e L3 Q) and U, = {6 € L*(Q) | | Vue(8)]la0 < 1}. where the state
u:(#) = u. is the weak solution in H}() of the equation

{ -div(A:-Vu.) =f4+89 inQ (5.11)

e =1 on ).

Observe that [, is a closed convex subset of L2(§). The admissible set L.
is non-empty, since —f € U, for all & We shall now prave a proposition
which will identify the limit set for the problem to be consideted in 85.1.1
and §5.1.2. Let € be the positive square root of the matrix B (ef. (1.3.10))
when B, = I, the identity matrix. for all = > 0. Equivalently, by (1.3.9), €

82
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is the positive square root of the matrix obtained as a distribution limit of
{*D.D.}. Let us now define

U={felQ) | |CVulaa <1}
where the state u = u(f) is the weak solution in H}(Q) of

—div(A4)Vu) =f+8 inQ o
{ u =0 on G52 (51.2)

and Ay is the H-limit of {A4.},

Proposition 5.1.1. U 1 the K-limit of the sets U, in the strong topology of
L),
Proof. Given f € I/, we need to find a 5 > 0 and a sequence 8. — § strongly
in L*(0)) such that 6. € U, for all £ < n,
Case 1. Let # € U be such that |[CVulsn < 1. Then by (1.3.10), there
exisis dy such that

[Vu(B)llan <1, Ve<dy
and hence § € ., for all € < §;. Therefore, we set 2. =8 foralle <n=8&
and hence our claim.
Case 2. Let 6 € U be such that ||[CVull,q = 1. Choose a sequence of
positive real numbers, {an}, such that 0 < &, < 1, for all n and o, — 1.

Set &, = a,(#+ f)— f. Then, its corresponding state, u,, = a,u is such that
|_IC«”\_):R,;|!|2|;1 = |Ii'kn| ||C‘FH”‘215] = O < 13 "115{}1 Hﬂ — f in Lgl::ﬂ?] hecause
00 —Ollzn = [|@nf + (an — 1)f — 8|24
= ”[D-’n ~1)¢+ (e — 1}f||2,ﬂ
= |aa—1[ |8+ fllan — 0 as n — oc.
Now, by the previous case, there exists 4§, = d(#n) such that 8, € U,, for all
£ < 4, inf{d.} > 0, then we choose n = inf{4,} and set
n Ui

e 2,

f, =8, when
2 n+1 n

But if inf{d.} = 0, we choose the subsequence (again labelled as d,) such
that
D= dh a3 o F B> 2l and 5, — 0.

We now define, . =8, for 4., <& <4, This sequence {6.} satisfies our
requirement, with o = 4,.
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It now remains to be shown that, given #, € U, and . — # stronely
in L*(Q), # € U. Since 6, € U.. |Vue|2n < 1, and by (1.3.10) we have
|CVullan < 1. Therefore # € U. Thus, we have shown that U, S
L3} strong-topology. O

Erample 5.1.1. We describe the situation in the one-dimensional periodic
case which gives a nice formula for C'. Let A be a periodic function on (0. 1)
such that D < a < My} € b and let A (z) = ME). Given f = 0 and

: a2 : ; 3
with p* = 28 where & — & = |[1/A],q and 5% — o in L%(0,1) weak™,

a2
When g, = 1, we have yg = ||1jA||§,n}_1 and hence pu* = (Hﬁ—lf—’n’) . Then,
— 1L/ Mla,
= ||1£J~|if,2'
Thus the strong K-limit of the set

gl}
| 2.0

1

A

. s
U"Z{HEL‘*EMH' :
| diz

is given as

oL
dz|

1

A

U:{ﬂeﬁmJu

-1
2,1':}

210 H 1,52

where w = u(f) solves,
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In this section, for U. as defined earlier and far given § € U, we study
the limiting behaviour of

: 1 .
Sy = f B.Vu.Vu,dr + — |ﬂ'|,r,q (5,1.3)

where u. is the solution of (5.1.1). Let #; be the unique minimizer of J. in
U:. We now remark that for the admissible set considered in this chapter,
whatever may be N (dependent or independent of &), 67 is bounded in L2(0).
To see this note that, since —f € {/., the corresponding state u.(—f) = 0,
for all z. Thus, we have

16130 < |1 £113 . Ve (5.1.4)

Hence 6] is bounded in L*(Q). Thus, it admits a subsequence weakly con-
verging; say to 67, in L(0).

2.1.1 N independent of =

For the case when N is fixed and independent of £, we have by the theory
of H-convergence that the state equation (5.1.1) can be homogenized, and
(1.3.10) holds for the optimal states, where 5% is as defined in (1.3.9).

We wish to compute the limit of J.{#2) and identify #* as the optimal

control for the limit functional on U, Let us extend the cost functional given
in (5.1.3) to all of L2({}) as follows:

| Je) el
Fs(ﬁ')—{ +oc ifd e L3(Q)\ U..

Now for [, as obtained in Propositon 5.1.1, we define J : U — R as,

J(B) =

1 - \
L f BVuTuds + 503 (5.1.5)
(7]

where the state u = u(f) is the weak solution in H}(Q) of (5.1.2) and call its
extension to L7{Q) as F: L) — R, defined by

[ J) feeU r
)= { oo iffe LA\ (5.1.6)

We shall now verify the hypotheses of Lemma 1.5.2 in the following theorem.
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Theorem 5.1.1. £, 9 F an the weak (strong) topology of L*(Q). Conse-
quently, 8" is the unique minimizer of J over . Also J.(87) — J(§*) and
hence 87 — 8* strongly in L3(01).

Proof. Given a sequence . — # in L), we need to show

liminf £(6.) > F(8).

If ¢ & U, then the result holds trivially by Lemma 1.5.3(b). Now, let # € U,
Then u.(f;) — » in Hj(}) where u satisfies (5.1.2). By (1.3.10) and the
weak convergence of {f.}, we have

1 Nio i
5 1 = 1 — i L 1 i |} 3
.11311&1fﬂ[i?_.} ll_%gﬁﬂsl?uf?uﬁ dx 1!1511'131{ 7 8|15

1 N,
= = | B'VuVudz +liminf |62,
2 Jn e=0 2 :

l ; T
= —[B“T?u?udx-i—iﬂﬂﬂgﬂ = F(#).
2. Jii 9 :

It now remains, given # € L*(Q), to find a sequence {f.} such that
#. — # in L3(Q) and EimﬂF_;{t?c-} = F(#). If # is such that 8 & [/, then
by Lemma 1.5.3(a) the result follows trivially by choosing 6. = @, for all =,
Now, let # € U/, Then by Proposition 5.1.1 there exists § > 0 and f: — &
{and hence ff, — #) such that #, € [/, for all ¢ < 4. For this sequence, we
have

’ - 1 " N i i

imF(0.) = lm |z [ B.-VuVu.dz+ =625
| o o o i

B i

= 1] B'VuVudr + £||H||§ﬂ = £(f).
2 Ja 2
Thus, we have proved that F. 2% [ in L*(£)) weak (strong) topology. Now,
since U is non-empty (—f € U), by Lemma 1.5.2 and Proposition 5.1.1, we
see that 8 is a minimizer of J on U and J,(62) — J(#*) as e — 0.

6" is the unique minimizer, since J is strictly convex, and hence f — §°

wealdy in L2(f2) for the entire sequence and not just for a subsequence. The
fact that J.(07) — J(6") and (1.3.10) holds, together implies that

1621* — (1671

Hence we have that #7 — #* strongly in L3(0Q), Ol
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Remark 5.1.1. In the theorem above, we proved that the optimal controls,
in fact, converge strongly in L*(f2). This result stays valid for the problem
(5.1.1)=(5.1.3) on an arbitrary closed convex subset, I € L), under the
assumption that [, o 11 strongly in L?(Q). Under this assumption, another
proof, for the results proved in this section, is possible by passing to the limit
in the optimality condition associated to the system, an idea used by Kesavan
and Saint Jean Paulin (cf. [KP97]) far the situation [/, = (7, foralle > 0. O

5.1.2 Low Cost Control (N = &)

In this section, given f € [, we study the limiting behaviour of (cf. (2.3.1))

I & ;
th=-[Hﬂmﬂmﬁ+—Wﬁﬂ (5.1.7)
2 0 2 !

where u. is the solution of (5.1.1). Let @ be the unique minimizer of Je in
U.. Therefore, by (5.1.4), 0 admits a subsequence converging weakly, say to
6, in L*(12). By H-convergence, we can homogenize (5.1.1), and (1.3.10) is
valid for the optimal states. Let us extend the cost functional given in | 5.1.7)
to all of L) as follows:

[ A iU,
Em“‘{+x e L20)\ I

We shall now define J: 7 — & as,
1 ;
J8) = E/B"G’u?u dz (5.1.8)
5}

where 5% is as defined before and the state u = u(f) is the weak solution in
H5(2) of (5.1.2). We extend it to all of L2(Q) by F L3HQ) — R, defined

ils,
oo J JB) fdel -y

Theorem 5.1.2. F, ot 1 in thewank (strong) topology of L*(Q)). Conse-
quently, J.(02) — 0 and 8* = —f is the unique minimizer of J on [7. Also,
0 — 8° = — [ strongly in L*(Q).
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Proof. The proof of F. 2% P in the weak (strong) topology of L3(0)) is
exactly along the lines of the proof in Theorem 5.1.1. In fact, whenever
f- — 0 in L2(Q) and F.(6.), F(0) are all finite, the fact that {8.} is bounded
in L*(02) and the result of (1.3.10) show that F.(6,) — F(8).

Hence by Lemma 1.5.2 and Proposition 53.1.1, 87 is a minimizer of J on
U and J.(87) — J(8") as = — 0.

Let % and u' be the states corresponding to #2 and #°, respectively,
Then, since — f € U,, we have

f BN Nuldr <e|flig, £ 0.
0

Thus, passing to the limit we have [, B.Vu:.Vuldr — 0 and therefore,
by (1.3.10), [, B*Vu*.Vu"dr = 0. Hence J.(02) — J(6%) = 0. Also, by the
ellipticity of the B.'s, we have

ff|f?£.:||gﬂéii1,] E/ﬂﬂgvu;?u: dz

and so ul — 0 = u” strongly in H}{Q) and hence #* = —f is the unique
minimizer of J on U. Thus, we have #2 — — f weakly in L*(Q) for the entire
sequence and by (5.1.4) it follows thar,
limsup [162[l5.0 < | fllz0 < lminf 102173 0.
=] £+ '
Hence, [|67]3, — |If]|3o implving the strong convergence of the optimal
controls. 2|

5.2 Perforated Case

We have already described the perforated domain set-up in §1.4. We have
from (H2) (in page 11) that yg > 0 a.e. in £2. We now prove a lemma on its
upper bound.

Lemma 5.2.1. If x. — xp weak™ in L=(0), then x¢ <1 a.e. in 00

Proof. Suppose not, then the set € = {xr € Q | yy(z) > 1} has non-zero mea-
sure, i.e., p(€) > 0 where g is the Lebegue measure in B". Let yq € LY}
be defined as,

1 fze€E
X‘E“’}:{ 0 fren\ €
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Then [o XeXedz — [, xoxedz. Equivalently, u(€n ) = [;xodc. But,
pl€NGQ) < u(€), for all £, and hence [, xodz < p(€) whlch contradicts the
inequality, fE Xodr > ,H[[E:I =0, that follows from our supposition. O

Henceforth, we will assume (by working with a suitable subsequence, if
necessary) that y. — yq weak™® in L™(()).

We call {5.} to be an admaissible family of holes in Q. if (H2) and (H1).
We also recall the norm on V. as, |lul/y, = [Vul|2q.. Let fe L2(Q) be given
and U, = {# € L*(Q,) | [|Vu(8)||l2n, < 1}, where the state u.(f) = u, is the
weak solution in V, of (4.0.2) and n, is the unit outward normal on AS..

Observe that U, = {# € L*(1).) | |Ju(8)|v. < 1}. This is a closed convex
subset of L*({2). The set is non-empty, since — f restricted to Q. is in U..
Let €' be the positive square root of the matrix B when B, = I, the identi Ly
matrix, for all = > 0. Equivalently, ' is the positive square root of the matrix
obtained as a distribution limit of {y.'D.D.} (ef. (1.4.7)).

Let us now define U = {# € L*() | |CVullzq < 1}, where the state
u = u(#) is the weak solution in H}((2) of

u on o0 k2

{ —div(AgVu) = xpf +6 inQ
i

and Ap is the Hy-limit of {A,}. Using the extension by zero on the holes, we
can consider U as a subset of L*(0). Similarly, 8 € L*(Q) vanishing on the
holes 5. will be considered as an element of L?(€),).

Proposition 5.2.1. U s the K-limit of the sets U. in the weak topology of
L3(0)).

Proaf. The arguments for the proof is similar to the one in Proposition 5.1.1.
We note here the changes required to make the proof go through.

Given # € [/, we need to find a 5 > 0 and a sequence 8. — @ in [, 6
such that 8, € U,, for all £ < . As done prev iously, we argue in two parts.
Case 1. Let ¢ € U7 be such that |CVulj3n < 1 and choose #, = (x. Ix0)0,
Then (x./xo)f — 6 weakly in L*(Q2) and, by (1.4.8), there exists §; such that
8. e U, forall e <éy.

Case 2. Now, suppose # € U is such that |[CVuljlan = 1, we choose a
sequence {a,} as done in the proof of Proposition 5.1.1 and set

b = an(0+ x0f) — xof.
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Then the corresponding state u, = a,u is such that CV U260 = an <
L Also, |8, = 8llag = |ow — 1|8 + xofllen — Dasn — occ. By the
previous case, there exists 4, = §(#,) such that (%/%x0)8. € U, for all
£ = Oy and (x:/xo)fx — 0 in L3(Q). Depending on whether inf{d,} = 0
or inf{d,} = 0 we argue as in the praof Proposition 5.1.1 and choose the
sequence accordingly.

If inf{d,} > 0, then by choosing 5 = inf{d,} we have our claim with the
required sequence being

g = i‘f-r?m when R E.

X0 n+1 n
But if inf{d,} = 0, we choose the subsequence (again labelled as 4,) such
that

>8>0 >..>d8,>...>0and 4, — 0.

We now define, 6. = i—’lﬁh for d;.; < £ < 4. This sequence {6.} satisfies
our requirerment with n = ;.
Now, given f. € U, and . — & in L), we need to show that # € [/,

We argue as before and use (1.4.8) to get |ICVullan < 1. Hence 8 € U, Thus
R PP ¢ .
we have shown that U, =2 [/ in L*(0) weak-topology, [

Remark 5.2.1. In contrast to the situation in non-perforated case, here we
do not have [7 as a strong K-limit of {U.} in L3(Q). O

In this section, for U. as defined above and for given 8 L., we study
the limiting behaviour of

-

1 N
J0) = 5 / BV, Vi dz + |
Wil

=
%3
=2
e

18113 0., |2

where u, is the solution of (4.0.2). Let 67 be the unique minimizer of J. in
U.. We now remark that for the admissible set considered in this section,
whatever may be V {dependent or independent of ), # is bounded in L(02).
To see this note that, since — f restricted to {1 is in UL and u,{— ) =0 for
all £, we have

k) ]

1621130, < Xefllzq < fllzq, for all e (5.2.3)

1.e. &7 is bounded in L*(€)). Thus, it admitsa subsequence weakly converging,
say to #*, in L*(Q).
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5.2.1 N independent of ¢

For the case when N is fixed and independent of £, we have by the the-
ory of Hy-convergence that the state equation (4.0.2) can be homogenized,
and (1.4.8) is valid for the optimal states,

We wish to compute the limit of J.{82) and identify #* as the optimal
control for the limit functional on 7, Using the extension by zero on the
holes, we can consider U. as a subset of L3(0). Thus J., as defined in
(5.2.2), can be extended to all of L2(Q) as follows:

R VAR
ﬂ'w}_{fm if 2 L*(0) j\T’

where {m denotes the extension by zero on S, of the elements of [7.. Now for
7, as pbtained in Propositon 5.2.1, we define J : [/ — R as,

J(8) = fB“Tu?ud;r o id,r (5.2.4)
r Xa
where the state u = u(#) is the weak solution in Hliﬁ f (5.2.1). Extending
it to all of L2(Q) as, F: L3(Q) — E defined by,
oy | J@) el .
#16) = { +oo if 6 e LHO)\ U e

Theorem 5.2.1. F. 29 B in the weak topalogy of L*(Q)). Conseguently, #*
is the unique minimizer of J over U, Also J.(62) — J(67). Further, we have

e — X9 strongly in L3(0).

T Xao
Proof. Let 8, — 6 in L*()). It is enough to consider the case when f
U {ef. Lemma 1.5.3(b)) and F.(f.) are all finite. By (1.4.8) and [KP99,
Propositon 2.2|, we have

1
liminf F.(6.) = 111115 / B.Nu.Vu, dr + llmtnf ||5' 3.6

=—) g—+ll

= 5[H"\T’u\?udr+lixninf;||ﬁﬁj|z:n
Jo

1[5‘?&?&&%—1—— i|ta’.r—F{t’5':l
2 /0 2

0 Xo

%
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It now remains, EJVPH B € L(£2), to find & sequence {0, } such that 4. — ¢
in L3(0) and lm#(f.) = F(#). By Lemma 1.5.3(a), it is enough to prove

this when § € L \om for # € U, by the construction in the proof of
Proposition 5.2.1, there exists § > 0 and . — 8 such that 8. € U, for all
= = & Then, again by (1.4.8) and [KP99, Proposition 2. 2] we have,

1
lim F.(4:) = lim [ j B.NuVu, dr + —f l.’E!...!"-J
£—0 ' st | 2 i ]

= /B‘Fu'\?udi’-r——/—dz— (#).

Therefore, we have proved FL =R 1 (2) weak topology. This with the
results of Lemma 1.5.2 and Prﬂposﬂ;mn 2.2.1 implies that §* is a minimizer
of J on U and J.(62) — J(6%) as £ — 0.

Since .J is strictly convex, 0* is the unique minimizer and hence g2 — 6*
weakly in L*(] for the entire sequence and not just for a subsequence. The
fact that J.(#2) — J(#") and (1.4.8) holds, together implies that

I (@) dx —af—-—c.f

Hence, by [KP99, Theorem 4.2], we have F[‘—liﬁ" — O'strongly in £2(Q2). O

Remark 5.2.2. In contrast to the case in non-perforated domains, here we
flo not have F as a strong [limit of {F.}. L1

Remark 5.2.3. Using the adjoint optimal state equation, one can deduce,
as deduced by Kesavan and Saint Jean Paulin in [KP99], 8 as a projection Df

(% )xap" on to the convex set U/ in the weighted space L(Q) where dpy = &
and p* is the optimal adjoint state.

5.2.2 Low Cost Control (N = ¢)
In this section. given # £ ., we study the limitin o behaviour of

1
L) = E[ B,Vu. . Vu, dr + = |9|;m (5.2.6)
i

where . is the solution of (4.0.2). Let #: be the unique minimizer of J.
in Uf,. Therefore, by (5.2.3), E?" admits a subsequence converging weakly, say
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to 8, in L3(Q). By fHy-convergence, we can homogenize (4.0.2), and (1.4.8)
is valid for the optimal states.

Using the extension by zero on the holes, we can consider [, as a subset
of L*(€2). Thus J., as defined in (5.2.6), can be extended to all of L2(0) as
follows: o
WZ{L@iHEE B

+oo  if B LA\ UL

where UL denotes the extension by zero an S. of the elements of U7.. We shall
now define J : U — R as,

1 "

J(E) = 5 f B'WVuNudz (5.2.7)
f

where the state u = u(ff) is the weak solution in Hj(£2) of (5.2.1) and now

extending it to all of L*(Q) as F: L2(N) — R defined by,

| Je) ifsel T
me_{+m if 0 € LYQ)\ U. L
Theorem 5.2.2. £ Lags F'in the weak topology of L*(Q). Consequently,
J(02) — 0 and 8* = — f s the unique minimizer of J on U. Also,

Xe

6= +
Xo

f — 0 strongly in L*(Q).

Proof. The proof of F. =% F in the weak topology of L?(2) is along the lines
of the proof in Theorem 5.2.1. Also, if 8. — # in L*(Q) and F.(8.), F(#) are
all finite, we have F.(f,) — F(#) by virtue of (1.4.8) and the fact that {4.)
15 bounded in L*(12).

Hence by Lemma 1.5.2 and Proposition 5.2.1, #* is & minimizer of J on
[l and J.(07) — J{8") as & — (.

Let u! and u* be the states corresponding to 2 and #°, respectively.
Then, since —f € Uy, we liave

/ B.Vu, Vil dr <ellxfl3e < E||f_'|-§|;-!, >0

Thus, [, B,Vu: Vu!dr — 0 and hence J.(87) — J(#*) = 0, since by (1.4.8)
we have [ B*Vu" . Vu"dr = 0. Also, by the ellipticity of B., |lu’|y, — 0 and
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hence Poul — u* = 0 strongly in H; () and hence 8* = —F is the unigue
minimizer of J on U7, Thus, we have 82 — — f weakly in L*(Q2) for the entire
sequence and by [KP99, Proposition 2.2] it follows that,

lim inf ||02]|2 , > f I” da. (5.2.9)
=—i0 y o Xn

Also from Lemma 5.2.1 we deduce that.

a

16212 E/fﬁdii ifﬁ
0 o Xo

and, now, taking limsup both sides, we have

JII‘Q
limsup |82, < f —dz
£—0 o o Xo

which combined with (E,Z:E}J gives, ||2|12, — fﬂi—;:i:.:_ Hence, by [KP99,
Theorem 4.2], we deduce 02 + 1‘5 f — 0 strongly in L*(0). O

5.3 Summary

In this chapter, we studied the asymptotic hehaviour of an optimal control
problem with constraints on the state. The admissible contro] set involved
in the problem is defined through the state variable. The problem is settled
for both the fixed cost of the control and low cost control cases in both
perforated and non-perforated settings, A state constraint problem with a
different control set is given as a open problem!,

Lef. Open Problem 8 in page 97




Open Problems

Open Problem 1. It would be interesting to see whether the set £ defined

- - 5 i ) -lr A a
in Lemma 1.5.2 is actually all of E'. In particular, when £, %' & . then is
&= E?

Open Problem 2. Given {[/,}, a class of closed convex subsets of L*((2),
the problem given by the cost functional

FilB =l [ BV, Vi dz + 612, for 0 e U, (5.2.1)
2 /g 2

where the state u. = u,(#) is the weak solution in Hi(€2) of the boundary
value problem
—div(A.Vu,) =f+0 inQ
{ e = on (]

has a unique minimiser denoted as #7. It has been observed in §d.1 that 82 —
0 weakly in L*(Q) for some 6. It would be interesting to see whether the
convergence of the optimal controls can be improved, i.e., 82 — §* strongly

in L3Q).

(5.3.2)

Open Problem 3. It would be interesting to study the asymptotic be-
haviour of the system where the cost functional is defined as,

1 E o
J(0) = 3 / B.NG. Vu.dr + Ei;ﬂ,!iﬂ, forfl e U (5.3.3)
= J10

where the state u, = u.(f) is the weak solution in Hi () of the boundary
vitlue problem (5.3.2) and 7 is an arbitrary admissible control set in LA,
A study of the above system even for special cases of U is worth the time
spent. In fact, even the case where U is the positive cone in L3() is still
open. Some frivial cases of 7 has been considered in £3.2.

95
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Open Problem 4. Prove the equivalent of Theorem 3.3.3 when the Dirichlet
boundary condition in (3.3.3) is replaced with Neumann condition.

Open Problem 5. The asymptotic behaviour of the system with cost func-

tional given as,

. 1 ;
Jo0) = 5lluclz0 + 510l50, foroev (5.3.4)

B im

where the state u, = u.(f) is the weak solution in H3(8) of (5.3.2) and the
admissible control set U is the positive cone in L*(£2) is settled in §3.5 (ef,
Theorem 3.5.1). Tt would be interesting to study the system (5.3.2)-(5.3.4)
for an arbitrary admissible control set.

Open Problem 6. In the case of perforated domains. it would be interestin o
to study the asymptotic behaviour of the system where the cost functional
18 defined as,

1
J(f.) == / B.Vu, Vu, dr +
0,

: N6cl5n,, foré. e U.c L¥Q.) (5.3.5)

where the state u, = u.(6.) € V. is the weak solution of

—div(d Vi) =f+0, inf,
ANu.mn, =0 on a5, {5.3.6)
H =l on A

(where n. is the unit outward normal on d5.). Even the system with other
cost functionals as considered in Chapter 4 for the pesitive cone case are
OpEr.

Open Problem 7. The above problem has Neumann boundary condition
on the body of the holes. It would be interesting to study the case of Dirichlet
boundary conditions on the holes. Study the asymptotic behaviour of the
system where the cost functional is defined as,

1

v i |
J(6) =3 f BoVu Vuedz + (0.3, forf. € U, c LXQ.) (5.3.7)
q Fa

where the state u. = u.(6,) € H}(£).) is the weak solution of

(5.3.8)

—div(A. Vi) =f+6, infQL
Ue 0 on dfl,.
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Note that the cost of the contral here is fixed, The periodic case of this
problem with fixed coefficients has been studied in Raj00l. One is also
interested in the low cost version of the ahove problemn,

Open Problem 8. Let U, = {# = L% | [Vu(@)] £ 1ae } be the
admissible control set in L*(), where the state u:[#) = u. is the weak
solution in Hy(Q) of the equation (5.3.2). It would be interesting to study
the asymptotic behaviour of the state constraint problems (5.3.3) & (5.3.2)
and the svstem

1 hY |
L(8) == | B.Vu.Vu.dz+ 2|02, foroel (5.3.9)
2 /o g 1720

and {5.3.2) for both perforated and non-perforated domains, as done in §3,
with the above defined U, as the control set.
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