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Abstract

This thesis is devoted to the study of two issues. One is the mixing of the ultraviolet
and the infrared sectors in noncommutative Held theories and their interpretation
in terms of open-closed string duality in string theory. The other is the analysis
of localised closed string tachyvon condensation. A brief abstract of the studies is

written separately below.
e Noncommutativity in field and string theory

In the first part we study some aspects of noncommutativity in field and
string theory, Specifically we study the problem of UV/IR mixing that is one of
the most important and generic features of noncommutative held theories. As a
consequence of this coupling of the UV and IR sectors, the configuration of fields
at the zero momentum limir in these theories is a very singular confisuration. We
show that the renormalisation conditions set at a particular momentum confizura-
tion with a fixed number of zero momenta, renormalises the Green's functions for
any general momenta only when this configuration has same set of zero momenta.
Therefore anly when renormalisation conditions are set at a point where all the
external momenta are nonzero, the quantum theory is renormalisable for all values
of nonzero momentwm. This arises as a result of different scaling behaviours of
Green’s functions with respect to the UV cutoff (A) for configurations containing
different set of zero momenta. We study this in the noncommutative ¢! theory and
analyse similar results for the Gross-Neveu model at one loop level. We next show
this general feature using Wilsonian Renormalisation Group equations of Polchinski

in the globally O(N) syvmmetric scalar theory and prove the renormalisability of the

iv




theory to all orders with an infrared cutotf. In the context of spontaneous symmetry
breaking in noncommutative scalar theory, it is essential to note the different scaling
behaviours of Green’s functions with vespect to A for different set of zero momenta
configurations. We show that in the broken phase of the theory the Ward identities
are satisfied to all orders only when one keeps an infrared regulator by shifting to a
noneonstant Vacuwiin.

The mixing of UV and TR sectors has a natural interpretation in string
theory from the point of view of open-closed string duality. With this motivation we
study closed string exchanges in background B-field. By analysing the two point one
loap amplitude in bosonic string theory, we show that tree-level exchange of lowest
lying, tachyonic and massless closed string modes, have TR singularities similar to
those of the nonplanar sector in noncommutative gauge theories, We further isolate
the contributions from each of the massless modes. We interpret these results as the
manifestation of open-closed string duality, where the TR behaviour of the boundary
noncommutative gauge theory is reconstructed from the bulk theory of closed strings.

Next using the same setup we study the phenomenon for noncommutative
N = 2 gauge theory realised on a Ds fractional brane localised at the fixed point of
C?/Z,. The IR singularities from the massless closed string exchanges are exactly
equal to those coming {rom one-loop gange theory, This is as a result of cancellation

of all contributions [rom the massive modes.
¢ Localised closed string tachyon condensation

In the second part we study localised closed string tachyon condensation.
We analyse the condensation of closed string tachyons on the C/Zy orbifold. We
construct the potential for the tachyons upto the quartic interaction term in the
large N limit. In this limit there are near marginal tachyons. The quartic coupling
for these tachyons is caleulated by subtracting from the string theory amplitude for
the tachyons, the contributions [rom the massless exchanges, computed from the
effective field theory, We argue that higher point interaction terms are are also of
the same order in 1/N as the guartic term and are necessary for existence of the

minimum of the tachyon potential that is consistent with earlier analysis.
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Chapter 1

Introduction

Unification of all the four known forces has been the central theme of research in
theoretical physics in the past century., String theory, that was developed in order
to explain phenomena including strong interactions spon turned out to be one of
the most interesting candidates for this goal [1, 2]. In its initial formulation, it is a
theory of first quantised relativistic one dimensional strings whose length is of the
order of Plank length, 107" em. Depending on whether the end points are identified
or not, we get closed or open strings respectively. In this picture the elementary
states are the various vibrational modes of the string. We will discuss some of the

important features of string theory below.

1. Gravity : All closed string theories contain gravity, a spin two massless field.
This has thus become a promising area for the quest for a quantum formulation
of gravity that Lad turned out to be conceptually as well as technically diflicult

to formulate.

&

Gauwge Groups ; One of the most important lessons learnt from the original
days of Cuantin Field Theories is the notion of scales at which observations
are made. An effective model may work perfectly well about given scale though
it may lack the essential features of being a fundamental theory of nature,
Deviations in experimental results from the theoretical predications of these

effective theories point towards the existence of a theory encompassing a larger
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domain of scales. The existing model for elementary particles, the Standarnd
Model includes the electromagnetic, strong and weak interactions in an unified
gauge theory with gauge group SU(3) x SU(2) x U(1) with couplings to chiral
termions. This model has been extremely successful and predicts results with
high degree of accuracy upto 100 Gev (107" em). This is however low energy
as compared to the Plank scale where one must include pravitational inter-
actions and is thus believed to be an effective theory that may be embedded
in a larger theory. String theory has surprised us many times with its riches
of physical and mathematical structures and has offered much more than one
expects. Gauge groups containing SU(3) x SU(2) x U(1) as a subgroup have
been found in various setups with chiral gauge couplings. Recently the effort
18 on to pin down the Standard Model like (realistic) gauge groups in the low

energy limits of this theory that are ordinary Quantum Field Theories.

Extra Dimensions : A consistent string theory can only be realised in a space-
time of dimension equal to tew. This is however not a problem as six of the
extra dimensions can be compactified so that at low energies or at large lengih
scales the space-time looks effectively four dimensional. The main point is that
there exists a large munber of possible compactifications and for each of these
choices we get a different effective theory in four dimensions. The existing
physical theory, the Standard Model at low energies serves as a guideline for

selecting these compactifications,

Supersymmetry : All consistent string theories require supersymmetry. It is
believed that at lower scales supersymmetry will be broken, though the exact
mechanism is not known vet, In the effort to make contact with realistic
theories, the primary aim is to embed the Standard Model into a Minimal
Supersymmetric Model ie AN = 1| in four dimensions. The earliest maodel
that gave N = 1 supersymmetry is the Heterotic string compactified on a

Clalabi-Yau manifold.
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Closed String

. "

Urpen String

(A)

Figure 1.1: (A} Closed and open strings (B) Open strings ending on a Do-brane, N

and D are the Neumann and Dirichlet directions respectively,

5. Finiteness 1 One of the generic features that plagued Quantum field theo-
ries is the appearance of ultraviolet divergences when integrating over very
high momentum modes in the loops. The theories are classified as renormal-
wable or non-renormalisable depending on whether they have finite or infinite
number of diverging couplings, For the former case there exists a well de-
fined renormalisation procedure that lays down the rules as to how to remove
the infinities in a systematic way, However no such procedure exists for the
non-renormalisable theories and are thus only well defined upto some finite
momentum. Unfortunately perturbative gravity was soon discovered to be
non-renormalisable. String theory on the other hand gives finite result. This
15 primarily due to the fact that the point interactions in quantum field the-
ory is replaced by interactions smeared over a region because of the extended

nature of the string.

The discovery of other extended hypersurfaces, Dirichlet branes or [-
branes has accelerated progress [3] in various directions, At the end point of apen
strings one can imposc either Newmann or Dirichlet boundary conditions. D-branes
may be thought of as extended hypersurfaces on which the open strings end cor-
responding to Dirichlet conditions along the directions transverse to the brane and

Neumann conditions along the brane (Figure 1.1). The low energy dynamics of
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D-branes can be described by the low energy dynamics of open strings that is a
gauge theary that lives on the world-volume of the brane., D-branes have another
description from the closed strings. They are solitonie solutions of low energy closed
string theory that is supergravity.

The merit of D-branes was uncovered in the study of dualities in string
theory [4]. Perturbatively, string theory was known to have five consistent formu-
lations, namely Type ILA, Type A, Type I 50(32), Heterotic 50O(32), Heterotic
Ey % Eg. In one of the revolutionary steps in String theory, it was discovered that all
these theories are in fact related to each other and are part of a bigger theory. In this
picture, each of these five theories is defined as perturbative expansions about five
different points. See Figure 1.2, These dualities (except T-duality) are not visible in
the perturbative sector of these theories, however non-perturbative techniques using
D-branes have played a pivotal role in discovering these dualities. A more compli-
cated web of dualities is also conjectured to exist for the compactified theories that
give N = 1 space-time supersymmetry on non-compact four dimensional space-time.
We will now briefly state the varions components of the Figure 1.2 which contains

the minimum set of dualities connecting all the string theories.

o T Duality : Target space duality relates a theory compactified on a cirele (S')

of radius R to another theory compactified on a circle of radius 1/R. This

relates the Type ITA and TIB theories and also the two Heterotie theories.

o S5 Duality : This relates a strongly coupled theory to a weakly coupled theory
[5]. This duality maps the Type ITA theory to the 11-dimensional M-theory
compactified on a cirele (') and also the Heterotic Ej % By theory to M-theory
on an interval (1). The exact formulation of M-theory is not vet known, however
its low-energy limit is known to be given by supergravity in 11 dimensions [6],
Other examples are the self-duality of the Type IIB theory and the Type 1

and Heterotic SO{32) duality.

Recently a new form of duality that goes by the name of Gauge/Gravity

correspondence has triggered a lot of interest. This was originally conjectured by

]
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D=11 M Thtu::r*:rJ
S Dual }y “\]
Type | T‘irpt HetLrutm Heterotic | S Dual Type

D=10 [ 1B | ‘ X Ex SO(32 )

N s/ Nt s/

D=4 T Dual 1 Dhal

Figure 1.2: Dualities connecting the five consistent string theories

Maldacena [13] and relates a closed string theory to Gauge theory that is a field
theory. This duality is the manifestation of world-sheet open-closed string duality
in some special background. In the later chapters of this thesis we will study this
duality in a background constant B-field.

Some of the important characteristics of all the above string theories are

recollected in the following table,

f String Type | Supersymmetry | Gauge Group D,-branes
Type 1IA Closed | M=23 U(1) =
Oriented | Non-chiral 0,24, 8
Type I1IB Closed N=2 (1) B=
Oriented Chiral {—1),1,3.57,9
Type I | Open/Closed =] 50(32) e
Unoriented Chiral 1,5,9
Heteratic Closed N=1 50(32) -
50(32) Oriented Chiral
Heterotie | Closed N =1 Ey % E; =
Ey x Eg Oriented Chiral

Not inecluded in the list of theories above is the 26-dimensional Bosonic
Theory and a pair of 10-dimensional Type 0A and OB theories, These theories are
non-supersymmetric and do not contain fermions. There are tachyons in both the

open and the closed string sectors. Tachvons are particles with negative mass®
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and their presence signals a wrong choice of ground state. It is believed that there
exists stable ground states where the these theories will be free from tachyons and
quite likely will eventnally include fermions. Uniqueness of string theory requires
these ground states to be that of one of the five consistent theories discussed above.
However it has not been possible to show this rigorously vet. Tachyons also appear
in varions compactifications of the five theories listed in the table. We will study one
of these models. A more detailed introduction to this problem is given in Section 1.2

Till now we have not mentioned anything about the backgrounds in which
string propagation is possible. It is believed that string theory would ultimately be

formulated in a background independent way and that background will be an emer-

gent phenomenon. However severe comstraints on the backgrounds can be readily
| secn even from perturbative string theory, Let us consider the action for the bosonic
| string in the presence of the background massless modes, the graviton (G, ). dilaton

(@) and the antisymmetric two form B,,,-field,

- i 1 : !
5= / gtl* [[Q”'I'Gw,(ﬁ'] + E‘EubB“uL‘fJ}l X XY + o Hfb{}f}] (1.1)
M

4’

From the two-dimensional world-sheet point of view the background fields
are couplings when the fields are expanded about some constant values. For a
consistent string theory the action (1.1) must be Weyl-invariant. This requires the

beta funetions corresponding to the background fields to vanish. This constraint

gives the space-time equations of motion for fields. Any solution to these equations
would define a consistent background for string dynamics. For example the the heta
function for the metric gives Einstein’s equation and any background metric must
satisfy this equation. Thus the background space-time geometry must always be
defined by Riemannian geometry. Various studies of string dynamics in nontrivial
backgrounds have followed since the early days, Open string dynamies in a constant
B-field background has recently been studied and it was found that in a certain
limit one finds that the space-time on the world-volume of the D-brane is described
by Noncommutative geometry. The list of such interesting observations is enormous

cach of which adds to our better understanding of string theory.

B
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We will leave this very brief general introduction at this point and move

on to the topics that would be studied in detail in the following chapters in this

thesis.

1.1 Part I : Noncommutativity in field and string

theory

When an antisymumetric two forin coustant field (B,) is turned on in the back-
ground, the world-volume theory on the brane is deseribed by a noncommutative

. gauge theory [7, 8,9, 10]. Quantum field theories on noncommutative space times
- have independently been studied for a long time with a hope to cure the ultravi-
| olet divergence problem in QFT that arise in the continuum limit. The rationale
| for this being that discreteness of space time is inherent in any quantum formula-
| tion of gravity and that noncommutative space-time is one of the ways fo achieve
this. Studies have shown that QFTs on noncommutative backgrounds often lead
to noulocality and violate the conventional notions of local quantum field theories.
Various aspects of these theories have been studied extensively over the past few
years [11]. One of the well known generic features of these theories is the mizing of
the ultraviolet (UV) and the infrared (IR) sectors contrary to the ordinary QFTs
where they decouple [12]. Within the domain of QFT it is thus important to see
how the usual notions of Wilsenian Renormalisation Group fits into these models.
A thorough analysis shows that an [R cutoff is necessary for the Wilsonian RG to
make sense here, and with the IR cutoff usnal renormalisation can be done, However
the embedding of these theories in string theories have lead to better understanding
of the nonloeal properties. In string theory, the ultraviolet region of open strings
can be mapped fo the infrared region of closed strings by open-closed string duality.
As discussed dualities have played a vital role in the understanding of

string theory. One of this is the open-closed string duality. Geometrically an open
string one loop diagram, that is a cylinder, is a closed string tree-level diagram.

- The eylinder diagram can thus be interpreted as open string modes propagating in

Y
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the loop or tree-level propagation of closed string modes. This observation is as ald
as the initial formulation of string theory. The map is nontrivial in the sense that
we' hiave an infinite number of modes on either side. The low energy limit of the
open string that is governed by gauge theory, corresponds to the high energy limit
of closed strings where all the massive closed string states are excited, This duality
is also reflected in the deseription of D-branes as solitonic solutions of SUpergravily
theory. The guantum dynamics of D-branes can be deseribed by gauge theories or
supergravity solutions. These descriptions are valid for the low energy regime of
the open or the closed string respectively. There are certain backgrounds where
the low energy description is valid simultaneously at both the ends. This is the
AdS/CFT correspondence conjectured by Maldacena, The duality in its weakest
form is between D = 4, N' =4 SU(N) superconformal (finite) Yang Mill's theory
with sixteen supercharges and Type 1IB supergravity on AdSs; x 5% [13]. Efforts
have been made to extend this duality to more realistic gauge theories with less
supersymmetries aud that ave nonconformal. Since these theories are not expected
to be finite, from the point of view of noncommutative gauge theories, it is interesting
to study UV/IR mixing here. The UV behaviour of the world-volume gange theory
on the brane can then be mapped as infrared effect due to tree-level exchanges of
closed string massless modes. We have analysed this aspect for the bosonic theory
first and then for the type IIB theory with the gauge theory on a fractional brane
localised on C*/Z. orbifold. In the second case, the orhifold breaks half of the
supersymmetries and we have N7 = 2 gauge theory on the brane. For a fractional
brane this theory is nonconformal, The bosonic model requires an infinite number
of closed string modes for the dual deseription of the ultraviolet limit of the gauge
theory. However for Type IT strings ou the C*/Z, it is known that the one loop
open string amplitude with only the massless modes propagating in the loop, can
be reproduced by the tree-level exchange of massless closed string modes [14, 15],
This is due to the cancellation of all contributions from the massive modes, that is
very specific to this model. Thus iu the noncommutative theory one has a natural

interpretation of the IR divergences that arise out of integrating high momentum

-
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modes as IR effect due to closed string modes. These aspects have been explored in

Chapter 3.

1.2 Part II : Closed string tachyon condensation

The presence of tachyons in the spectrinm signals instability of the vacunm. This
instability is a sign of wrong choice of the ground state. It is therefore natural to
ask what the stable ground state is or in other words what is the end point of the
tachyon condensation process. In the bosonic theory there are tachyons in both the
open and closed string sectors. In the supersymmetric Type 11 theory, the tachyon
in the NS sector is removed by GSO projection, that is needed to make the partition
function modular invariant, However open string tachyons occur in brane-antibrane
systems and on non-BPS D-branes in Type 11 theories, For the open strings the
condensation process is now very well understood mainly due to the work of Sen.
See [16] for review and references therein, From the point of view of quantum field
theory the object one needs to prove the existence of a stable ground state is the
potential V' (T'), where T is the tachyon field. The problem then boils down to the
construction of V(T') and finding its minimum. However the computation of the
potential from string theory is difficult since conformal invariance constrains the
amplitudes to have external particles on-shell. The zero momentun continuation of
amplitudes with external massive and tachyonic particles turns out to be ambiguous.
This is the reason, for which an off-shell formulation is a necessity. The following
are the conjectures due to Sen regarding the tachyon potential and the endpoint of

the condensation process [17, 18].

L. There exists minima for the tachyon potential V{T'). The shape of the poten-
tial is a double well with minima at T = 4T}, for non-BPS branes, where the
tachyon field is real. For the brane-antibrane system one has complex tachyon

and hence the minima are parametrised by, a, so that T, = Tpe',

2. The height of the potential is equal to the tension of the D-brane system.
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3. The end point of open string tachvon condensation is a closed string vacum

with no open strings in its excited spectrum and no D-branes.

These conjectures have been verified to a high accuracy using various
techniques including the off-shell formulation, open string field theory. The situation
is however much more different in the case for the closed string tachyons. While
the open string tachyon lives on the world volume of the D-brane and affects the
D-branes as the condensation progresses, the closed string tachyon on the other
hand couples to the graviton and the dilaton in the bulk, The condensation of the
closed string tachyen is thus believed to be accompanied by drastic modifications
of background space-time, Mareover in the absence of an off-shell formulation for
closed string theory, the construction of of tachyon potential has also remained a
difficult problem. However in the recent years some progress has been made in the
study of localised tachyon condensation. The bosonic theory has a closed string
tachyon in its spectrum, but it resides in the bulk of the 26 dimensional space time
and this makes the study of this condensation even more intractable. One can
follow the condensation process in a controlled way if the effects of condensation are
localised.

Type Il theories on noncompact orbifolds, C? /2y usually contains tachyons
in its spectrum. The presence of tachyons indicate that supersymmetry is completely
broken. The localised tachvons lie in the twisted sectors of the closed string spec-
trum and reside at the fixed point on the orbifold plane. Condensation of these
localised tachyons has been first studied in [19]. In this paper the authors, Adams,
Polehinski and Silverstein have collected evidences using D-brane probe technigues

in support of their following conjecture,

e The condensation of localised closed string tachyons removes the singularity at
the orbifold fixed point and is replaced by a smooth surface. The endpoint of
localised closed string tachyon condensation is supersymmetric Type IT theory

on flat space.
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Various works have followed using other methods in the analysis of this
problem. Same of these works and techniques are reviewed in [21, 22]. The simplest
of these orbifold models is the C'/Zy. Tn this case the mass of the lowest lying
tachyons in the k-th twisted sector is given by, M? = —% {l ~ —if;] It was further

conjectured by Dabholkar [20],

e The height of the potential for the C'/Zy orbifold, where the minimum of the

potential is flat space, is proportional to the deficit angle of the orbifold that

is ghiven by,

A 20 (]—%) (1.2)

One can notice that in the (N — k)-th twisted sector the mass vanishes
as N — oo, In this limit one can therefore construet a potential V(|#|?) for the
tachyon and analyse the problem in the light of the above conjectures. We have

studied this in chapter 4.

1.3 Organisation of this thesis

This thesis is divided into two parts. Part T of this thesis includes studies of non-
commutativity in field and string theory. This is addressed in Chapters 2 and 3.
In Chapter 2 we study the renormalisation of noncommutative field theories and
extend it to all loops for the scalar A¢" theory with global O(N) symmetry using
the Wilsonian Renormalisation Group equations as recast by Polchinski. In Chap-
ter 3 we study the problem of UV /IR mixing in noncommutative field theories from
the point of view of string theory. In Part II of this thesis we study condensation
of localised closed string tachyons. Specifically we study closed string tachyons on
C/Zy orbifold in the N — oo limit in Chapter 4. We summarise the results of this

| thesis in Chapter 5.

] s
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Chapter 2

Renormalisation in

Noncommutative field theory

Noncommutative space-times and feld theories defined on them have been studied
extengively for the past few years mainlv motivated from string theory [1, 2, 3].
Apart from this fact that these theories arise as low energy limits of string theory in
a constant By, background, their study as field theories in their own right is quite
fascinating . For reviews on the subject see [4, 5, 6], In this chapter we will consider

noncommutative [ as the background space defined by,

:X‘. X7 =% (2.1)

Where, #7 is a constant antisymmetric matrix and # = 1/B. B is the
antisymmetric two form closed string field that is turned on in the background
in which the open strings propagate. Let us now see how to construct quantum
field theories on these (2.1) noncommutative spaces. The objects one uses to study
quantiun feld theories are Green's functions. In noncommutative quantum field
theory these functions are calenlated by the use of operator symbols. An operator
symbol as it is defined in ordinary Quanturm Mechanies, is a function on the phase
space which is constructed with a definite rule from a given operator. Different rules

for construction produce different symbols. Sets of such functions with a produet

16
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defined on them called the #-product, form algebras which are isomorphic to the
initial operator algebra. Let us see how this =-product is to be defined.
We are interested in the transition,

B[ X)) — () (2.2)

where g (x) is the operator (Weyl} symbol. The feld theories would be canstructed

using these, This transition is defined as

& ]. i O Tl i
HX) = [qT_—]wx_: f“r“k*?m)l (k) (2.3)
where,
i l 7L T
o () = (2m)ni2 d"xe™ " () (2.4)

Equations (2.3,2.4) define the map from funetions ¢(X) in the operator

algebra, to those of classical functions ¢y (). The product of two operators is,

Gi(X)oa(X) = {;r:,,; /Irf'kcf’pf’*"“"r”’f-""'tc.r-"a"w}l{m{&'wmm (2.5)
= {E:r}“ / d" e pett ‘F"}X'J’%M'w“{51&']1(5?}(%1?}2{33’}

= 2% (G )i (@) dwa(z) |y =2=2 (2.6)

= (ow)ilz) = (dw)alx) (2.7)

Where we have used, ele? = eA*B-2l48] A Lograngian defined on

noncommutative space-time can be mapped to that on commutative space-time

‘with all products replaced by s-products. Thus,

LISX)] — Lldw(x). ] (2.8)

The partition functional for the noncommutative field theory is then

defmed by,

AR f Debwy exp (—S[dw, J, #]) (2.9)
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Quantum field theories on noncommutative space-times can thus be con-
structed by replacing the usual product of fields by the s-product. The algebra of
functions on noncommutative R can be viewed as the algebra of ordinary functions
on the usual £* with a deformed #-product. The noncommutativity of space-times
i thus transfered to the noncommutativity of the product of fields and then we can
apply the usual perturbative expansions of the correlation functions, Note that the
non-polynomial nature of the interactions make the theories highly nonlocal. Such
deformation oceur in string theory when describing the world-volume theory on a
D-brane in background B-field. We will review this in Section 2.1,

Various interesting aspects of these theories have been studied rigorously
recently [7]-[32]. The most important of these being the intrigning mixing of UV
and IR divergences which is a direct consequence of the noncommutativity of the
background space-time. Perturbative studies of these field theories carried out ex-
tensively revealed various nontrivial aspects arising from this transmutation of UV
into IR divergences, One of the most important being the alteration of the conven-
tional Wilsonian picture of Renormalisation group flows in the very low momentum
domain. The UV renormalisability of these theories has been argued [8] and in some
cases explicitly shown upto two loaps [20]. The A¢* theory has been shown to be
renormalisable as long as the external momenta, p for the n-point functions are such
that A%pop > 1 [18], where A is the UV cutoff and pop is defined in (2.29). However
given that we are only interested in the continuum limit, A — oo, the inequality is
not satisfied only when p is restricted to the zero momentum value.

The possibility that these theories would ultimately be defined with an
infrared cutoff still exists. Tt was shown [17] that phase transitions if possible can
only oceur at a finite momentum leading to a non-homogeneous phase. This conld
be a cure for the infrared problem.

Normally in commutative field theories the Renormalisation conditions
required to absorb the infinities in the Green's functions of a particular configuration
of fields, with momenta around some scale, leads to the infinities being absorbed from

the Green’s functions at all scales 1.e. the functional dependence of the divergent n-
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point functions on the UV cutoff Ap is same at all values of external momenta. On the
other hand, in noncommutative theories, due to coupling of the UV and IR sectors,
the zero momentum limit of a particular configuration of fields is singular. We
show that Green's functions scale with different coefficients of A for configurations
which differ by the number of zero external momenta [16]. If the Renormalisation
conditions are set at a point where all the external momenta are nonzero, then Lhe
bare couplings defined through this would have a different Ay dependence from the
case when the Henormalisation point consists of a number of zero momenta, This
shows that with the former Renormalisation condition, the theory for all values
of external momenta, p # 0 is renormalisable, while the latter leads to a non-
renormalisable theory. We discuss this issue in the noncommutative ¢ theory as
well as in the Gross-Neveu model as shown in [11].

We next study the renormalisability of the globally O(N) symmetric
noncommutative scalar theory in its symmetric and its broken phases to all orders.
First we review the same for the commutative case in the Renormalisation group
approach [33][34]. The noncommutative theory is then proved to be renormalisable
to all orders with an infrared cutoff, Keeping in mind the observations stated in
the previous paragraph, we separate the sector with external momenta such that
Mpop > 1 from that of Apop < 1. In the latter case, the continuum limit restricts
ponly to zero. We will concentrate on the first sector and work with an Infrared
Cutoff. Because of the presence of the infrared cutoff for the external momenta,
we shall also formally introduce an IR eutoff for the internal loop momenta (A;g).
However we shall see that the in the loop computations the IR cutoff for the internal
momenta is not necessary as there are no 1R divergences in the loop integrals in this
RG approach. [R divergences appear in the continuum limit as the zero momentum
field configuration is approached from a nonzero momentum field configuration. Of
course with an IR cutoff in the external momenta, p such that, A%pop > 1, there are
no IR divergences in the theory. However [R divergences do appear in perturbation
theory. This is illustrated by an example of a 2-point diagram computation.

It may seem that (A;p) may be needed, so that the the canonical scaling
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of the relevant and irrelevant operators are not affected by the UV/IR transmutation.
However this is not the case. This point will be clarified in Section 2.4,

We then demonstrate how the different sealing behaviours of the Green’s
functions for configurations having different set of zero momenta plays a crucial role
when proving the renormalisability of the spontancously broken phase. It was shown
in [15] that the renormalisability of the broken symmetric phase to one loop could
be proved by shifting to a phase where the vacuum was a non constant background
field, This non constant vacuum acts as an infrared regulator,

This chapter is organised as follows. In Section 2.1, we review the bosonic
string dynamics in background B-field and the appearance of noncommutative gauge
theory as the low energy description of D-branes. In Section 2.2 we study the non-
commutative ¢! theory and show that the UV cutoff (A) dependence of the bare
couplings are different depending on whether we set the Renormalisation conditions
at p = 0 or p # 0. In Section 2.3 we analyse some more results for the noncom-
mutative Gross-Neveu model along the same line as Section 2.2. In Section 2.4
we study Spontancous Symmetry Breaking in noncommutative scalar theory with
global O(N) symuetry in its symumetric phase. We first review the one loop results
from [12, 15]. Next we prove the renormalisability of the symmetric phase of the
globally O(N) svinmetric noncommutative scalar theory to all orders, after review-
ing the same for the commutative case. For the broken phase we demonstrate that,
by going to a phase which is translationally non invariant i.e. by keeping the shift
v as a non constant background field one is able to work with a infrared regnlator
so that the problem of different sealing behaviours of Green’s functions for nonzero
external momenta from that of the zero momentum case does not arise. With this
infrared regulator we prove the renormalisability of the broken phase of the theory

to all orders. We give our conchisions in Section 2.5.
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2.1 Strings in Background B-Field and Noncom-
mutative Field Theory

In this section we give a short review of open string dynamics in the presence of
constant background [G-field leading to noncommutative field theory on the world

volume of a D-brane [3]. In the presence of a constant background B-field, the world

sheet action is given by,

1

dwer’

Sy / lgarn 0 XMP XY — 2mi0 Byne®d, X M3, X"] (2.10)
£

Consider a L2, brane extending in the directions 1 to p, such that, By # 0 only
for M,N < p+1and Byy =0for M < p+ 1, N > p. The equation of motion

gives the following boundary condition,

_(j,;q,;,-\rf'},,.r\*"f + '_Eﬁilil'lI B.”.\;fﬂt:‘i—x |,'_,l'_|-; =) [21 1 1,|

The world sheet propagator on the boundary of a disc satisfying this

boundary condition is given by,

Gly.y) = —a G n(y — y' ) + s0MVe(y — y/) (2.12)

where, e(Ay) is 1 for Ay > 0 and —1 for Ay < 0. Guyu, Oy n are given by,

GMN _ ! b ] e
g+ 2ma’'B g —2ra’ B

Gun = aqux — (2ma ) (Bg™'B)yn

. MN
PN = _(27a’)? 2 B 1 (2.13)
g+2ra’'B g-2wa' B

The relations above define the open string metric G in terms of the closed
string metric g and . This difference in the two metrics as seen by the open strings

on the brane and the closed strings in the bulk plays an important role in the
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b
(R

discussions in the next chapter. We next turn to to the low energy limit, a — 0. A

nontrivial low energy theory results from the following scaling.

r fE

a ~e? =0 gy~e—0 (2.14)

where, 1, j are the directions along the brane. This is the Seiberg-Witten
(SW) limit that gives rise to noncommutative field theory on the brane. The rela-

tions in equ{2.13), to the leading orders, in this limit reduce to,

) 1 ~ '
67 = ~alte®)? i Gy = ~(2xa By B),

G (é)” (2.15)

for directions along the D, brane. Gy = gaa and 6 = 0 otherwise. It

was shown that the tree-level action for the low energy effective field theory on the
brane has the following form,

1 ' ' - F|
Sy = — yz— VGG G" Te(Fia = Fiep) (2.16)
Y M -

whete the s-product is defined by,

fwglz) =" %% f(y)g(2) |ymems (2.17)

and f’h is the noncommmtative field strength, which is related to the ardinary field

gth, Fi; by the Seiberg-Witten map,

Fy = Fy + 09(Fu Ry, — A,9,Fy) + O(F?) (2.18)

FH = 6;;,4; = a;.r'h; — L‘if; * .-‘ig + L‘i; ® .‘i.;; (2.19)
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This form of the tree-level action is derived from the n-point tree-level
open string correlators with gauge field vertices and then keeping the surviving
terms in the low energy limit (2.14). The vertex is given by (3.5) and the boundary
propagator is (2.12).

The coupling of the UV and the IR regimes, manifested in the nonplanar
Bector, is a very important and generic feature of these theories [8]. To see this,
let us consider a noncommutative scalar (A¢') theory in four dimensions. The
noncommutative theory is written with all the products of fields replaced by =-

products. The nonplanar one-loop two-point amplitude has the following form,

2 g 2 2 Alys .
Cnplp) ~ Ay —mIn (;3—) (2.20)
where, A is the UV entoff and ;‘L;f” is defined in (2.29) (see eqn 2.28). The amplitude
is finite in the UV but is IR divergent. though we had a massive theory to start witl,
Note that 7 plays the role of 1/A% in the continuum limit. It was suggested [8] that

these TR divergent terms could arise by integrating out massless modes at high

energies. The effective uction containing the two point function can be written as,

§ = S(A)+ /rf"y [é;‘huﬁh + %-1'“' (dody ) + *'%M-L‘* (2.21)

S(A) is the effective action for the cutoff field theory and y is a massloss
field. Integrating our y gives the quadratic piece in the effective action of the original
theory in the continuum limit. It was further noted that both the quadratic and
the log teris of eqn(2.20) can be recovered through massless tree-level exchanges if
these modes are allowed to propagate in 0 and 2 extra dimensions transverse to the
brane respectively [8]. This is quite like the open string one loop divergence which
is reinterpreted as IR divergence coming from massless closed string exchange,

A similar structure arises for the nonplanar two point function for the

gauge bhoson in noncommutative gauge theories,

M9 (p) ~ N [GYGH — g™ ! pepy In(p252) + | rg%;ﬁ (2.22)




Chapter 2. Renormalisation in Noncommutative field theory 24

Ny and N, depends on the matter content of the theory. For some early works on

noncomimnutative gauge theories see [12]. The effective action with the two point
function (2.22

J is not gauge invariant. To write down a gauge invariant effective

-action one needs to introduce open Wilson lines [13]

Wetw)= [ aizpvess (19 [ ot e ) R (2.23)

.

'The curve C' is parametrised by y'(a). where 0 < ¢ < 1 such that, y'(1)—y*(0) = 5.
Correlators of Wilson lineg in noncommutative gauge theories have been studied by
various authors [14]. The terms in (2.22) are the leading terms in the expansion of
the two point function for the open Wilson line. A crucial point to be noted is that
for supersymmetric theories. N, the coefficient of the second term, which is allowed
by the noncommutative gauge invariance vanishes [15]. Also see [16] for an elaborate
discussion. An observation on the arising of tachyon in the closed string theory in
the bulk and the non vanishing of N, with a negative sign was made in [20]. Thus
when the closed string theory is unstable due to the presence of tachyons, the two
point function in nonconinutative gauge theory also diverges with a negative sign
for low momenta, Various attempts have been made, along the lines as discussed
above, to recover the nonplanar IR divergent terms from tree-level closed string

exchanges. We shall address and try to resolve this issue in the next chapter.

2.2 UV/IR mixing and UV renormalisability

After the Lrief review of noncomunutative field theory from the point of view of string
theory we now return to the issue of renormalisability of these theories purely from
the point of view of field theory. Iu this section we show that the one loop Green's
functions defines two different Renormalisation conditions depending on whether
we set p = 0 right in the beginning or approach this limit with a nonsingular,
p# 0 configuration. We study the noncommutative ¢* theory to show this. For an

oduction to nonconmutative scalar theory see [8].

The Lagrangian for the theory is,
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1 ] 1 v I A
Le=~[5(0,0)" + 3m'e" + Jos 04 0u g (224

where,

L o 52 ;
@ = oy = pi P --gl{y}ﬁ;ﬂ?,]]y:u (2.25)

and ¢ is an antisvmunetric matrix. The propagator for the theory, is
same as that of the commurtative theory. Only the interaction term has a nontrivial

‘momentuin dependence. The interaction vertex is given by,

—2AV(p} = —2X[cos(py A pa) cos(ps A ps) +  cos(py A pa)eos(ps A py)
+ cos(py A py) cos(pa A ps)] (2.26)

The only divergent functions for the theory are the two point and the

four point functions, The dingrams corresponding to the one loop contributions to

these functions are shown in Figures 2.1 and 2,2,

Figure 2,1: One loop contribution to the two point function

2 _ i3 2 _ ¥ 2 + cos(p A k)
P=-p+m-} | o o

The cos term inside the integral regulates the second part of the integral

d is finite for p # 0.

(2.27)

M=lpt L mf—

B acu

Xiva a2 N
A*—m In(—) +0(1)]

872
A2
L—”—:‘ﬂj + 0(1)] (2.28)
m
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where,

p 1
Aplp) = ——
I L +pop
. Hi, B
pop = -.ELP {3'29]
4
A is the UV cutoff. We shall call terms containing A2, (p) as nonplanar
terms.
p“\ 28 4
i R N
\\ ,f/ >_\
® M /
r = x + it }h
_.rf ™ ! Vi
e \ M o
B i / \
i
P i

Figure 2.2: One loop contribution to the four peint function

o o f Ak Fpy.pe.ps.pap, k)
b= _9NV (b)) 4 232 { 1e P2 i
] Vip)+24 (2m)Y (K2 + m?)[(p — k)? + m?)

+ 5 and u channels(2.30)

where F'(py, pu.py, pa.po k) s a function of terms containing “cos™ of the external

mornenta,

b o 31 dik | ) .
I = —2AV(p) + 4A% ‘“}f{zwrt{k=+mﬁ][;p—k}?+m=*1 + NP (2.81)

where NP are the Nonplanar terms. These terms would give rise to IR divergences
‘the external momenta goes to zero. The UV divergent piece for this four point

amplitude is given by,

—Vipin(—) (2.32)

M
A7
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The two and the four point contributions to the effective action to one
loop is,

. 1 A A
TEgff = ;,,/dP#“'[P}ﬁ*{—!FJ[P +m* g ,,_‘L* - 2™ “In( —}+NP}

E /tfp!dpidpad;?qip-i' .\'P}@{p,}t:}{p_:}rﬂl',pi}cp{pﬂél[zp.} {233}

where, P is the planar term from the four point amplitude given by,

‘ﬁ‘_ (2.34)
The renormalised parameters may now be defined as,
2 2, A e TSy
my = m+ —,{A —m I:I(F}l}
J.*' A®
Ap = A- —:'n{— (2.35)
m=

As the zero momentum limit is approached, the NP terms in equation
(2.30) give rise to IR divergences, however the Renormalisation conditions in equa-
stion (2.35) lead to a UV renormalisable quantum theory at one loop.

Now let us consider the case where the effective action at the zero mo-

mentum field configuration is defined by [33],

e =

Vogg = Zir“{u 0,....0)a" (2.36)

n=1
We use this to define AMA). In this case at one loop level there are no
ponplanar diagrams and the potential 1o one loop is exactly equal to the commuta-
ive theory. The external momenta are all put to zero before all loop caleulations.

one loop the effective potential is given by,

i T soa N L gl 3Ap?

hff = 3!?:‘.-‘“4—;@1-!—5/ ml‘ﬂ{l-ﬁ—mj [23?}
_ 2.0, Ay 3\ A ‘3’-1* 4. 3A?
= —mo —1-]@ + o ,,{*‘L —-m" fn{ )]+ r,'H' I[ e ) (2.38)
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~where in the final expression we have dropped terms which have negative powers or
~are independent of A

The renormalised quantities would now be defined by,

av . .
d_.::’-‘l'-’:" = e (2.39)
%-FW = b6Ap | 2,40}
These lead to,
my = m’+ iiﬁ [A* — mIn { ﬁ}]
Ag = A= f’; In “"] (2.41)

From equations (2.35) and (2.41) it is clear that the Renormalisation

eonditions defined by equation (2.41) would not lead to a renormalisable noncom-
mutative theory for non zero external momenta. As noted before, the configuration
Jof fields with p = 0 is singnlar and the two different Renormalisation conditions
_{:2.35}, (2.41) oceur as u consequence of setting p = 0 right in the beginning or of
approaching this configuration as a limit p — 0. °

I'his 18 a generie feature of non-

Leommutative theories. The origin of this is the transmutation of UV divergences

into the IR divergences.

In terms of the Renormalisation group flows, equations (2.35), (2.41)
states that at the one loop level the relevant (relevant plus marginal) coupling A
seales with respect to A with different coefficients. This means that the functional
dependence of the bare coupling on the UV cutoff A are different in the two cases. We
Il see this in Section 2.4, where the relevant couplings would scale with different

eoefficients of A depending on whether or not the external momenta are such that
Npop << 1.
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2.3 The noncommutative Gross-Neveu model

In this section we review some of the results of the noncommutative Cross-Neveu
‘model [11] which are along the same line as those of the previous section.

The Lagrangian fur the noncommutative Gross-Neveu model is,

L e S
Lo = ~[0 0" + grb e v s 2 ) (2:42)

Where ¢ is a4 2-component spinor and +* are 2 x 2 Dirac matrices. To
evaluate the large N limit of the effective action it is helpful to introduce an auxiliary
field o, so that.

e S\
Ly = —[El,-'.*‘-l.-"dﬂu - Td‘r — 20 %y . ] (2.43)

Figure 2.3: Diagrams contributing to lowest order in 1/N

We now evaluate the effective action at the zero momentum field configu-
tion as defined by equation (2.36). The processes with only o field on the external
gs would contribute to the lowest order in & [36]. These diagrams contributing to

s lowest order are shown in Figure 2.3,

L k1 —i{r
Vgp = ~-oi- {}r]“u ()" (2.44)
8;"\ n Jﬂ\vﬂ'_ &
- = - ] (2.45)

The Renormalisation condition.
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—_— = 246G
L {'jﬂ-g |1T"=|‘!5 [ lh}

defines the renormalised coupling Ap as.

1 3 1A%

T O el
% b e (24D

_ We now write down the effective action for nonzero external momenta in
._I,%he large N limit, Only the two point function is divergent. To extract the Renor-
- malisation condition it is sufficient to evaluate the effective action with contributions

upto the two point function ouly.

1
Sepp = Efd?pﬂr[p}r""a[—p} (2.48)

where,

= =]

A

= NP (2.49)

[ BN Tf &k kp+ k)
(27 K3k +p)2

NF is the nonplanar term. The renormalised coupling will now he de-

l ed s,

1 1 1 A®
e e i e T 9
oA :iErrm{p? (2.50)

The Renormalisation condition, equation (2.50) gives a UV renormal-
isable quantum theory for any nonzero value of external momenta, similar to the
esults obtained in the previous section. If one defines the renormalised coupling as
gquation (2.47), the quantum theory at nonzero external momenta is non-renormalisable.
: @ two Renormalisation conditions correspond to two different bare theories as
rgued at the end of Section 2.2,

The ground state of the theory will be defined by a particular configu-

ation of fields. If it is defined with zero external momenta, we have noted tlat
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{his is a very singular feld conhiguration and Green's funetions in this configura-
tion has a different A dependence from the nonzero momenta field configurations.
f the Renormalisation conditions are set at zero momentum the theory is non-
renormalisable,  In the next section we shall see how this plays a crucial role in

deciding the renormalisability of the Broken Phase in a spontaneously broken global
symmetric theorv.

2.4 Spontaneous Symmetry Breaking in
Non-commutative scalar theory

In the previous two scctions we have seen that due to the singular behaviour of the
IR limit in nonconunutative field theories, the Green's functions have different A
dependences for nonzero and zero momentum field configurations, In this section
'w'e show how this plays a crucial role when proving renormalisability of the broken
phase of a spontaneously broken globally O(N) symmetric theory. We first review
our one loop results [15] and then in the later part of this section we shall prove
following 13*1]. the renormalisability of the symmetric phase as long as the extornal
fmomenta p # O such that A%pop > 1. Formally with an IR cutoff in the external
momenta, one should also introduce an IR cutoff for the internal loop momenta
':_;‘Lm}. The presence of this IR entoff in the loop computations would be implicitly
assumed, This point s elaborated in Section 2.4.3. The relevant couplings for the
gero momentuin configuration of fields seale with different coefficients of the UV

outofl from the p # 0 configurations. If the Renormalisation conditions are set in

these two momentum regimes, the bare couplings will have different A dependences.

|
i
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2.4.1  One loop analysis

The Lagrangian for the theory is',

Loa jouw ¥ 8 s A
Ls = —[5(0:0") = e (¢') + 10 v o' w0 5 ]
ij = 1.2 (2.51)
Here g2 > 0, so that at the tree-level the theory undergoes SSB. The

_ obal O(2) symmetry of the quantum theory implies that the green’s functions

satisfy the following set of Ward identities in the symmetric phase,

0*T o

ﬁ_rbf]'-*'1='*==" N E1¢-1=m=n

8T o, T _
m|dlt:¢:ﬂ' o ml;;::m:u |: e }

' anel in the broken phase which is defined by shifting the fields, ¢, = o+v

and ¢y = .

& al
II—-—.

ﬁ'?r'_’ a=x=10) = $|d=t=lf

(2.63)

where the ¢ field has been shifted by a constant amount v which fixes
m vacumm for the broken phase.

The set of Ward wentities. equation (2.52), can be verified to one loop
15), showing that the quantum theory is symmetric. However care must be taken

in defining the broken phase so thar equation (2.53) holds.

INote that in the noncommutative theory, there are various possible inequivalent orderings of
the fields for the guartic term. One of these terms has been chosen as an example. The proof
of the renormalisability of the globally O(N) symmetric theary, in its symmetric as well as in its
roken phases. to all orders, outlined in the latter part of this section remains unaltered for any

such O(N) symmetric quartic term.
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If one naively shifts to a translationally invariant vacuum, the Ward
Adentity, equation (2.53) only helds when the order of the continnum and the IR
.'If'_l_irnjts is such that the IR divergences on the RHS of (2.53) are transmuted to UV
‘divergences i.e. the vacuum is defined with p = 0 before all loop calculations. It is
‘important to note Lere that shifting fields by a constant amount v at the tree-level
itself causes the a-tadpole amplitude to scale with respect to A in the same way as the
“second case in Section 2.2, where as the I'™™ amplitude has the same A dependence

‘when the external momenta are put to zero before all loop computations. This

‘makes the broken phase non-renormalisable with the same number of counter terms
‘a5 the symunetric phase. This point will be elaborated at the end of this section.
E_Hma.rever in order to define a UV renormalisable theory for all values of p we must
work with an infrared cutoff and remove the cutoff only after all loop computations
s the former case in Section 2.2. To do so one has to shift the felds by v which is
ot a constant. v may be set to a constant after all loop caleulations. This would
mean that the singular field configuration, defined as the vacuum, is approached as
8 limit. One can also leave v as a non-coustant leading to a translationally non-
invariant vacuun. This later case was studied in [17] where phase transitions when
i finite number of momentum modes condense is studied. In the present chapter a
hon-constant v acts as ml infrared regulator and help us to avoid problems as noted
arlier,

The Ward identity in the case where v is not a constant will now e

ritten ns,

f id'n ) AT _ar 1)
2y ﬁﬂ{p;‘bérfp}'"’““" . .-Ecr{p,}|"'="=" '

Explicit computations in this case shows that,
_I.\‘E
55 . A?

I =app” — A+ wa[—3MA® + Pln(

)) +HIR +F| +
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["'FH’ =

—p*+ut = Al 4+ [SBAAT + p:!n[_ﬂ—;}} +IR+ F|+
+ 1-ﬁ[§fﬂi$}+l’ﬁ+?‘] (2.56)
Where IR are the infrared divergent terms and F are the finite terms. It
can be seen that the UV divergence structure of the rwo amplitudes are exactly as
he Ward identity (2.53). The IR divergences appear when we go to a translationally

myariant vacuum i.e. v is set to a constant wy after all loop calculations.

4.2 Renormalisability to all orders : Review of The com-

mutative case

now consider the comnmtative globally symmetric O(N) scalar theory in its
metric phase and review its renormalisability to all orders following Polchinski
[34]. We discuss here the set up of the RG equations and merely state the results,

hich will be necessary for the later parts of this section. The reader may refer to

34] for more elaborate details and proofs.

R B
8(0) = | Gryil=59" 06 (=p)(" = w)K (D) + Lul@)

Lise(h) = /ffl-T[—%Pﬁrf‘"’{fJ}z = %I*g{iinm"[rl‘.lz = %;:-g{@{ﬂu(ﬂ[r}u]z] (2.57)

where, K{ J.:L;} has a value of 1 for p* < A? and vanishes rapidly at infinity,

pare the bare conplings defined at an UV cutoff scale Ay,

The generating functional for the theory with the cutoff, A may be writ-

41 52
208 = [Doesi [ Rl ~ e wen -k 2y

+ Jp)o*(—p)] + Line(9)] (2.58)
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dZ|.J A ! !
AR [ool [ Eh1 - Joweenet - oSl

:mf. { ﬂ:'] ]
dA

+  JU(p)e”( 1?}]+"s exp(5(¢))(2.59)

The RHS of equation (2.59) vanishes if L varies as,

gL _ 1 a2 oy, 0K
AR = = 5 [ et - ) A
aL dL &L

9or(—p) Br(p) | 3o (—p)OGA(p) (2.60)

L can now be expanded in terms of its Fourier modes. The global O(N)

symmetry of the quantum theory implies that we can arrange the expansion as

= 1
2'2—[1—[ H d'p, rflp @ (pi)o™ (py M L (py oo Pan, A ) {ZP. + p;) {2.61)

n=] =] y=n4]

Define the relevant operators as.

I"l{-"-} = _L‘?{Fu =1 h”.l'gsﬁﬁ {2.62]
2
plA) = = 33 2(p, '"-'""1”,,2:,,3 (2.63)
pa(A) = —Lalpropspapa A)| (2.64)
Now, canstruct V(A) such that,
. - dL(A) dL(A) ap! dpn(A)
YD = g o aph aphm;“‘“ dAg

(2.65)

ghere, a,b runs from 1 to 3. To prove that the theory is renormalisable or in

‘words to show that, for the low energy theory to be finite one has to tune a
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Expanding the following guantities similar to equation (2.61),

AL(A) Zeu,m) a0

Aoy (A oy dp(A)
1 14 Pn 24y, IL: ’*:“T dp
= YA [l i
=1 i
x Bh.ﬂn{ﬂl---p_’n-ﬁ}‘}. ZP: +FJ} [Eﬁﬁ}
£
el | B ’
V{ﬁ} = Z an! - 2-—}~r:—4 éuu}"]“?h I[*l‘ﬂ-f:]x
X Van(propan. S D_ pi+y) (2.67)
i
Now defining,
. 1 IK(L) .
‘Jﬂl. * = "n* A% 2. ¥
Qp. A yr) - BA (2.68)

one arrives at the RG equations for L, B, V, shown in the appendix,

'_"un.tlunﬂ (A2.1),(A2.3).{A2:5) where,

| £y s P2ns A) = ax |F {1y e P2 A)| (2.69)

g0 that,

I f on }4('.} P A L (py, oo pan=; po=pA) |l CAY || Lan(A) || (2.70)

where, ¢ and € are constants independent of A. Now define the following

I;'__,_mndit._iunﬂ for the couplings,

]
=]

pr(Ag, Ao. %)
P(Ar. Ao p”) = 0

pa(An.Ao.p®) = 6g (2.71)
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Note that because of the O(N) symmetry of the quantum theory it is sufficient to
8t boundary conditions as above. The irrelevant couplings are set to vanish at Ay

| turbative renormalisability now means that order by order in Ap the following

Jim L(é. Ag. Ag. o) = Lld. Ag. Mg, ) (2.72)

E(¢: Aps A Ao) = L(6, Ap, Ao, 1°(Ak;, A, Ao)) (2.73)

and specifically to rth order in Ag.

” Ltﬂ:}{hﬂu l"ll[] L rI{J"‘I.H o) H

"llq n 1- "b" H ﬁﬁ
A

A
= Or41-n<0 (2.74)

[ A

P n( }r+1-n:>u

(i) At order r in Ay,

l|'84s, J::"; AL (Pay s P2 A) [ “i’n{ } FEl—R 30

i

O,r+1 —n-r:ll (2.75)
hére; Ao, = ALy, and,

7. i1

a7~ w5 | Aen =9 ;A2 9 76
(E?Pi‘ ﬂp}‘) o &70)

1) At order r in Ap.

T _ . A
8- 00 By (D o P2 A) | S A PP (), r 42— 1 2 0

= 0,r+2—n<0 (2.77)
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(i i) At order r in Ay,

116545+ df,,“;ff”iﬁi- caPasA) || £ AT ”{—} P "In{—} P [P

= .r+1—n<:U (2.78)

We end this part of the section by writing down the tree-level and the one loop forms

the relevant and irrelevant parts of L. We use (A2.1) to obtain the perturbative

sion for La, order by order in Aj.

Expanding the two and four point parts of L,

Lo(p, —p.A) = La(p.—p. A)| e + (7" - laizf-z{p =P )| ays + AL
= —m(A) = (p' —p)e(A) + AL, (2.79)
Li(pA) = La(piA)|, _, + AL,
= —plA)+ AL (2.80)

Solutions for equation (A2.1) with boundary conditions (2.71) for zero
and one loop gives,

o = 0,08 = 0,p" =6 (2.81)
ALY =0,AL =0 (2.82)
(2.83)

CET TS TR TS

Figure 2.4: Lg vertex from L, vertices
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The L" vertex is obtained from two Lﬂ"’ vertices as shown in Figure 2.4,

- Ao fl'l 1‘ ] ¥ [ 3 ]
oY — f —ﬁf;f,? ( A ~J']’}_-[.:I[”{_ul,_:'113..1'113. P.A }Li”“{phpﬁ._pﬁ, -P.A)
A

— 1 permtations for all same external fields or,

| =

4 permutations for 2 different external fields (2.84)

Il | =

L]

Eﬁl‘ﬂ. P=pi+ps+ps

Countracting two of the legs of the Lim vertices we get the one loop Lo
amplitude; Figure 2.5. The weights of N coming from the global O(N) symmetry

ire indicated in brackets in the figure.

N J )
'.\\ g

Xﬂ 'I J.l' ph A —|_'| .
(" / N (N=11

Figure 2.5: One loop Ly from Ly vertex

p[ 1) o l / I"IrI‘E'J A ”I!,'.'

" (11 '
Y 9 FQ[J'& Il (g —pog,—a, A Hr;":pf}
'j"ﬂ' q
— 4 ! e ! — S ¥ : I',_-
[N r"];_;ﬂul" (2.85)

here we have only kept the A dependent term.

! = 0,ALY =0 (2.86)

(2.87)

Contracting two legs of the L:-.m vertex, Figure 2.6, we obtain the one

gop Ly amplitude. The A dependent part of pfr,” comes from this term only.

. 1 d*p A dA
e f

~ 5 e [, A G A, 258
. .Hl.

2
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5 VN &

P R II'-. ."II
'l i
ih

P

#-p !

(MN=1)
Figure 2.6: One loop L, from Ls vertex
In the large A limit,
| 3.—\3 F) 2 .
A~ (N +8) 2Ry A (2.89)
on< —
() ,
AL v . (2.90)

flp:) is a function of external momenta. The relevant and the irrelevant operators
e at zero and one loop in the way asserted by equation (2.75) which is the primary

) towards proving the renormalisability of the theory order by order in the loops

First note that the components of L, Lay (g, ...pan. A) contain a plase
etor which accounts for the noncommutativity of the theory, This factor is of the
&% i P with all possible permutations of the external momenta. Now

der equation (2.70),
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f[E }4Q[F‘ Voo ( pyooopan.p, —p. A) || + all possible permutations of p;  (2.91)

d'p —— :
I | 2@ A E || Lyl Bz pi =i A) |

+ all possible permutations of p,

(2.92)

where La, (7. .-Pau—2: p. —p. A) is the part of L, not containing the phase

factor. Equation (2.91) corresponds to the one loop vertex La,_» evaluated from the
Evaluating (2.91) for one particular permutation of the external momenta

Ad
L+ A2 o3 m)

The term on the RHS of equation (2.93) is the nonplanar term. Depend-

Q{p ‘nlli}'- ﬂ T‘l-:,]"lrFJ'Er“'erP” ._;TEU_':F"\PJ

[2 }ﬁ (2.93)

ing upon whether the two external momenta being contracted are consecutive to
pich other or not we get the usual commutative planar term or nonplanar terms

fespectively. Scee Figure 2.7,

P
Pz f ¥
.- P
P, '. : .Ipl
[i p-} P,
(A0 iB)

¢ 2.7: Contractions leading to planar and nonplanar terms are shown in (A)

d (B) respectively




Chapter 2. Renormalisation in Noncommutative field theory 42

The exact. weights of the planar and the nonplanar graphs would not
‘be necessary for our following discussions. We just label the weight of the planar

~graph by Nj,. For all permutations of the external momenta, the scaling behaviour

lﬁf (2.93) with respect to A is,

Al
N AY + - + ...other lanar parts 2.94
= U+ A2 m)o(Y i) YT HERESEAL pRTA (294)

At this point it may be noted that, with every external momentum put
to zero the weight of the planar term changes due to the transmutation of the

‘onplanar term into the planar term.

We now turn to the question of UV renormalisability of the theory by
ssing the assertions as stated in (2.75), (2.77) and (2.78). First, let us consider
the case where all the external momenta are such that A’pop >> 1, p being some
combination of external momenta. In this limit the nonplanar term in (2.94) scales
a8 A*. The scaling behaviour of (2.94) is thus dominated by the planar term for
i..' ge A, Therefore in this case the proof of assertion (i) follows exactly as the

gommutative case. Assiming that the assertion holds for r = s — 1, from the RG

equation (A2.1}, we have,

0 . o ,
MEI iul._iu“'{’}:;-..naf‘;"] ( P pan N | (2.495)
i P l o PR .I"li{:
< AVEORN + 2P —
s A oyt L4+ A3, po(3, m) | & :"L_r;}
For the case considered, A*pop >> 1, we have,
1 1 Al
e = e s (2.96)
1+ "VEZJ I’!JG{L;P” A EE: PI}G(Z: )

The two powers of A in the denominator, decreases the overall power of
for Ly, in the nonplanar terms so that the overall scaling of L,, with respect to
Wlor large A is dominated by the planar term.

Form = 3and n = 2,p > 1 .the boundary values are set to zero at

:Ag. Therefore,
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et {# i trd
[!agiid:"'d::-drbﬂ': { Proepan A | {2.97)

Ao {i;ﬁtf [ . ]_ ""L
E _-{"HL }'i_-”_ff[_"ll'r. + g + Tun P'l'l—“—lgn _n
[L A TN pe(X p) ! [ﬁnj
E ﬁ" ..2::—;JF-3_-—|| l!'ﬂl ﬁl_ ]
a9

HIn general L5 1, would have nonplanar terms as shown above. When evaluating the
4, vertex from L5, 1,. one has to integrate over all momenta thus including the

momentum modes. For these soft modes. k one can expand the nonplanar

A? 1 4+ A%kok

= [1 — A%kok + (A%kok)®..]] (2.98)

that A*kok ~ O(1). However in this region of internal momenta, k ~ O(1/8A),
the integral (2.93) without further expouential suppression is,

i . in dik .
e Tac, Py /‘ jlr——n‘.".}l,'li.'. AN = Akok + (A kok)? .. (2.099)
Ji

(2m)!

The contribution from this momentum shell is suppressed by 1/0A. For
"""" values of & the integral is again suppressed by powers of A in the denominator.
hey efore even though the very small momentum modes in the internal lines are
meluded, it does not affect the canonical scaling of the irrelevant operators. We
tict ourselves to configurations of external momenta, p such that A’pop > |
lecause relevant operators scale with different coefficients from the configurations
th Mpop < 1 and in the continuum limit IR divergences appear when the external
bmenta are put to zero. It is thus clear that there is really no need for an IR cutoff,
lip in the loop integrals. The integrals are IR finite since we are always working with

mite UV cutoff A. However restriction to configurations with external momenta

8 to this renson the IR cutoff for the internal loop momenta would be formally

The IR divergences in loop integrals however appear in perturbation
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. This is illustrated by an example (eqn. 2.111) at the end of this proof of
JV renormalisability.

For n =2, p = 0, the boundary values are set at p; = 5 and A = Ag. So
from (2.95),

I 1—L“‘Ua..3] | '€ PEu(==) (2.100)

which gives.

IL @A | < L8D A) + P24 {

2 A
< PR (2.101)
where Li" (5., Ap) is a constant independent of A. LY (pi, A) can now be
constructed for a general momentum configuration from (2.101) using the Taylor's

gxpansion,

L (g A) = L (7, A) + Zp" ; f AM(1 = N8 LY (e MYy, (2:102)

=1

The terms on the RHS of (2.102) being bounded by (2.97) and (2.101),
'?J"{pi,h} is also bounded. The bound for the components of L for n = | and
20,2 follows along the same line as above. This proves the assertion (i),

Let us now see the scaling behaviours of the Green's functions with re-
pect to A for a momentinn configuration where some or all the external momenta
[ezero. As noted earlier, with each external momentum put to zero, the weights of
{ ‘,“ﬂna: terms increases due to the transmutation of the nonplanar terms to the
nar terms. Therefore although the components of L scale with same power of A
for the configuration with all momenta nonzero, they scale with different coeffi-
for the two configurations. Specifically let us take the example of L, where
=p; = 0. The configuration of fields for which not all external momenta are

fzero is singular and so the scaling behaviour of functions for this configuration
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‘cannot be obtained from (2.102). Instead one has to define the Renormalisation

‘conditions at a point where there are same number of zero external momenta so

._i;.t, from (2.100}) we have

| £ (py, 5 0.0,A) || < L‘:'[_ﬁl-p_,-u.u.ﬁﬂj+P*=‘Einn%}
*A R

< Pf-'—irn;i‘—“ ,a (2.103)
g

The constant Li""(ﬁhﬁi.{]. 0,Ag) differs from that of (2.101), but does

It 15 clear form these discussions that with the Renormalisation condi-
lions set at nonzero external momenta the Green's functions for configurations of
s with some or all momenta zero cannot be renormalised. This was the is-

gue in the initial sections of this chapter. The bare couplings defined through the

il of this section.

The proof of assertions (i) and (iii) follow along the same line as the
fommutative case and the theory is renormalisable as long as we keep away from
e zero momentwn limit. This coneludes the proof of the renormalisability of the
ppcommutative (O N') syimetric theory.

We now give some computations of zero and one loop contributions of

levant and irrelevant parts of L with the following boundary conditions.
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p(Aahop®) = 0
pa(Ap. Ao ") = 0
(A Mg ") = 2V(B)An (2.104)

where V(p) is given by (2.26). The boundary values for the irrelevant couplings are
‘et to zero at Ag like the commutative case. As mentioned earlier the momentum
integrals will now also be regulated in the IR by A;z. However in the expressions for
the one loop functions, to show the UV behaviour, we drop all the A,z dependent

tterms and retain only the UV cutoff dependent pieces.

piim =0, p, =0, p%" = 2V(P)An {2.105)
ALY =0,AL" = (2.106)
'y AdN .
ptl“ = —."u.rfj (;?:}-i MQI: A N + 1 +cos(p a“k‘rﬂHqJ:Fﬂ
. A " a A?
e i 2
AH ffj[f’ﬂ} V
- ”?_gl""r”[M}J + pln(— o ] (2.107)
i .
IH'IJ]} = _ﬁ LIH{P. — I ‘I‘L”j#:}'ﬂ
An
~ =oAL (o) + 1ALy (po) (2.108)
A i : o
ALY = 1—“._,-1ﬁ;”u=; + it 2B
c”[PI:-}

(g

= Mt — pR)tr(#)[AY ;[ﬂu}+.u A2 ol (2.109)

= 1[. .._,[J‘l ff{f—‘u}“i-}i In{
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oA A?
pil (N 4+ 3)V {;3_:4—;{,-{:::$} + Glji) (2.110)

G(p;) contains the nonplanar terms which in the continuum limit is only
a function of the external momenta p, and is divergent at low momenta.
Equations (2.105-2.110) show the scaling of the relevant and irrelevant

operators with respect to A at zero and one loop. As long as the external momenta

e such that Afpop > 1, these parts scale as asserted in (2.75). However we stress
gin that, ultimately one is interested in the Ay — =¢ limit, so that these scaling
haviours persist as long as we keep away from the p = 0 limit.

There are two points that may be noted here. For values of external
One can expand Af,; (p) in powers of AZpop, as in (2.98). The irrelevant coupling
{2.109) now is dependent on the UV cutoff Aq, spoiling the usual Wilsonian picture
a5 also noted in [18]. Thus a renormalisable noncommutative quantum theory has

o be defined with an IR cutoff.

same coefliciont as the commutative 4-point function (2.88).

Before discussing the renormalisability of the broken phase of the spon-
Bneously broken theory we now take a look at an example of the two point function
perturbation theory and see the appearance of IR divergences.[§]

The contribution from the diagram, shown in Figure 2.8, is given by,

I~ fur‘a-{——‘r-{k]— (2.111)

K2+ m?)?

where the nonplanar part of [(k) with n tadpole insertions is given by,
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g number of tadpole insertions

1 1

fx)= (& + kok)® (K2 + m2)n-1

+ less singular terms (2,112)

The effect of high momenta in the tadpole insertions is encoded in A. As
gll the high momenta modes are included, the singularities in [(k) appears in the
m of 1/(kok)". The loop integral 2.111 is thus IR divergent. Note that this IR
ﬁnrgence in the loop integrals never comes up in the RG approach, as the loop
ntegrals are always performed at a finite A.

We now turn to the issue of renormalisability of the broken phase in the
puta.nm:-uslj_.* broken theory. The broken plase of the theory is defined by shifting

tlie ficlds ¢ such that,

" — g+a=1
— wtoa=2.N (2.113)

The two and the four point contributions to the effective Lagrangian of

8 broken phase is now given by,

'élfcf'pﬁr"[p]r,’:”{-—_n}Lg{p‘ = Py i) —

%./.rﬁ}l[d{}ﬂdf—ﬂ] + 20(p)u(=p) + 7 (p)r*(=p)| Lalp, —p, Af2.114)
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1 . RSB X g
afiidi—'lJii’?'.”’flﬂrs"ﬂﬁ-lif-" (p1)e” (p2)][0” (pa)a®(pa) | Lalpy.pa, ps, pa, A) x

x 60 p) —

][d;pl‘:ﬁpﬂ‘flpﬂﬂﬁﬁﬂi [ alp)vlps)u(ps)v(ps) + permutations + 7% (p )7 (pa)v{ps)v(ps)
+ (v = po.pr = pa) + - La(prpa.pa, pa, A (D ) (2115)

We have shown only these two contributions because these are the only

vergent functions. The Ward identity (2.53), which is the consequence of the

bare couplings from the Renormalisation conditions at p # 0.

In particular, the contributions to the 7-7 amplitude are from,

Lon™(p}n(=p) + Lam®(p)7"(po)v(pa)vlps) + (o1 — pupa — pd)  (2.116)

id for the o-tadpole amplitude from,

2Lao(plul—=p) + Lyo(py)e(ps)vips)e(ps) + permutations (2.117)

We have seen that the behaviour of Green's functions with respect to
changes once we put one or more external momenta to zero, The same is true
it the expressions (2.116) and (2.117). Once v is set to a constant at the tree
el the momenta associated with v are set to zero. It is clear that in this case
it Ly and L; functions would have different A dependences from the case where
l§not a constant, for reasons outlined earlier. Now, since an unequal number

fu's multiply (2.116) and (2.117), the weights of the UV divergent, A dependent
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Yerms obtained due to transmutation of the nonplanar terms to the planar terms by
fting v to a constant, are different in (2.116) and (2.117). This leads to a different A
dependence in the o-tadpole amplitude and the m-7 amplitude. Consequently these
two amplitudes cannot be renormalised by the same counter-term, thus violating the
Ward identity (2.53). However the origin of the problem lies in the nonplanarity of
the diagrams induced by external momenta in the loop diagrams, the resolution lies
in keeping v as a non-constant background field, so that the components of (2.116)
(2.117) scale in the same way and that the Ward identity (2.53) holds. The
ymmetric phase of the theory has already been proved to be renormalisable as long
8 we have an infrared regulator. Spontaneous symmetry breaking does not affect
the renormalisability and the broken phase is also renormalisable as long as v is kept

-non-constant background feld.

2.5 Conclusion

Me have studied the UV renormalisability of noncommutative field theories. In our
issions we have investigated this issue in the context of the A¢* theory, the
Neveu model and the globally O(N) symmetric ¢* model in its symmetric as
el as its spontaneously broken phases, The renormalisability of the globally O(N)
ymmetric ¢! theory is proved to all orders for both the symmetric as well as the
broken phases with an IR cutoff.

The zero momentum configuration for these theories is singular. Through
it ;ﬂ_im:uﬁsiiuns of one loop results followed by a general analysis in the language of
lie Wilsonian Renormalisation group, the following general features of noncommi-
ive field theories evolved.

& have seen that with the Renormalisation conditions set at a momentum con-
uration where all the external momenta are nonzero, a general Green's function
ith some or all the external momenta zero, cannot be renormalised. With each
ternal momentum set to zero, the weights of the UV divergent planar graphs

es due to UV/IR mixing. This leads to a scaling behaviour of the greens
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unctions with respect to the cutoff (A), with a different weight than a nonzero mo-
‘menta configuration. This implies that for the relevant operators, the bare couplings

will have different UV eutoff dependences for these different configurations.

ij} The different scaling of greens functions for these separate configurations with
pect to A has crucial implications on the renormalisability of the spontaneously
\broken phase of the O(N) symmetric theory. In general the renormalisability of the
p- phase of the theory is unaffected by spontaneous symmetry breaking. The
underlying O(N) symmetry makes the broken phase renormalisable with the same
‘pumber of counter-terms as the symmetric phase. However in the case of noncom-
mutative theory the one loop results indicate that this enly happens when we break
';'j.'s}rm_mm:y by going to a vacium which is translationally non-invariant. This
can easily be understood in the language of the Wilsonian Renormalisation group.
One of the consequences of the global O(N) symmetry is the broken phase Ward
ntity (2.53). It can be seen from (2.116) and (2.117), keeping in mind the scaling
pehaviours in the foregoing discussions, that the s-tadpole amplitude and the -z
gmplitude would scale differently with respect to A when v is set to a constant. How-
ver when the constant v configuration is approached as a limit of the non-constant
i configuration, the Ward identity (2.53) is still preserved. We have proved this to

ders following the proof of the symmetric phase of the O(N) symmetric theory.

fii) There are no IR divergences in the loop integrals of the Renormalisation LEOLE]
guations, This is as o consequence of always working with a finite UV cutoff A, IR
ergences only show up when we approach a singular, zero external momentuni
on iguration after taking the continuum limit in the solutions for the RG equations,
fone keeps away from these singular field configurations, for generic external mo-
enta, p, the theory is free from infrared divergences. It is because of this reason
i the scaling belhaviours of Green's functions in the two different momentum do-
ains as discussed in (i), that an IR cutoff for the external momenta is necessary. IR

ences appearing in equation (2.111) are thus artifacts of perturbation theory.
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the zero momentum configuration.

In the light of all these remarks it may be concluded that the zero mo-
mentum configuration in noncommutative seems to make sense only when it is ap-
proached as a limit from a nonzero momentum configuration, or in other words, the

ommutative theories are renormalisable as long as one works with an infrared

Having studied renormalisability and UV/IR mixing purely in the frame-

work of quantum field theory, it is now natural to ask what new insights about the

gtiergy limit of open strings in background B-field. We will pursue this in the next

Appendix : RG Equations

G equation for 1

QLP A
Z[_"_' 2 P: I’Hfr-h-'r}r-'”‘ ) L!‘H-r—'.'.‘—'.’l“—‘:.'!r'n-.“?m_Pn h}+

1 n
4 = — | permutations]
2\ 2-1
! 'p Qp.A)
_ﬁ './. E‘zr}‘ .I"‘_ L‘Tl‘* ’{PI veen Pany p _Ju ﬁ"] {‘JJ"?"J'}
where, P = """ p,, such that,
a — 1
I (A L) Il YIS D0l La(A) | - 1| Eamsa-a(A) ]
te=l
1
+ 5{?3"4 ” L'.-?u+2'[14"~]' “ :AE,E}

e, D, C are constants independent of A.
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RG equation for 13

+ 4 - 2“ T 2{5&] :IB-?J-\.EH Ui’l- '-"1.”!!1} ==

n

= E[Q ) ‘1_; - P .'qi.]BhI'_r".-'_r_.yUJg;,..,Tp_:n_.ﬂ} + (
2—1

) — | permutations

1 i IJ
= 5/mBL,EH-—E[_PL-----P‘.'mp- —p, A)Q(p. A)

) 1 rfiq
+ Bl,iﬂ[ﬁh-—-*Pﬂn-i‘”i‘[{ _.”lﬂutﬂ —p.q.—q)0(q. A) Ipz_F
A® dig §
+ Bao(prs ey Paas iy ff“»'ru ow: Bya(p. —p.q. Q]Q{Q.ﬂ}ipj
+ B gk [ e
.20 P12k Py | ’5_[ B7A) = IR PG & q}QLq..f‘L}IFﬁ, (A2.3)
a
HMH + 4= 2n — 20 ) Byaalpre oo paa) ||

Ky

> (Do || Asi(A) || - | Buzns2-2(A) |

=]

1 1
+ 55 || Bronsa(A) | +§'f | Biaa(A)} ] - || Boald) ||

1 oo
+ SCA2 || Byao(A) || . | s ByalA) |

1
+ SO BazalA) |- || Bya(A) || -
! equation for V-
a ]
J{ + 4 - 2”}'."’_—'”:!-"’. T
- . 2n
= Z[EJH:. illlj',.il;ﬂl:.j'fln oo PN Y Vagism al pat. T L A)+ - [}m'm"mlﬁ.imm|
3 21

L[ ody
3 et Vil = NQA)

: 1 dty
+ B1,zn(1’|--mpzn-ﬁ)§ [” A Vilp, —p.g. —q) {ff'ﬂ'”pi——pﬂ

A dqy 0
+ Baalnman N G [ G Vil 1.0 -0 Al

lf'l
+ Bua(preapan N3 [ S Vep g —0QUa A, (A25)
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fl:j
I Aoy
<

-+

4 — 20)Va, (s coeo pran) |l

> 100 || Au(A) || || Vansa-n(A) |l

=1

T T J' ~r
F ( ” -i".f'fi-'-'..’li‘jl.-l ” +;(— ” EL.:’TI{“"} || . Il Vl{ﬁ.:l “
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Chapter 3

Open-Closed String Duality in
background B-Field

1d sheet duality is a very fundamental feature of string theories and one expects
‘because of this there is a duality between open string theories and closed StTing
es., AdS/CFT [1] can be viewed as a particular realization of this where to
g order we sce a relation between the massless sectors of the two theories. Tt
| to study such dualities in other backgrounds to further elucidate the key
jents. One such background is the constant B-field. As will be shown below
se of the regulatory nature of the B-field duality statements in some cases can
gmade more sharply.
Open string dynamics in constant background H-field have been studied
the past few years with renewed interest for other reasons also. This is mainly
e to the fact that the low energy dynamics of open strings in background constant
d can be studied as o gauge theory on noncommutative space-times [2,3, 4, 5].
dding these theories in string theory helps us to analyse them from a wider
gpective.
In the recent years there has been an extensive study of noncommutative
ieories from two directions [6]. One by starting from noncommutativity at

i field theory level and exploring various phenomena that arise which may be

Gl
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fbsent in commutative models. The other direction is by studying them from the
point of view of string theory. Most often the latter perspective has led to better
_e:rstnnding of the various unusual features in the noncommutative models.

As we have seen n the previous chapter, a generic feature of noncom-
‘mutative field theories is the appearance of infrared singularities by integrating out

Tigh momentum modes prapagating in the loop, popularly known as UV/IR mixing.

Warious attempts have been made to interpret these results in the usual Wilsonian

renormalisation group picture. In the previous chapter we have seen that this phe-

nomenon in noncommmtative field theories fits into the usual notion of Wilsonian

malisation group if we include an infrared cutoff [9]. A different approach to
gure the problem of UV/IR mixing has also been pursued [10, 11]. It is however,
ot clear whether this is to be viewed as an inequivalent quantisation and therefore
Jdifferent, theory or a different cure to the infrared divergences.

The conpling of the ultraviolet to the infrared is inherent in string theory
’ manifests itself as a consequence of open-closed string duality. With this hind-
it was proposed that the new IR singularities should appear at the field theory
evel by integrating out additional massless closed string modes that couple to the

paige theory [7, 8], This was studied for the one loop N-point tachyonic amplitude

osonic theory in [19]. Interesting connections between the closed string tachyous

:-nﬂncmumulul.'n'n- divergences was shown in [20]. Usually the ultraviolet diver-
gences of the open string modes can be mterpreted as infrared divergences from
hissless closed string exchanges. In the presence of the background B-field these
gences are repulated and thus a quantitative analysis can be made, The one-
op two point diagram for open strings is a cylinder with a modular parameter £ and
prtex operator insertions at the boundaries. The two point one-loop noncommu-
g field theory diagram results in the Seiberg-Witten limit by keeping surviving
trms in the integrand for the integral over ¢ for ¢ — oo, This limit suppresses all
gutributions from massive modes in the loop. The resulting diagram is that of the
ge theory with massless propagating modes. This amplitude is usually divergent

the ultraviolet when integrated over t. The source of ultraviolet divergence is the

56




b @h&]:ter 3. Open-Closed String Duality in background B-Field G2

ame as that of those in string theory i.e. ¢ — 0, It is therefore natural to analyse
the amplitude directly in this limit when only the low lving closed string exchanges
ibute.

In the bosonic string theory setting, we first analyse the two-point one
loop amplitude for gauge bosons on the brane, in the closed string chanuel [21], We
gue that the region of the modulus giving rise to divergences (that are regulated
the nonplanar amplitudes) in noncommutative field theories can be identified as
the region where the lightest closed string modes dominate in the dual picture. The
full two point open string amplitude also contains Snite contributions which would
lire the entire tower of closed string states for its dual description. However,
singular IR behaviour of the nonplanar amplitudes, in the boundary noncom-
mutative gauge theory can be seen from the exchange of closed strings in the bulk.
Though there are additional tachyonic divergences, we are able to show that the form
LR divergences with appropriate tensor structures can be extracted by considering
i lowest lying modes (tachyonic and massless). We further analvse the two point
mplitude by studying massless closed string exchanges in background constant fH-
From this analysis we are able to isolate the individual contributions from the

ess closed string exchanges. We further argue that the exact correspondence

gitoccur in some special supersymmetric models, Open strings on fractional branes

sed at the fixed point of C?/Z, naturally satisfy these conditions. In the next
part we study this issue in this orbifold background [22].

The fact that the ultraviolet behaviour of the one loop gauge theory
same as that of the massless closed string tree-level exchanges in this model
iih N = 2 supersymmetry have been pointed out in [23]. Further studies as
8 consequence of this duality have been done by various authors [24, 25, 26, 27,
@l Also see [20] for a recent review and references therein. We show that the
-'f'ri;_" mixing phenomenon of A" = 2 gauge theory can be naturally interpreted as
tonsequence of open-closed string duality in the presence of background B-field.
effective action for the full two point function from gauge theory differs from

vith closed string exchanges ouly by finite derivative corrections. However as far
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B8 the divergent UV /IR mixing term is concerned. it is exactly equal to the infrared
gontribution from the massless closed string exchanges. Using world-sheet duality
e modes can be identified as coming from the twisted NS-NS and R-R sectors.
This model was also studied in [18] in the context of closed string realization of the
R singular terms in gauge theory. Here we shaw how only the twisted NS-NS and
R-R sectors closed strings couplings to the gauge theorv survive and that the ¢losed
ring interpretation of the UV /IR-terms naturally follows as a consequence of open-
duality. The crucial feature that plays a role here is that the contributions
rom the massive modes cancel in this model.

b This chapter is organised as follows. In Section 3.1, we study the one
) open string amplitude in the UV limit and write down the contribution from
west states. In Section 3.2, we analyse massless closed string exchange in back-
gound B-field and reconstruct the massless contribution computed in Section 3.1.
ction 3.3 we study superstrings in B-field background and give a short review
Bsirings on C*/Z, orbifold and the massless spectrum of open strings ending on
onal Dy-brane localised at the fixed point and closed strings. In section 3.4 we
ampute the two point function for one loop open strings in this orbifold background
jith the B-field turned on, and analyse it in the open and closed string channels. By
g the field theory limit, we show using open-closed string duality that the new

ergent ternn from the nonplanar amplitude is exactly equal to the IR divergent

ptributions from massless closed st ring exchanges, We conclude this chapter with

entions: We will use capital letters (M, N, ...) to denote general spacetime
and small letters (4, 5,...) for coordinates along the D-brane. Small Greek

@, f...) will be used to denate indices for directions transverse to the brane.

Open string one loop amplitude

revious chapter we have outlined how new IR divergent terms appear in the

loop amplitudes of noncommutative field theories. To interpret these in
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e tachyon and the massless modes. One loop amplitudes for open strings with
W0 vertex insertions in the presence of a constant background B-field have been
ted by various authors, and field theory amplitudes were obtained in the
(= 0 limit [17].

Birstly, the one loop partition function is written as [32, 31]

Z(t) = det(g 4 2ma’ B)V,,1 (87%a't) =% Zy(t) (3.1)
with,
Zo(t) = Trlexp(—2xtL;)] (3.2)

ti(g+ 2w’ B) comes from the trace over the zero modes of the world-sheet bosons.
e Appendix A3 eqn(A3.14), f is the modulus of the eylinder and L, contains the
eillators, This gives,

Z(t) = det(g + zm’fj,w;,+.{5n'~'f.,'s.}'"i"‘n{m-f“-ﬂ (3.3)

mentioned earlicr. The two point oue loop amplitude has the form,

= Ixt 2t : ) ) o .
Alpy, p2) = / o7 EIH]'/ n'y[ dy < Vipz,y)Vipe,z ,y) > (3.4)
u o (1] (1]

(1]

hiere Z(t) is as defined in eqn(3.3). The required vertex operator is given by,

- . ﬂo # v g X -
Vip.y) = —;ijdy,ve“{y} (3.5)
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in background B-Field

Uy

(i), 2 0

r—..-

1 fli'lll.ﬂﬂl

Open String Channel

dt, i gt - :
zm/Tfa't}""‘-*umr*”‘” exp(—C/a )

1/Ae
(i) % | 0

(iv) © |

N —

A2’

Closed 5tring Channel

Bd by the B-field? In the presence of the background B-feld, the integral
e modulus is regulated. On the closed string side, this would mean that the
ator for the massless modes are modified so as to remove the IR divergences.
ild now like to investigate this end of the modulus.

Before going into the actual form let us see heuristically what we can

ek to compare on both ends of the modulus. First consider the one loop ampli-

(3.6)
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where ' is some constant which in our case is dependent on the B-field.

In the ¢ — oo limit,

If we throw out the tachyon, and restrict ourselves only to the O(1) term
in'the expansion of the n-function, &’ and ¢ oceur in pairs. This means that in the
& — 0 limit the finite contributions to the feld theory come from the region where

fis large. We can break the integral over f into two parts, 1/A%a < £ < oo and

Zoy ~ /-d:a{r}' | b gli [f-:'“‘ +(D—-2)+ l’J{r":"}l] exp{—(ﬁ'.ﬁ',f'r.:-"]l (3.8)

where [ = I — (p+1). is the maumber of dimensions transverse to the D,

brane. The would be divergences ns € — 0 manifest themselves as 1/C or In(C'), de-

should have the spme asymptotic form as f — 0 and ¢ — oc so that eqn(3.8) is
factly the same as that of eqn(3.7) integrated between [0,1/A%']. There are ex-

of supersymmetric configurations where the one loop open string amplitude
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mestricted to the massless sector can be rewritten exactly as tree-level massless closed
g exchanges. It was shown that in these situations the potential between two
es with separation r is the same at both the r — 0, and r — oo corresponding to

p= 0o and t — (0 ends respectively [23]. This has lead to further interesting studies

e can expect that in these cases the [R singularities of the noncommutative galge
match with those computed from the closed string massless exchanges. In
fie bosonic case, this is true for p = 13, if we remove the tachvons. However, we
fire concerned with reproducing UV/IR effects of four dimensional gauge theory for
ch we need to set [ = 2. The broader purpose of the exercise that follows is ta
putline a construction that can be set up for supersvinmetric case. that is to follow
=.:_ e latter sections.

We now return to the original computation of the amplitude in the closed
ring channel. The nonplanar world sheet propagator obtuined by restricting to the

igsitions at the two houndaries is [31, 17]
|

iJ_,"__";U =g = i7" "
G y.y) = —o G 1n | T ;——zm ag’s (3.9)

2
l |:'1-'- ;]1 - _ﬂl‘ljﬂ i
hiere, Ay = y — y . In the limit ¢ — 0 the propagator has the following structure,

i Ay '
y — X
2wt

gY = —da GV [r‘ar;-ﬁ|[.':Z‘-.g.-f"i‘]u"f —e 7 ] -1 (3.10)

'-'.'!"' this into the correlator for two gauge bosons and keeping only terms that

11

ild contribute to the tachyonic and massless closed string exchanges, we pet,

(8mar )
(27t )?

expanding »(it) in this limir,

(GUGH = GG )sin(Ay/t)e= T + Py eMSY P (4 11)

== [mm (2mt)?

alit) P = 5 (i /1) 122 t T ¥ +(D-2)+0( 7)) (3.12)
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The two point amplitude with only the tachyonic and the massless closed

g exchange can now be written down.

Ag(p, —p) = —idet(g+ Em.er}V,,_ll:%]hzrgnr]J%E,EJII[IJ} (3.13)

with 1(p) = 1+(p) + I.(p) and,

Ir(p) = ﬁ*ﬁffd-ﬁ‘%f*-‘rp{ {——MUPJ _”)s} (3.14)

d‘i. 1
N h1

We have written the integral over ¢ in terms of s = 1/t in (3.14) and

fi ther in the last expression we have replaced the integral over s with that of k.
fhe dimension of the &, integral is the number of directions transverse to the brane
fnd is thus the mwomentum of the closed string along these directions. Note that the
ntegral has to be cutoff at the lower end at some value A%o’. This corresponds to
transverse momentumn cutoff for the closed strings, that allows us to extract
lie contribution from the IR region (see Figure 3.1).
OF o o x oL 4pdiata’
HpeA) ~ / —e P [ &k ————— (3.15)
Ao’ & Jo (k1 + 1)

e integral over &, eqn(3.15) receives contribution upto k; ~ O(1/Aa’), The
tluded region of the k| integral is the required TR sector for the transverse closed

ing modes or the UV for the open string channel. With this observation, for the

pigp; — 4/a +
Ir(p,A) = 4n*(277 a’)i B In : “ L (3.16)
mgHpy — 4/o

fthe noncommutative limit (2.14), we can expand the answer (3.16) in powers of

:'—-‘-E' lj'_.l } ’

: 4 1 4 \?
, =1 . . =L\ _ | e e 3.17
In (pg p—4/a ) n (pg~'p) =T (n’pg“p) (3.17)
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theories can only be due to exact cancellations between the bosonic and fermionic
bor contributions [20].
As for the tachyon, similarly we now write down the contribution from

massless exchanges,

(P A) = dm(2n%a’)i [{B — 2} +8(2ra o (GHGH - {.—“kGﬁ}] X
ﬂ”k]_ |

@ R+ o, -

Pie can observe that the terms ocenrring with o %{~ ¢) as the coefficient, relative to

fiensional gauge theory, we must have a string setting where | = 2 and yi=£:3,
er, at this point, as discussed earlier, it is only necessary that { = 2 so that the
st lying closed string exchanges reproduce the correct form of the IR singularities
ihat of the gauge theory in eqn(2.22).

We mention again that the exact correspondence between the UV behav-
of the noncommutative gauge theory and closed string exchanges would require
tower of closed string states. The contribution from the massive closed
states are likely to be suppressed only in some supersymmetric configurations

F129]. We will see how this works out in these setups in Sections 3.3 and 3.4,
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efore that let us study the massless closed string exchanges in the presence of

ickground B-field.

Closed string exchange

5 section we reconstruct the two point function of two gauge fields eqn(3.18)
assless closed string exchanges. The aim here is to write the amplitude as
massless closed string exchanges in the presence of constant background B-
To proceed, by considering the effective field theory of massless closed strings,
onstruct the propagators for these modes (graviton, dilaton and B-field) with a
background B-field. As a next step we compute the couplings of the gauge
the brane with the massless closed strings from the DBI action. Finally we
these results to construct the two point function. We will consider three
fate cases when computing the two point amplitude in this section.

&n this case the background B field is assumed to be small and the closed

String metric, g =),

i Thie Seiberg Witten limit when g = en.
I The case when the open string metric on the brane, G = 1.

The amplitude eqn(3.18) in the closed string channel is the closed form
6f the massless exchanges, In each of the above cases, we will compare this
ftuce to respective orders with the ones we compute here in this section. Let

g8l begin by considering the field theory of the massless modes of the closed

1

1 ds : 4 -
= o f X VTGIR — e P g Y — 2 M¥a,05.0) (3.09)

D—2
where, D is the number of dimensions in which the closed string propa-

The indices are raised and lowered by g. We will now construct the tree-level
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ggators that will be necessary in the next section to compute two point am-
flitucdes. For each of the cases as defined above. the propagator will take different

s, Let us first consider the dilaton. For g = 5 the propagator is the usual one,

| . (D-2)x? 1 ,
<o > = — 1 BrE (3.20)

The next limit for the metric is g = en along the world volume directions
ﬁ brane. In this limit, the dilaton part of the action can be written as,

s % lipal Sty
So= =g [ 47X 310080+ a0 (3.21)

This gives the propagator.

(D — 2)ix? 1 2
<D= = = = i {322]
4 ki 4¢ E.ﬁf

Finally, when the open string metric is set to, G = 5, the lowest order

ition for ¢ along the brane directions is,

g=—(2ra')*B* + O(a™) (3.23)
which gives,
) — 2)in?
LS = AT = (3.24)
B4k /(2R
Wllv.rt-.,
. l L .
ky™ = —ky (F) ki (3.25)

Let us now turn to the free part for the antisymmetric tensor field,

1 ,
Si=-5— [ d°XHppnH"MN (3.26)
245~
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where,

Hyiyn = Opbyn + dabyr + dxbpag (3.27)

Using the following gauge fixing condition,

gV Ouybyy =0 (3.28)

The action reduces to,

? K
8= - ;f / dPX [g™8b1,03bks + 4 BbrsBibr] 'Kt (3.29)

The factor of (27a’)* in the b-field action has been included because the

ma model is defined with (27a’)B coupling. The propagator then is,

i Qrirtdris ;
<bybpy 5= — e - J.30
L U (27a")? 1,"‘.n' _5_9;1;:'_:'1,” [ }

Finally, the gravitational part of the action. As will turn out in the next
on that we will only have to consider graviton exchanges for the case g =1

ipropagator for the graviton here is the usual propagator from the action,

S, = o d’X /=gR (3.31)

By considering fluctuations about 7, and in the gauge (3.33),

gun = fun + hagy (3.32)

g0 = (3.33)

‘the graviton propagator is,
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oo oy, = 2/(D = 2)nramye )
< h_,l__,fhlr-'lfa »>= —2iK fni + L,_I}

(3.34)

After writing down the required propagators, we now turn to the COMmp-
fation of the vertices. Asmentioned in the beginning of this section, we will consider
gach of the three cases separately. To begin, we first write down the DBI action for

D, brane,

8= .—:f;fd?’“,fp""l/g' +27a’ (B +h) (3.35)

Where, g is the closed string metric in the string frame, B is the constant
W0 form background field and & is the Auctuation of the two form feld, The b-field
i the brane is interpreted as the two form field strength for the [/{1) gauge field

n the bulk it is the usual two form potential. Going to the Einstein frame by

LA ?[L'J“ - 'I'_]I

g=g¢™ w=—p—=i P=¢+ds w= i (3.36)
the action can be rewritten as.
_5}? = o T;I [JJH-FEE{CJ' ; h.h‘}
- /u’"':lEr'°"';:'4'f§3?\/ﬂ+2rr<.1'[ﬂ-r—h}c'f#h (3.37)

where, 7, = T,e™™ and ¢ is the propagating dilaton field. We will now
der each of the three cases separately and compute the two point function upto

gspective orders.

Expansion for small 5

8 part we compute the couplings of the gauge field on the brane to the massless

mistrings in the bulk, We will assume the background constant B-field to be
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and compute the lowest order contribution to the two point funetion considered
g5 an expansion in B, The first thing to note is that, since B is antisymmetric, there
gannot be a non vanishing amplitude with a single B in one vertex only. We need
two powers of B. One on each vertex or both on one. The graviton and the
filston need one ou each vertex. The b-field can couple to the gauge field without a
8. 8o for the b-field we need to consider couplings upto @(B?2), The closed string

level diagrams contributing to the three massless modes are shown in Figure 3.2.

L=\/e-Po[g + (2ma")e-R%(B + b)] (3.38)
2 4 4 ;
p=p+1_m~2; U_{D—Ej (3:39)

We now expand of £ for small B, with g = n+ A,

. -— (27 je— 9% He N
- e i =y e —Q L r W,
L= /ey + (2ra")e- 92} [1 ¥ a9 ] (3.40)
To the linear order in 3,
; — {'.?ﬁn'} S | :
= Pl - 2 ~Qa} 2 Qe B
\/r 7 + (270" ) )| l] + 5 ¢ Irﬂ (20l )e-q%
= /e PIg 4 (2ma’ )00 [| - %{zm']:’r'“‘?"’rr {g'?m}} (3.41)

v - L] ' .
In the last ling the trace was expanded in powers of @', The first term is
pbecause it is trace over an antisvinmetric matrix. Let us define the term under

Efquare-root in the last line as Y and the second term as X,

Y = \/’P—Pd-[” + h 4+ (27a’)e-99h| (3.42)
X = [1-— %{ZT.‘&J}"!P_NQTI {f"}"‘ M—EbB} (3.43)

To get the vertices, we need to find,
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L S(XY) i
dbdy  Abdy (43
L 8Y MY AN AX4AY &Y
obdy Ay ab - Ay b abdy
E, x = f;,‘ h I'II
Now, listing the required derivatives at @, b h = (.
fj:[ I'.'!'_Y 1 'y 4 fj};
— =1 ; =——2mra’)’B* . =0 3.4
5, Bhg 2\ ) 5o o]
§° X L 8 X w X
= (3 2 LB?I; — = (2= 2 B!k_ =i D A%
Soudhy O rar St PR QAT 3bedb;, )
Y 1 Y 8y p+1
—L =gl o w5 e—m P J.48
o i 2 Y ﬂlh&; A 2 f }
4y &%y 4y .
——— =0 —— =0 ——— = (2ra )'P* 3,44
Mgy, Abgrde Sy 0by, B (3.49)

Using these derivatives, the vertices for the graviton and dilaton are,

Vi = —1(2ra’)? [-éﬂ“‘u”ﬂr’kﬂ“] \aisi)
Vo = —ml27a r[inwrww] B (3.51)

For the b-field we need to consider couplings upto Q{B?), the next order
N B in the expansion of equ(3.40). Since we are not interested in the graviton

gilaton exchange at this order, so putting them to zero,

s 1 (2ra’) * 9 (21a’) 2
= e ) | —-Tr [ ——L__f il [ S o :
e m’[ i (u-:-':zm’mﬁ) +51 rrrHE?Tﬂ'}l"H)]

= (2ma’)? (; G "Tn;e: 1) (3.52

.r..||—-

Ty (_f_; + (270’ )? [thB+2:‘FB'3]) (2mar ) Tr{bﬁrmbs}
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B B B
F— &-—F F H—F F—o—e o—F
O b - . o.h Er— + O b
B
(i) (ii} (iii)

gure 3.2: Two point amplitude upto quadratic order in B, (i) and (iii) are due to

-'-.'.'.;I b-field exchan ge, (ii) is due to graviton and dilaton exchange.

This along with the O(1) term gives the following vertex for the b-field.

W= Ezmj u“!‘L( {Emr}zij}fﬂgj)
- .—,J:*zm’ )t {1 BYBY — %H“B”‘ — [B"’]“rﬂ"} (3.53)

The propagators are the usual ones, rewriting them from eqns(3.20.

[”" TR TS 2/(D - EJ’IU"?"J']

<hyhey > = ~2in g 350)
D—2)i* 1 N

P 2= . 4 s R (3.55)

chubis> = = 2iK? i'L,""I,_,‘ N 'fﬂ"l'u’! {(5.56)
LI r] gwrl, ?: ﬁ.‘i + Il_:‘i! J

ive action for the gauge field on the brane. This can be constructed with the
68 computed above and the propagators for the intermediate massless closed

gtates. This correction for the nonplanar diagram can be written as,

Ay(bb) = f P f FHENEBE )W < X(EX(E) > V (3.57)




p a3 _ s ol
< x(E)x(€) >= [ W < xlki ky)x( =k, —ky) > e * &) (3.58)

e can rewrite eqn(3.57) in momentum space coordinates as,

| f;.l-l fIf\‘ )

ﬂﬂ{'bb} = yﬂvlf{;r}lp{"lh”}}h{_}ﬂ/ﬁl < "L'['l*'L_P}kt_ka]}v
dP+ip _

Vp+1fwblp}bi—11?£ﬂp- —p) (3.59)

Bthe planar two point function, both the vertices are on the same end of the cylin-

) the world-sheet computation. In the field theory this corresponds to putting

msion of the DBI action. we should be looking for b2y vertices on one end and a ¥
dpole on the other. In this case, from the above caleulation, kj = 0. So the closed
ing propagator is just 1/57, i.e. the propagator is not modified by the momentum
fhie gauge field on the brane. This is what we expect, as in the field theory on
brane, the loop integrals are not modified for the planar diagrams. Here we will

I toncentrate on the nonplanar sector.

mentioned earlier, on the brane we will identify,

by (p) = V/—— Fulp) = r;ﬂpiq{p} (3.60)

For the graviton we have,

= | ELL VI < hghy > (3.61)
. W i E.lﬂ.;f 2 P
= —in'7,(2ra ]J‘ {ij!m (3.62)
v B’” + B plk o I”'*l_!_F'—l -~ (p+1)? _1) Blkgl's
8 D-2 8(D-2)
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- Pk
Ly (bgb) = f —-;,,Hi',l-‘,i"-iuw}l';’ (3.63)

B dk 1 (D-2)f1 p+1 TR
= i {Rma ) /{ﬂ e (ﬁqD—E+D—2) #re

Adding the contributions from the graviton and the dilaton,

3 ... ioa t | i
Ly(bhb 4 bal) = —it 7, (2ra P[%E‘i—t—ﬁ X (3.64)
. [_?_Bzu‘ ”u.-' Loplk gk glkgl's (Dlg 2 1)]
Similarly for the b-field we have,
d'k W
Ly(bbh) = f[h;,l W < by, ,;J-“ (3.65)
s sy dk 1
S a2
(2 ‘m} I.,,.n £ ol

x|

=
¥ mmz{lﬁ“s“ uﬂ’}“n" (B )

TT{BQP}“}“ ” . n[k‘ ?}kl )

BT ———

For the full two point function, there are cancellations between the

and eqn(3.65). The final answer is,

. . [ d ﬁJ_ 1 P
. = :IH'I. T {'J"']'J I__—J n j_: {\ibfl]
. ) — -
X [(2ma ]”1H”"B‘ & 32 { {1 - ; ¥ Tr(B- ]} i :;“‘ n'* nty
 Cma) ey gy u“ b+ (k) = (1K)

The full two point effective action, can now be constructed by putting
kL, in equ(3.59) along with the identification eqn(3.132), To compare this with
glosed string channel result with only massless exchanges, eqn(3.18) we must

the expansions of the following quantities to appropriate powers of B.
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GV o~ M+ (2ma Y BY)Y 4+ O(BY) (3.67)
89 ~ —(2ma )*BY + O(B?) (3.68)
9y |2 ;
v+ (2ra')B ~ |1 - \£ ;] ) Tr(B*) + O(BY) (3.69)

With these expansions. we can see that eqn(3.18) efuals the sum of

massless contributions, in eqn(3.66).

Noncommutative case (g = en)

e now turn to the Seiberg Witten limit, (2.14) which gives rise to noncommutative
gld theory on the brane. Here again we will be interested in writing out the two
it function eqn(3.18) in the closed string channel as a sum of the massless closed
ing modes. Due to the scaling of the closed string metric, unlike the earlier case,
now expand all results in powers of the scale parameter for closed string

€. We begin by expanding the DBI action,

1
(27a’)e=-R9( B + b)

1,2
{E?THFI]I"_“"IIQIGJ{B_'_!‘Jl:l [] -+ E{T‘l—hh]} {:}.T“]

For a matrix M, we have that following expansion,

V14 M

exp [%Trlug{l + M ;] (3.71)

AL M? ’
14 %Trl[:” B ‘_1:_ +o) é [Tr[ M — -+ ]] + o (3.72)

- £

For M antisymunetrie, terms containing Tr( M) vanishes, hence to order

¥ - Pa ) )eh {2 1 :
y/(enaje- P+ @e(53 + ) [' B ITr(lim']E'-w{B—l-h]{”—i_m) ‘
= \/{Eirr.:’]f‘”"'fﬂ]w{ﬂ +b) %

- EdT (1 2+ 34pip (n+ h)* (3.73)
: W T E Bi"T BJ‘B n 1 v




iChapter 3. Open-Closed String Duality in background B-Field S0

Let us now first consider the (1) term in e,

L ﬁ;1r_| = x/f?.ﬁﬂljt _'1!1"'{‘}?""[3 B EI} I[:LT—I:]

There is no graviton coupling at this order. The ¢ and b-field vertices

'-.::'-'_ his are,

Lk
Vi = —l\f{Emr']B (iB) (3.75)

JORORHONON NG

Now, let us consider the @ term. As in the earlier case let us define.

S
Il
(=)
=
D-‘
W

Y = \/EEHH']{"P*‘J]‘:‘(B + b (3.77)
Fepade 1 2z iy g paat
B = WTT [E (] -~ E!’:+dﬁbﬁh—- ) (n+h) } (3.74)

We are interested in the two point function only upto O(e?), hence we

= Yy 1 1
T — -\;’r{frm’”}‘ :? = .-;\I{E'ﬁ'f'tr}ff (%) [3?”}

6 iy BX _ 4@ (1\F (3.80)

Obygdih ¢ dbydd  4(2xa’)? \ B3 ‘
6X _ 2Q 1 X €2 1 \* )
50 42ra' )2 B® by d2ra 2 \ BS '

After putting in all the appropriate derivatives, the vertices for the dila-

the B-field upto O(€?) is given by,
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- 1 1 Ik n FHI:—I[_:._] = 2} 1 Lk 1 1 1 I
) () -6 ()

The situation in this case is similar to that of the earlier small B expan-

pand is shown in Figure 3.3. The propagators in this limit, eqns(3.22,3.30).

_if} - 2)ik? 1

<ep> = 3 , 3.8¢
b 1 A'1+f'1kﬁ (3.83)

) ine? i?.l.,'??”‘ “'-'}J,r'r_rur] .
Shanr = (2ma' )2 K2 +etkE (3.34)

With the vertices computed above and the propagator in this limit, the
._':;u nt function for the dilaton is,

3 '1- I—-} -2 .
= —:{IPT{?m_r Bk 1] 2) [k )

-~ - %
" (27)0 k3 + e 1p?

%(é)u(%)u _%}_jj ((Bi)“‘_li.ﬁ (:él_) (%)u) (%)H

+ (k) — (I'k)

(3.85)
For the b-feld,
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e d'k, 9 .
(2ma’)? S (2m) kT + e 1p?

(1)@ 6))6)
i) @) i) @)

+ (lk) = (LK) (3.86)

La(bbh) = —idet f?ﬁf:.ﬂ}ﬁ"'rj

s

The first two terms cancel with the Q-dependent terms of the dilaton,

e resulting amplitude can now be written as,

: _rpy g [dky ! 2 ;
Ly = —idet(2ma B)sr; / ) Lol [O(1) + O(e%)] (3.87)
5 1k [k
1) = {Di ] (—EI;-) (;—3) + (k) = (LK j] (3.88)

+ (k) = (I'k) (3.89)

P now reconstruct the quadratic term in effective action, (3.59) following the
gase, With the following expansions, it is easy to check that the sum of the

§ contributions adds upto eqn(3.18).

- b |
GY o~ —e—e (L) +O() (3.90)

g l G ¢ L ’ .[3 g]_:]
B +[2:n'j3 B? '

. 2 1 .
e+ (2ra)B ~ /(270 )B [1 = I{?.:rTPTr (?)] (3.92)
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re with that of st ring theory result in eqn(3.18).

Noncommutative case (G = 7))

s part we finally consider the restriction of the open string metric, G = 1. The

rder solution for the closed string metric, ¢ in @ in this limit is,

g=—(2ma')?B%+ O(a’) (3.93)

We will now consider expansions of the two point functions in powers of

begin again with the following DBI Lagrangian,

L = J(2ra )P (B by |1 - — 1
L= \/iena) (B0 [t e#(B 1)

142
(2ra ) B (5 + hJ“} (3.94)

The calculation for the vertices is same as before, there is no graviton

B8 t0 the leading orders. The dilaton and the b-field vertices are,

._ — [ 1/71\*  (2ra)240 -2 TN B
& A/ (2ma' ) E (ﬁ) + { ) {I : ) (ff“‘ — EFI'{BJ} (E)

| [1 £1N® 1y 171V 71\"
i U f el Persl A = e el ' _l. e
GG e
The propagators for the dilaton and the bfield are modified as,
jr L {_I"
cpps = =l = (3.96)
4 k1 + Ky /(2ma’)?
. . [BLB, — B?I.BE,]
<bybpy > = —2ik*(2ra P —2 L (3.97)

K2+ Ky /(2ra’)?
With these vertices (shown in Figure 3.4) and the propagators from

524,3.30), the two point functions are now given by,
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e 3.4: Two point amplitude upto @(a?). (i) and (ii) are due to dilaton ex-

change, (iii) is due to bfield exchange.

= -f:ii"i[ﬂﬁan}HgTﬁ[U;2}[

ORI\ @ra2E@ =2 0 1. .
i(5) (5) TR (e

4 (kY —= R

d'k 1
BT, . X
(27}t k2 + p?/(2ma’)?

[
o
o) —
. S

=
o R
A
o =

. R 2
] = —gilet (P T Tre ]) il -
(%00) etEma Bn Gra 1 | Gry L+ mlema R -
iy
P L. (1) 1 Lo
% [(-1” mqufi} B 5 +::4M ] o)
(k) = (') (3.99)

he dilaton exchange. The full two point answer is

e e 1 oy
Ly = —idet{27n U';.-:'le] ;-).._}.r e 1_};:(-;““*}2[{:'”-” +O(a ")) (3.100)

-9 e (e o
[ — l(ﬁ) (E) +[u;}.—.w.-.}] (3.101)

48 before, the first term of the b exchange cancels with the @ dependent term of
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GE = g (3.103)

ind with the solution for g. eqn(3.93) to the lowest order in o,

(e o
09 ~ (=) +(27a')BY 3.10
(H) (27a V' B (3.104)
=x = ; = ‘2.‘"‘1"! . J
Vo+ @i )B ~ (2= )B [I _ T ) (43.105)

b5 in the earlier cases, the massless contributions computed here, eqn(3.100) adds
_ju eqn(3.18). Note that the situstion here is similar to that of the earlier case in

Bection 3.2.2. As o~ +/r, the closed string metric in both the cases goes to zero as

e. However the difference being that the two point amplitude differ by powers
.'B.'-itl both the cases, due to the relative power of B* in g in this case. Here too,
e SW map between the usual and the noncommutative field strength eqn(2.18),
emains the same. The differences in the powers of 8 in the two point amplitudes,
jqn(3.87) and eqn(3.100} are absorbed n G, # and \,fm in the two cases,

We can work with any of the forms of the closed string metric g, the important point

heing that g should go to zero as ¢ which gives the noncommutative gauge theory
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1y Brane B Field

/7,

.__jgure 3.5: The background for string propagation. D; brane world volume direc-
ltions are 0,1.2,3. Orbifolded directions 6.7.8.9.
3.3 Open Superstring in Background B-field

er studying the bosonic case, let us now turn to the supersymmetric example.

With the observations made in Section 3.1 and following [23], we will consider A" = 2

C?/Z; orbifold. The setup is shown in Figure 3.5. With the B-field turned on

flong the world-volume directions, the low-energy effective theory on the brane is
described by o noncommmtative A7 = 2 gauge theory. The world-sheet action for

the fermions coupled to B-field 1= given by,

] . | oo
Sp=— / st d o - - Banv™ g™ (3.106)
o Jy 1 Sox

The full aetion including the bosons (2.10) and the fermions (3.106) with
the bulk and the boundary terms are invariant under the following supersvimetry

ransformations,

AX M - E_L'r'”

oYM = —ig?d, XMe (3.107)

We now write down the boundary equations by varying (3.106) with the

following constraints,
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Sl = Syl |oee  and  Sud = —(=1)2%80M |, (3.108)

where, @ = 0.1 gives the NS and the R sectors respectively This gives

he following boundary equations,

aun (vl — ¢R) +27a Byx (v + U5) =0 o=t (3.109)
gunley + (—1)*0H) + 2ma Bus (v — (=1)%)) Jo=o (3.110)

To write down the correlator for the fermions. first define,

M = '{--‘}EI{U. 7') <<=

f oy M
g =27 B Nt
= —_— ur
g+2max B J '

-~

(2

=]

B

- a.7) m<ao<2n (3.111)

I" is the usual doubling trick that ensures the boundary conditions (3.109). In

Restricting ourselves to the directions along the brane, this vertex operator for the

gruge field in the zero picture is given by,

- Thd {'i{'fu;'f'j + 4p. "L'J] e'f "'.{-17- u) (3.112)

Viporiy) = B2

where W' is given by,

i ! i, 4 1 1 ' .
VO = 5 0.0+ 0 0.) = (g O
i) = &l vl Y o " 311
(i) = 5 {r_.-.,_{u.T] + gip(m.7)) = mg grp(m, 1) (S.113)

4

Jing (3.113). the correlation function for ¥ is given by,

(ﬁ"{uﬂﬁ”l{uﬂ) = GG (3] (w—w) (3.114)
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where G is the open string metric defined in (2.13) and. G [5] (e —w') is given by

0],

& O8] = r;’f) s [:é] (0, it)
in t! [ :3] (“;—fr H) i [5](0, it)

(3.115)

ings on O7/Zs gives rise to N = 2 supersvinmetric gauge theory on D3-branes
th world volume directions transverse to the orbifilded planes. The open and the
losed string spectrmmn on this orbifold have been nicely worked out in [27]. We
gelude o brief analysis here that will be relevant for the later discussions. We will

take the orbifolded directions to be G, 7,89 with Z, = {g, | e, ¢} such that §* = ¢

The action of ¢ on these coordinates is given by,

gX! = -X! for I1=617809 (3.116)

o order to preserve world sheet supersymmetry we must also consider the action of

#s on the fermionic partuers, ¢,

33.1.1 Open String Spectrum and Fractional Branes

Un a particular state of the open string the orbifold action is on the oscillators, !,
ong with the Chan-Paton indices associated with it. Let us consider the massless

bosonic states from the NS sector.



Chapter 3. Open-Closed String Duality in background B-Field 80

glid vl >=yelt 5 gul s > Vi (3.117)

where + is a representation of Z; The spectrum is obtained by keeping

ithe states that are invariant under the above action. To derive this it is easier to

‘work in the basis where 5 is diagonal,

10
=y = (3.118)
0 —1

The action on the Chan-Paton indices can be thought of as,

112\ 11 —12
7 4 l= (4.119)
21 22 —921 22

oscillators that are odd under the 2, action, j,.rlr.lil,2 % = —|t,-""_|f..‘, =, i for

Al AL 2 gauge fields =23
Al = ‘:‘{ L'lf; 4 real scalars I=4.5 (3.120)
¢! @) 8 real scalars [ =6,7.8,9

The orbifold action on the space-time spinors is given by,

Xy — 1.':.""”':"'-;-”Iln'_;'"r_al [3121}

gaves 1y and yao invariant and the second one leaves y 12 and yo2,. Projection onto

pe-of the chiralities leaves four copies of each of the spinors.
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The above fields can be grouped into two vector multiplets and two hy-
permultiplets of ' = 2 with gauge group U(1) x U(1). The beta funetion for the
gauge couplings for this theory vanishes and the theory is conformally invariant.
Now consider an irreducible representation 4 = £1. This acts trivially on the Chan-
Paton indices. These branes are known as fracttonal branes. From the geometric

of view there is no image for the 3 brane. The brane is localised at the fixed

Xo+2r.7) = +£X'(0,7)
(

¢lo+2n,1) = ¢i(e,7) 1=6,7,89 (3.122)

For the world sheet fermions, the (4 )-sign stands for the NS-sector and
.)-sign for the R-sector. For the other directions the boundary conditions on
ld-sheet fields are as usual. We will first list the fields in the untwisted sectors.

'HE—NS sector the massless states invariant under the orbifold projection are,
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L2t 14 10, K) (3.123)

where, I,.J = {2,3.4.5} or [,J = {6,7,8 9}. The first set of oscillators

give the graviton, antisymmetric 2-form field, and the dilaton. The second set gives

sixteen scalars.

The orbifold action on the spinor of SO(8) is given by,

l.'j'l B Say E.;:l —F I‘f'i"-n.:534_'?"'I :I E“'] s 92, 81, 34} {3124}

The Z, invariant R-R state is formed by taking both the left the right
ftates to be either even or odd under Z, projection corresponding to s3 + 54 = 0
OF 83 + 54 = +1 respectively. GSO projection, restricting to both the left and right
iftates to be of the same chirality gives thirty two states. These states correspond
o four 2-form fields and eight scalars.

Let us now turn to the twisted sectors. For the twisted sectors the ground
tate energy for both the NS and the R sectors vanish, In the NS sector the massless
odes come from ), [ = 6,7.8,9 oscillators which form a spinor representation of
31"5?3 With the GSO and the orbifold projections, the closed string spectrum is
jen by, 2 x 2 = [0] + [2]. The [0] and the self-dual [2] constitute the four massless
galars in the NS-NS sector. Similarly, in the R sector, the massless modes are given
WYl for 1 = 2,3,4,5. Thus giving a scalar and a two-form self-dual field in the
"I;-'.'a- string R-R sector. The couplings for the massless closed string states to the

getional Dy-brane have been worked out by various authors. See for example [27].

Two point one loop amplitude

hthis section we compute the two point function for the gauge fields on the brane.
g necessary ingredients are given in Section 3.3 and in the Appendix A3. The
m amplitude without any vertex operator insertion vanishes as a result of

[1 E_‘tr}-’,_ I.e.
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r xlfjr B T a &
det(g + 2ra B‘,I-/[: E{br’n t)~* Z Z[5], =0 (3.125)

{o.8.9()

The factor of det(g + 2ma’ B) comes from the trace over the world sheet bosonic

zero modes. The s is over the spin structures (o, 3) = (0,1/2) corresponding
fo the NS — R sectors and the GSO projection and the arbifold projection. The
elements Z, [§] are computed in the Appendix A3. Let us now compute the two

point function. This is given by,

= dt

Alp,-p) = det(g+2ra B) (87 )™ x

0

2=t 2nt
® Z Z[:;]#‘/‘; n‘y‘/‘; dy <1.-“;, £ y)\V{-p.x .y}){
|

o, 13}
(e,

(3.126)

the flat space. it is well known that amplitudes with less that four boson inser-
. 18 vanish. However, in this model the two point amplitude survives. We will now
mpute this amplitude in the presence of background B-field. First note that the
posonic correlation function, (: g, X ™ X = g X'e=#¥ 1) does not contribute to the
Wo point amplitude as it is independent of the spin structure. The two point fune-
jon would involve the sum over the Z, |5] which makes this contribution zero due

0/(3.125). The nonzero part of the amplitude will be obtained from the fermionic

exey (: p WK X o pplemeX Ly o exeipipy (GG — GUGH) = (3.127)
x GUA) (w—u) (: et X g BX :>
"_-': planar two point amplitude, both the vertex operators would be inserted at

isame end of the cylinder (i.e. at w = 0+ iy or 7 + iy). In this case, the sum in

two point amplitude reduces to,
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> Z[3],6°(8)(iay/am) = 3 2(5),6° (5] (idy/2n)

(e B.) {ead)
+ Zzlf}!ﬂgﬁ[g][fﬂyﬁw}
(a.3)
d?‘_! g : al ag2ra - .
T — > 0*(0.it) [3] 07 [3] (iAy/2m. it) + (3.128)
M e = )
1672

- SUEAY/ 27, it W30, i) — 93(i 2, it )00, @
Ay o, 0.0 [03(iAy /27, it)03(0, it) — 93(iAy /27, it)03(0, it))

where, Ay = y —y . We have separated the total sum as the sum over the two Za

group actions. In writing this out we have used the following identity

153
n{it) = [ ulﬂ_n;v n‘}] (3.120)

Now, the first term vanishes due to the following identity

V{E] (e [5] ()0 [5] (w)i [F] (s) = 20 [ :’::] (g )0 [:‘:j] KERLL [L’:j] {2y Jod [:{.j] (5]

(3.130)
where,
1.
w = S{utv+w+s) vy= S(utv—w- s)
. 1
WYy, = I';;{H - l"+H"—.‘r} 8 = :')'U.I-E.‘— h’.'+-.“i} [-1.13”

nd noting that, o [ ”*] O,7t) = 0, in the same way as the fat case that makes
pmplitudes with two vertex insertions vanish. The second term is a constant also

|' e to,

V32, i) 05(0, i) — 05(z. at)3(0, 1t) = 03 (=, 16)03(0, it) (3.132)
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or the nonplanar amplitude, which we are ultimately interested in, we need to put,
the two vertices at the two ends of the eylinder such that, w = 7 + iy and w' = iy,
It can be seen that the fermionic part of the correlator is constant and independent
z_:- t, same as the planar case following from the identity (3.132). The effect of

nonplanarity and the regulation of the two point function due to the background

B-field is encoded in the correlation functions for the exponentials. The two point

function thus reduces to,

5 5 ) ) o o o, s , B
Alp, —p) ~ erepip; (GG — GUGH) ] I:“‘“‘*“ £)2 / dydy’ (X emnX)
0

1]

(3.133)

‘the noncommutative gauge theory two point function is obtained in the limit t — oo
and a' — 0. The correlation function in this limit can be computed from the bosonic
elation functions [17, 31]. We give below the function for the nonplanar case in

ig lirnit.

{‘._,r;rl.:\' - — i X )

vxp{-_u"’t.ﬁ;rti;r - 1) - %p.{yh’ - G"]”;J_,}
2 20N A 7 q 1t
= mp{—p tAz(Ar - 1) - ﬂ} (:3.134)

i = (fp). We have redefined the world sheet coordinate as Ar = Ly /(2rt)

RN e

¢ =G - s (3.135)

Ihe first term in the exponential in (3.134) regulates the integral over ¢ in the
ifre ed, for p # 0 and the second term regulates it in the ultravielet that is usu-
_'nbserved in noncommutative field theories. The t — oo limit suppresses the
pntributions from all the open string massive modes. However as, discussed in Sec-

b1 3.1, the field theory divergences still come from the ¢ — 0 region. We can thus
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‘break the integral over ¢ into two intervals 1/A%" <t < oo and 0 < ¢ < 1/A% (sen
‘Figure 3.1). The second interval which is the source of the UV divergence is also
the regime dominated by massless closed string exchanges. We now evaluate the
‘two point function in this limit. First, the correlation function for the exponential

in the £ — 0 limit is given by

(e ¥ ) = exp {— %;ﬁiﬂi"’iﬂ;} (3.136)

where g* is the closed string metric. Modular transformation , (f — 1 /1) allows

s to rewrite the one loop amplitude as the sum over closed string modes in a tree
iagram. In the lmit + — 0, the amplitude will be dominated by massless closed
string modes. In this model however, the effect of the massive modes in the loop
cancel amongst themselves for any value of ¢, In the open string channel the f — 0
t would usually be contributed by the full tower of open string modes. However
gince we have seen that the effect of the massive string modes cancel anyhow for
values of £, the contribution to this limit from the open string modes comes
only from the massless ones. The additional term in (3.134) as compared to (3.136)
gives finite derivative corrections to the effective action. These would in general
require the massive closed string states for its dual description.  Without these
erivative corrections, the contributions from the massless open string loop and the
85 closed string tree are exactly equal. The divergent ultraviolet behavior of
g massless open string modes can thus be captured by the the massless closed
ring modes that have momentum in the limit [0,1/Ae’]. The amplitude can now

@ written as,

o ) ecepip; (GYGH* — G'JGH] Hp) (3.137)

Smn

Alp, —p) = Videt(g + 270 B) (
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Ip) = f ris-»"'f'w{—ﬂ.f SP:ﬂijPJ}

_ fdtky 1

") @ kS + pigiip,

(3.138)

' The integral is written in terms of s = 1/f and in the last line we have rewritten
if as an integral over k., the momentum in the directions transverse to the brane
for closed strings. The nonzero contribution to the two point amplitude in (3.126)

ccomes from the Trys [gg™] and Trys [9(—1)Fg], that are evaluated in (A3.35).

These correspond to antiperiodic (NS-NS) and periodic (R-R) closed strings in the
Ltwisted sectors respectively. The fractional Dy-brane is localised at the fixed point
" C?/Z,. Thus the twisted sector closed string states that couple to it are twisted
inall the directions of the orbifold. These modes are localised at the fixed point and
fre free to move in the six directions transverse to the orbifold. This is the origin of
the momentum integral (3.138) in two directions transverse to the D-brane. These
twisted states come from both the N§ — NS and the B — R sectors are listed in
;-:-r ion 3.3.1.2. The couplings for the massless closed string states to the fractional
Dy-brane have been worked ont by various authors. See for example [27].

As we are interested in seeing the ultraviolet effect of the open string
Bianncl as an infrared effeet in the closed string channel, like in the bosonic case
L eqn.(3.15)), we must cut off the s integral at the lower end at some value A%’
sponding to the UV cutoff for the momentum of the massless closed strings in

lie directions transverse to the brane, With this, we have,

ij 12
24y (."-H p; + 1/(Aa) ) (3.139)

I{pAy=47"1
I?LHUP_:

Hiis is the ultraviolet behavior of the two point function for two pauge fields in
i= 2 theory. For the noncommutative theory it is regulated for p # 0. The fact

Bt we are able to rewrite the gauge theory two point function as massless closed

ree-level exchanges is very specific to the N = 2 theory. The computations

s show that the origin of this can be traced to open-closed string duality where
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Open String b L . Closed String
One loop amplitude Channel
SW Limit
o~ | t—os t=0
Gy ~e—=0
Nﬂmﬂuuuutmire_ | Massless Closed

Field Theory uv ~ 18 String Exchange

Figure 3.6: Noncommutative field theory and closed string channel limits

In the previous sections we have addressed the issue of open closed duality

i string theory in the presence of B-field. This duality lies at the heart of duality

Once we turn on a B-field we also make contact with another phe-
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nomenon: UV /IR mixing that is known to happen in non commutative field theories.
- This has a natural explanation when we consider this theory as the o' — 0 limit of
a string theory a la Seiberg-Witten. The open string loop UV region is reproduced
;J}l' closed string trees with small (i.e IR) momentum exchange. The B-field acts
a5 a regulator for both amplitudes but the regulation goes away as the external

momentum goes to zero. It is not surprising that the tree diagram diverges as the

external momentum goes to zero, but by the duality map this must also be true for
e UV divergence of the gange theorv.

Figure 3.6 sums up the various limits involved in the problem addressed

e get a one loop two point function in noncommutative field theory. However

: e UV divergences of the noncommutative field theory still come from the ¢ — ()

b the coefficients to match with the gauge theory result, in the bosonic string case,
e full tower of the closed string states are required. We concluded there that an

wact correspondence between the UV behavior of the noncommutative gauge theory

y two extra transverse directions. This would cure the problem of tachyons

as lead to the desired forms of propagators in the closed string channel. We
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have also studied massless closed string exchanges in the background B-field. The
full two point amplitude in the presence of background B-field must be of the form
(3.18). We have reconstructed this from the sum of massless (graviton, dilaton and

bfield) exchanges with the vertices computed from the DBI action, by considering

pansions of the amplitude in three different cases. This exercise has helped in
isolating the contributions fram each of the massless closed string modes separately.
With these insights into the problem, in Sections 3.3 and 3.4 we have

died a noncommutative N = 2 gauge theory realised on a fractional Ds-brane

We now discuss about the elosed string couplings to the nonconunutative
e theory on the brane. To see the closed string coupling to the gauge theory,

psider for the moment, eqn( 3.7) in the bosonic theory. Let us set a’t =T
ir el - 2T
Zoy /5.?7[]‘] e [;I’ + (D —-2)+ U{f.-"’f‘ ]] exp(—C'/T) (3.140)

The O(1) term in the expansion corresponds to the massless open string
pries in the loop. If we take the o' — 0 limit the contribution of the massive modes
fop out. 1f we ignore the tachyon we get the massless mode contribution. In the
ymmetric case there is no tachyon. However in the present case dropping the

gliyon term makes an exact comparison of the massless sectors of the two cases
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‘meaningless because the powers of o cannot match. Nevertheless the comparison

8 instructive.

The UV contribution of (3.7,3.140), as shown in Figure 3.1, comes from
the region 0 < £ < 1 /A*a’. The UV divergences coming from this region is regulated

'b}r C. In the closed string channel we have,

Zy o~ [t‘f.ﬁ'f_ﬂi}_%& g H? e+ (D —2) + Ofe™**)] exp(—Cs/a’)

N .I _L-E_I ! JE_]_ { . —I__
(@)™ (o) /d’r‘-ki+

ca (3.141)

The a' — 0 limit does not pull out the massless sector (even if we ignore

!_'a tachyon) and this makes it clear that in general all the massive closed string

1

modes are required to reproduce the massless open string contribution. But let us

s on the massless states of the closed string sector. In the second expression of

{8.141), we have kept only the contribution from the massless closed string mode.

I= 2 that the powers match.

In the supersynunetrie case, for the %/ Z, orbifold, we have seen that the
psedd strings that contribute to the dual deseription of the nonplanar divergences
8 from the twisted sectors. They are free to move in 6 directions transverse to the
lifold. For the Dy-brane that is localised at the fixed point with world volume
rections perpendicular to the orbifold, these closed string twisted states propagate
exactly two directions transverse to the brane. Thus in this case | = 2 and from

the gauge field strength same as that of the open string channel.
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Although in general, the closed string couplings to the gauge field when
the closed string modes are restricted to the massless ones do not give the same

normalisation as the gauge theory, the massive closed string modes are expected to

contribute so that the normalisations at both the ends are equal. This is guaranteed
by open-closed string duality. For the C?/Z, orbifold, since the massive states cancel,
the finite number of closed string modes must give the same normalisation as the
gauge theory two point function. This is the reason why we are able to see the
IR behavior of noncommutative A" = 2 theory in terms of only the massless closed
ing modes in the twisted sectors.

The role plaved by the B-field is essentially that of a regulator that
preserves the open closed duality. The fact that we see the UV divergence at the
field theory level as IR divergence depends on the the special nature of this regulator
at is dependent on the B-field and external momenta, thus giving rise to UV/IR
mixing in noncommutative gauge theories. However the B-field does not affect the
ondence between the modes on the open and closed string sides that arise as

t of the world-sheet duality. The only modification of the partition function

mtegrating over high momentum modes in the loops can be seen as IR divergences
e to closed string exchanges, as a result of open-closed string duality. The question
fwhether a finite or infinite number of closed string modes are necessary for the
il description depends on the commutative theory without the B-field.

At higher orders one expeets the duality to be true for the full string

and not for the massless sectors, But in limits such as in the AdS/CFET case

fiion of the AdS/CFT [33] with B-field [34].
Finally, it will be interesting to analyse the massless closed string ex-

anges in the background B-field for the C*/Z, orbifold as we have done in Sec-

i 3.2 for the bosonic case [35]. We have seen from the string theory one loop
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computation that the surviving contributions here come from the twisted N5S-NS5
and R-R states. A fractional Dy-brane at the fixed point of C?/Z, can be seen as
an ordinary Ds-brane wrapped on a vanishing 2-sphere. The twisted NS-NS and
R-R couplings to the D-brane can be obtained from the dimensional reduction of

the Born-Infeld (3.37) and the Chern-Simons [36, 37] couplings respectively.

A3 Appendix : Evaluation of Vacuum amplitude

In this appendix we ealculate the vacuum amplitude for the open strings with end
points on a Di-brane that is located at the fixed point of C?/Z, orbifold, Let us

first start with the bosonic part of the world-sheet action,

Sp=—

rametr L | Sy
j] = /.[;_.u,n,-‘f'_'}a:'i'_'l"ff,\ i +5[ B“,\;.-T'L‘Hdr.l i {:13.1]
anc Jy = WL
(A3.2)

The boundary condition for the world-sheet bosans from the above action

e X% + 210 By XY =0 |smox (A3.3)

In the Seiberg-Witten limit, g;; = eny; we choose the B field along the

' brane to be of the {orm,

0 & 0 0

’ b 00 0
B=-—; (A3.4)
na 0 0 0 b
0 0 —h 0
With the above form for the B-field, and defining,
X5, =2""X"+=X") and X7 =2""(X*£iX") (A3.5)
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Chapter 3.
the boundary condition (A3.3) can be rewritten as,

and  9,X35 = £ibd, X2 |,z (A3.6)

0; X5, =4bih X2, |omoie

The mode expansions for the open string satisfving the above boundary

conditions are siven by,

‘}ur i
i " N = i r mn T s
= biolpl, + 1V 2a E ——r Ham2) cos(ng T vy)
ngEd

T =
X = Tay T _gv

B " ?_:
i { _Ihzr'rjp.”—nf‘ju z—:mf_”"r*““ 0s(na = 1)

n

n#il
(A3.7)

where we have detined,

1 + '!‘ 1 ] 8
iy = E log ( b, ) ey = 3 log (] -+ 1312) (A3.8)
The coefficients of the mode expansions (A3.7) are fixed so as to satisfy,

[Ti'lliﬂr a)Plr.o ]J = —2ma dla — o) (AJ.9)
oscillators satisfy the usual commutation

and that the zero mudes and the othe

flations,

[Hl{li-rr-‘”IJ."u] = _””";"”" [HF-.':'m'” r'nr.] = ”1‘5!:4. 1 “"“Ij“—}:'

[r,f”,pr_'l_,] e [r;:ﬂ,p;:,,] — (A3.11)

There is no shift in the moding of the oscillators, the zero point energy

the spectrum is the same as the B = () case. The situation is the same as that
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of a neutral string in electromagnetic background [31]. Note that the commutator

for X* now does not vanish at the boundary, for example,

= —2min

(1) ]

[ (7,00, X, (7.0

[S—
|
=1

¥ hl
-

[_-‘i',_“l[r,_ ) X kT 71"]] = 27ia (A3.12)

Tlie zero mode for the energy momentum tensor can now be worked out

and is given by,

9’ 20

i 5 200 ., B e op o
Lo = 2 - PPy T qPele — Z l“-:n—n”m = “m;—uﬂm] (A3.13)

n#0

Since the spectrunt remains the same, the contribution to the vacuum amplitude
from the bosonic modes 1s the same as the usual B = 0 case except that there
s a factor of /(b = 1) which comes from the trace over the zero modes for each
\direction along the brane. From (A3.4) in the limit (2.14), b, ~ 1//¢ for B to be
finite. With this,

e [](# £ 1) — det(g + 2ra B) (A3.14)

Including contributions from all the directions,

; ] .
Lf.-’-]ﬂ = 'L;;'mn + Lf!-l.u T L:If',_, R {AH-IE}J

i

e

L3

L denotes the 4,5 directions and 6, 7, 8.9 are the orbifolded directions. Let us now

ompute the contributions from the world sheet fermions, The action is given by,

‘: T i TN i
Sp=— f gan ™ ptda ™ 1 f By ™ gy (A3.16)
E gy

dircy

We rewrite the boundary equations from (3.109),
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an(UE — v ) + 2ma By (W +08) = 0 |y (A3.17)

anen (i + (=10 + 2ma Bya (vl — (=1)"8Y) oo (A3.18)

Now defining,

=172

B o s X ST ; ook eyl i
Yiyee =2 U, T vpy) and Upe =27 (¥R, tig,) (A3.19)

Far the Ramond Sector (a = 1) with the constant B-field given by (A3.4),

vi(l2h) = L':"ﬁiLl:] Fby) |o=0.x (A3.20)

Mode expansion,

VL= Z Ay Xihale T n) {A3.21)
where,
\iyp = V2o exp{—n(r —a) F 1y} (Ad.22
\i!m. = v@:vxp{ —mn(r+o) £} (A3.23)
and
| l + h| il L
1y = ':’i[”': (1 = f’t) = tanh "y {A3.24)

The boundary condition for the other two directions are,

'vl.""r_._,:,““ +iby) = L‘rII"_l:,L{] F iha) |o=0= (A3.25)

This gives the same mode expansion as (A3.21),

Vit = Do danXapleaTin) (A3.26)

LI ]




Chapter 3. Open-Closed String Duality in background B-Field 106

Xjayp = \fzc:t"u_\*l:{--fmr—r:r}¢ug} (A3.27)
\-::ﬂl;. == V'J:i:'.l’:':-tp{—mﬂ? +a) £} (A3.28)
and
1 14 iha .
L Ton e s BT (A3.20)
2 1— EEJ'-_:-

Like the bosonic partners there is no shift in the frequencies. The oscillators are
integer moded as wsual. For the Neveu-Schwarz sector, (@ = 0), the relative sign
between ¢ and ¢} at the o = 7 end in eqn(6) can be brought about by the usual
restriction on nt to only run over half integers in the mode expansions {A3.21,A3.26).

The oscillators satisfy the standard anticommutation relations,

{d?l]n‘ ll'lrl-] .lm} - _ﬁ’""“ : hf:.'."m' I:i1|__'.*ilrr|j' - d_“l-"""l {AHHU}

The zero mode for the energy momentum tensor for the fermions along the brane

pan e written ns,

Lo = Som [day_ndh — dincatii] (A3.31)

For all the fermions including the contributions from the other directions we Lave,

Lio = Ly + Lip + LI + ¢4(a) (A3.32)

where L, and LU have the usual representation in terms of oscillators.

F, E

= es(0) = . (A3.33)

el =13 24

‘We now compute the vacunm amplitude including the contributions from the ghosts,

‘This is given by,
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- _ANF
Zi =V det{g + o B}/ ?{Sﬁgrff}_ﬂ'l"rxy_;;[(i+H) (1‘” b )ql'”]

Jo o 2
(A3.34)

The origin of the det(g + 2ma’ B) term is given in (A3.14) and V, is the volume of
the Dy-brane and g = ¢ *. The trace is summed over the spin structures with
the orbifold projection, The required traces are listed below in terms of the Thetfa

Functions, ¥;{v;1t) (see for example [32]).

Z[§l(it) = Trys[g™

= ’1?- /3 H 1 = qm)—a] |iq-nl,-’a ]:[“ + qm—lf:’}—sl

m=1

= i) a0, i) (Ad.35)

Z [%] (it) = Trys [(=1)Fg"]

= - [ =48 Hll e -“} Eq-lfﬁ f::[“ _qm—lfﬂ}—u}

m=1 wi=]

= —qlit) (0, et) (A3.36)

Z['], i) = Trg[qh]

- —! 1’11__[11 q) ][q’”ﬁ{lfh;’"}“]

= =]

—nlit)” “#Em. it) (A3.37)

z[if-?.'i] (it) = Trg(-1)"g"] =0 (A3.38)

Z(§], (i) = Treys [g9"]

o { —-1/3 H “ 411+qm] 4“ [ql_ﬂs ﬁ “ e qm—l.,."ETI{l - qm—lﬁ]-l

m=1 m=]

= An(at) " d3(0,it)d3(0, it)d5 (0, it) (A3.39)
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Z[1ja], (i) = Trws [o(=1)"g"]

. :;'”'EHU—q"‘i‘*“*‘f"”"] [-;zlﬁH{l—q"‘—lfﬂ}"{l-rrj”*-lfi‘-f'

m=1 m=1

= —dn(it) "0, it)7(0, it )15 3 (0, it) (A3.40)

Z[’;;'E]H_,{m = Trg[gq™] =0 (A3.41)

(A3.42)
Recalling,
(0, at) — (0, 2t) — 030, 08) = 0 (AB.43)
andd noting that,
Z[plglit) = -2 [ |t;!z],1{"” (Ad.44)

the vacuum mmplitude vanishes, This is as a result of supersymmetry.

Theta Functions :

s

Il

| B

i =expl—2nt) = = expl2miv) {A3.45)

Yoalw, it) = va(mit) = H{l — g™ (L +2g™ ) (1 +271g™ ) (A3.46)

m=1
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jae

oy (1 2t) = daleat) = H“ g )1 —zg™” ]"‘]{] __lq""—l.-“} (A3.47)
m=1
tholw,it) = ta(wat) = 2exp(—mt/4) cos(mv) x
x JT0 =g (1% 2¢™2)(1 + 2~1gm=12) (A3.48)
m=1
vylimit) = hivit) = —2exp(—=t/4)sin(mr) =
w H“ ‘—f;fm}ll— m—1/ ..Hl —I m-l,n'lj [Aﬁ#lg}
m=]
n(at) = g"/* H{l (A3.50)

m=I1
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Chapter 4

Localised Closed String Tachyon

Condensation

Localised closed string tachyon condensation have been the topic of intensive study
recently. This was pioneered by the work of Adams, Polchinski, and Silverstein
(APS) [1]. Unlike the open string the closed string tachyon condensation is accom-
panied by changes in the background space time. This is due to the fact that the
closed string tachyon couples to the graviton and the dilaton that are present in
all closed string theories. Thus in general the condensation process is very hard to
follow as it quickly leads to the region in the string coupling where the usunal string
perturbation theory is no longer reliable.

To know where the condensation process leads to, one must have a full
knowledge of the tachyon potential, that gives information about the stable ground
state, With the conventional conformal field theory techniques, one can only com-
pute n-point amplitndes for the tachyons that are on-shell, the zero momentum
continuation of which is ambiguous. Though progress have been made in the con-
struction of an off-shell formalism for closed strings, construction of tachyon poten-
tial has still remained a ditficult problem.

However there are models where the closed string tachyons are localised
in some region of space. It may thus seem that the condensation process may he

analysed in a more manageable way as the initial region of space affected is the
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region where the tachvons are localised. These tachyons often arise in the twisted
sectors of orbifolded models. Recent studies include tachyons of CP/Zy.

Let us now concentrate on the simplest of these maodels which is the
C'/Zy orbifold. This orbifold is a cone in two dimensions with a singularity at the
tip where the twisted sector tachyons are localised. Various possibilities have been
outlined in [1] that may follow as the tachyons condense. (a) The effect at the
tip may start off with a hole that would in time propagate and eventually leave
nothing behind. (b) An infinite throat may develop at the tip. (¢) There may be
no topology change but the singularity at the tip mav be removed and replaced by
a smooth cap. It was conjectured by APS [1] that this is what occurs. Evidences
in support of this conjecture have been worked out using various techniques. These
have been reviewed in [12]. We include here a short discussion on some of these

approaches.

L. D-brane probe : The fact that D-branes can be used to probe distances shorter
that the string scale was shown in [17]. This probe brane can thus be used
to follow the condensation process in the substring regime, The world volume
theory on the brane is a quiver gauge theory [18]. On the C/Zx orbifold,
though supersvinmetry is broken. the D-term potential is known, as the scalar
potential descends from the supersvmmetric theory with orbifold projection.
The moduli spaee of the scalars is that of the orbifold geometry of background
space. The twisted tachyvons of the closed string theory couple to the world
volume sealars. On the world volume the potential will be modified by a mass
term. The new moduli space can be verified to be that of a smooth space
without the Zy singularity at the tip. There are also specific deformations
due to the mass terms that lead the condensation process to follow in a series

of steps involving lower order orbifolds and ultimately to Hat space.

2. Supergravity : This becomes a valid description at large length scales comn-

pared to the string length. It is expected that after the initial condensation

process, when the excited massive closed strings have radiated all the energy
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to the massless ones, we may study the condensation process by solving the

supergravity equations of motion [1. 14},

3 World sheet RG : From the point of view of the two dimensional world sheet,
strings on C/Zy can be deseribed by an exact conformal field theory. The
tachyons in the spectrum correspond to relevant operators on the world sheet
CFT. So the condensation process can be studied as a world sheet RG flow
when the OFT is perturbed by these {tachyous) relevant operators. Generally
without supersymmetry such flows are not easy to analyse. However for the
C/Zy orbifold, one can use the world sheet N = (2,2) supersymmetry. The
results here are in support of the APS conjecture. There are indeed specific
perturbations which drive | Zx to C)Zy_i or other lower nonsupersymimetric
orbifolds [2]. Condensation of tachvons for a more general background namely

the twisted circles confirms these observations [9].

Other studies on condensation of localised closed string tachyons include
3, 5, 6, 7, 13, 14, 15, 16]. In this chapter we consider the problem of tachyon
condensation for Type IT theory on the C/Zy orbifold in the large N limit [10].
In this limit there are tachyons which become almost marginal and it makes sense
to write an effective action involving the tachyons and the other massless particles
(graviton, dilaton) while integrating out the massive string modes, The aim is to
compute the effective tachyon potential for large N. With this as the guideline, we
construct the tachyon potential upto the quartic interaction term. The procedure
followed is along the lines of [19]. The four peint amplitude for the twisted sector
tachyons (of m* = —1/N) is first caleulated following [20]. In the large N limit
hen the tachvons are nearly massless we take the zero momentum limit of this
amplmlde The non-derivative quartic coupling for the tachyons is then obtained
subtracting the contribution of the massless exchanges from the string four point
plitude. The four point amplitude with massless exchanges, which in this case
the praviton and the dilaton is obtained from the low energy effective field theory

‘tachyons coupled to these massless fields.



Chapter 4. Loealised Closed String Tachyon Condensation 120

The guartic coupling for the tachvon potential is found to be of the order
1/N. We get the the height of the potential to the lowest order in 1/N. We expect
this minimum to correspond to the C'/Zy_; orbifold.

However there are varions points which show that the higher point inter-
action couplings are also comparable to the quartic coupling. One being that, with
a quartic potential having global O(2) symmetry, we expect a particle of positive
(mass)® = —2m?, where m® is the mass of the tachyon, and the usual Goldstone
boson, However these modes are not present in the spectrum of closed string on
C/Zy—y. Furthermore if we stick to the predicted height of the tachyon potential
[4], we find that there is a mismatch by a factor of 1/N in the height of the potential,
when the minimum is expected to correspond to the C/Zx_; orbifold. However since
the above modes are absent in the tree-level spectrum of closed string on C/Zx_y,
orbifold we conclude that the higher point amplitudes are also of the order 1/N.
This includes the term ¢* allowed by the twist symmetry. These higher order terms
modify the potential and the spectrum already to the lowest order in 1/N.

Furthermare, the four point coupling is subject to field redefinitions,
One can make the off-shell contact term as large or small as one wishes and can
also change the sign. This makes the coupling non-universal and the existence of
the minimum is not clear in this approach if one truncates the potential upto the
quartic term. We elaborate on these points in Section 4.4.

This chapter is organised as follows. In Section 4.1, we compute the
spectrum for closed strings on C/Zy orbifold and show that there are tachyons.
In Section 4.2, using the conformal field theory of €'/Zy orbifold we review the
caleulation of the four point amplitude of the tachyons in the large N limit where
the tachyon is nearly marginal. In Section 4.2.1, we find the OPE of two tachyon
vertices and show that the only intermediate massless exchanges are the graviton
and dilaton. In Section 4.3, from the effective field theory of the tachyon coupled
to the graviton and dilaton we compute the exact contribution of these massless
exchanges to the four point tachyon amplitude. The quartic coupling for the tachyon

is then obtained after subtraction of the massless exchanges from the string theory
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amplitude and we write down the potential upto the quartie interaction term in

Section 4.4. We conclude this chapter with discussions in Section 4.5.

4.1 Closed string spectrum on C'/Zy

In this section we compute the spectrum of the closed string on the ('/Zy orbifold.
We will be concerned with the NS-NS sector as it is in this sector that the twisted
tachyons appear. In the RNS formulation of superstring, we consider 7 and U# as
world sheet fields corresponding to the nonorbifolded directions. For the orbifolded

directions we have the complex X X .14 fields as defined below,

X=X"+iX?, X=X=iX% vw=vl+iy?, ¢=uof—iy? (4.1)

The Zx group action on C defines the following boundary conditions on

X,X and 1. 1,'7.' for the closed string in the NS-NS sector,

Xlo+2r.7) = ™% X{o.7)

X(o+2n,7) = F_H!';?.-"?{J.T}

wlo+25.7) = & Dyie 1

Ol +2m,7) = e ¥ -Di(o,7) (4.2)

These boundary conditions give the following mode expansions for the

world sheet scalars, !

A } . o % > - IﬁwHﬁ

9 X(2)=~i ) o O:X(3) =i I Ty (4.3)
m=-pc < M——0a ® ;
i v &m-l-' s . - a —%

55.1'{3] =1 Z ﬁ 5‘;ﬂ[z}= —1 Z m {=1ij
m=—og = - m=—2c <

1

o =2 in all caleulations
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and for the fermions,

wo_ . N 1;?_ i
L o W o F+F -
hlz) = R inz) = e h
wiz) Z ik vl rAIHE (4.5)
rEd+g rE3+5"
7 7
Vred - Vet
Pzl = ——  W[Z) = —_— 4,
(2] §’ hE YO }_ (4.6)
TEJ';'_-‘—. rEf:-i'j

From the usual OPEs of the world sheet fields and the mode expansions

we get the following canonical commutation relations,

Iﬂm_g,-f"u__] = (m — ‘%me.u [af o] = mr 6 en0 (4.7)
[dm*‘-,{" !"i,,__k,! =(m+ %]‘im-n.ﬂ [am: a5) = mn™ 6msng (4.8)
(Vg Vg = beian {00} =10ia0 (4.9)
{rpn (o r'", x} = 0rian (¥, 90} = 1Bria0 (4.10)

The holomorphic part of the energy momentum tensor for the world sheet

corresponding to the orbifolded directions is given by,

= - 1 -
T..(z) = —0XIX — %t,:'-'f?l.‘l‘ — Eurﬂw (4.11)

Using the mode expansions and the canonical commutation relations one

the zero mode part of the energy momentum tensor,
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=N - 1,k = [_ 1 k
Ly = Eﬂ u.—rr—ﬂlf']""'{'—i_:_;_{”_kﬁj +Zl ”—'1*%““—%-“3{”_?

+ f [fr + E}L"_,..i'{-',.‘ :'J <+ I:J" = A_rjtl—r+%u'rr—-i1 = r] {41-13]
r=1/2

Where we have included the contriburions from the normal ordering con-
stant. The contribution to the zero point energy from the fields on the orbifolded

complex plane is now given by,

E,_-,.,-f,. == '_;T-_-" H‘—ZT
= n=D r>1/2
1% 1
T 2N 8 623

In NS5-NS sector in the light cone gauge, we have six real periodic bosons
and six antiperiodic fermions which contributes an amount of —3/8 to the zero point
energy. Adding the zero point energies for all the directions, for the left moving part,

we et

. 1 k
-E‘f,:'G“"";?] (4.14)

It may seem that for 1/2 < k/N < 1, the r = 1/2 term from the second
fermionic part in (4.12) contributes an additional (1/2—k/N) after normal ordering.

Therefore, for this case we should have.

k

ELE_ﬁ

(4.15)

However, since normal ordering is only a preseription for removing infini-
ties from the zero point energy, we must choose one so that the zero point energy is
consistent with that which is obtained from the world sheet conformal field theory.

It will be seen in the next section, that a choice of the prescription, where we keep
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the r = 1/2 as it is, is consistent with the dimensions of the twist operators. The

mass spectrum is thus given by,

P &
M*" = u—i—ﬁ—[l—?} for D<k/N<1
(4.16)

Where n and i are level numbers which are no longer integers for the
twisted sectors. The ground state of the NS-NS sector is thus tachyonic. For the
(N — k)th sector we have a tachyon of (mass)? = —k/N. Some of the excited states

are also tachyonic their masses are given by,

|0y = _.T;r : marginal for, N — oc (4.17)

.F.i'
o h 0y = —{1- %}: tachivonic for, 3k < ¥ (4.18)

{1 i
o

ol

From the moding of the oscillators it can be seen that there are no mass-
less states in the twisted sector, as the oscillators are moded by k/N and the zero
point energy is —&/2N. The massless states arise from the untwisted sector. and
these are the usual graviton, dilaton and the antisvmmetric second rank tensor. In
the twisted sectors, the GSO projection removes the ground state tachyon for k even
and keeps it for k& odd. The GSO action can be explicitly seen by considering the
modular invariant partition function [12],

Apart from the GSO projection the spectrum is obtained by projecting
into Zy invariant states. The orbifold action on these space time spinors is given

by,

R=eFim (4.19)

where, Jyy is the angular momentum. This orbifold action projects out
all spinors even in the untwisted sector (N-th twisted sector). However in order
to preserve supersymuetry in the untwisted sector and avoid bulk closed string

tachyons we choose the following action on the space time spinors,
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on

R=(-1)f¢¥Iw (4.20)

where F is the space time fermion number. This preserves all fermions
in the untwisted sector for odd N [1]. Since the twisted fields are localised at the
fixed point, for odd N. the theory away from the fixed point is type 1. With these
constraints on & and N in mind, in the following sections we will construct the

tachyon potential in the large N limit when the tachyons become marginal.

4.2 Four point amplitude from CFT

In this section we review the computation of the four point amplitude for the
tachyons that we found in the spectrum [20]. This gives the four point tachyon
amplitude with all the massless and the massive exchanges. In the next section we
will compute the exnct contribution from the massless exchanges. Subtracting this
from the amplitude computed Lere gives the effective four point coupling for the
tachyon field.

The vacumm for the twisted sector that is labelled by &/N is created
from the untwisted vacuum by the action of the bosonic twist fields, T and the
fermionic twist fields ik

The OPEs of these twist fields with the world sheet felds, X, X, ¢, 1) are

given by [20],

. X(2)o (w,@w) =~ [:-u.'j""ﬁ’nr.u',m]

L& B
Ny \w, )

dX(2)o (w, D) ~ (2—w)

X (3o (w, @) ~ (5—w) ¥F, (w, @)

X (Z)os(wow) ~ (2—w) 87, (w, @) (4.21)
where, 7,, 7,, T.. 7, are excited twist fields. Using (4.21) and the OPE

of the twist fields with the energy momentum tensor, the world sheet dimension of

the bosonic twist fields are found to be,
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= ft_' =—-——1-— -—‘:'] [-122}

Bosonising the world sheet fermions,

U(z) = —iv2eH (4.23)

l_;'[::} = =jy/ge ) (4.24)

giving the fermionic twist fields as. 5. = cF U From this we get the

following OPEs of the fermionie fields with the twist fields,

w(z)sy(w) = — /B tHE) i Hiw)

~ =iV3(z = w) R R 4 (2~ w)BH(2)]  (4.25)

Similarly,

w(z)s, () = i/t R )

~ =iV2(z — w) R RHE ] 4 (2 — w)OH(2)] (4.26)

For the fermionic string, vertices for the twist fields in the (—1, —1) and

{0,0) pictures are given by,

it (%,3) = e % 5, 5.0,6%%(z, ) (4.27)
Vig(s3) = @TeefTeVe, | (2,3) (4.28)
Where,
1 " B ) 1
Tp = -3(0X 4 +0Xv) — 502.0 (4.29)

Note that the dimension of the vertex gives the mass of the tachyvon,
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) k.
M= —(1- ) (4.30)

This corresponds to the ground state tachyons in the twisted sector. For
the near marginal tachyons, in the large N limit, which are in the (N — k)th sector,

the vertex operator in the (=1, —1) pieture is,

N B - R =y i ) . < o
I*i"_’!__”[:._ 3) = e 9 et~ U-FIHG) ;| pikr(y (4.31)

The four point amplitude for these lowest lving tachyons can now be

computed by taking two vertices in the (0, 0) picture and two in the (=1, —1) picture.

& [ d?z (v;: T G B T-S ey 5 /AN 6§ (o £3 E}u"’Tf.-cr“:’T_",.—l"LfII_”{UJ>
S

(4.32)
The constant €' = ¢!C?. Where C? is related to g, by,
¥ LI"‘" Vi
C,=— (4.33)
e
This amplitude can now be computed and is given by [20],
: . o f2|~ T 41— zf72
I = Clky.hy)? [d': , (4.34)
2o Je |[F ()2
Where, F(z) is the hypergeometric funetion.
. Jn‘. -iu ] \ ; _ & .
F(z)= ‘L.{'n,._r'l - T:I;:J =— / u'yy_?l*'[l - y}_"t_ﬁ"[l - yz)”F (4.35)
i . L |

and, 5= —{k + k), t =—(ka + k3)?, s= (ks + k)%

In the large N approximation,
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k L, 1 p ks
F{3]~1+EL:+§:'+E )+ O((R/NY (4.36)

Note that the terms proportional to k/N in (4.36) shift the s-channel
pole. There is an additional factor of (ky.ky)°. due to which the contact term from
any of the terms of (4.36) apart from 1. would at least be of O((k/N)?). With this

observation, the integral can now be performed for F(z) — 1.

I = Conlkiks)? [(—=3)r(=3)r( -'-5{ 3

Ci=2=hl0+4 )

18
= 2.2, Yo gpayad | 1T =500 = 3)00 + 5
= U g I+ T —pra £ prn

P Lee |

(4.37)

P_‘|:|-- ]
Tt | M

Now using &+ +u = 4m?,

3 (1 — 2m?)? — 2m?)? : _
I= -eiﬂ'*y;]f ) + s dnik) + 3(s+t) - 8&m (4.38)
§

{
C(1-3)0(1 - 5H0(1+3+ 1)
[(1—% - 501+ 501+ 5)

We have to expand the gamma functions. Now since we are interested
in the order O(+) of the amplitude, any correction to the expansion of the gamma
functions to that when the limit s, ¢ — 0 is taken, will be at least of order O(4),
But the factor multiplying the gamma functions is already of order {}{?{-.} except for
the pole terms, So we can take the contribution of the gamma functions to be 1.

Thus we can write the string amplitude iy the zero momentum limit as,

(t = 2m*) 2 (s — 2m*)*

: + s+ t) —8m? (4.39)
- 2

I o~ —4mg?

4.2.1 OPE of two tachyon vertices

In this section we compute the OPE of two tachyon vertices with one in the (0,0)

picture and another in the {—1. —1) picture and find the couplings of tachvon to the
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massless particles.
The OPE we wish to find is.

I

S ; Lisss smo 1 S 3 A b
L'Eu,u][zw3JL’:[4;1__1;§‘”+“-'J = [E[d.kg,-.—f—d.fi:p}-l—aﬂr.!l-']4{6}L¢J+3X1,b}+§d:cﬂll']

x3_s_0_e%%(z,2) x €% 55,067 (w, @)

I 7 T 1 = = — = a
= [F0X¢ +3XY) + k][ (X Y +8XY) + k.¥]

H2(25) x e % %5, 5,0, (w, D) (4.40)

Now, the following OPEs are necessary to compute (4.40).

e® (2, 2)eP (0, @) ~ |z — w* PP (w, @)1 + (z — w)(k — p)dr*  (441)

+ (2 —@)(k - p)udr* + |z — w|*(k — p)ulk — p)uda* Bz

For the fermionic twist fields,

s (2)s, (w) = e tRHE RH )
k12 2k
~ (z=w) "1 =(z- w]-ﬁr-ﬂﬂ{z}] (4.42)
-E-{:}-§+{1‘I‘j = t,:-lﬁH{HnliJﬂlﬂ]
~ (2—w)" R 1= (2= m]%ﬂﬁ’[ﬁ}] (4.43)
For the bosonic twist fields,
o (2)as (w) ~ |2 — w| 2= 4. (4.44)

Using these, the OPE of the compact part of T with the twist fields is,

(X + OX)s:04 ~ (2 — w) m e O-TME) 4 o g+ RIHE) (4.45)
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This OPE includes higher twist operators and hence does not contain
massless states which we are looking for. The massless state is obtained from the
(k. Wk ¥) term in the expansion (4.40) with the other twist fields contracted. The

coupling for the term is,

Viu(k) = kuk, (4.46)

This term is completely symmetric in the indices. It thus corresponds to
the massless vertex for the graviton and the dilaton in the (-1, —1) picture, which

is the symmetric part of

e~ b, o' R)= (4.47)

The four point tachyon scattering amplitude with a massless graviton

and dilaton exchange is given by,

» I I £ 3 i ]
.""l-l = 1 IIH‘..UI }q_zgt}llll'ﬂp;fj I".r'h'f{.pﬂj

S
= Pyt F l‘h:n"}v.'ll.”hp.'l.-i

K {;:,.;s:i}” Y U0 (4.48)

s 4 s
where, ¢° = —(py + m)? = s and p? = —m®  We have chosen the
configuration of the momenta for the tachyvon fields such that it matches with the
original configuration nsed in (4.32) for convenience, Namely py and py corresponds
to the momenta of the external ¢ field corresponding to the V'~ vertices. We still

have to add the t-channel contribution to (4.48). Adding this we have,

A = == [[” =inky . usdu] (4.49)

. = t
This reproduces the poles which we have found in (4.39) as expected

apart from a factor of 27 which comes in (4.39) from the integral over the vertex

position,




Chapter 4. Localised Closed String Tachyon Condensation 131

4.3 Amplitude from effective field theory

In the previous section we have seen that the massless exchanges in the four point
amplitude of the twisted sector tachvons are the graviton and the dilaton. In this
section we caleulate the tachyon four point amplitude with these massless exchanges,
namely the graviton and dilaton from the effective field theory.

The action for the complex tachyvon coupled to graviton and dilaton is

given by,

1 A e X g Mg as,
g= Efdﬂ.r.\f{—g} [—R+D_2q:a~q:+§.p (~8%)0 + sm*er7"6"0| (4.50)

Expanding g,,, about the flat metrie,

G = O + 1hy, (4.51)
and rescaling the dilaton field by,

il j g i i} d.n2)
— 1" D {LI,;

We have,

l 1 ] 1 PV l ; ¥ b [ al T
S = :'_-} ]H‘.“J' [Ehmr{_ﬂ' e ']‘hm* o qud”[” + ,'j{:-" {-d* + T”L}{F = 'th-I.Jm + TP

(4.53)

The couplings of the graviton and dilaton to the complex scalar field are

Do,

—wh Ty and  &TO (4.54)

Where,
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1 IR . N .
Tw = —50.0°0.0+ 8,0"0,0] + 58, (026" 0ads + m*|¢[°]
2 . .
T = B 2Jrn'. &' (4.55)

The tachyon-graviton vertex and the graviton propagator in the harmonic

gauge are given by,

; 1 1
Vislo Ky = in [—;)-{p#k,, ki) + 58 kip— mi}] (4.56)
5 1 i 2 _
Dypeslq”) = P Oy Ous + Bughia — D—_ﬁﬁm{'}aﬁ {4.57)

The four point amplitude for four massiess scalar scattering with a gravi-

ton exchange is,

-‘1'{: = i':u-{Pl rpz}apuu.i‘{qi.] ]'n.‘i‘“-'E- P-l} E‘iﬂ&}

B :;_;['[F1"”‘1“M'p"} + (prpa(peps) — (prpa)(papa)

+ m(prps + paps) — m*]

5

Similarly, for the dilaton exchange we have,

i
i K 2 1

N A { 5
A= ED- 7™ (4.59)
Therefore, the four point tachyvon amplitude with graviton and dilaton

exchange is,

Ay = Al+ A}
K ; 2 4
= B [(pe-ps)(p2-ps) + (prpa)(paps) — (prp2) (paps) + m*(prpa + pa.py) —m']

2
= —hfs [(w—2m* ) + (t — 2m*)* — %] (4.60)

4s

2 _ .2 2 : _

= E=2)  fBin? (4.61)
s &5 '
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In writing (58) from the previous step, we have used p? = —m® and put in ¢* =
(p1+ p2)? = —s. From (58) to (59) we have used s+ t + u = 4m® which uses the

mass shell conditions. Now including the t-channel process we get,

: w2 [(t—=2m?)?  (s-2m?)?
A== %
2 5 t

+(t+38) - Jm"'] (4.62)
Comparing with the pole term of the string amplitude (4.39), we see that

the pole is due to graviton exchange. This also relates & to g, which is found to be,

w3 |

=4n’qg? (4.63)

After subtraction. the non-derivative quartic term and the derivative terms left

behind are,

~4n? gl |—4m® 4 2(s + 1)) (4.64)

4.4 The Potential

We can now write down the potential for the tachyon upto the quartic term. It may
be noted that the sign of the quartic term is to be fixed relative to the sign of the

pole terms which has to be positive. So we get the quartic coupling as,

X = (4r%g7) x (=4m?)

(4.65)

which is positive since m? = —& /N, The tachyon potential is now,

Vig'a)

I

1 2 . A L 2
Sm(6'0) + 5(6°9)
']'.‘.

L 2 Ek = a .
= _?_-hl.' {m Q‘}} +4" gc J’\T{Iﬁ ¢] (4+'ﬁ'ﬁ}
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The potential has a minimum at |¢]* = 1/(167%¢2) which is of O(1). We
expect the nearest minimum to correspond to the C'/Zy_; orbifold. In this case the

height of the potential from C/Zy to C/Zy_y is given by,

1k
Gam g N

(4.67)

One may compare this, upto normalisations, with the conjectured height
[4] which is,

1 1 ik
Sl v et

(4.68)

This shows that the perturbative result (4.67) is off by a factor of 1/N.
At this point we are not in a position to trust this perturbative result. Higher point
amplitudes will most likely modify this.

There are various indications that higher point interaction terms in the
amplitude are in fact important and are not of order less than 1/N. We may note
that with a potentinl upto the quartic coupling having global O(2) symmetry, in
the spontaneously broken theory there is a massless scalar corresponding to the
Goldstone boson and n massive particle of mass, —2m?* = 2k/N. This means that
in the spectrum of C'/Zy i to which the theory is supposed to flow, there must be
a massless and a massive scalar of mass 2k/(N — k)(~ 2k/N + - - - for large N).
However the spectram does not contain these scalars. The absence of the massless
Goldstone particle indicates that the O(2) syimmetry of the tachyon potential has to
be broken, This can only happen if the correlation functions of N twist operators
are also of order 1/N.

This fact may also seen as follows. The three point graviton vertex
and the two tachyon and one graviton vertex, both have two powers of momentumn
(Figure 4.4). The four point tachvon amplitude with a graviton exchange has two
positive powers of momentum.

With the addition of two more external tachyons, using (A), the positive

power of momentwmn for the six point amplitude (C), remains two. Of course with
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v

A Ny e T

(A) (B) (©)

Figure 4.1: (A) Two tachyon one graviton vertex, (B) Three graviton vertex, (C)

Six-point tachyon amplitude with graviton exchange.

a three graviton vertex insertion, we can introduce more negative powers, but there
are tree diagrams where we can have two positive powers of momentum. The N
point contact term is obtained by subtracting these graviton exchanges from the full
N point tachyon amplitude from string theory. The graviton exchange diagrams as
mentioned contains two positive powers of momentum, which in the on-shell limit
give terms proportional to m* ~ O(1/N). It is thus very likely that the subtracted
term would give a 1 /N dependence as the leading part.

We further see that the dilaton field redefinitions such us

B — P+ o (4.60)

where ¢ is a constant, can change the value of the contact term and
can even change the sign. The minimum thus depends crucially on the expectation
value of the dilaton field which when becomes large, makes this perturbative analysis
anyway unreliable. A similar observation was made in [16], in the context of closed
string tachyon condensation with Rohm's Compactification. In general the existence
of the minimum is independent of field redefinitions. The fact that we are &ble to
change the nature of the potential by field redefinitions implies the potential npﬁ!

the quartic term does not shed much light on the minimum of the theory. It is argue

in various approaches that the Type 1 theory on the C'/Zy orbifold ultimately upor
closed string tachyon condensation goes to the Type II theory on flat space,
analysis does not give a proof of this observation. If we assume this to'hefl}m&;}-
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a stable mininun exists, then following the above arguments, we may coneclude that,

the higher point terms are indeed necessary and are of the order 1/N.

4.5 Conclusion

In this chapter we have studied the condensation of closed string tachyons for Type
Il strings on the "/Zy orbifold. We constructed the potential for the tachyons
upto the quartic term in the large N limit by subtracting the massless exchanges
from the four point tachyon amplitude computed from string theory. We expect
the minimum of the potential for the near marginal tachyons for the k-th twisted
sector, in the large N limit to correspond to the C/Zy ., orbifold. When compared
to the conjectured value for the height of the potential for the C/Zy orbifold, we
find a mismatch by a factor of 1/N. However, we have argued that the higher point
amplitudes are indeed important and are of the same order in 1/N as the quartic
term. A potential upto the quartic term after spontaneous symmetry breaking gives
masses which are not there in the spectrum for closed string on C/Zy_; to which
the C/Zx theory is expected to flow. This leads us to conclude that the higher point
amplitudes including the global (2} breaking term, ¢”, must all be of order 1/N
so that the potential gives a mass spectrum, consistent with that of the C/Zn_y
orbifold. We have also argued that feld redefinitions can alter the contact term
and can even change the sign. If the theory can be deformed so that the minimum
can be reliably reached in perturbation theory, then, a direct approach such as the
ome diseussed i this chapter can ascertain whether this minimum has the required
properties.

This computation of the quartic coupling for the twisted sector tachyon
is also done in [11]. 1t was pointed out by the authors that additional contributions
to the four point contact term will also come from the massive untwisted states with
momentum along the orbifold plane, C'/Zy. This modifies the 1/N dependence of
the quartic term which we computed here to a more suppressed 1/N® dependence.

However with this modification, the expectation that the large N approximation
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may may be used to study the RG flow due to tachyon condensation from the
C}Zy orbifold to lower nonsupersymmetric orbifolds is even further weakened. The

conclusions above thus remain unaltered.
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Chapter 5

Conclusion

In this thesis we have studied two problems. In the first part we have analysed some
of the aspects of noncommutativity in field and st ring theory and in the second part
we have studied localised closed string tachyon condensation. In this conelusion we

highlight some of the important issues and summarise the results.

0.1 Noncommutativity in field and string theory

We have seen that when a constant antisymmetric two-form B-field is turned on
along the world-volume directions of a D-brane, the low energy dynamics of the D-
brane is described by a noncommutative gauge theory in the Seibery- Witten limil.
Noncommutative field theories are non-local in nature, however we have seen that
they can be efficiently handled. They inherit many of the properties of the parent
string theory. In this way noncommutative field theories differ from ordinary field
theories where all the features of the one dimensional string theory are lost. One
of the generic features in noncommutative field theories is the mixing of the ultra-
violet and the infrared regimes of the theory that arise in the nonplanar sectors.
This is very unusual in the Wilsonian sense of commutative quantum feld theories.
In the ordinary case the two sectors decouple, i.e. the low energy effective theory
does not have any dependence on the high energy modes except through the renor-

malisation of a finite number of couplings. We have seen that the zero momentum
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limit. in noncommutative field theories is a singular configuration. It would be thus
natural to ask, in what sense the noncommutative field theories fit into the usual
notion of Wilsonian renormalisation group. This question was addressed in Chapter
2. We have shown that when we restrict ourselves to configuration of fields that
have non-zero external momentum, renormalisation can be proved to all orders, We
have shown this to all loops using the Wilsonian renormalisation group equation of
Polchinski for the scalar theory with global O N) symmetry. This means that at
the level of quantum feld theory we must define an infrared cutoff for the noncom-
mutative field theory. We have also shown that the spontaneously broken phase of
the noncommutative scalar theory is renormalisable to all orders with an IR cut-
off. This means that the ground state of the broken phase will be translationally
non-invariant.

The coupling of the ultraviolet and infrared sectors has a natural inter-
pretation in terms of world-sheet open-closed string duality in string theory. We
have thus looked into the problem of UV/IR mixing in noncommutative field the-
ories from this point in Chapter 3 and have elucidated on the role played by the
B-field . We have first studied the bosonie string model. In this model analysing the
two point one loop open string amplitude with two gauge boson vertex insertions, we
have shown that the infrared singularities that appear as a result of integrating over
high momentum modes in loops in noncommutative field theories can be obtained
by tree-level exchange of closed string modes. In general the the divergence of the
gauge theory would require an infinite number of closed string modes for its dual
description.  Along with this observation and the presence of the tachyons in the
bosonic theory the closed string interpretation of the gauge theory IR divergences
is not exact in terms of the lowest modes of closed strings for the bosonie theory.
To overcome these problems we have studied a supersvimmetric model. Specifically
we considered pauge theory on a fractional Dy-brane localised at the fixed point
of C*/Z; orbifold. We have shown that in this case, the infrared singularities in
noneommutative pauge theorv are exactly equal to the infrared singularities due to

massless closed string modes. These modes come from the twisted NS-NS and R-R
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sectors. They are localised at the fixed point on the arbifold plane and are free to
move in the six directions transverse to the orbifold. In this model the realisation
of open-closed string duality is manifested only by the massless sectors on both the
open and closed string sides. This is due to the fact that the contribution from the
massive modes cancel. We have seen that the role played by the B-field is mostly
that of the regulator that preserves this duality and thus helps in quantitatively
analysing the UV/IR duality. We conclude that the one loop UV/IR mixing terms
can always be obtained in terms of closed string tree-level amplitudes, however the
question whether the duality is manifested by a finite set of modes on either side
depends on the theory without the B-field. In these cases there is an exact corre-
spondence between the gauge theory and supergravity. We have studied the duality
between the open and the closed string channels only for the nonplanar sector, where
in the presence of background B-field the amplitudes are regulated. It will be in-
teresting to consider a limit where only the nonplanar sector of the gauge theory

SUTVIves,

59 Localised closed string tachyon condensation

Localised tachyons on orbifolds have served as useful testing grounds for studying
closed string tachyon condensation. The closed string tachyons couple to the gravi-
ton and the dilaton and hence their condensation is expected to be accompanied by
large modifications of background space-time. Tachyons that arise in the twisted
sectors of C7 [ Zy orbifolds, are localised at the fixed point and only freely propagate
in directions transverse to the orbifold. It is thus expected the the initial conden-
sation process will start on the orbifold plane only at the fixed point. Study of this
tachyon condensation process for type I1 theory have led Adams, Polchinski and
Silverstein to conjecture that the end point of condensation is a supersymmetric
type II string theory on flat space. It was further conjectured by Dabholkar that the

height. of potential for the C/Zx orbifold is proportional to the deficit angle of the

orbifold. Specific perturbations by tachyons however lead to orbifolds of lower order.
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Using these guidelines we have studied the condensation of twisted sector tachyons
on the C'/Zy orbifold in the limit N — oc, in Chapter 4. On this orbifold, there
are tachyons whose (rmass)? goes as 1/N. In the above limit these tachyons become
nearly massless. On can now seusibly write down a potential for these tachyons
and compute the height. Specifically perturbation by a tachyon in the (N — k)-th
twisted sector should lead to the '/ Zx_; orbifold. We have computed the potential
upto the quartic term for these tachyons in the large N approximation. However,
we showed that if we stick to the conjectured height the answer is off by a factor of
1/N. Moreover the quadratic and the quartic terms are of the same order in 1/N,
stgresting that higher point amplitudes mav also be of the same order in 1/N as
these terms. We have seen that a potential upto the quartic term after spontaneons
symmetry breaking gives masses which are not there in the spectrum for closed
string on C'/Zxy_s to which the C/Zy theory is expected to How. This leads us to
conclude that the higher point amplitudes including the global ((2) breaking term,
¢, must all be of order 1/N so that the potential gives a mass spectrum, consistent
with that of the /2y, orbifold. We have also argued that field redefinitions can
alter the contact term and ean even change the sign. The problem of construction
of tachyon potential for this model still remains open, If the theory can be deformed
so that the minimum can be reliably reached in perturbation theory, then, a direct
approach such as the one discussed here can ascertain whether this minimum has

the required properties,



