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Abstract

This thesis is concerned with the use of formal methods towards automatic veri-

fication of distributed message passing systems with a fixed finite number of agents.

We concentrate on developing logics to reason about behaviours of these systems.

Behaviours of such systems are modeled using Lamport diagrams which are partial

orders over a set of events which is partitioned into those of individual agents such

that the events of each agent form a total order. The partially ordered relation in a

Lamport diagram is intended to model the underlying causal ordering between events

of the system. They can also be used to model message passing in the system in

which case we designate certain events as being send and/or receive events.

Many protocols are systems which consist of repetitions of a fixed number of finite

communication patterns. We model the behaviour of such systems using Layered

Lamport Diagrams (LLDs). The layers of these diagrams are finite Lamport diagrams

which consist of events that belong to a particular finite communication pattern. The

layers are then composed to obtain the infinite layered Lamport diagram.

We first introduce a natural modal logic with global X (next), Y (previous), F

(future) and P (past) modalities over Lamport diagrams. The satisfiability problem

of this logic turns out to be undecidable, even if we retain only the global X (Y)

modality and restrict the other one to special receive (special send) propositions which

talk about a message being sent (received) without being able to specify anything

about the content of the message etc.

Given this, we consider how we might obtain decidable logics. In the first ap-

proach, we restrict the syntax and consider a temporal logic over Lamport diagrams.

The logic has local temporal modalities (X and U) for each agent and in addition,

it has a weakly global Y modality. This new modality, when asserted at an agent

i talks about a local formula of agent j being true at the last j-local state visible

to i. We show that the satisfiability problem of this logic is decidable using the

automata-theoretic approach. We use a distributed automaton model called System

of Communicating Automata (SCA) and show that the emptiness problem for these

automata is decidable. Given a formula of the logic, we associate an SCA with it

such that the language of the SCA is non-empty iff the formula is satisfiable. The

decidability of the logic follows from the decidability of the emptiness problem for

SCAs. A suitable model checking problem is also shown to be decidable.

In the second approach, we consider ways of restricting the models to obtain
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decidable and expressive logics to reason about behaviours of distributed systems.

We consider LLDs as models and extend the modal logic above to a temporal logic

interpreted over them. The temporal logic reflects the layered structure of LLDs—

the basic modal logic introduced above talks about the properties of layers and the

temporal modalities are used to talk about sequence of layers that make up the LLD.

It turns out that the satisfiability problem of this logic is also undecidable, even if

we restrict the size of the layers to be uniformly bounded. However, we obtain

decidability when we consider models based on communication closed and bounded

LLDs, or when we consider models based on LLDs whose layers have bounded channel

capacity. We again prove decidability using the automata-theoretic approach, by

introducing automata models like diagram automata and fragment automata whose

emptiness problem is also shown to be decidable.

We investigate the use of a suitable monadic second order logic over Lamport

diagrams as a specification language. Not surprisingly, the satisfiability problem of

this logic is again undecidable. We then show that it is decidable over the class of

models based on communication closed and bounded LLDs and also over models

based on channel bounded LLDs as above.

We wind up by considering Message Sequence Charts (MSCs) as an alternate

model for representing behaviours of message passing systems. MSCs are graphs

over an underlying set of events (which is partitioned into those of send, receive and

local events) such that the events of each agent are totally ordered. MSCs also have

an explicit matching relation which maps each send event with its corresponding

receive event and the ordering defined by the local total orders and the matching

function is required to be a partial order over the set of events. We show that Lam-

port diagrams possess more modelling features than that of MSCs and constitute

the underlying partial order in an MSC. We also consider other known models to

represent collections of MSCs, namely that of Message Sequence Graphs (MSGs) and

Compositional Message Sequence Graphs (CMSGs) and compare relevant classes of

LLDs with those generated by MSGs and CMSGs. It turns out that the classes of

LLDs are strictly more expressive than the partial orders generated by MSGs and

CMSGs. We also define an MSO over MSCs and show that model checking CMSGs

against these MSO specifications is decidable.
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Chapter 1

Introduction

Computers are ubiquitous these days—they control and manage systems in fields

of avionics, industrial processes, space ships and many more applications which

are safety critical. The number and complexity of computer controlled systems

being developed and used is increasing day-by-day. The safety critical nature of

these systems has motivated the development of rigorous methods to show that

they are reliable. Testing and formal verification are two such reliability methods

[Pel01]. While testing is done directly on code, formal verification is usually done

at the design stage in a software development process. Various successful industrial

case studies have illustrated the usefulness of formal verification in minimizing the

number of defects in the product being developed [CW96, Rus96].

1.1 Formal verification

Formal verification [CW96, Rus96] is the technique of proving in a formal, math-

ematical way that a program satisfies its requirement. The program and its re-

quirement or specification are modelled using a mathematical language. Two basic

techniques of formal verification are theorem proving and model checking. In the

semi-automatic technique of theorem proving, both the program and the specifica-

tion are modelled as a set of formulas in some logical language. The program then

satisfies a specification iff the formula corresponding to the specification can be

proved to be a logical consequence of the set of formulas representing the program.

1
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Model checking is a fully automatic technique wherein the program is usually mod-

elled as a finite transition system and the specification is written as a formula in a

logical language. Unfortunately, model checking becomes undecidable even for some

simple specifications which require checking for the reachability of a specific state as

the transition systems corresponding to arbitrary programs usually have infinitely

many states. Hence, research in this area of formal methods has concentrated on

identifying classes of programs/systems which can be formally verified, in coming

up with suitable specification formalisms and also in reducing the resource require-

ments to real-life limits through theoretically better algorithms or even heuristic

means.

Finite state systems An important class of problems which have been identified

to be tractable are those involving checking correctness of programs/systems which

can be realized as finite state systems. It turns out that this is not a big restriction as

many systems where verification is required like hardware, client-server applications,

design of multi-threaded applications etc. are typically finite state systems. Even

for systems which are not finite state, it is possible to consider an abstraction of the

system which is finite state in order to verify certain specifications like deadlock etc.

Logics as specification languages Specification of a system/program is a prop-

erty which describes how it ought to or ought not to behave. Various formalisms

are available to state specifications of systems. Temporal logics [MP91, HR04] are

the most commonly used specification languages—they are basically modal logics

which are geared towards reasoning about behaviours of systems that evolve with

time. Temporal logics come in two fundamental varieties— linear-time temporal logic

(LTL) and branching-time temporal logics (CTL, CTL∗), depending on the assump-

tion made about how time evolves with respect to the system considered. Model

checking algorithms are available for both the varieties.

Monadic second order logic (MSO) [Tho90, Tho97] is another specification for-

malism that is more expressive than temporal logics i.e., it is capable of specifying

a wider range of properties of systems. Apart from being used as a specification

language, the rich theory of MSO logics are also useful in identifying classes of finite

state systems. Systems whose behaviours can be ‘identified’ by an MSO formula

(i.e., systems whose set of behaviours is exactly the set of those which satisfy the

MSO formula) are usually finite state systems (the set of behaviours of finite state
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systems is usually called a regular language).

Automata theoretic approach to model checking As mentioned before, model

checking is a fully automatic way of doing formal verification where the program (or

its finite state abstraction) is modelled as a finite transition system and the specifi-

cation is given as a formula in some logic, usually temporal logic [CGP00]. Models

of the formula identify the set of good behaviours of the system and the problem

of model checking is to check if the behaviours of the program to be verified are

good. One well-established way of doing model checking is by using the automata-

theoretic approach [VW86]. The main observation in this approach is that one can

construct a finite state automaton that accepts the set of all sequences (models)

that satisfy the given formula. Then, the problem of model checking is to check

if the language accepted by the transition system (representing the program) is a

subset of the language accepted by the automaton constructed for the specification.

Since this problem is decidable for finite state systems, so is the problem of model

checking.

The automata-theoretic approach to solve the model checking problem is also

useful to show that the satisfiability problem for temporal logics is decidable. The

satisfiability problem for logics is the problem of checking if a given formula is

satisfiable, i.e., whether it has a model or not. By using the automata-theoretic

approach, we construct an automaton accepting precisely the set of models of a

given formula. Consequently, the formula is satisfiable iff the language accepted by

the constructed automaton is non-empty. Since this problem is decidable for finite

state automata, we also have an algorithm for solving the satisfiability problem for

the logic.

1.2 Distributed systems

So far, we have assumed that the system and programs that we are trying to

verify are those representing a single entity without any notion of a component. In

many practical situations, the program or system is usually a distributed system that

has many components which are usually called agents or processes. Agents consti-

tute spatially separated entities that the distributed system is composed of. Typical

examples of distributed systems are telecommunication systems, client-server appli-
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cations, multi-threaded code etc. Sometimes, distributed systems also come with

a notion of an environment which is an abstraction of the system that it is built

into. The agents perform local computations, interact with the environment and

also communicate with other agents. Agents of the system can also dynamically

create and/or destroy new agents as the computation of the system evolves.

Distributed systems are usually categorized depending on the way in which the

agents of the system communicate with each other.

• In a distributed system with synchronous communication, the agents have a

set of common actions to be performed jointly and they execute such actions at

the same instance of time (measured with respect to a global common clock).

• Agents can also communicate in an asynchronous way where the system has

a set of dedicated channels or buffers through which the agents send messages

to other agents and receive messages from them.

• Finally, there are distributed systems where the agents communicate by read-

ing from and writing onto certain shared variables which are stored in a com-

mon memory.

Verification of distributed systems Formal methods for verification of dis-

tributed systems has been an interesting area of research due to the complex nature

and the wide variety of the systems available. Research in this area not only involves

developing models for distributed systems but also notations to talk about their be-

haviours and logics to specify the properties involving their behaviours. Traditional

models of concurrent systems and their behaviours like Petri nets, event structures,

partial orders etc. [WN95, Win87, Pra86] are generic models capturing notions of

concurrency, dependency, conflict etc. between events. They are not well suited as

specialized models of distributed systems as they do not model notions like agents,

local computations etc. explicitly. Also, these models are, in general, not finite state

and this rules out the possibility of developing model checking techniques directly

based on these models. This calls for the development of alternate models to talk

about special classes of distributed systems and their behaviours in the context of

verification.

One standard approach towards verifying distributed systems is to define a global

transition system corresponding to the distributed system and to capture system
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behaviour as a sequence of actions of the global transition system. The states of

such a global transition system talk about the local states of the agents, values of all

the variables (both global variables and those local to agents), contents of buffers etc.

In distributed systems, agents can have independent or concurrent actions which are

those that can occur without the influence of any other agent. The global behaviour

of the system in terms of sequences of actions involves all possible inter leavings of

these independent actions. The properties to be verified are also translated into

equivalent properties of the global system involving standard temporal logics. We

can then use traditional techniques for solving the verification problem.

However, such an approach is not feasible as the global system is typically not

finite state and the verification problem becomes undecidable. Even in cases where

the global system is finite state (or can be abstracted into one), the number of pos-

sible global states is large as we have to take all possible inter leavings of actions

of various agents into consideration. This leads to state explosion problem and tra-

ditional formal verification algorithms typically do not perform well on such huge

systems. Also, logics which talk about a global sequence of actions of the systems

usually fail to capture interesting properties involving events local to agents of the

system. Also, the satisfiability problem of such global logics again becomes unde-

cidable [LPRT95, AMP98].

To overcome these drawbacks, various alternate techniques have been proposed

to formally verify distributed systems. One common way is to come up with mod-

els of distributed systems such that their behaviour is captured component-wise or

locally and also to specify properties of systems using logics that talk about the

local components. System models based on local computations usually talk about

behaviour of the system as a partial order on events of individual agents describ-

ing the way they evolve locally unlike the global state-based approach mentioned

above. Such approaches have resulted in various useful techniques being developed

for modelling, specifying and verifying distributed systems.

Study of distributed systems using partially ordered models also has other advan-

tages. The partial order based models to represent behaviours do not differentiate

between computations that are equivalent upto possible inter leavings of indepen-

dent actions. This natural assumption respects the concurrency in the distributed

system. Also, restricting attention to behaviour evolving in terms of local events

helps to overcome the state space explosion problem mentioned above as we can
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reason about the system using its locally specified behaviour without considering

the global system.

For example, in the context of distributed systems where the processes com-

municate synchronously, various distributed automata models have been developed

to talk about computations in an agent-based fashion [Zie87, Thi94, MR02]. The

behaviour of these automata are also captured in a distributed fashion using traces

[Maz87] which are basically partial orders whose structure is tuned towards describ-

ing these systems. These partial orders talk about sequences of local actions of

agents and also model the synchronization of agents using common actions. Various

expressive temporal logics have also been developed to describe local properties of

these systems in terms of traces [Thi94, APP95, Ram96, TW97]. The fact that

these logics are expressive and that their satisfiability problem is decidable makes

them ideal specification languages for such systems unlike global logics which are

undecidable [AMP98].

1.3 Distributed message passing systems

We now consider systems whose agents communicate asynchronously by exchang-

ing messages across channels. Unlike synchronous distributed systems discussed

above, the agents of these systems typically do not share common actions and pro-

ceed with their computations in an autonomous fashion [LL90]. The agents also

exchange messages with each other through dedicated channels when buffers are

not full, the sender can put its message into the buffer meant for the receiver and

proceed with its computation without having to wait for the receiver. However,

computations can get blocked while waiting for a particular message or an agent

might get stuck while trying to send a message through a buffer whose capacity is

already full.

In the context of formal methods for distributed message systems, the traditional

approach of working with a global system model does not work here due to the

presence of buffers whose capacity can be potentially unbounded. States of the global

system include the contents of the buffers apart from information regarding variables

etc. Consequently, the global system need not be finite state. On the other hand,

restricting the capacity of buffers to be uniformly bounded would mean restricting

the possible behaviours of the system being modeled. On the specifications side too,
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it would be interesting to come up with logics which can be used to reason about

the behaviour without having to talk about buffers explicitly.

The main aim of this thesis is to develop suitable models to describe behaviours

of distributed message passing systems and to come up with suitable logics to reason

about them. We also propose certain models for distributed systems and use these

system models to solve the satisfiability problem of the logics we consider. The

goal is to come up with local event-based models describing behaviours and suitable

logics which talk about the way in which local computations evolve. This, we believe,

would overcome the problems related to global representations and logics and aid

towards formally verifying such systems.

Models and logics for distributed message passing systems

Few models of message passing distributed systems and their behaviours have

been proposed in literature. We survey them below.

Asynchronously communicating sequential agents Asynchronously Commu-

nicating Sequential Agents (ACSAs) were introduced in [LRT92] as models describ-

ing behaviours of distributed message passing systems. The systems can have an

arbitrary number of agents and ACSAs are specialized partial orders describing

behaviours of such systems. The events are mapped to particular agents and the

partial order depicts causal dependency of events with the restriction that the past

view of every event restricted to its agent should be linearly ordered. The authors

also propose a suitable tense logic to reason about ACSAs and provide a sound and

complete axiomatization of this logic. This logic has agent-based past and future

modalities which refer to the local past and local future respectively. The formulas

are interpreted at local states. However, since ACSAs describe the general causal

dependence of events and do not make any assumptions regarding the way in which

the events evolve, it is not clear if there is a finite state automata-theoretic model

whose behaviour can be described using ACSAs.

A model checking algorithm for a variant of the logic introduced in [LRT92]

has been described in [HNW99]. The authors consider a slight variant of the logic

introduced in [LRT92] and they show that the problem of checking whether an asyn-

chronous distributed net system (where buffer capacity is assumed to be bounded)

whose behaviour is described by ACSAs, satisfies a given formula is decidable. How-
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ever, the complexity of the algorithm is non-elementary in the size of the formula

and the authors do not address the decidability of the satisfiability problem for the

logic.

Layered distributed systems Other models for describing computations of dis-

tributed message passing systems have been proposed in [EF82, PZ92] where the

authors consider asynchronous distributed systems with an arbitrary number of

agents. However, these papers focus more on synthesizing distributed systems by

decomposing their behaviours into layers which can be composed sequentially and

parallely and not on formally modelling and specifying the system.

Lamport diagrams Lamport in [Lam78] introduced certain partial orders to rep-

resent computations of distributed message passing systems with a fixed number of

agents. Lamport diagrams are partial orders over the set of event occurrences of a

distributed system. The event occurrences are partitioned into those of individual

agents in such a way that the events of each agent form a linear order. The underly-

ing partially ordered relation captures the causal dependence of event occurrences of

the distributed system. We work with Lamport diagrams as as models representing

behaviours of distributed message passing systems in this thesis and will present

more details in further chapters.

Lamport diagrams can be thought of as a restricted sub-class of ACSAs, which in

turn are a sub-class of general representations like event structures. Event structures

are very general models of computations of systems where the underlying notion of

time is assumed to be branching and they also model conflict in between event

occurrences in addition to causality and concurrency. ACSAs can be thought of

as restricted event structures which again concentrate only on modeling causality

between event occurrences of the distributed system. However, they assume that

the past of every event occurrence is totally ordered while the future need not be.

Lamport diagrams pose further restriction on ACSAs and insist that all the event

occurrences of each agent be totally ordered.

Message sequence charts and related models A formalism closely related

to Lamport diagrams is that of Message Sequence Charts (MSCs) [RGG96]. The

language of MSCs is a standard language of the International Telecommunication

Union [ITU97]. While Lamport diagrams describe communication patterns of a
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system with main focus on the causal order between the events, the main focus of

MSCs is on the description of messages exchanged between the agents of the system

and the underlying causal order is required to be a partial order. More precisely, an

MSC is a graph over an at most countable set of events (which are partitioned into

a set of send, receive and local events) such that there is a bijection between the set

of send and receive events. Again, like in Lamport diagrams, each event belongs to

a particular agent and the events of each agent are totally ordered. The ordering

defined by the total orders of the various agents and the bijection is required to be

a partial order over the set of events.

Lamport diagrams constitute an abstract generalization of MSCs and possess

additional features to describe simultaneous send and receive events. In fact, Lamport

diagrams are partial orders generated by MSCs [AHP96]. We will present a detailed

comparison between Lamport diagrams and MSCs later in the thesis.

Various models for distributed message passing systems based on MSCs have

been proposed in the literature. Message Sequence Graphs (MSGs) and hierarchical

MSCs are models prescribed in the ITU standard to represent collections of MSCs

using operations of choice, concatenation and repetition. The model checking prob-

lem for MSCs and MSGs against specifications given as finite state automata is

studied in [AY99]. The authors show that the problem is undecidable for systems

whose models are MSGs but is decidable for systems whose models are bounded

MSGs (i.e., MSGs where the capacity of the channel between each pair of agents is

assumed to be bounded).

An automata-theoretic model called Message Passing Automata (MPA) for ac-

cepting linearizations of MSCs is proposed in [HMKT00b] which accepts regular

collections of MSCs. An MPA is a collection of finite state automata, one per agent

and the global behaviour of an MPA is obtained by combining the behaviour of each

of the local automata along with the contents of buffers, which are bounded. A

characterization of regular MSC languages in terms of a monadic second order logic

over bounded MSCs is also presented in [HMKT00b].

In [HMKT00a], it is shown that the class of languages of MSCs generated by

bounded MSGs is the same as that of finitely generated regular MSC languages, i.e.,

regular MSC languages which can be obtained from a finite set of MSCs by using

operations of union, concatenation and iteration. The collections of MSCs generated

by MSGs is incomparable with regular collections of MSCs in general.
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A model checking algorithm for MSGs against MSO specifications is presented

in [Mad01]. However, the problem of checking satisfiability of MSO over arbitrary

MSCs is undecidable [Thi01].

Compositional Message Sequence Graphs (CMSGs) were introduced in [GMP01]

as a generalization of MSGs. They are finite graphs whose nodes are labelled by

Compositional Message Sequence Charts (CMSCs). CMSCs are like MSCs but, pos-

sess unmatched send and receive events in addition to the normal send and receive

events of MSCs. These are send (receive) events whose corresponding receive (send)

events are not present within the same CMSC. They have to be matched up with

appropriate send/receive events while combining CMSCs using the operation of con-

catenation in an CMSG. We show that CMSGs subsume MSGs and regular MSC

languages and also present a model checking algorithm for CMSGs against MSO

specifications in the thesis.

1.4 Contributions of the thesis

We work with distributed message passing systems with a fixed finite number

of agents in this thesis. We consider n-agent systems and denote the set of agents

by [n] = {1, 2, . . . , n}. The main focus of the thesis is to investigate notions to

represent behaviours of such systems and to develop suitable logics to reason about

the behaviours. Towards working on the decidability of various logics, we also

propose various automata-theoretic models of these systems and investigate some of

their closure properties. These lead to natural model checking problems where the

distributed message passing system is modelled using appropriate automata.

Lamport diagrams and layered Lamport diagrams We embark on this study

by starting with the model of Lamport diagrams to represent behaviours of dis-

tributed message passing systems in Chapter 2. As mentioned above, Lamport

diagrams are partial orders representing the causal dependency between event oc-

currences of a distributed system. We set up notations to talk about send and receive

events and also about various properties of Lamport diagrams like those of states,

sequentializations etc. and prove a few propositions to be used later.

Lamport diagrams are ideal as models for systems which occur as a parallel

composition of sequential behaviour—the event occurrences of each agent are linearly
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ordered in a Lamport diagram which itself is a partial order on the entire set of event

occurrences. However, there are many distributed systems which consist of repeated

patterns of finite communication protocols. These patterns are then composed to

obtain the full behaviour of the system. To capture the behaviour of such systems,

we introduce the notion of a Layered Lamport Diagram (LLD). There can be various

types of layering depending on the underlying system behaviour—layerings with

only bounded number of events (bounded LLDs), layerings where every send event

and its corresponding receive event occur within the same layer (communication

closed LLD), layerings where there are only a bounded number of send events whose

corresponding receive events occur in later layers (channel bounded LLDs) etc. We

introduce layered Lamport diagrams and the various layerings in Chapter 2 and

discuss their properties.

Automata models for distributed message passing systems In Chapter 3,

we introduce various automata-theoretic models that we work with in the thesis.

These models will be used in later chapters to solve the satisfiability problem of

appropriate logics using the automata-theoretic approach. We introduce two kinds

of automata—the first kind called System of Communicating Automata (SCA) run

on Lamport diagrams and accept them and the second kind of automata (diagram

automata and fragment automata) accept various layered Lamport diagrams. With

the goal of using these automata mainly for solving the satisfiability problem of

certain logics, we prove that the emptiness problem for these automata are decidable

and also prove certain relevant closure properties.

Modal logics over Lamport diagrams We then consider in Chapter 4, the

question of defining appropriate linear time temporal logics to reason about systems

whose computations are Lamport diagrams. As mentioned above, the traditional

option is to consider the set of all sequentializations of all the Lamport diagrams

representing the behaviour of a system and use standard LTL to reason about their

properties. To reiterate, there are many drawbacks in such an approach. Firstly,

even simple Lamport diagrams have sequentializations which do not form a reg-

ular language. For example, consider the Lamport diagram corresponding to the

producer-consumer problem given in Figure 1.4. The producer (agent 1) repeatedly

sends messages labelled a to the consumer (agent 2) who receives them as b. The set

of all finite sequentializations of this Lamport diagram yields the language L over
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a a

b

a

b b

Figure 1.1: Lamport diagram representing a behaviour of the producer-consumer
problem

{a, b} where every word w in L is such that every prefix of it has at least as many

a’s as b’s, which is not a regular language.

Now, LTL cannot express such non-regular behaviours and so the diagrams spec-

ified would have to exclude such behaviours. The second drawback is that a logic

like LTL specifies how the global states of the system may evolve whereas it would

be ideal to have a logic which specifies the effect of message passing in the system.

This is more naturally done using an event based approach instead of considering

sequentializations. Such an event based logic would be able to specify properties by

using the partially ordered structure of a Lamport diagram and formulas of logic

can then talk about properties like when a particular agent can send a message,

what would an agent do while receiving a message etc.

As a first step towards defining such a logic, we consider a natural modal logic

to reason about these diagrams. A modal logic LD0 is defined in Chapter 4 with X

(next), Y (previous), F (future) and P (past) modalities over Lamport diagrams.

All the four modalities are global in their scope. For example, the formula Xα of

the logic when asserted at a send event, talks about α being true at a corresponding

receive event in another agent. Similarly, the modality Y interpreted at a receive

event can be used to assert the truth of a formula at a send event. The F and P

modalities also talk about paths that include events across agents in the Lamport

diagram.

The satisfiability problem of this logic is the problem of checking if a given

formula has a Lamport diagram as a model or not. It turns out that this problem

is undecidable—the global X and Y modalities of this logic are expressive enough

to describe Lamport diagrams that code up runs of non-deterministic 2-counter

machines. The proof crucially uses the fact that the modalities X and Y are global

in the sense that they can assert truth of formulas at other agents.
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Since this logic turns out to be undecidable, the next step is to look for weaker

logics with similar expressive power and check for their decidability. Requirements

which specify conditions on when a particular agent may send a message can be

specified using a very restricted version of the global X modality, namely, special

send propositions, which is equivalent to the formula XTrue. Similarly, require-

ments regarding what an agent would do upon receiving a message can be specified

using special receive propositions which is again equivalent to YTrue. Notice that

using such special send (receive) propositions, we can just specify requirements in-

volving sending (receiving) a message and not actually the ‘content’ of the message.

It turns out the satisfiability problem for both the weaker logics is also undecidable.

This is mainly due to the reason that even the presence of one global modality along

with the special proposition to represent a weaker version of the other one suffices to

represent Lamport diagrams encoding runs of non-deterministic 2-counter machines.

A temporal logic over Lamport diagrams Faced with the fact that the modal

logics proposed above are undecidable, we consider other possible restrictions to

obtain decidable logics. We could consider a logic without any X or Y modalities,

but, with only send and receive propositions. Such a logic would not be expressive

enough to specify properties of message passing systems.

The other option is to consider logics wherein both the X and Y modalities are

local. Such a logic again is not expressive enough to specify requirements involving

sending or receiving messages. An intermediate option is to consider logics where

exactly one of the modalities X or Y is global and the other is local. We believe

that the satisfiability problem of such logics would also be undecidable.

As another intermediate option, we consider a logic with a local X modality

and a weakly global Y modality in Chapter 5. The Y modality is indexed by the

agent numbers and such a modality with an index j can assert the truth of a local

formula of agent j at the last j-event in its past (which need not be the send event

at agent j). To be precise, the logic m-LTL has the modalities of LTL (namely X

and U) for each agent in addition to a modality of the form �j which is the weak

Y modality that we discussed above. We show that the satisfiability problem of this

logic is decidable by using the automata-theoretic approach to satisfiability. That

is, we associate an SCA with every m-LTL formula such that the language accepted

by the SCA is non-empty iff the formula is satisfiable. Since checking the former
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is decidable, we get decidability of the satisfiability problem for m-LTL. It turns

out that m-LTL is also an expressive logic to reason about Lamport diagrams. We

illustrate this fact by using an example involving a conference management system.

The automata-theoretic approach to satisfiability can be used to define a natural

model checking problem for m-LTL where the system is modelled as an SCA. We

show that the decidability of the model checking problem.

Coming to related work, [Pel00] considers a similar logic with an X modality and

without the Y modality interpreted over the partially ordered structure of MSCs

(which is essentially a Lamport diagram) and shows that the satisfiability problem

of this logic over the class of MSCs generated by MSGs is decidable. However, it is

not clear if the satisfiability problem of this logic is decidable in general.

Logics over layered Lamport diagrams We explored various ways of syn-

tactically restricting logics to obtain decidable and expressive logics over Lamport

diagrams above. The other track to obtain decidable logics is to restrict the class of

models considered. The first observation in this context is the fact that the satisfia-

bility problem of the logic LD0 is undecidable over models based on finite Lamport

diagrams. We then place bounds on the size of Lamport diagrams we consider and

then the satisfiability problem turns out to be decidable. This is not surprising as

there are only a fixed number of models to check against once we place bounds on

the size of the diagrams.

To use this result, we consider layered Lamport diagrams which were introduced

earlier as models describing behaviours of systems which consist of repeated patterns

of finite protocols. Since each layer is a finite Lamport diagram, the logic LD0 is

interpreted over the layers of an LLD. To structure the logic in tune with that of

LLDs, we modify this logic over LLDs as follows. The logic λ-LTL has a two level

syntax: Formulas of the logic LD0 talk about the layers of an LLD and a temporal

logic is built upon these formulas to talk about the sequence of layers that make

up an LLD. The top level temporal logic has the usual linear time connectives, the

modality © refers to the next layer and the modality U talks about sequence of

layers of the LLDs. Such a logic can be used to write specifications which talk about

a sequential composition of parallel processes which are described using LLDs.

It turns out that the satisfiability problem of this logic is again undecidable over

the class of models based on bounded LLDs and over those based on (unbounded)
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communication closed LLDs as we show in Chapter 6. However, the logic becomes

decidable when interpreted over the class of models based on communication closed

and bounded LLDs and over the class of models based on channel bounded LLDs.

We again use the automata theoretic approach to show decidability. Given a formula

of λ-LTL over the class of communication closed and bounded LLDs, we associate a

diagram automaton such that the language of LLDs accepted by the automaton is

precisely those which are models of the formula. We similarly associate a fragment

automaton with every λ-LTL formula interpreted over channel bounded LLDs. The

results regarding decidability of the emptiness problem for these automata shown

in Chapter 3 imply the decidability of the satisfiability problem for these logics.

Some results on MSCs and CMSGs We wind up the thesis by presenting a

comparative study of Lamport diagrams and MSCs in the last chapter. We show that

Lamport diagrams are partial orders representing the underlying causal structure

of MSCs. They possess additional features like a single event being a send and a

receive event simultaneously which are not modelled by MSCs. MSCs, on the other

hand, can model messages explicitly which is not possible in Lamport diagrams.

We then extend these results and show that the class of communication closed

and bounded LLDs represent strictly more general partial orders than those obtained

from the MSCs generated from MSGs. Similarly, channel bounded LLDs strictly

subsume the Lamport diagrams underlying the MSCs generated from CMSGs.

We also study the CMSG model in detail and show that it subsumes the model

of MSGs and generates all of regular MSC languages as well. We finally present an

algorithm for model checking CMSGs against MSO specifications.

Monadic second order logic over Lamport diagrams We then turn our at-

tention to defining a suitable MSO over Lamport diagrams. We consider Lamport

diagrams whose events are labelled with actions from a distributed alphabet and the

MSO is defined on the partially ordered structure of the Lamport diagram. Not sur-

prisingly, the satisfiability problem for this logic also turns out to be undecidable.

The modalities of the logic LD0 are all expressible in MSO. On the positive side, we

show that the problem of checking if an MSO formula has a communication closed

and bounded LLD as a model or not is decidable. We also show that the problem

of checking if a given MSO formula has a channel bounded LLD as a model or not

is decidable.



Chapter 2

Lamport diagrams

Throughout the thesis, we fix n > 0, and study distributed systems of n agents.

We will follow the linguistic convention that the term ‘system’ will refer to com-

posite distributed systems, and ‘agent’ to component processes in the system. We

assume that the agents are sequential programs and communicate with each other

by exchanging messages. We only consider systems whose components communi-

cate by asynchronous message passing. The agents of the system do not share any

common actions. For the present, we will make the following assumptions about the

communication medium:

1. Every message is eventually delivered.

2. Messages are delivered in the order in which they were sent.

We refer to the agents by the indices i, 1 ≤ i ≤ n and use the notation [n] to

denote the set {1, 2, . . . , n} of agents. The set of natural numbers will be denoted

by N and the natural ordering on them will be denoted by ≤N.

2.1 Lamport diagrams

We know that behaviours of sequential systems can be described by finite or

infinite words over a suitable alphabet of actions. The system has an underlying

set of events and an alphabet of actions. The actions can be thought of as labels

of the event occurrences. A word over such an alphabet represents a behaviour of

16
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the system as a totally ordered sequence of actions of the system and a set of such

words represents various possible behaviours of the system. Extending this intuition,

Lamport [Lam78] suggested that we can use certain partial orders to represent com-

putations of distributed systems. Since events of a distributed system are unique to

a particular agent and the agents themselves are concurrent, there might be event

occurrences of different agents that are totally independent of each other. Partial

orders are natural structures to represent the behaviour of such systems. Lamport

diagrams constitute simple representations of behaviours of such systems and a dia-

gram represents a single (non-sequential) run of the system. They are partial orders

with the underlying set of events partitioned into those of n agents in such a way

that the event occurrences of every agent form a linear order. The ordering relation

captures the causal dependence of event occurrences. Since we have assumed that

each agent is a sequential program, the event occurrences of each agent are totally

ordered.

Definition 2.1.1 A Lamport diagram is a tuple D = (E,≤, φ) where

• E is an at most countable set of events.

• ≤⊆ (E × E) is a partial order called the causality relation such that for every

e ∈ E, ↓e
def
= {e′ ∈ E | e′ ≤ e} is finite.

• φ : E → [n] is a labelling function which satisfies the following condition:

Let Ei
def
= {e ∈ E | φ(e) = i} and ≤i

def
= ≤ ∩(Ei × Ei). Then, for every

i ∈ [n], ≤i is a total order on Ei.

In the above definition, the relation ≤ captures the causal dependence of events

and the relations {≤i| i ∈ [n]} capture the fact that event occurrences of each agent

are totally ordered. Note that the labelling function φ assigns a unique agent to

every event and hence rules out any synchronous communication in the underlying

system.

For example, consider a distributed system where a fixed finite set of clients

are registered with a server that provides them access to a database. A Lamport

diagram representing a behaviour of the system is depicted in Figure 2.1. There

are four agents: client1 and client2 are two clients registered with the server in

order to access the database. Event e1 is an event occurrence of the agent client1
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Figure 2.1: Lamport diagram representing a scenario of client—server system

corresponding to sending of the message request1 to the server. The receipt of

this message by the server is represented by the event occurrence e6. The server

passes the requests to the database (represented by lookup1 and lookup2) and the

response from the database (data1 and data2) is communicated back to the clients.

Observe that event occurrences e1 and e3 corresponding to requests from client1 and

client2 respectively are concurrent, i.e., they are not causally dependent on each

other. On the other hand, the event occurrence e5 corresponding to the receipt of

the message request2 is causally dependent on e3 corresponding to sending of that

message. Similarly, for e13 to occur, e7 and e1 should have already occurred. It is

in this sense that Lamport diagrams depict the causal dependence of various event

occurrences.

To be precise, the relation ≤ is causal in the sense that whenever e ≤ e′, we

interpret this as the condition that, in any run of the system, e′ cannot occur without

e having occurred previously in that run. Since for all e ∈ E, ↓e is finite, ≤ must be

discrete. Hence there exists l ⊂≤, the immediate causality relation, which generates

the causality relation; that is: for all e, e′, e′′, if ele′ and e ≤ e′′ ≤ e′ then e′′ ∈ {e, e′}.

We have ≤= (l)∗. Now consider e l e′. If e, e′ ∈ Ei for some i ∈ [n], we see this
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as local causal dependence. However, if e ∈ Ei and e′ ∈ Ej, i, j ∈ [n], i 6= j, we

have remote causal dependence. For e, e′ ∈ E, define e <c e
′ iff e ∈ Ei, e

′ ∈ Ej,

i 6= j and e l e′. In this case, we interpret e as the sending of a message by

agent i and e′ as its corresponding receipt by j. Accordingly, if e <c e
′ then, e will

be referred to as a send event and e′ will be its corresponding receive event. An

event e will be interpreted as a local event if there exists no e′ such that e <c e
′

or e′ <c e. With such an understanding, Lamport diagrams can be thought of

as partial orders representing the underlying communication scenario of a system.

Notice that the communication relation <c is derived from the Hasse diagram of the

causal dependence relation which is a partial order. This rules out the presence of

’over-taking’ send events. That is, there cannot be events e1, e2 ∈ Ei, e
′
1, e

′
2 ∈ Ej

where i 6= j such that e1 ≤i e2, e
′
1 ≤j e

′
2 and e1 <c e

′
2, e2 <c e

′
1.

Note that given an event e ∈ E, there can be at most n events e′ such that

el e′ and at most n events e′ such that e′ l e. In particular, if e ∈ Ei and e <c e
′,

e <c e
′′ where e′ ∈ Ej and e′′ ∈ Ek for j, k ∈ [n] such that j 6= i and k 6= i, then

e is a send event simultaneously to agents j and k. Such events can be thought

of as representing broadcast type of communication where a common message is

broadcast to all agents of the system. Similarly, there can be events which are

simultaneous receive events from more than one agent. Also, an event e can be a

send and a receive event simultaneously. For example, the events e9 and e10 in the

Lamport diagram given in Figure 2.1 are events which represent send and a receive

actions simultaneously.

Given a Lamport diagram D = (E,≤, φ) and E ′ ⊆ E, the Lamport diagram

induced by E ′ is defined as DE′ = (E ′,≤ ∩(E ′ × E ′), φ � E ′) where φ � E ′ denotes

the projection of φ on E ′.

2.1.1 States of a Lamport diagram

The concept of global state in a Lamport diagram is given by the notion of a

configuration, which is any downward closed set of events. That is, c ⊆ E is a

configuration iff for all e ∈ c, ↓e ⊆ c. For example, the set c1 = {e1, e3, e5, e6} is a

configuration of the Lamport diagram given in Figure 2.1 whereas c2 = {e6, e7} is

not a configuration as e1 ∈ ↓e6 but e1 6∈ c2. Given a Lamport diagram D, let Cfin
D

denote the set of all finite configurations of D. The empty configuration corresponds

to the initial global state when no event has occurred and is denoted by ∅.
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e1 e2

f1

e3

f2 f3

E1

E2

Figure 2.2: Lamport diagram of the producer — consumer problem

For each i ∈ [n] and any finite configuration c, if c ∩ Ei 6= ∅, then, there exists

ei ∈ c ∩ Ei which is the maximum with respect to ≤ (as ≤i is a total order on

Ei). Hence, a finite configuration c can be represented by an n-tuple (x1, x2, . . . , xn)

where for i ∈ [n], xi = ei iff c ∩ Ei 6= ∅ and ei is the maximum event of Ei in c and

xi = ⊥ otherwise. c is then given by c = ∩ni=1↓xi where ↓⊥ = ∅. For example, the

configuration c1 in the Lamport diagram of Figure 2.1 can be represented by the

tuple (e1, e3, e6,⊥).

Let e ∈ Ei. Note that ↓e is a configuration, and we can think of ↓e as the

local state of agent i when the event e has just occurred. This state contains the

information that i has up till that instant in the computation, which contains it own

local history and that of other agents according to the latest communication from

them. The empty set corresponds to the local initial state, where no i-event has

occurred, and is denoted by εi. Let the set of all local states of agent i be denoted

LCi
def
= {εi} ∪ {↓e | e ∈ Ei} and let LC

def
=

⋃

i

LCi. We use d, d′, d1 etc to denote

local states. We can extend the l relation to local states as follows: let d1 ∈ LCj

and d2 ∈ LCi; we say d1 l d2 iff d1 ⊂ d2 and for all d ∈ LCj, if d ⊆ d2, then d ⊆ d1

as well; that is, d1 is the last j-local state seen by i at d2. Therefore, εj l εi for all

j 6= i.

Sequentializations

Given a Lamport diagram D = (E,≤, φ), a sequentialization of D is any sequence

σ = e0e1 . . . such that E = {e0, e1, . . .} and for all k ≥ 0, ↓ek ⊆ {e0, . . . , ek}; that is,

σ is a linear order that respects ≤.

For example, consider the Lamport diagram D corresponding to the producer-

consumer problem given in Figure 2.2. The set of events E1 of agent 1 represent the
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producer and the set E2 of events of agent 2 represent the consumer and agent 1 keeps

sending messages to agent 2. For all k ≥ 1, ek is a send event from agent 1 to agent

2 and fk is its corresponding receive event. The sequence σ1 = e1f1e2f2 . . . ekfk . . .

is a sequentialization of D whereas the sequence σ2 = f1e1e2f2 . . . is not a sequen-

tialization as ↓f1 6⊆ {f1}.

We now argue that a Lamport diagram can be represented by the set of all its

sequentializations. This defines a language of sequences of events of the Lamport

diagram. Similarly, a collection of Lamport diagrams can be represented by the set

of all sequentializations of each Lamport diagram in the collection.

Proposition 2.1.2 A Lamport diagram can be represented by the set of all its se-

quentializations.

Proof: Consider the set S of all sequentializations of some Lamport diagram

D = (E,≤, φ). Every sequentialization in the set S is an infinite string over E, so in

order to show that D can be fully represented by S, it suffices to show that the causal

order ≤ of D can be fully recovered from the set S. Fix a sequentialization σ ∈ S

and consider two distinct events e1 and e2 in σ such that e1 occurs before e2 in σ.

If e1 occurs before e2 in every other sequentialization in S then it is easy to see that

e1 ≤ e2 in D. For otherwise, we know that either e2 ≤ e1 or e1 and e2 are unordered

in D. In the former case, it contradicts the fact that σ is a sequentialization of D

and in the latter case it contradicts the fact that S is the set of all sequentializatons

of D (as there would be a sequentialization in S where e2 occurs before e1 if they

are unordered in D).

If there is at least one sequentialization in S (obviously different from σ) in which

e2 occurs before e1, then we can again argue as above that e1 and e2 are not ordered

by ≤ in D. Hence they are concurrent in the Lamport diagram D. 2

Sequentializations of a Lamport diagram induce the notion of a buffer between

agents of the system. The buffer records the sequence of “pending sends” between

every pair of agents for every prefix of the given sequentialization. For example,

the sequentialization σ1 of D given above is 1-bounded as there is at most one send

event ek without the corresponding receive event fk in every prefix of σ1. The

sequentialization σ3 = e1e2f1f2 . . . is at least 2-bounded as the prefix e1e2 of σ3 has

two send events e1 and e2 without their corresponding receive events f1 and f2. We
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interpret e1 and e2 as pending send events at the prefix e1e2 of σ3. A sequentialization

where the number of pending send events grows unbounded as we consider prefixes

of increasing length is unbounded.

The presence of such bounded and unbounded sequentializations of the same

underlying Lamport diagram can lead to “non-regular” behaviours when we consider

the behaviour of the diagram to be the set of all its sequentializations. For example,

suppose the events of the Lamport diagram D given in Figure 2.2 were labelled by

actions from a finite alphabet. Let all the event occurrences in E1 be labelled a

and all those in E2 be labelled b. Then it is easy to see that the set of all finite

sequentializations of D is the set of all words in which the number of a’s greater than

or equal to the number of b’s, which is a context free language over the alphabet

{a, b}.

We are interested in sequentializations which implicitly use a ‘bounded buffer’

with the hope that these will be “regular” languages. Let σ = e0e1 . . . be a se-

quentialization of D. We say σ is b-bounded (for b ∈ N) iff the following property

holds:

Consider events e1, e2, . . . eb+1 and f1, f2, . . . fb+1, ek ∈ Ei, 1 ≤N k ≤N (b+1) and

fk ∈ Ej, 1 ≤N k ≤N (b+ 1) where i, j ∈ [n] with i 6= j such that

1. e1 ≤i e2 ≤i · · · ≤i eb+1,

2. f1 ≤j f2 ≤j · · · ≤j fb+1,

3. ek <c fk for 1 ≤N k ≤N (b+ 1) and

4. for every k, 1 ≤N k ≤N b, there exists no event e ∈ Ei such that e <c f for

some f ∈ Ej such that fk ≤j f ≤j fk+1.

Then, fb comes before eb+1 in σ.

That is, a b-bounded sequentialization is one in which for every pair of distinct

agents i, j, at most b send events from i to j can occur in any prefix of the sequential-

ization without their corresponding receive events having occurred. In other words,

there can be at most b send events from i to j in every prefix.

We now show that every Lamport diagram has at least one 1-bounded sequen-

tialization.

Proposition 2.1.3 Let D = (E,≤, φ) be a Lamport diagram. Then, there exists at

least one 1-bounded sequentialization of D.
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Proof: We will prove the existence of a 1-bounded sequentialization by con-

structing one. We know that E is a countable set, and so there is an enumeration

of the events in E. Define a sequentialization σ = e0e1 . . . as follows:

We know that there are at most n minimal events in E with respect to ≤.

Define e0 to be the minimum event which comes before all the other minimum

events in the enumeration. Inductively, suppose we have defined ek, k ≥ 0 such

that ↓ek ⊆ {e0, . . . , ek}. Consider the event e (say) such that e is the maximum

i-event (with respect to ≤i) in the sequence e0e1 . . . ek for some i ∈ [n] and for every

j 6= i, there exists no j-maximum event before e in e0e1 . . . ek. (In general, for each

agent, there might be a maximum event whose successor can be picked as ek+1. We

choose ek+1 to be the one which occurs before every other such event in the sequence

e0e1 . . . ek.)

As noted before, e has at most n l-successors.

Fix some j 6= i such that e′ ∈ Ej and e l e′. Define ek+1 = e′. (That is, we

‘schedule’ a non-local successor if it is present). If there exists no such e′, define ek+1

to be the local l-successor of e. Clearly, ↓ek+1 = ({ek+1} ∪ ↓ek) ⊆ {e0, . . . , ek+1}.

It follows from the inductive assumption that σ is a sequentialization. To show

that σ is 1-bounded, consider events e1, e2 ∈ Ei, e1 ≤ e2 and e′1, e
′
2 ∈ Ej(j 6= i),

e′1 ≤ e′2 such that e′1 <c e1 and e′2 <c e2. Then, by the definition of σ, e1 is scheduled

before e′2 and hence it is 1-bounded. 2

2.2 Layered Lamport diagrams

Behaviours of many distributed systems usually consist of repeated patterns of

finite communication protocols. For example, consider the Lamport diagram de-

picting the behaviour of the producer-consumer problem in Figure 2.2. The pattern

of producer sending a message (event occurrences ei, i ≥ 0) and the consumer re-

ceiving it (event occurrences fi, i ≥ 0) is repeated infinitely often. The Lamport

diagram can be represented canonically by just the finite segment consisting of the

send event ei and its corresponding receive event fi. This segment can be composed

with itself infinitely often to generate the full Lamport diagram as in Figure 2.2.

In general, for systems whose communication patterns repeat as per a particu-

lar pattern, finite Lamport diagrams from an underlying set can be composed in a
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pre-defined way to obtain a full behaviour of the system. Such a composition also

naturally defines a notion of layering in the resulting (infinite) Lamport diagram.

The set of events belonging to a particular finite Lamport diagram from the under-

lying set constitute a layer and the entire Lamport diagram then becomes a sequence

of layers.

Such a definition of composition and layering allows very general ways of struc-

turing communications of some systems represented by Lamport diagrams. Each

layer describes a finite episode of communications and a system behaviour is repre-

sented by concatenating/composing such layers.

Following this intuition, we define a class of Layered Lamport diagrams (LLDs) in

such a way that every (countable) Lamport diagram can be thought of as a (count-

able) concatenation of finite Lamport diagrams. We refer to these finite Lamport

diagrams as layers.

Definition 2.2.1 A layered Lamport diagram is a tuple D = (E,≤, φ, λ) where

(E,≤, φ) is a Lamport diagram and λ : E → N is a layering function which satisfies

the following conditions:

• for all e ∈ E, if λ(e) = k then, for all i ∈ [n], there exists e′ ∈ Ei such that

λ(e′) = k.

• for e, e′ ∈ E, e ≤ e′ implies λ(e) ≤N λ(e′).

• for every k, λ−1(k) is finite.

Thus a layer is a finite set of events that includes at least one event of each agent,

and the layering respects the causality relation.

For example, Figure 2.3 shows the Lamport diagram of the producer-consumer

problem (event names are omitted) and two of its possible layerings. Notice that the

first LLD in the figure is bounded (that is, every layer has boundedly many events)

whereas the next one is, in general, unbounded (assuming that the number of events

increases in each successive layer). Consequently, the underlying set of layers of the

first LLD is also bounded but it is unbounded for the second one. We will make this

precise later.

Given a layered Lamport diagram D = (E,≤, φ, λ), λ(E) is an infinite set and

can be denoted by an increasing (infinite) sequence of natural numbers. More pre-

cisely, let νD denote the sequence of natural numbers k1, k2, . . . such that λ(E) =
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A bounded An unbounded

diagram

A Lamport

LLDLLD

Figure 2.3: A Lamport diagram and its two possible layerings

{k1, k2, . . .} and k1 <N k2 <N . . .. For k ∈ λ(E), λ−1(k) induces a (finite) Lamport

diagram which we call a layer of D and denote by Dk. Notice that a Lamport di-

agram which occurs as a layer has the additional property of having at least one

event of each agent.

2.2.1 Types of layering

We will now look at various types of layerings that can occur in LLDs.

The first one we consider is that of communication closed LLDs. Layers in which

for every send event in the layer, its corresponding receive event is also within

the layer are called communication closed and we call the corresponding LLDs as

communication closed LLDs.

Definition 2.2.2 Consider a layered Lamport diagram D = (E,≤, φ, λ). D is said

to be communication closed if for every e, e′ ∈ E such that e <c e
′, λ(e) = λ(e′).

For example, the second and the third LLDs described in Figure 2.3 are diagrams

where the layering is communication closed. On the other hand, the layering of the
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LLD representing the alternating bit protocol in Figure 2.4 is not communication

closed.

When D is communication closed, the sequence of layers Dk1, Dk2 , . . ., where

νD = k1, k2 . . ., completely specifies the diagram D, in the sense that D can be

reconstructed as a countable concatenation of this sequence of diagrams. This can

be important for system modelling—typical communication patterns are modelled

as layers, and when the number of possible layers is finite, they constitute a finite

alphabet of patterns. A layered diagram then is simply an infinite word over this

finite alphabet. Just as we speak of the sequence of finite diagrams associated with

D, we can conversely speak of the diagram D associated with a given countable

sequence of finite diagrams. We make this precise below.

Definition 2.2.3 Consider finite Lamport diagrams D1 = (E1,≤1, φ1) and D2 =

(E2,≤2, φ2) with E1∩E2 = ∅. The concatenation of D1 and D2 is a Lamport diagram

D denoted by D = D1 •D2 which is defined as follows:

D = (E,≤, φ) where

• E = E1 ∪ E2.

• φ =

{
φ1(e) for e ∈ E1

φ2(e) for e ∈ E2

• ≤= (≤1 ∪ ≤2 ∪ ∪ni=1 {(e1, e2) | e1 ∈ E1 ∩ Ei and e2 ∈ E2 ∩ Ei})
∗.

Note that the concatenation operation • is associative. Also, concatenation is

asynchronous in the sense that a particular agent can execute events of the second

Lamport diagram while another agent is still executing certain (concurrent) events of

the first one. Now consider a communication closed LLD D = (E,≤, φ, λ) with νD =

k1, k2, . . .. Then D can be written as D = Dk1 •Dk2 • . . . where the concatenation

is as defined above and the layering function λ is given by λ(e) = ki for all events e

of Dki
.

Communication closed layering of systems is a concept that has been studied at

length in the context of process algebra ([EF82, PZ92]). These papers consider par-

tial orders (representing distributed systems) that are more expressive than Lamport

diagrams and layerings that may not include at least one event from every agent.

They also consider parallel composition of layers (in addition to sequential compo-

sition presented above). This way, they model behaviours of distributed systems
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as partial orders with an unbounded number of agents (as the parallel composition

operator concatenates the underlying partial orders in such a way that the two occur

parallely, increasing the number of underlying agents). The bulk of work in these

papers is in the context of representing distributed systems and in synthesizing their

behaviours by composing some atomic/elementary patterns whereas we concentrate

on the formal methods of such systems.

Another natural condition that can be imposed on a layered diagram is that of

boundedness.

Definition 2.2.4 Consider a layered Lamport diagram D = (E,≤, φ, λ). Let b ∈ N.

1. D is said to be b-bounded, if for all k ∈ λ(E), |λ−1(k)| ≤N b.

2. D is said to be bounded if there exists b ∈ N such that D is b-bounded.

Note that when D is b-bounded, b ≥ n, since every layer is assumed to contain

at least one event per agent. The layering in the second diagram in Figure 2.3 is

bounded as every layer has exactly 2 events but, the third diagram has two events

in the first layer, four events in the second layer, six events in the third layer and in

general, 2n events in the nth layer and hence, is an unbounded layering.

When an LLD D is communication closed and bounded then, the number of

different possible layers of D is also bounded and so D can be written as D =

Dk1 •Dk2 • . . . where the layers Dki
come from a finite alphabet of layers and • is

as defined above.

We can also have layered diagrams with delays, whereby messages sent during

one layer may be received later in another layer (i.e., the layers need not be com-

munication closed). That is, there are events e1, e2 in an LLD D such that e1 <c e2

and λ(e1) 6= λ(e2). We call such a layering interleaved. Consider the first Lamport

diagram in Figure 2.4 representing the alternating bit protocol. The layering of this

diagram given in the figure is an interleaved layering. In the context of LLDs with

interleaved layering, there is a different source of unboundedness, even if there is

a uniform bound on the number of events in every layer. Let e1, e ∈ Ei such that

e1 ≤ e. Call e1 a pending send to j at e if there exists e2 ∈ Ej such that e1 <c e2

and λ(e) < λ(e2). Now, for e ∈ Ei, and j 6= i, there need not be any uniform bound

on the number of events e′ ≤ e such that e′ is a pending send to j. We can consider

these pending sends to constitute the state of the communication channel from i to j
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Figure 2.4: Lamport diagram of the alternating bit protocol

when the agent i is in the local state when e has just occurred. It is then reasonable

to consider systems where the capacity of every such channel is uniformly bounded.

Definition 2.2.5 Consider a layered Lamport diagram D = (E,≤, φ, λ). Let ν ′ be

a finite prefix of νD ending in km; let Fν′ = ∪kl≤km
λ−1(kl); for i, j ∈ [n], i 6= j,

define δν′(i, j) = |{e ∈ Fν′ ∩ Ei | for some e′ ∈ (Ej − Fν′), e <c e
′}|. We say that D

is channel b-bounded, if D is b-bounded and for all prefixes ν ′ of νD and i, j ∈ [n],

δν′(i, j) ≤ b.

Thus, in a channel b-bounded LLD, for every pair of agents i, j such that i 6= j,

at any layer, the number of send-events from i to j until this layer, for which

corresponding receive-events by j have not been included yet, can be at most b.

For example, the layering of the Lamport diagram representing the alternating bit

protocol given in Figure 2.4 is channel-5-bounded. (Note that there are at most two

pending send events at each layer. But, the first layer has 5 events. Hence, the term

channel 5-bounded.)

We saw that communication closed diagrams can be presented as concatenation

of finite diagrams which occur as its layers. However, in the case of diagrams which

are not communication closed, a layer Dk is typically incomplete. ‘Communication

edges’ across layers in the Hasse diagram of D are missing in the diagram given by
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νD. Reconstructing D from νD for general diagrams requires a good deal of work.

The layers are now fragments, which need to be tiled together, matching sends and

receives appropriately to make up the original diagram. Moreover, the same event

may be a pending send for several agents, and so also, a delayed receive may be

from several agents. Therefore, the fragment must carry this information. However,

it is easy to see that if e is a pending send for i to j in a layer, every later send

event for i to j in that layer must be a pending send. Similarly, when e is a delayed

receive for i from j in a layer, every preceding receive for i from j in that layer must

be a delayed receive. These observations lead to the following way of reconstructing

LLDs which have interleaved layering.

Definition 2.2.6 A labelled fragment is a tuple F
def
= (E,≤, φ, A, η) where

• (E,≤, φ) is a Lamport diagram,

• A is some (abstract) alphabet of labels, and

• η is a map that demarcates pending sends and receives in E as follows.

Let T = ({r, s} × [n] × A). Elements of T represent tags. The tag (s, i, a)

denotes a pending send to i labelled a, and similarly (r, j, a′) is a pending

receive from j labelled a′.

Now, η : E −→ (A × 2T ) associates with each event, a set of tags, subject to

the following condition:

– If η(e) = (a,X), then (s, i, a′) ∈ X implies that e 6∈ Ei and for every

e′ ∈ E such that φ(e) = φ(e′) and e ≤ e′, there does not exist e′′ ∈ Ei

such that e′ <c e
′′.

– (r, j, a′) ∈ X implies that e 6∈ Ej and for every e′ ∈ E such that φ(e) =

φ(e′) and e′ ≤ e, there does not exist e′′ ∈ Ej such that e′′ <c e.

– Also, (s, i, a1) ∈ X and (s, i, a2) ∈ X implies a1 = a2 and similarly,

(r, j, a1) ∈ X and (r, j, a2) ∈ X implies a1 = a2.

Consider a channel b-bounded LLD D and let ν = k1, k2, . . .. We can now

associate an alphabet A and a sequence of fragments Fk1, Fk2 , . . . with D such that



Chapter 2: Lamport diagrams 30

• for any kj, if there exists an event e ∈ Fkj
∩ Ej such that η(e) = (a,X) and

(s, i, a′) ∈ X, then there exists e′ ∈ Fk`
∩Ei for some k` > kj such that e <c e

′

and η(e′) = (a′, Y ) and (r, j, a) ∈ Y .

• A similar condition holds the other way also: for kj and e as above, if (r, i, a′) ∈

X, then there exists e′ ∈ Fk`
∩ Ei for some k` < kj such that e′ <c e and

η(e′) = (a′, Y ) and (s, j, a) ∈ Y . (Strictly speaking, labels are not necessary

for describing this correspondence, but we need them later on.)

In the case of b-bounded diagrams, a finite alphabet suffices above. We say that

the sequence of fragments Fk1, Fk2 , . . . is matched in D.

Clearly, every countable sequence of finite labelled fragments does not give rise to

an LLD, since pending sends and delayed receives must be matched up appropriately.

We make this precise in the definition of concatenation of fragments presented below.

Fix a finite alphabet A of labels. For an A-labelled fragment F = (E,≤, φ, A, η)

and i, j ∈ [n], we define define two sequences F s
ij and F r

ji over A as follows:

• We know that Ei is a finite set linearly ordered by ≤; denote this sequence

of events by e1 · · · em. Now F s
ij = ak1 · · ·ak`

, where for all p ∈ {k1, . . . , k`},

(s, j, ap) is a tag in η(ep) and for all p ∈ ({1, . . . , m} \ {k1, . . . , k`}), there is no

a′ ∈ A such that (s, j, a′) is a tag in η(ep).

The ordered sequence ek1, ek2 , . . . ek`
of events of Ei is called as the event

sequence corresponding to F s
ij and is denoted by Ev(F s

ij).

• Again, we know that Ej is a finite set linearly ordered by ≤; denote this

sequence of events by f1 · · · fm′ . Now F r
ji = bk′1 · · · bk′`′ , where for all p ∈

{k′1, . . . , k
′
`′}, η(fp) = (bp, X) with (r, i, b′) ∈ X for some b′ ∈ A and for all

p ∈ ({1, . . . , m′} \ {k′1, . . . , k
′
`′}), there is no b′ ∈ A such that (r, i, b′) is a tag

in η(fp).

The ordered sequence fk′1, fk′2 , . . . fk′`′ of events of Ej is called as the event

sequence corresponding to F r
ji and is denoted by Ev(F r

ji).

Ev(F s
ij) records the sequence of pending send events agent i to agent j in F and

Ev(F r
ji) records the sequence of unmatched receive events of agent j in F from agent

i.
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Consider A-labelled fragments F1 = (E1,≤1, φ1, A, η1) and F2 = (E2,≤2, φ2, A, η2).

The concatenation of F1 and F2 is a fragment F denoted by F = F1◦F2 and is defined

iff the following conditions are satisfied.

For all i, j ∈ [n] such that i 6= j, we have

• F r
1(ji)

= ε and

• F r
2(ji)

is a prefix of F s
1(ij)

.

The first condition makes sure that the fragment F1 has no unmatched receive

events and the second condition ensures that the sequence of unmatched receive

events of F2 is a prefix of the sequence of unmatched send events of F1 (so that they

all can be matched up while concatenating F1 and F2).

Then, F = F1 ◦ F2 is defined as F = (E,≤, φ, A, η) where

• E = E1 ∪ E2.

• φ =

{
φ1(e) e ∈ E1

φ2(e) e ∈ E2

• ≤= (≤1 ∪ ≤2 ∪ ∪ni=1 {(e1, e2) | e1 ∈ E1 ∩ Ei and e2 ∈ E2 ∩ Ei}

∪ {(e1, f1), . . . , (em, fm) | Ev(F r
2(ji)

) = f1, . . . , fm and Ev(F s
1(ij)

) = e1, . . . , el})
∗.

(Since F r
2(ji)

is a prefix of F s
1(ij)

, we know that m ≤N l).

• For e ∈ Ek, k = 1, 2, if ηk(e) = (a, T ) then η(e) = (a, T ′), where T ′ = ∅ if

T = ∅, and T ′ = T − ({t | t is a receive tag} ∪ {t | t = (s, j, a) where e ∈ E1,

there exists e′ ∈ E2 such that φ2(e
′) = j 6= φ1(e), e ≤ e′}).

Observe that F is a fragment as well, and hence the operation of concatenation is

well-defined. Note that ◦ is not associative. As illustrated in Figure 2.5, (F1◦F1)◦F2

is different from F1 ◦ (F1 ◦ F2). We follow the convention that F1 ◦ F2 ◦ F3 denotes

the fragment ((F1 ◦ F2) ◦ F3), i.e., concatenation is done from left to right.

Now every interleaved LLD D can be written as D = ((F1 ◦ F2) ◦ . . .) where

F1, F2, . . . are the fragments corresponding to the layers of D.

We now fix some notations to talk about collections of LLDs. A collection L

of layered Lamport diagrams is said to be communication closed if every Lamport

diagram in L is communication closed. L is said to be channel bounded if there

exists b ∈ N such that for every D ∈ L, D is channel b-bounded. Let B denote the
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1 2 21

(a, {s, 2, b}) F2F1

(a, {s, 2, b})

(a, {s, 2, b})
1 2 1 2

(F1 ◦ F1) ◦ F2 F1 ◦ (F1 ◦ F2)

(b, {r, 1, a})

Figure 2.5: Example to show that ◦ is not associative

class of all bounded LLDs, Sb the class of channel-b-bounded LLDs and Cb the class

of LLDs which are both b-bounded and communication closed. These classes will be

of importance when we study suitable logics over layered diagrams in later chapters.
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Automata for distributed systems

In this chapter, we introduce some automata models for message-passing dis-

tributed systems. These automata accept Lamport diagrams and layered Lamport

diagrams. We present results relating to their language emptiness problem and other

closure properties with the aim of using them to solve the satisfiability problems of

various logics on Lamport diagrams to be presented in later chapters. As we discuss

in the chapter, the use of these automaton models as actual models of distributed

message passing systems is yet to be fully answered. We present illustrative exam-

ples of systems being modelled using these automata and consider relevant model

checking problems in later chapters.

3.1 System of communicating automata

The traditional high-level model for distributed systems has been that of com-

municating state machines. In such a model, there is a (sequential) automaton for

each agent and the communicating automaton is obtained as a parallel composition

of these sequential machines. Following this tradition, we propose an automaton

model called System of Communicating Automata (SCA) for these systems.

As before, we fix n > 0 and focus our attention on n-agent systems. A distributed

alphabet for such systems is an n-tuple Σ̃ = (Σ1, . . . ,Σn), where for each i ∈ [n],

Σi is a finite non-empty alphabet of actions of agent i and for all i 6= j, Σi ∩Σj = ∅.

The alphabet induced by Σ̃ = (Σ1, . . . ,Σn) is given by Σ =
⋃

i

Σi. The set of

33
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system actions is the set Σ′ = {λ} ∪ Σ. The action symbol λ is referred to as

the communication action. This is used as an action representing a communication

constraint through which every receive action will be dependent on its corresponding

send action. We use a, b, c etc to refer to elements of Σ and τ, τ ′ etc to refer to those

of Σ′.

Definition 3.1.1 A System of n Communicating Automata (SCA) on a dis-

tributed alphabet Σ̃ = (Σ1, . . . ,Σn) is a tuple S = ((Q1, G1), . . . , (Qn, Gn),→, Init)

where,

1. For j ∈ [n], Qj is a finite set of (local) states of agent j. For i 6= j, Qi∩Qj = ∅.

2. Gj ⊆ Qj are the (local) good states of agent j.

3. Init ⊆ (Q1 × . . .×Qn) is the set of (global) initial states of the system.

4. Let Q =
⋃

i

Qi. →⊆ (Q× Σ′ ×Q) such that if q
τ
→q′ then either there exists i

such that {q, q′} ⊆ Qi and τ ∈ Σi, or there exist i 6= j such that q ∈ Qi, q
′ ∈ Qj

and τ = λ.

Thus, SCAs are systems of n finite state automata with λ-labelled communi-

cation constraints between them. Note that → above is not a global transition

relation, it consists of local transition relations, one for each agent, and communi-

cation constraints of the form q
λ
→q′, where q and q′ are states of different agents.

The latter define a coupling relation rather than a transition. The interpretation of

local transition relations is standard: when the agent i is in state q1 and reads input

a ∈ Σi, it can move to a state q2 and be ready for the next input if (q1, a, q2) ∈→.

The interpretation of communication constraints is non-standard and depends only

on automaton states, not on input. When q
λ
→q′, where q ∈ Qi and q′ ∈ Qj, it

constraints the system behaviour as follows: whenever agent i is in state q, it puts

a message whose content is q and intended recipient is j into the buffer; whenever

agent j intends to enter state q′, it checks its environment to see if a message of

the form q from i is available for it, and waits indefinitely otherwise. If a system S

has no λ constraints at all, the automata in it proceed asynchronously and do not

wait for each other. We will refer to λ-constraints as ‘λ-transitions’ in the sequel for

uniformity, but this explanation (that they are constraints not dependent on input)

should be kept in mind.
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λ

⇒ ⇐s0 t0

ba

Figure 3.1: A simple SCA

We use the notation •q
def
= {q′ | q′

λ
→q} and q • def

= {q′ | q
λ
→q′}. For q ∈ Q, the

set •q refers to the set of all states from which q has incoming λ-transitions and the

set q • is the set of all states to which q has outgoing λ-transitions.

Global behaviour of an SCA will be defined using its set of global states. To refer to

global states, we will use the set Q̃
def
= (Q1× . . .×Qn). When u = (q1, . . . , qn) ∈ Q̃,

we use the notation u[i] to refer to qi.

Figure 3.1 gives an SCA over the alphabet Σ̃ = ({a}, {b}). (We use ⇒ to mark

the initial states and circle the good states).

A state q ∈ Qi is terminal if {q′ | q
a
→q′ for some a ∈ Σi} = ∅.

The language accepted by an SCA is a collection of Σ-labelled Lamport diagrams.

We first define these labelled Lamport diagrams.

A Σ-labelled Lamport diagram is just a Lamport diagram whose events are

labelled by actions from Σ.

Definition 3.1.2 An n-agent Σ-labelled Lamport diagram is a tuple D =

(E,≤, φ,Σ), where

1. E is the set of event occurrences.

2. ≤ is a partial order on E called the causality relation such that for all e ∈ E,

↓e
def
= {e′ | e′ ≤ e} is finite.

3. φ : E → Σ is a labelling function such that the following holds:

Let Ei = {e ∈ E | φ(e) ∈ Σi}. Then, for all i ∈ [n], ≤i
def
= ≤ ∩(Ei × Ei) is

a total order.

Whenever Σ is evident from the context, we will refer to Σ-labelled Lamport

diagrams as just labelled Lamport diagrams. Notice that the labelling function φ

labels each event of a labelled Lamport diagram with an action instead of an agent

name. The agent to which an event belongs to can be recovered from this label: for
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e ∈ E, e is an event of agent i (i.e., e ∈ Ei) iff φ(e) ∈ Σi. Since Σi ∩ Σj = ∅ for all

i, j ∈ [n] such that i 6= j, it follows that Ei ∩ Ej = ∅ for all i 6= j. Also notice that

all the properties of Lamport diagrams mentioned in Chapter 1 hold for labelled

Lamport diagrams too.

Though we will be working only with Σ-labelled Lamport diagrams in this sec-

tion, we will continue to refer to them as Lamport diagrams when the context is

clear.

3.1.1 Poset language of an SCA

We now formally define run of an SCA on a Lamport diagram and the poset

language accepted by an SCA as the collection of Lamport diagrams on which the

SCA has an accepting run.

Given an SCA S on Σ̃, a run of S on a Lamport diagram D = (E,≤, φ,Σ) is a

map ρ : Cfin
D → Q̃ such that the following conditions are satisfied:

• ρ(∅) ∈ Init.

• For c ∈ Cfin
D , suppose ρ(c) = (q1, q2, . . . , qn). Consider c′ = (c ∪ {e}) ∈ Cfin

D ,

where e ∈ Ei, e 6∈ c such that φ(e) = a. Then,

– ρ(c′) = (q′1, q
′
2, . . . , q

′
n) where q′j = qj for all j 6= i and qi

a
→q′i in S.

– For every e′ ∈ Ej, j 6= i such that e′ l e, there exists b ∈ Σj and there

exists q ∈ Qj such that q
b
→ρ(↓e′)[j] and q

λ
→q′i in S. In addition, we

require that there exists a configuration c′′ ⊆ ↓e′ such that ρ(c′′)[j] = q

to make sure that a configuration including the event e′ has already been

labelled.

– If qi
• ∩Qj 6= ∅, then, there exists e′ ∈ Ej such that el e′.

Thus, a run of S on D is a map from the set Cfin
D of configurations of D to the set

of global states of S such that the following conditions hold: If c′ is a configuration

obtained by adding an event e ∈ Ei (where φ(e) = a) to a configuration c then,

there is a transition on a from the local state of agent i in ρ(c) to the local state of

the same agent in ρ(c′) and all other local states are unaltered. In addition, if e is a

receive event, we ensure that the corresponding send event has already occurred and

that there is a λ-constraint into the resulting state. Similarly, if there are out-going
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Figure 3.2: A Lamport diagram accepted by the SCA of Figure 3.1

λ-constraints from the enabling state, we make sure that the event e is a send event

and that it has a matching receive event.

A run ρ is said to be good if ∀i ∈ [n], Ei is finite implies ρ(↓e)[i] is a terminal

state where e is the maximum event (with respect to ≤) in Ei.

Given a run ρ of S on D, define Infi(ρ) = {q ∈ Qi | there exists infinitely many

configurations c ∈ Cfin
D such that ρ(c)[i] = q}. ρ is said to be accepting iff ρ is good

and Infi(ρ) ∩Gi 6= ∅ for all i ∈ [n].

The poset language accepted by S is denoted by Lpo(S) and is defined as

Lpo(S)
def
= {D | D is a Σ-labelled Lamport diagram and S has an accepting run

on D}.

For example, Figure 3.2 gives a Lamport diagram in the poset language of the

SCA given in Figure 3.1 along with its accepting run. The figure on the right hand

side denotes the configuration space of the Lamport diagram. The state labels of ρ

associated with each configuration (it turns out that (s0, t0) is the only global state)

are given within shaded boxes adjacent to the configuration in the figure.

Figure 3.3 gives an SCA accepting the labelled Lamport diagram corresponding
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Figure 3.3: An SCA accepting the Lamport diagram corresponding to the alternat-
ing bit protocol
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to the alternating bit protocol along with an accepting run. After the initial segment

of the Lamport diagram (till the events e3 and f2 in the two agents), the labelling

of the configurations by global states is such that the good states s2 and t1 occur

infinitely often in agents 1 and 2 respectively. Hence the global run illustrated in

the figure is an accepting run of the SCA on the Lamport diagram.

As mentioned before, we will be using SCAs to show decidability of the satisfi-

ability problem of an appropriate logic to be defined later. Towards this, we now

address the problem of checking if the poset language accepted by a given SCA is

non-empty and show that it is decidable. A standard approach to solve the empti-

ness problem for sequential finite state automata is to look for strongly connected

components containing a good state (in the graph of the automaton) which are

reachable from one of the initial states. Towards using this approach for SCAs, we

define the global automaton corresponding to an SCA by taking products of local

states and including the states of buffers. But, the global automaton need not be

finite-state in general as buffers can be unbounded. We then note that bounded

buffers suffice; using the fact that Lamport diagrams have 1-bounded sequential-

izations (refer to Proposition 2.1.3), we can show that buffers of size 1 suffice for

checking emptiness.

3.1.2 m-product of an SCA

Given an SCA, we define the corresponding global automaton with buffers of

size at most m (m ≥ 1) and then use the one with buffers of size 1 to show that the

emptiness problem is decidable.

The global automaton corresponding to a given SCA is defined by taking the

products of the local automata (represents parallel composition of sequential be-

haviour) and storing pending messages in buffers. We also ensure that actions cor-

responding to send events have appropriate actions which represent their matching

receive events. We fix m ≥ 1. Buffers will be represented as queues of length at

most m and store pending messages between agents. There is a transition from one

global state to another on an action of agent i iff there is a corresponding (local)

transition on that action in the automaton of agent i. In addition, the buffers are

updated depending on whether the action represents a send or a receive.

Definition 3.1.3 Given an SCA S = ((Q1, G1), . . . , (Qn, Gn),→, Init), the m-
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product of the system is defined to be PrmS = (X, Ĩ, Ĝ,⇒) where

1. X = Q̃× B where B is the set of buffers of the system defined as follows.

B = {B ⊆ ([n] × Q∗) | if (i, q1 · · · ql) ∈ B then l ≤ m and q1 · · · ql ∈ Q∗
j for

some j 6= i }. Further, B consists of exactly one pair of the form (i, q1 · · · ql),

q1 · · · ql ∈ Q∗
j for each pair i, j ∈ [n] such that i 6= j.

2. Ĩ = (Init× {(i, ε) | (i, epsilon) ∈ B}) is the set of initial states,

3. Ĝ = (G1, . . . , Gn) is the set of good states and

4. the transition relation ⇒⊆ (X×Σ×X) is defined by: (q1, . . . , qn, B)
a
⇒(q′1, . . . , q

′
n, B

′),

a ∈ Σi, iff

(a) qi
a
→q′i, and for all j 6= i, qj = q′j.

(b) If (•q′i ∩ Qj) = R 6= ∅, then there exists q ∈ R and qw ∈ Q∗
j , |w| < m

such that (i, qw) ∈ B and B ′ = (B − {(i, qw)}) ∪ {(i, w)}.

(c) If (qi
•∩Qj) 6= ∅ and for (j, w) ∈ B, |w| < m , then B ′ = (B−{(j, w)})∪

{(j, wqi)}.

B is the set of buffers of the system. There is a buffer between every distinct

pair of agents i, j and hence there are totally n(n − 1) buffers in the system. The

contents of the buffer corresponding to the pair (i, j) represents the sequences of

local states of agent i which are messages to agent j. Since messages are assumed to

be buffered in the FIFO order, we use sequences of local states (with the assumption

that the leftmost element represents the top of the buffer) to represent buffers.

We use the notation (i, q1 · · · ql) ∈ B, q1 · · · ql ∈ Q∗
j , j 6= i to mean that agent j

has a sequence of messages q1 · · · ql for agent i in the buffer from j to i. Note that

l ≤ m implies that each buffer can store at most m messages. Condition (2) ensures

that whenever a local i-move is dependent on a message from agent j through a λ

constraint, the particular state is there at the top of the buffer between i and j and

it is utilized by the i-move. Condition (3) is to make sure agent i records its message

for agent j, if any provided the corresponding buffer is not full.

Let w = a1a2 . . . ∈ Σω. We use the notation wdi to denote the restriction of w

to Σi.
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Computations of S are defined by runs of PrmS on w ∈ Σω. An infinite run

ρ = x0x1 . . . on w is a sequence where for k ≥ 0, xk
ak+1
⇒ xk+1. For a state xk =

(q1, q2, . . . qn, B) ∈ X, we use the notation xk[i] to refer to qi (for i ∈ [n]), xk[buf ] to

refer to B and for (i, q1 . . . ql) ∈ B where q1 . . . ql ∈ Q∗
j , we use xk[buf ](j, i) to refer

to the sequence q1 . . . ql.

For a run ρ as above, we say that i terminates in ρ if there exists k such that xk[i] is

terminal. ρ is said to be good if for all i ∈ [n], either wdi is infinite or i terminates in

ρ. Let Infi(ρ)
def
= {q ∈ Qi | for infinitely many k ≥ 0, xk[i] = q, xk[buf ](i, j) = ∅

for all j 6= i}. The run ρ on w is said to be accepting iff ρ is good, x0 ∈ Ĩ,

and for all i, Infi(ρ) ∩ Gi 6= ∅. The string language accepted by PrmS , denoted

Lm(S)
def
= {w ∈ Σω | PrmS has an accepting run on w}.

A consequence of the definition of accepting runs is that no agent gets stuck

because of conditions imposed on buffers. In the definition of an accepting run,

the condition that buffers between every pair of agents gets emptied infinitely often

makes sure that every action representing a send event has an action representing

the corresponding receive event. Figure 3.4, we present the SCA S0 of Figure 3.1

along with its 1 and 2-products. The set of initial states in both the products is

{(s0, t0, ∅)} and the set of good states is {(s0, t0)}. The language accepted by the 1-

product Pr1
S0

of S0 is L1(S0) = {(ab)ω} and the language accepted by its 2-product

Pr2
S0

is L2(S0) = (ab + aabb + abab)ω.

Figure 3.5 gives another 2-agent SCA S1 and its 1 and 2-products. The language

of its 1-product is L1(S1) = (abb+ bab)ω and its 2-product is L2(S1) = (abb+ bab+

aabbbb + ababbb + baabbb)ω. Note that for both the SCAs the language accepted by

the 1-product is contained in the language accepted by the 2-product.

3.1.3 Emptiness of m-product

In this section, we show that the problem of checking if the poset language

accepted by a given SCA is non-empty is decidable. As mentioned earlier, given

an SCA, we first construct its 1-product and using the fact that Lamport diagrams

have 1-bounded sequentializations, we show that the poset language of the SCA

is non-empty iff the language accepted by the 1-product of an SCA is non-empty.

Since the 1-product of an SCA is a Büchi automaton whose language non-emptiness

is decidable, we get decidability of the non-emptiness of the poset language accepted

by the SCA.
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Figure 3.4: 1-product and 2-product of the SCA S0 in Figure 3.1
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Figure 3.5: An SCA and its 1-product and 2-product
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We first show that the emptiness problem of m-product of a given SCA is de-

cidable. Since the m-product is basically a Büchi automaton, emptiness checking

for the m-product of a given SCA can be solved by looking for strongly connected

components in the underlying graph which contain a state from Gi for each i ∈ [n]

and which are reachable from an initial state. This can be done in time linear in

the size of the product automaton. We thus have,

Lemma 3.1.4 Given an SCA S of n automata, checking whether Lm(S)
?
= ∅ can

be done in time kO(mn), where k is the maximum of {|Qi| | i ∈ [n]}.

Proof: Given an SCA S, consider its m-product PrmS = (X, Ĩ, Ĝ,⇒). With S,

we associate the directed graph GS = (V,E) with V = X as the set of vertices and

E = {(x, x′) | ∃a ∈ Σ, x
a
⇒x′} as the set of edges.

A good component of GS is a subset of vertices V ′ ⊆ V which satisfies the

following conditions:

1. There exists q0 ∈ Ĩ and there exists x ∈ V ′ such that x is reachable from q0.

2. V ′ is a maximal strongly connected component.

3. For each i ∈ [n], V ′ satisfies one of the following conditions:

(a) There exists x ∈ V ′ such that x[i] is terminal and x[i] ∈ Gi and x[buf ](j, i) =

∅ for all j 6= i.

(b) There exists x, y ∈ V ′ and a ∈ Σi such that x
a
⇒y and y[i] ∈ Gi and

x[buf ](j, i) = ∅ for all j 6= i.

It is easy to check that Lm(S) 6= ∅ iff GS contains at least one good component.

The maximal strongly connected components of GS can be found in time O(|V |2).

If we prove that |V | = kO(mn), we are done.

|V | is the number of states in the m-buffered product which in turn is the prod-

uct of the number of global states and the number of buffer states. We first esti-

mate the number of buffer states. There are n(n − 1) buffers in the system, one

for each pair (i, j), i 6= j, each containing at most m messages. Therefore, the

buffer can be written as an (n − 1)n-tuple; first (n − 1) elements are of the form

(2, x2), (3, x3), . . . , (n, xn), where xj is a word over Q∗
1 of length at most m. Simi-

larly we have (n− 1)-tuples for each of the agents. Let |Qi| = ki. Then the number
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of buffer states is Πi(1 + ki + k2
i + · · · + kmi )n−1 ≤ n(1 + k + k2 + · · · + km)n−1,

where k is the maximum of the ki’s. Therefore the total number of states is at most

(Πiki).(n(1 + k + k2 + · · ·+ km)n−1) = kO(mn). 2

3.1.4 Emptiness of Poset Language accepted by an SCA

We now establish a 1-1 correspondence between runs of the 1-product of an

SCA and Lamport diagrams in its poset language. Note that this will yield the

decidability of emptiness of the poset language of an SCA.

From runs to Lamport diagrams

In this section, we show how to extract Lamport diagrams from computations

of 1-products of SCAs. Consider an SCA S over Σ̃ such that its 1-product Pr1
S

has an (infinite) accepting run ρ = x0x1 . . ., on w = a1a2 . . . ∈ Σω, i.e., for k ≥ 0,

xk
ak+1
⇒ xk+1 in Pr1

S. We show how to associate a Lamport diagram Dρ with ρ. Again,

when xk = (q1, . . . , qn, B), we use the notation xk[i] to refer to qi, i ∈ [n] and

xk[buf ] to refer to B. Further, when (i, q) ∈ B, q ∈ Qj, i 6= j, we use the notation

xk[buf ](j, i) = q. If no such q exists, then we say xk[buf ](j, i) = ⊥. We use ρ to

define a clock function χ : ([n]× [n]×N) → N which records, for each pair of agents

i, j and each instance k, the latest instant at which i last heard from the agent j at

k. Define χ(i, j, k) by induction on k as follows:

1. For all i ∈ [n], for all k ∈ N: χ(i, i, k) = k; for all i, j ∈ [n], χ(i, j, 0) = 0.

2. Let k ≥ 0. Suppose χ(i, j, k) is defined. Let xk
ak+1
⇒ xk+1, ak+1 ∈ Σi. Let

j 6= i. For all j ′ ∈ [n], χ(j, j ′, k + 1) = χ(j, j ′, k). Let χ(i, j, k) = m. If
•xk+1[i] ∩Qj = ∅, then χ(i, j, k + 1) = m. Otherwise, xk = (q1, . . . , qn, B) and

there exists (i, q) ∈ B such that q ∈ •xk+1[i] ∩Qj.

Claim: There exists a unique l such that m < l ≤ k and xl[j] = q.

Set χ(i, j, k + 1) = l.

The claim is proved as follows. Let (k, k+1) denote the rth receive transition for

i from j in ρ. Let (k′ − 1, k′) similarly denote the (r− 1)th such transition; if r = 1,

set k′ = 0. By product construction, xk′[buf ](j, i) = ⊥ and xk[buf ](j, i) = q. Let

l be the least index such that k′ < l ≤ k and xl[buf ](j, i) 6= ⊥. Again by product
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construction, xl[j] = xl[buf ](j, i) = q′ ∈ Qj, say. Now let l ≤ l′ < k; we can argue

by induction on l′ − l that xl′+1[buf ](j, i) = xl′ [buf ](j, i), since no send is enabled

when xl′[buf ](j, i) 6= ⊥, by the product construction, and there is no receive by

choice of indices and these are the only transitions that modify this component. We

thus have a unique l such that xl[j] = q, as required.

The following proposition follows from our choice of l for χ(i, j, k + 1).

Proposition 3.1.5 For all k ≥ 0, for i 6= j, if χ(i, j, k) ≤ k.

From (ρ, χ) we can extract a Σ-labelled Lamport diagram as follows. Recall that

ρ = x0x1 . . . and for all k, xk
ak+1
⇒ xk+1, ak+1 ∈ Σ. The Lamport diagram is given by

Dρ
def
= (E,�, φ,Σ), where

1. E = {(k, k + 1) | k ∈ N}.

2. φ : E → Σ is given by

φ(e) = ak+1 iff e = (k, k + 1) and xk
ak+1
⇒ xk+1 in ρ.

3. �= (�l ∪lc)
∗, where

(a) Let Ei = {e ∈ E | φ(e) ∈ Σi}. Then,

�l=
⋃

i

((Ei × Ei) ∩ {((k, k + 1), (l, l + 1)) | k ≤ l}).

(b) lc = {((m− 1, m), (k, k + 1)) | where (m − 1, m) ∈ Ej, (k, k + 1) ∈ Ei,

i 6= j and χ(i, j, k) < χ(i, j, k + 1) = m}.

It is easily seen that Ei is linearly ordered by � and that for all e, ↓e ∩ Ei is

finite. Hence, for all e, ↓e is finite as well. It only remains to show antisymmetry

of �. For this, first note that lc is asymmetric: whenever (m− 1, m) lc (k, k + 1),

by the proposition above, m < k+ 1. Hence � cannot have any cycle that contains

a lc edge; such a cycle must be composed of i-edges, for some i, violating the fact

that Ei is linearly ordered by �.

Thus, with each infinite run ρ of Pr1
S, we can associate a Lamport diagram Dρ.

We use this below to establish a 1-1 correspondence between accepting runs of 1-

product and Lamport diagrams in the poset language of S. The following result

shows that every poset accepted by an SCA is generated by an accepting run of the

1-buffered product and vice versa.
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Lemma 3.1.6 Consider an SCA S = ((Q1, G1), . . . , (Qn, Gn),→, Init) over the

alphabet Σ̃ = (Σ1, . . . ,Σn). Then, Lpo(S) = {Dρ | ρ is an accepting run of the

1-product of S}.

Proof: Consider Dρ where ρ = x0x1 . . . is an accepting run of the 1-buffered

product. To show that Dρ ∈ Lpo(S), we have to define a run ρ′ : Cfin
Dρ

→ Q̃ and

show that it is accepting.

Define ρ′ : Cfin
Dρ

→ Q̃ inductively as follows: ρ′(∅) = x0d[n]. ( If x = (q1, . . . , qn, B),

we use the notation xd[n] to denote the tuple (q1, . . . qn), the projection to the set

of global states of S.)

Now, suppose ρ′(c) is defined. Consider c′ = c ∪ {e} where e = (k, k + 1) ∈ Ei,

such that e 6∈ c. Then, ρ′(c′) = xk+1d[n].

We now show that ρ′ is an accepting run of S on Dρ. Clearly, ρ′(∅) ∈ Init as

x0 ∈ Init. Suppose ρ′(c) = (q1, . . . , qn) and ρ′(c′) = (q′1, . . . q
′
n) where c, c′ are as

before. Then, by the definition of ρ′, we know that qi
φ(e)
→ q′i and qj = q′j for all j 6= i.

Now, suppose there exists e′ = (m − 1, m) ∈ Ej such that e′ l e. By the definition

of ≤ in Dρ, it follows that χ(i, j, k) < χ(i, j, k + 1) = m. Hence, there exists q ∈ Qj

such that q
λ
→q′i and ρ being an accepting run of the 1-buffered product implies that

ρ(↓e′)[j] = q. Now if qi
• ∩Qj 6= ∅ then, since buffers are emptied infinitely often in

accepting runs of the 1-product, we know that there exists an i-event f such that

e ≤ f . Define e′ to be the event which is minimal (with respect to ≤) among all

such events f . Clearly, e ≤ e′ and ρ′ is a run of S on Dρ. Also, ρ′ is accepting

because ρ is.

Conversely, consider any D ∈ Lpo(S). Let ρ′ be an accepting run of S on D.

Consider w = φ(e1)φ(e2) . . . where σ = e1e2 . . . is any 1-bounded sequentialization

of D. We define a run of the 1-buffered product of S and show that it is an accepting

run on w.

Define ρ = x0x1 . . . where xi, i ≥ 0 is defined inductively as follows: x0 =

(ρ′(∅), ∅). Suppose xk = (ρ′(c), B) is defined. Consider the event ek+1 in σ. Let

c′ = c∪{ek+1}. c
′ is a configuration because σ is a sequentialization of events in Dρ.

Define xk+1 = (ρ′(c′), B′) where B′ = B \ ({(i, ρ′(↓e′)[j]) | for all e′ ∈ Ej, (j 6= i)

such that e′lek+1})∩{(j, ρ
′(c′))[j] | there exists e ∈ Ej, (j 6= i) such that ek+1 ≤ e}.

It can be easily proved that ρ is an accepting run of Pr1
S on w. Clearly, the Lamport

diagram D is generated from ρ. 2
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Thus Lpo(S) 6= ∅ iff L1(S) 6= ∅. Hence, by Lemma 3.1.4, we have,

Theorem 3.1.7 Given an SCA S of n automata, checking whether Lpo(S) 6= ∅ can

be done in time kO(n), where k is the maximum of {|Qi| | i ∈ [n]}.

3.2 Closure properties of SCA

To investigate the use of SCAs as robust models of distributed message passing

systems, it would be useful to prove that the class of string and poset languages

they accept enjoy all the usual closure properties, namely being closed under union,

intersection, complementation etc. In traditional automata theory, studies are also

done in terms of defining suitable concatenation and iteration operations so that

algebraic properties of the corresponding languages can be investigated.

It can be easily shown that languages accepted by SCAs are closed under the

operations of union and intersection as we do in this section. However, proving/dis-

proving closure under complementation seems non-trivial. A traditional approach to

show closure under complementation is to first show that the class of automata are

determinizable and then use the equivalent deterministic automaton to obtain an

automaton that accepts the complement language. However, it is well-known that

this technique does not work as such for the class of ω-regular languages accepted

by non-deterministic Büchi automata.

The problem is little more difficult in the context of SCAs. When we consider

the question of an SCA being deterministic, there seem to be various syntactic

restrictions that we can impose on the structure of the transitions to obtain the

semantic notion of determinism, namely that of there being an unique run on every

input. Conditions like each of the local transitions being deterministic do not suffice

as the λ-constraints can be exploited to violate determinism. In general, closure

under complementation seems hard to prove.

A similar problem persists in the context of defining concatenation and iteration

operations. The local behaviour of each component automaton can be captured us-

ing the usual Kleene operations of concatenation and iteration. To capture the no-

tions of remote causal independence and concurrency (modelled using λ-transitions

in SCAs), we investigated some shuffle (parallel composition) operations in vain.

The main difficulty seems to stem from the fact that concurrency in SCAs is ‘dy-

namic’ in the sense that it is completely determined by the λ-transitions and not
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dictated by the underlying distributed alphabet.

We now prove that the class of string languages accepted by m-buffered products

are effectively closed under union and intersection. A similar construction would

work when we consider poset languages over SCAs. The proof follows the standard

approach to show the corresponding results for ω-regular languages.

Theorem 3.2.1 Let S1 and S2 be two SCAs over Σ̃. Then, there exists an SCA S

such that Lm(S) = Lm(S1)∪Lm(S2) and the size of S is O(n1 +n2) where nl is the

size of Sl for l ∈ {1, 2}.

Proof: Let Sl = ((Ql
1, G

l
1), . . . , (Q

l
n, g

l
n),→l, Initl) for l ∈ {1, 2} where Q1

i ∩

Q2
i = ∅ for all i, 1 ≤ i ≤ n. Define S = ((Q1, G1), . . . , (Qn, Gn),→, Init) where

• Qi = Q1
i ∪Q

2
i for 1 ≤ i ≤ n,

• Gi = G1
i ∪G

2
i for 1 ≤ i ≤ n,

• Init = Init1 ∪ Init2, and

• →=→1 ∪ →2.

It is easy to verify that the SCA S is such that Lm(S) = Lm(S1)∪Lm(S2). Also,

the SCA S has O(n1 +n2) global states as the set of states of S is the union of those

of S1 and S2. 2

Theorem 3.2.2 Let S1 and S2 be two SCAs over Σ̃. Then, one can effectively

construct an SCA S such that Lm(S) = Lm(S1) ∩ Lm(S2). Moreover, the size of S

(the number of global states) is O(2n.n1.n2) where nl is the size of Sl for l ∈ {1, 2}.

Proof: Let Sl = ((Ql
1, G

l
1), . . . , (Q

l
n,
l
n ),→l, Initl) for l ∈ {1, 2}. Define

S = ((Q1, G1), . . . , (Qn, Gn),→, Init)

where

• Qi = Q1
i ×Q2

i × {1, 2} for 1 ≤ i ≤ n.

• Gi = Q1
i ×G2

i × {2} for 1 ≤ i ≤ n.
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• Init ⊆ Q1 ×Q2 × · · · ×Qn is defined as:

((q1, p1, x1), . . . , (qn, pn, xn)) ∈ Init iff (q1, . . . , qn) ∈ Init1, (p1, . . . , pn) ∈ Init2

and xi = 1 for each i.

• →⊆ Q× Σ ×Q is defined by: (q, p, x)
a
→(q′, p′, y) iff

1. q
a
→1q

′ and p
a
→2p

′.

2. If q, q′ ∈ Q1
i for some i then, (x = 1 ⇒ y = 2) iff q′ ∈ G1

i .

3. If p, p′ ∈ Q2
j for some j then, (x = 2 ⇒ y = 1) iff q′ ∈ G2

j .

It is easy to verify that the SCA S is such that Lm(S) = Lm(S1)∩Lm(S2). Also,

the SCA S has O(2n.n1.n2) global states as each product state carries an extra tag

indicating whether the automaton is checking for a good state on the first or the

second component. 2

3.3 Diagram automata

In Section 2.2, we defined layered Lamport diagrams as models representing the

behaviour of systems which are represented as a sequential concatenation of parallel

behaviour. We now define automata models for such systems. These automata take

layered Lamport diagrams as input and run on their sequence of layers (finite Lam-

port diagrams) which constitute the finite alphabet of these automata. Note that

these automata are ‘dual’ to SCAs—SCAs model parallel composition of sequential

behaviour whereas automata over LLDs model sequential composition of parallel

behaviour.

We define automata running over communication closed and bounded LLDs

and over channel bounded LLDs. The former class of automata are called diagram

automata and the latter are refered to as fragment automata. Communication closed

and bounded LLDs have finite Lamport diagrams as their layers and these constitute

the alphabet of diagram automata. Since fragment automata run over channel

bounded LLDs, their alphabet is a set of fragments which are the layers of channel

bounded LLDs.

We first introduce diagram automata and talk about their emptiness problem and

closure properties. We fix b ∈ N for the rest of this section. Diagram automata take
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communication closed and b-bounded LLDs as input and run on their underlying

set of layers. Let LCb denote the set of b-bounded communication closed layers

i.e., Lamport diagrams which have at most b events; it is clearly a finite set upto

isomorphism.

A diagram automaton is nothing but a Büchi automaton whose alphabet is a

finite set of b-bounded Lamport diagrams. We elaborate its definition below:

Definition 3.3.1 A diagram automaton is given by a tuple A = (Q,D,→, I, G)

where

1. Q is a finite set of states,

2. D ⊆ LCb is the alphabet of the automaton,

3. I ⊆ Q is the set of initial states,

4. G ⊆ Q is the set of good states and

5. →⊆ (Q×D ×Q) is the transition relation.

A diagram automaton takes a b-bounded and communication closed LLD as

input. We know from Chapter 2 that such an LLD can be uniquely represented

by its sequence of layers. These layers come from the alphabet of the diagram

automaton and the automaton runs on the input sequence of layers like a Büchi

automaton.

Consider a sequence of states of A, ρ = q0, q1, . . . such that q0 ∈ I and qi
Di→qi+1

for all i ≥ 0. Let D be the b-bounded communication closed LLD defined by the

sequence D0, D1, . . .. We say that ρ is a run of A on D. ρ is said to be accepting if

inf(ρ) ∩ G 6= ∅, where inf(ρ) = {q | q = qi for infinitely many i}. The language of

b-bounded communication closed LLDs accepted by A is denoted by LbC(A) and is

defined as LbC(A) = {D | there exists an accepting run of A on D}.

For example, Figure 3.6 gives a diagram automaton and the 2-bounded and com-

munication closed LLD (corresponding to the producer-consumer problem) accepted

by it. The automaton has a single state q0 which is also its initial and good state

and its transition is labelled by the 2-bounded Lamport diagram which occurs as

the layer of the producer-consumer LLD.

Since diagram automata are Büchi automata running on a finite alphabet of lay-

ers, it is not difficult to see they enjoy all the closure properties of Büchi automata.
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⇒ q0

Figure 3.6: Diagram automaton over the LLD representing producer-consumer
problem

We first show that the problem of checking if the language of communication closed

and bounded LLDs accepted by a given diagram automaton is decidable. Not sur-

prisingly, it turns out that the algorithm to check for emptiness is the same as that

of Büchi automata: it suffices to check for the existence of a strongly connected

component containing a good state which is reachable from one of the initial states.

We present the details below.

Theorem 3.3.2 Given a diagram automaton A = (Q,D,→, I, G), the problem of

checking if LbC(A) 6= ∅ is decidable in time O(|Q|2).

Proof: We will show that Lbc(A) 6= ∅ iff there exists a strongly connected

component in the graph of A such that the following conditions are satisfied:

• The strongly connected component contains a good state of A.

• It is reachable from one of the initial states of A.

Thus, checking if Lbc(A) 6= ∅ would amount to checking for the existence of a

strongly connected component with the above properties and this can be done in

time O(|Q|2).
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Suppose Lbc(A) 6= ∅. Let D = (E,≤, φ, λ) ∈ Lbc(A) with νD = 0, 1, . . .. Also, let

ρ = q0, q1, . . . be an accepting run of A on D. Since ρ acts as a run of the under-

lying Büchi automaton over the alphabet of b-bounded layers, it follows from the

decidability of emptiness of Büchi automata that there exists a strongly connected

component containing a good state in the graph of A such that it is reachable from

an initial state.

Conversely, suppose the graph of A has a strongly connected component with

the required properties. Considering the path of the strongly connected component

from the initial state and unwinding the strongly connected component, we get an

infinite sequence D0, D1, . . . of b-bounded Lamport diagrams and a sequence of states

q0, q1, . . . such that qo ∈ I and qi
Di→qi+1 for all i ≥ 0.

Define a layered Lamport diagram D = (E,≤, φ, λ) by concatenating succes-

sive layers in the sequence, i.e., the underlying Lamport diagram D is given by

D
def
= D0 •D1 • . . . where • is as defined in Section 2.2 and the layering function λ

is given by λ(e) = i for every event e of Di. The fact that D is a Lamport diagram

follows from the definition of •. Consider events e, e′ in D such that e ≤ e′. Then,

either e, e′ are events of Di for some i or e is an event of Di and e′ is an event of

Dj for some j ≥ i. Either way λ(e) ≤N λ(e′). Also, for every i, λ−1(i) is finite and

contains at least one event of every agent as each Di is a finite layer. Hence λ is a

layering and so, D is an LLD. Clearly, the sequence ρ as above is an accepting run

of A on D and hence D ∈ LbC(A). 2

3.3.1 Closure properties

We now show that the class of communication closed and bounded LLDs accepted

by diagram automata are closed under boolean operations. As explained earlier, we

exploit the fact that diagram automata are basically Büchi automata running over

a finite alphabet of layers and use the fact that the class of ω-regular languages

accepted by Büchi automata are closed under boolean operations.

It is easy to see that diagram automata are effectively closed under union and

intersection. The techinque is exactly the same as that of Büchi automata.

Theorem 3.3.3 Let A1 and A2 be two diagram automata. Then, there exists a

diagram automaton A such that L(A) = L(A1) ∪ L(A2).
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Proof: Let Ai = (Qi, D,→i, Ii, Gi) be such that Q1 ∩ Q2 = ∅. Define A =

(Q,D,→, I, G) where

• Q = Q1 ∪Q2,

• I = I1 ∪ I2,

• →=→1 ∪ →2 and

• G = G1 ∪G2.

It is easy to see that L(A) = L(A1) ∪ L(A2). 2

Theorem 3.3.4 Let A1 and A2 be two diagram automata. Then, there exists a

diagram automaton A such that L(A) = L(A1) ∩ L(A2).

Proof: Let Ai = (Qi, D,→i, Ii, Gi) be such that Q1 ∩ Q2 = ∅. Define A =

(Q,D,→, I, G) where

• Q = Q1 ×Q2 × {1, 2},

• I = I1 × I2 × {1},

• G = Q1 ×G2 × {2} and

• → is defined as follows: For a ∈ Σ, q1 ∈ Q1 and q2 ∈ Q2, we have

– (q1, q2, 1)
a
→(q′1, q

′
2, 1) iff q1

a
→q′1, q2

a
→q′2 and q1 6∈ G1,

– (q1, q2, 1)
a
→(q′1, q

′
2, 2) iff q1

a
→q′1, q2

a
→q′2 and q1 ∈ G1,

– (q1, q2, 2)
a
→(q′1, q

′
2, 2) iff q1

a
→q′1, q2

a
→q′2 and q2 6∈ G2 and

– (q1, q2, 2)
a
→(q′1, q

′
2, 1) iff q1

a
→q′1, q2

a
→q′2 and q2 ∈ G2.

It is easy to see that L(A) = L(A1) ∩ L(A2). 2

The following functions will be useful in moving back and forth between diagram

automata and Büchi automata. Let Σ be a finite alphabet and let h : LCb → Σ be

a bijection. Let Cb denote the class communication closed and bounded LLDs. We

first extend h to ĥ : Cb → Σω as follows: For D = D0 •D1 • . . . ∈ Cb, ĥ(D) = a0a1 . . .
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where ai = h(Di) for i ≥ 0. We further extend ĥ to h̃ : 2Cb → 2Σω

as follows: For

L ∈ 2Cb , h̃(L) = {ĥ(D) | D ∈ L}. Using the fact that h is a bijection, it is easy

to see that ĥ and h̃ are also bijections and consequently, their inverse functions also

exist. We will be using this fact below to show that we can move back and forth

between diagram automata and Büchi automata.

Lemma 3.3.5 1. Given a diagram automaton A over LCb, there exists a Büchi

automaton BA over Σ such that h̃(L(A)) = L(BA).

2. Given a Büchi automaton B over Σ, there exists a diagram automaton AB

over LCb such that L(AB) = h̃−1(L(B)).

Proof:

1. Let A = (Q,LCb,→, I, G). Define BA = (Q,Σ,⇒, I, G) where q
a
⇒q′ for q, q′ ∈

Q and a ∈ Σ iff q
h−1(a)
→ q′. It is then easy to see that h̃(L(A)) = L(BA).

2. Let B = (Q,Σ,⇒, I, G). Define AB = (Q,LCb,→, I, G) where q
D
→q′ iff q

h(D)
⇒ q′.

It is again easy to see that L(AB) = h̃−1(L(B)).

2

Note that the above lemma gives another proof of the decidability of emptiness

of diagram automata. Given a diagram automaton A, we fix a finite alphabet Σ and

a bijection h : LCb → Σ as above. We can show that L(A) 6= ∅ iff L(BA) 6= ∅ and

since emptiness problem of Büchi automata is decidable, it follows that emptiness

problem of diagram automata is also decidable. The same lemma can also be used

to show that the class of languages accepted by diagram automata are closed under

boolean operations giving alternate proofs of Theorem 3.3.3 and Theorem 3.3.4.

We can also use the above lemma to show that the class of languages accepted by

diagram automata enjoy other closure properties as that of ω-regular languages like

being closed under operations of projection, complementation etc. We will be using

these results in Chapter 6.

We now show that the class of languages accepted by diagram automata are

closed under complementation by using the above lemma.
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Theorem 3.3.6 Given a diagram automaton A over LCb, there exists a diagram

automaton AC over LCb such that L(AC) = L(A)C where L(A)C denotes the com-

plement of the language L(A) over LCb.

Proof: Fix a finite alphabet Σ and consider a bijection h : LCb → Σ. We

can now define the extension functions ĥ and h̃ as above. Given A, we first

use Lemma 3.3.5 to construct the corresponding Büchi automaton BA such that

h̃(L(A)) = L(BA). Since the class of ω-regular languages accepted by Büchi au-

tomata are closed under complement, we know that there exists a Büchi automa-

ton, say, BCA such that L(BA)C = L(B)C . We again use Lemma 3.3.5 and obtain a

diagram automaton ABC
A
. We can then see that L(A)C = L(ABC

A
). 2

3.4 Fragment Automata

We can similarly define automata with fragments, rather than diagrams as input.

Fragment automata take a channel b-bounded LLD as input and run on its sequence

of fragments (which occur as layers of the LLD). Fix a finite alphabet A and b ∈ N.

Let LF b(A) denote the set of b-bounded A-labelled fragments; again, it is a finite

set. A fragment automaton is again basically a Büchi automaton which runs over

an alphabet of fragments.

Definition 3.4.1 A fragment automaton is given by a tuple B = (Q,A,F ,→

, I, G) where

1. A is a finite alphabet,

2. F ⊆ LF b(A) is the alphabet of the automaton,

3. Q is a finite set of states,

4. →⊆ (Q× F ×Q) is the transition relation,

5. I ⊆ Q is the set of initial states and

6. G ⊆ Q is the set of good states.
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⇒ q0

q1

1 2

(a, {(s, 2, a′)})

(a, {(s, 2, a′)})
(a′, {(r, 1, a)})

Figure 3.7: Fragment automaton accepting the LLD representing the alternating bit
protocol

A run of B on a channel b-bounded LLD D is a sequence ρ = q0, q1, . . . such

that q0 ∈ I and qi
Fi→qi+1 for all i ≥ 0 where F0, F1, . . . is the sequence of fragments

associated with νD. ρ is said to be accepting if inf(ρ) ∩G 6= ∅, where inf(ρ) = {q |

q = qi for infinitely many i}. The language of channel b-bounded LLDs accepted by

B is denoted by LbS(B) and is defined as LbS(B) = {D | there exists an accepting run

of B on D}.

Given a channel b-bounded LLD as input, the automaton runs on its sequence

of layers (which are fragments in the alphabet of the automaton) and accepts the

LLD if it sees a good state infinitely often on the sequence of fragments (the layers

of the LLD) it is reading.

For example, Figure 3.7 shows an example of a fragment automaton accepting

the channel 5-bounded LLD corresponding to the alternating bit protocol. The

automaton has two states and runs on the fragments corresponding to the layers

of the LLD. In the figure, the fragments occuring as layers of the alternating bit

protocol LLD are given as labels of the transitions of the automaton. The tags
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of the pending send and receive events of the fragments are given adjacent to the

events as labels.

Again, we first consider the emptiness problem for fragment automata and show

that it is decidable. Emptiness checking is no longer a simple search for a connected

component containing a good state. We need to check in addition that every ‘pend-

ing send’ is matched with a ‘hanging receive’ with labels appropriately matched.

The following theorem presents the details.

Theorem 3.4.2 Given a fragment automaton B = (Q,A,F ,→, I, G), the problem

of checking if LbS(B) 6= ∅ is decidable in time O(|Q|2 × kb
2
), where k = |A|.

Proof: We build a larger automaton C based on B and show that LbS(B) 6= ∅

iff there exists a strongly connected component in C containing good states of C

reachable from one of the initial states of C. For this, we first define a queue data

structure that will be useful. Let A = {x ∈ A∗ | |x| ≤ b}. We will be considering

maps χ : ([n] × [n]) → (z × A), where z ∈ {0, 1} is a boolean flag to be used as a

signal; let Ξ denote the set of all such maps. Let Q̃ = (Q× Ξ).

For any fragment F = (E,≤, φ, A, η) (which corresponds to a layer of some

channel b-bounded LLD) and i, j ∈ [n], define two sequences F s
ij and F r

ji in A as

done in Chapter 2: note that Ei is a finite set linearly ordered by ≤; denote this

sequence of events by e1 · · · em. Now F s
ij = ak1 · · ·ak`

, where for all p ∈ {k1, . . . , k`},

(s, j, ap) ∈ η(ekp
) and for all p ∈ ({1, . . . , m} \ {k1, . . . , k`}), there is no a′ ∈ A such

that (s, j, a′) ∈ η(ekp
). F r

ji is defined similarly, using labels of the form (r, i, a). Note

that both are b-bounded sequences.

Now define C = (Q̃, A,F ,⇒, Ĩ, G̃), where

• Q̃ is defined as above,

• Ĩ = {(q, χ0) ∈ Q̃ | q ∈ I, χ0(i, j) = (0, ε) for all i, j ∈ [n]},

• G̃ =< Gij | i, j ∈ [n] >, where Gij = {(q, χ) ∈ Q̃ | q ∈ G, χ(i, j) = (0, x), x ∈

A} and

• ⇒ is defined as follows:

(q, χ)
F
⇒(q′, χ′) iff:

– q
F
→q′ in B;
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– for i, j ∈ [n], if χ(i, j) = (z, x) and χ′(i, j) = (z′, x′), then x = F r
ji · y,

x′ = y · F s
ij and z′ = 0 if (z = 1 and y = ε) or (z = 0 and x′ = ε).

Call a connected component in C good only if it contains some state in Gij, for

each pair i, j ∈ [n] and is reachable from Ĩ. We can now show that LbS(B) 6= ∅ iff C

has a good connected component.

Suppose LbS(B) 6= ∅. Let D be a channel b-bounded diagram accepted by B.

Then, there exists a sequence of fragments F1, F2, . . . such that the sequence matches

D and there is an accepting run, say, ρ = q0
F1→q1

F2→ . . . of B on D. We will show

that C has a good component by inductively constructing a sequence of states of C

below. Define ρ′ = (q0, χ0), (q1, χ1), . . . where q0, q1, . . . is as in ρ and χi is defined

inductively as follows:

For the base case, χ0(i, j) = (0, ε) for all i, j ∈ [n]. For i, j ∈ [n] such that i 6= j,

define χ1(i, j) = (z1, F
s
1(ij)

) where z1 = 0 iff F s
1(ij)

= ε. Now, define χ2(i, j) = (z2, x2)

where x2 = y · F s
2(ij)

where y is such that F s
1(ij)

= F r
2(ji)

· y and z2 = 0 iff (z1 = 1

and y = ε) or (z1 = 0 and x2 = ε). We claim that F s
1(ij)

= F r
2(ji)

· y. Suppose not,

that is, suppose F r
2(ji)

is not a prefix of F s
1(ij)

. Then, there exists wa ∈ A such that

F r
2(ji)

= wa and F s
1(ij)

is a prefix of w. This implies that there exists a sequence

of events e1, e2, . . . , em (where m = |wa|) such that (r, i, a) ∈ η(em). Since the

sequence F1, F2, . . . matches D (refer to the previous chapter for the definition), we

know that there exists e ∈ Ei such that e <c em in D and in fact, e ∈ F1 such that

(s, j, a) ∈ η(e). This is a contradiction to the fact that F s
1(ij)

is a prefix of w.

Inductively, suppose χk, k ≥ 2 has been defined. We define χk+1 as χk+1(i, j) =

(zk+1, xk+1) where xk+1 = y · F s
k+1(ji)

where y is such that xk = F r
k+1(ij)

· y, where

χ(i, j) = (zk, xk) and zk+1 = 0 iff (zk = 1 and y = ε) or (zk = 0 and xk+1 = ε).

Again, we can argue as done for the base case above that xk is equal to F r
k+1(ji)

· y.

We now claim that the sequence ρ′ = (q0, χ0), (q1, χ1), . . . defines a good con-

nected component of C. Clearly, by definition of ρ′, (q0, χ0) ∈ Ĩ and (qk, χk)
Fk⇒(qk+1, χk+1)

for all k ≥ 0. Also, there exists infinitely many k ≥ 0 such that χ(i, j) = (0, x) for all

i, j ∈ [n] such that i 6= j because if not, then, this would imply that there is either

a pending send event without a matching receive event or there is a pending receive

event without a matching send event. Both these would contradict the fact that the

sequence F1, F2, . . . matches D. Hence, ρ′ defines a good connected component of C

and we are done.
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Conversely, suppose that there exists a good connected component of C. We

have to show that LbS(B) 6= ∅. Let ρ = (q0, χ0)
Fk1⇒(q1, χ1)

Fk2⇒ . . . be the sequence

obtained by unwinding the good connected component of C. That is (q0, χ0) ∈ Ĩ

and there exists infinitely many k ≥ 0 such that (qk, χk) contains some state in

Gij for each pair i, j ∈ [n] such that i 6= j. We will inductively define a Lamport

diagram D = (E,≤, φ, λ) and show that

• D is channel b-bounded and the sequence Fk1 , Fk2, . . . matches D.

• The run ρ′ = q0
Fk1→q1

Fk2→ . . . (obtained by projecting ρ to the states in Q) is an

accepting run of B on D.

Let Fki
= (Eki

,≤ki
, φki

, A, ηki
) for all ki. Initially, D1 = (E1,≤1, φ1, λ1) where

• E1 = Ek1 × {1}.

• ≤1= {((e, 1), (e′, 1)) | (e, e′) ∈≤k1}.

• For (e, 1) ∈ E1, φ1((e, 1)) = φk1(e).

• λ1((e, 1)) = 1 for all (e, 1) ∈ E1.

Inductively, suppose thatDl = (El,≤l, φl, λl) has been defined. We defineDl+1 =

(El+1,≤l+1, φl+1, λl+1) as follows:

• El+1 = El ∪ {(e, l + 1) | e ∈ Ekl+1
}.

• ≤l+1= (≤l ∪{((e, l + 1), (e′, l + 1)) | (e, e′) ∈≤kl+1
}

∪ ∪ni=1 {((e, l
′), (e′, l + 1)) | (e, l′), (e′, l + 1) ∈ Ei

l+1 and l′ < l + 1} where Ei
l+1

denotes the set of events of El+1 local to agent i

∪∪i6=j {((ep, lp), (e
′
p, l+1)) | i ≤ p ≤ m′, e′1, e

′
2, . . . e

′
m′ is the sequence of j-events

corresponding to F r
kl+1(ji)

= a1 . . . am′ and e1 . . . em, m ≥ m′ is the sequence of

events corresponding to y · F s
kl(ij)

= a1 . . . am and ep ∈ Eklp
, klp < kl+1})

∗.

• For (e, l′) ∈ El+1, φk+1((e, l
′)) = φl((e, l

′)) for all (e, l′) such that l′ ≤ l and it

is φkl+1
(e) if l′ = l + 1.

• λl+1((e, l
′)) = λl((e, l

′)) if l′ ≤ l and is l + 1 if l′ = l + 1.
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We claim that D = (E,≤, φ, λ) as defined above is a channel b-bounded layered

Lamport diagram. The argument that D is a layered Lamport diagram is similar

that used in the proof of Theorem 3.3.2. Note that the same observation holds with

respect to the ≤ defined here also. The fact that D is channel b-bounded follows

from the observation that the states of C has sequence of labels of length at most b.

We now have to show that the sequence Fk0, Fk1 , . . . matches D. From the def-

inition of D, we know that νD = 1, 2, . . .. Consider the sequence of fragments

represented by νD, say, F0, F1, . . .. Again, from the definition of D, it is clear that

the sequence F1, F2, . . . is isomorphic to Fk1 , Fk2, . . ., that is, there exists a sequence

of isomorphisms hi : Fi → Fki
for all i ≥ 1. To show that the sequence Fk1 , Fk2, . . .

matches D, consider kl and e ∈ Fkl
such that (s, i, a) ∈ ηkl

(e). Now, e ∈ Fkl
implies

(e, l) ∈ D, and λ((e, l)) = l. Hence, a is present in the sequence F s
l(ji)

. From the

definition of ρ, we know that χl+1(i, j) = (zl+1, xl+1) where xl+1 = y · F s
l(ji)

. Let

m > l be the least index such that χm(i, j) = (zm+1, xm+1) where zm+1 = 0 (we

know that such an m exists as ρ is accepting). By the definition of ⇒, we know that

zm+1 = 0 only if there are no pending sends or all the pending receives gets matched

up (depending on the value of zm). In either case, by the definition of ≤ in D, we

know that (e, l) ≤ (e′, m) where e′ is the event such that (r, j, a) ∈ ηkm
(e′) (that is a

is in the sequence F r
m(ij)

). Infact, (e, l) <c (e′, m) and hence we are done. Since the

sequence Fk1, Fk2 , . . . matches D, it follows that ρ′ is an accepting run of B on D. 2

3.4.1 Closure Properties

As done for diagram automata, we now show that the class of LLDs accepted by

fragment automata are closed under boolean operations. It is again based on the

fact that fragment automata are basically Büchi automata running over fragments.

Closure under union and intersection are exactly as done for diagram automata and

so, we just state the results. Closure under complementation involves an additional

check to ensure that the complement language is a language of channel bounded

LLDs. We again prove results which help us to move back and forth between Büchi

automata and fragment automata and use these to show that the class of languages

accepted by fragment automata is closed under boolean operations and under com-

plementation.
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Theorem 3.4.3 • Let A1 and A2 be two fragment automata. Then, there exists

a fragment automaton A such that L(A) = L(A1) ∪ L(A2).

• Let A1 and A2 be two fragment automata. Then, there exists a fragment

automaton A such that L(A) = L(A1) ∩ L(A2).

As done in the previous section, we first define bijections back and forth between

a finite alphabet of words and between fragments so that we can exploit the closure

of Büchi automata under complementation to show that fragment automata are also

closed under complementation.

Fix b ∈ N and a finite alphabet A of labels of fragments. Let LF b(A) denote

the set of A-labelled b-bounded fragments. Let Σ be a finite alphabet and let

g : Σ → LF b(A) be a bijection. We extend g to ĝ : Σω → LF b(A)ω × {0, 1}. For

σ = a0a1 . . . ∈ Σω, ĝ(σ) = (D, k) where D = g(a0) ◦ g(a1) ◦ . . . and k = 1 iff D is

channel b-bounded. The second component k is to filter out those concatenations

which result in LLDs that are not channel b-bounded as not every concatenation of

an arbitrary sequence of fragments would result in channel b-bounded LLDs. We

further extend ĝ to g̃ : 2Σω

→ 2(LFb(A)ω×{0,1}) by defining g̃(L) = {ĝ(σ) | σ ∈ L} for

L ⊆ Σω. It is easy to see that ĝ and g̃ are also bijections on the appropriate domains.

The bijections defined above would help us to construct fragment automata from

Büchi automata.

To do the reverse construction, we start with a bijection f : LF b(A) → Σ and

extend f to f̂ : Sb → Σω as follows: for a channel b-bounded LLD D ∈ Sb given by

D = D0 ◦ D1 ◦ . . ., we define f̂(D) = a0a1 . . . where ai = f(Di) for all i ≥ 0. We

further extend f̂ to f̃ : 2Sb → 2Σω

as f̃(L) = {f̂(D) | D ∈ L}. We now establish a

back and forth correpondence between Büchi automata and fragment automata.

Lemma 3.4.4 1. Given a fragment automaton A over LF b(A), there exists a

Büchi automaton BA over Σ such that f̃(L(A)) = L(BA).

2. Given a Büchi automaton B over Σ, there exists a fragment automaton AB

over LF b(A) such that L(AB) = {D | (D, 1) ∈ ĝ(σ) for some σ ∈ L(B) and D

is channel b-bounded }.

Proof:
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1. Let A = (Q,A,LF b,→, I, G) be the given fragment automaton. We define

the Büchi automaton as BA = (Q,Σ,⇒, I, G) where q
a
⇒q′ iff q

D
→q′ in A, where

D ∈ LF b is such that f(D) = a.

2. Let B = (Q,Σ,⇒, I, G) by the given Büchi automaton. We first define a

fragment automaton A′
B as A′

B = (Q,A,LF b,→, I, G) where the transition

relation → is given by q
D
→q′ iff D = g(a) for some a ∈ Σ and q

a
⇒q′ in B. The

automaton A′
B accepts all LLDs of the form ĝ(σ) where σ ∈ L(B). We now

restrict the automaton A′
B to accept channel b-bounded LLDs among those

of the form ĝ(σ) for σ ∈ LB as follows: We know that the class of languages

accepted by fragment automata are effectively closed under intersection. We

now construct a fragment automaton Ab which accepts precisely those LLDs

which are channel b-bounded. Then, the required fragment automaton AB is

obtained by taking the intersection of A′
B and Ab. Since A′

B accepts all LLDs

of the form ĝ(σ) and Ab accepts an input LLD iff it is channel b-bounded, the

automaton AB constructed to accept the intersection of the two languages is

the required one.

We now define the automaton Ab to complete the proof. The automaton Ab

is given by Ab = (Q,A,LF b,→, I, G) where

• Q = {(w, i, j) | w ∈ A∗, |w| ≤ b and i, j ∈ [n] such that i 6= j},

• I = {(ε, i, j) | i, j ∈ [n] such that i 6= j},

• G = Q and

• → is given by: (w, i, j)
F
→(w′, i′, j ′) iff w = F r

ji · y and w′ = y · F s
ij, where

F r
ji and F s

ij are as defined in Chapter 2.

It is easy to see that D ∈ L(Ab) iff D is channel b-bounded.

2

We now show that the class of languages accepted by fragment are closed under

complementation.

Theorem 3.4.5 Given a fragment automaton A over LF b(A), there exists a frag-

ment automaton AC over LF b(A) such that L(AC) = L(A)C where L(A)C denotes
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the complement of the language L(A) over LF b(A) i.e., those channel b-bounded

LLDs which are not in the set L(A).

Proof: From the given fragment automaton A, we can construct a Büchi au-

tomaton BA such that f̃(L(A)) = L(BA). We know that the class of ω-regular

languages accepted by Büchi automata are effectively closed under complementa-

tion. Hence, there exists a Büchi automaton BCA which accepts L(BA)C . Again, from

the previous lemma, we can construct a fragment automaton ABC
A

such that L(ABC
A
)

is the set of all channel b-bounded LLDs in g̃(BCA). It is now straightforward to see

that L(ABC
A
) = L(A)C . 2

Note that the previous lemma can also be used to show that the class of languages

accepted by fragment automata enjoy other closure properties as those of ω-regular

languages accepted by Büchi automata.



Chapter 4

Modal logics over Lamport

diagrams

In the earlier two chapters, we introduced Lamport diagrams as partial orders

describing causality and communication in distributed message passing systems and

discussed various automata models over them. With the overall aim of the thesis

being developing methods to reason about Lamport diagrams, we now concentrate

on defining suitable logics to describe properties of Lamport diagrams. Temporal

logics and monadic second order logics have always been two natural choices of logics

to reason about systems. We first concentrate on developing decidable temporal

logics over Lamport diagrams. We will define a monadic second order logic in one

of the later chapters.

Temporal logics are modal logics which are tuned to reason about systems whose

behaviours evolve with time. Modal logics have been well known as expressive logics

to specify properties of arbitrary Kripke structures and partial orders [HC96]. When

it comes to defining logics as specification languages, the decidability of satisfiability

problem of the logic is an important qualifying point. In the context of formal

verification, the algorithm for satisfiability also aids in proving the decidability of

a suitable model checking problem. The satisfiability problem of modal logics is

decidable over the general class of partial orders [Kra99]. Also, it is well known that

the satisfiability problem of temporal logics is decidable over arbitrary linear orders

[HR04].

65
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Keeping in mind the fact that Lamport diagrams are basically specialized partial

orders describing causality between events of a distributed system, we first define a

natural modal logic over these diagrams. The modalities of the logic are tuned to

describe typical properties of message passing systems apart from causality; namely

properties specifying when an agent would send a message, what an agent would

do upon receiving a message etc. We introduce two modalities to refer to an imme-

diate successor and an immediate predecessor of an event to talk about send and

receive events. The logic, called LD0, has four modalities—X (immediate succes-

sor), Y (immediate predecessor), F (future), P (past) and formulas of the logic

are interpreted over Lamport diagrams. The satisfiability problem of this logic is

the problem of checking if a given formula has a Lamport diagram as a model or

not. The problem turns out to be undecidable as the logic is expressive enough to

describe computations of 2-counter machines. In fact, we show that the satisfiability

problems of weaker versions of LD0 (with restricted X and Y modalities) are also

undecidable. We look at decidable temporal logics with further restrictions in the

syntax in the next chapter.

4.1 A modal logic on Lamport diagrams

Fix countable sets of propositional letters (P1, P2, . . . Pn) where Pi consists of

atomic local properties of agent i. Let P
def
= ∪i Pi. The set of i-local propositions

Pi also includes a special type proposition τi which is true at all the events of agent

i. Note that Pi and Pj need not be disjoint when i 6= j, since we can always use τi

to disambiguate, if needed.

We first consider a modal logic LD0, whose syntax is given below:

LD0 ::= p ∈ P | τi | ¬ α | α1 ∨ α2 | X α | Y α | F α | P α

As mentioned in the beginning, the logic LD0 is a standard propositional modal

logic over any labelled discrete partial order. In the context of Lamport diagrams,

the X modality refers to an immediate successor event and the Y modality refers to

an immediate predecessor event. F stands for ‘future’ and P for ‘past’ respectively.

We will use indexed modalities as abbreviations: for instance, Xiα denotes the

formula X(τi ∧ α); other abbreviations for Yi, Fi and Pi are defined similarly.

The dual of F is denoted G and is defined as Gα = ¬F¬α the dual of P is
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denoted H and is defined as Hα = ¬P¬α. X and Y, the duals of X and Y

respectively are defined similarly. Note that the abbreviations denote implications

for the dual modalities; for instance Giα denotes G(τi ⊃ α).

The formulas are interpreted on Lamport diagrams. We will denote models by

M = (D, VE) where D = (E,≤, φ) is a Lamport diagram, VE : E → 2P is a

valuation function such that VE(Ei) ⊆ Pi for all i ∈ [n] and for all e ∈ E, τi ∈ VE(e)

iff φ(e) = i.

Let α ∈ LD0 and e ∈ E. The notion that α holds at e in M is denoted M, e |= α

and is defined inductively as follows:

• M, e |= p iff p ∈ VE(e).

• M, e |= ¬α iff M, e 6|= α.

• M, e |= α ∨ β iff M, e |= α or M, e |= β.

• M, e |= Xα iff there exists e′ ∈ E such that el e′ and M, e′ |= α.

• M, e |= Fα iff there exists e′ such that e ≤ e′ and M, e′ |= α.

• M, e |= Yα iff there exists e′ ∈ E such that e′ l e and M, e′ |= α.

• M, e |= Pα iff there exists e′ such that e′ ≤ e and M, e′ |= α.

We say that α is satisfiable iff there exists a model M = (D, VE), where D =

(E,≤, φ) and e ∈ E such that M, e |= α. The satisfiability problem for LD0 is the

problem of checking if a given formula is satisfiable.

If α has a model M = (D, VE) where E is finite, we say α is finitely satisfiable.

When | E |≤ b for some b ∈ N, we say α is b-satisfiable. The finite satisfiability

(b-satisfiability) problem for LD0 is the problem of checking if a given formula is

finitely satisfiable (b-satisfiable).

Except for the presence of special propositions τi, the logic is seen to be a stan-

dard tense logic on partial orders. The logic may further be strengthened with U

(until) and S (since) modalities and the technical results which follow still hold for

such a logic as well. We will use the abbreviations True and False to denote the

formulas p0 ∨ ¬p0 and p0 ∧ ¬p0 respectively, where p0 ∈ P . The modalities Xi and

Yi act as local modalities when asserted at events of agent i and as global modalities

when asserted at events of some agent j where j 6= i. Consider an event e of agent
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i. The formula Xiα asserted at e says that α holds at the immediate local successor

of e and the formula Xjα (where j 6= i) asserted at e says that e is a send event

to agent j and α holds at the corresponding receive event in agent j. Hence, the

formula τ1 ∧X2True may be seen as asserting the sending of a message by agent 1

to 2, and similarly τ1 ∧Y2True asserts the receipt of a message by 1 from 2.

Formulas of LD0 can be used to specify various natural properties of message

passing systems. For example, the formula Y1(τ2∧req) ⊃ F2(X1ack) specifies that

agent 2 sends an acknowledgment (ack) in reply to a request (req) from agent 1.

Theorem 4.1.1 The (finite) satisfiability problem for LD0 is undecidable.

The negative result here mainly stems from the fact that runs of non-deterministic

2-counter machines can be described using Lamport diagrams. We first describe

non-deterministic 2-counter machines.

Non-deterministic 2-counter machines A non-deterministic 2-counter machine

has a finite number of states and two counters. The transitions of the machine in-

crement or decrement the values of each counter while changing from one state to

another. A non-deterministic 2-counter machine is given by a tupleM = (Q, δ, q0, qf)

where

• Q is a finite set of states,

• q0 ∈ Q is the initial state,

• qf ∈ Q is the final state and

• δ ⊆ T is the transition relation where T = (Q× {0, 1}2 ×Q× {−1, 0, 1}2)

When (q, x1, x2, q
′, y1, y2) ∈ δ and the machine is in state q, the transition is

enabled depending on whether the two counters are zero or non-zero as given by x1

and x2 and the machine changes state to q′, and the counter values are decremented

or incremented or left unchanged, depending on y1 and y2. We assume that if

(q, x1, x2, q
′, y1, y2) ∈ δ then yi = −1 implies xi = 1 for i = 1, 2 (only a positive

counter can be decremented) and q 6= qf (there are no transitions out of the final

state). A configuration of M is a triple (q, n1, n2) where q ∈ Q and ni ∈ N are

the values of the two counters. We say that (q, n1, n2) → (q′, n1 + y1, n2 + y2) if



Chapter 4: Modal logics over Lamport diagrams 69

Figure 4.1: Lamport diagram corresponding to a run of M

c1

q1, inc1, inc2, dec1,¬dec2

c2

q0, ic,

c1z, c2z,

¬dec1,¬dec2

c1z, q2,

¬inc1, inc2

c2

c2

(q, x1, x2, q
′, y1, y2) ∈ δ and ni = 0 iff xi = 0 for i = 1, 2. A run ρ of M is any

sequence (q0, 0, 0) → (q1, n
1
1, n

1
2) → (q2, n

2
1, n

2
2) → . . .. A configuration (q, n1, n2) is

reachable if there exists a run of M from (q0, 0, 0) to (q, n1, n2). A configuration

is final if q = qf . Given a 2-counter machine, the problem of checking if a final

configuration is reachable is undecidable.

Runs and Lamport diagrams Given a run ρ of M , we will define a 2-agent

Lamport diagram that ‘represents’ ρ. For example, the Lamport diagram corre-

sponding to the run ρ = (q0, 0, 0) → (q1, 1, 1) → (q2, 0, 2) is depicted in Figure 4.1.

The propositions labelling an event are the ones that are satisfied at the event. The

proposition ic represents the initial configuration. The propositions ciz represent

the fact that the value of counter i = 0. The (non-zero) values of counter i are

coded up using propositions ci for i = 1, 2 respectively which are repeated as many

times as the value of the counter. A configuration (q, n1, n2) with ni 6= 0 for i = 1, 2

is represented by a sequence of n1 events labelled by c1 followed by the event la-

belled by the proposition corresponding to q followed by a sequence of n2 events

labelled by c2. If ni = 0, then proposition ciz is holds at the event labelled by a

state proposition.

Consider a configuration (q, n1, n2) represented in the above way say, as a se-

quence of events of agent 1. A transition of M from (q, n1, n2) to (q′, n′
1, n

′
2) is coded

as follows. There is an immediate successor (to the event labelled by q) in agent 2

which is labelled by q′. The propositions inci and deci represent incrementing and

decrementing counter i for i = 1, 2 respectively. The proposition inc1 is satisfied
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at the q′-labelled event whenever counter 1 is incremented and is implemented by

adding a new event in agent 2 labelled with c1 just before the q′-labelled event.

Similarly, proposition inc2 is satisfied at the q′-labelled event whenever counter 2 is

incremented and is implemented by adding a new event in agent 2 labelled with c2

just after the q′-labelled event. For decrementing, the proposition dec1 is satisfied

at the q-labelled event whenever counter 1 is decremented and is implemented by

not copying the last c1-labelled event (just before the q-labelled event) from agent 1

to agent 2. Similarly, dec2 holds at the q-labelled event whenever counter 2 is decre-

mented and is implemented by not copying the first c2-labelled event (just after the

q-labelled event) from agent 1 to agent 2.

Each run of M is represented by a Lamport diagram in this way. We will now

show that such runs can be described by a formula of the logic LD0. That is, given

a 2-counter machine M , we will define a formula αM such that αM is satisfiable iff

a final configuration of M is reachable.

It turns out that we can define αM using a logic (called LD1) with a more

restricted syntax than that of LD0. Consequently, the undecidability of LD0 follows

from the undecidability of the logic LD1 which is presented next.

4.2 Variations on the theme

The global power of X and Y modalities will be crucially used in the formula

αM to express Lamport diagrams coding up runs of 2-counter machines. It turns

out that the satisfiability problem becomes undecidable even if we consider a weaker

logic where one of the X or Y modalities is global and the other is local along with

special propositions to talk about receiving or sending messages respectively. In fact,

we obtain undecidability without using the P modality and by using only a local

F modality. The logics LD1 and LD2 are defined below with these restrictions in

mind. We show that the satisfiability problems of these logics are also undecidable

by constructing corresponding formulae αM in these logics. The undecidability of

LD0 follows from these proofs.

Logic LD1

Let rji , i, j ∈ [n], i 6= j be special ‘receive’ propositions in Pi which code up the

fact that a particular event (of agent i) is a receive event from agent j. The syntax
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of LD1 is given by

LD1 ::= p ∈ P | τi | r
j
i | ¬ α | α1 ∨ α2 | Xi α | Yi α | Fi α

The semantics is defined inductively as done for LD0. For the sake of clarity, we

only mention the cases which are different below.

• M, e |= rji iff e ∈ Ei and there exists e′ ∈ Ej such that e′ l e.

• M, e |= Xiα iff there exists e′ ∈ Ei such that el e′ and M, e′ |= α.

• M, e |= Yiα iff e ∈ Ei and there exists e′ ∈ Ei such that e′ l e and M, e′ |= α.

• M, e |= Fiα iff e ∈ Ei and there exists e′ ∈ Ei such that e ≤ e′ and M, e′ |= α.

The modality Xi above is a global modality as the event e at which it is asserted

need not be an event of agent i. The modalities Yi and Fi interpreted at events

of agent i require that the immediate predecessor and the future event respectively

belong to the same agent and hence are local.

Logic LD2

We can also define the logic LD2, a symmetric version of LD1 with a global Y

modality and a local X modality and special send propositions. Let sji , i, j ∈ [n],

i 6= j be special ‘send’ propositions in Pi which code up the fact that a particular

event (of agent i) is a send event to agent j.

LD2 ::= p ∈ P | τi | s
j
i | ¬ α | α1 ∨ α2 | Xi α | Yi α | Fi α

The semantics is again defined inductively as done for LD0. We note the changes

below.

• M, e |= sji iff e ∈ Ei and there exists e′ ∈ Ej such that el e′.

• M, e |= Xiα iff e ∈ Ei and there exists e′ ∈ Ei such that el e′ and M, e′ |= α.

• M, e |= Yiα iff there exists e′ ∈ Ei such that e′ l e and M, e′ |= α.
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Observe that the modality Xi is local and Yi is global here.

Note that for i, j ∈ [n], i 6= j, the proposition rji can be expressed in LD0 as

τi∧YjTrue and sji can be expressed as τi∧XjTrue. Also, Xi, Yi and Fi modalities

in LD1 and LD2 are all present in LD0 as well. The logic LD0 also has global X,

Y and P modalities in addition to the above.

Note that by using the propositions rji (sji ), a particular event of agent i can just

assert that a message has been received (sent) to agent j and nothing regarding the

content of the message.

Theorem 4.2.1 The (finite) satisfiability problem for LD1 is undecidable.

Proof: As explained earlier, given a non-deterministic 2-counter machine M ,

we construct a formula αM such that αM is satisfiable iff a final configuration of M

is reachable. Let M = (Q, δ, q0, qf ).

The set of propositions Pi of agent i include the set {ckz, ck, inck, deck, ic} ∪ Q

for k = 1, 2 in addition to special propositions τi and rji , (j 6= i) for i = 1, 2. As

mentioned earlier, ckz codes up the fact that counter k is zero. The proposition

ck contributes a value of 1 to counter k, inck and deck represent incrementing and

decrementing the value of counter k by 1 respectively and ic represents the initial

configuration (q0, 0, 0) of M .

In the definition of the formula αM and in the proofs, we will use the following

notation. Given i ∈ {1, 2}, ico = 1 if i = 2 and ico = 2 if i = 1.

The formula αM is given by αM
def
= init ∧ inv ∧ fin where init, inv and fin are

defined as follows.

• The formula

init
def
= τ1 ∧ q0 ∧ c1z ∧ c2z ∧Y1False ∧ ¬r2

1

codes up the initial configuration of (q0, 0, 0) of M .

• The formula fin
def
= F1fin1 ∨ X2F2fin2 where fin1

def
= qf ∧ G1X2False and

fin2
def
= qf ∧ G2X1False asserts that a final configuration is reachable and

there are no moves out of it.

• The transitions of M and other facts about the two counter values encoded

by cj are defined by the following formulas.

inv
def
= G1inv1∧X2G2inv2 where invi

def
= (state∨ ctr1∨ ctr2)∧ transi∧ consisi

for i = 1, 2 and these formulas are defined below.
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– state
def
=

∨

q∈Q

(q ∧
∧

q′∈Q,q 6=q′

¬q′) ∧ ¬c1 ∧ ¬c2.

– ctr1
def
= c1 ∧ (

∧

q∈Q

¬q) ∧ ¬c2 ∧ ¬c1z.

– ctr2
def
= c2 ∧ (

∧

q∈Q

¬q) ∧ ¬c1 ∧ ¬c2z.

The above formulas ensure that an event labelled by a state or c1 or c2

is not labelled by any of the other two propositions.

– The transitions of M are coded up by transi as follows.

For a tuple t = (q, x, y, q′, x′, y′) ∈ T and q 6= qf , we first define a formula

θt which codes up the move defined by t.

θt
def
= q ∧ (γ1

x ∧ γ
2
y ∧Xicoq′ ∧ ξ1

x′,i ∧ ξ
2
y′,i)

where the various sub-formulas are given by

γj0 = cjz γj1 = ¬cjz ξj0,i = ¬decj ∧Xico¬incj

ξj1,i = ¬decj ∧Xicoincj ξj−1,i = decj ∧Xico¬incj

Notice that the Xico is used as a global modality (to specify what is

true at the other agent). Also note that the ‘decrement j’ decision of a

transition causes decj to hold at the same event where q holds, whereas

the ‘increment j’ causes incj to hold at the event satisfying the successor

q′ in the other agent ico.

Now, the transitions of M are coded up as

transi
def
= (

∨

q∈Q,q 6=qf

q ⊃

∨

t=(q,x,y,q′,x′,y′)∈δ

θt) ∧
∧

t′ 6∈δ

¬θt′ .

– consisi
def
= local-consisi ∧ across-consisi where

local-consisi
def
= seqi ∧ z-consisi∧ inc-consisi∧ dec-consisi∧z-dec-consisi∧

state-inc-dec-consisi where

∗ seqi
def
= (c1 ⊃ Xi(c1 ∨ state)) ∧ (c2 ⊃ Xi(c2 ∨ c1 ∨ (state ∧ c1z))) ∧

(state ⊃ Xi(c2 ∨ c1 ∨ (state ∧ c1z)))

ensures that in a configuration, the propositions c1 coding the value

of the first counter occur before an event labelled by a state and the

propositions c2 encoding the value of the second counter occur after

an event labelled by a state.
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∗ z-consisi
def
= (state ⊃ (c1z ≡ Yi¬c1) ∧ (c2z ≡ Xi¬c2))

ensures that the value of counter 1 (2) is zero iff there are no events

labelled with c1 (c2) in the past (future) of an event labelled by a

state.

∗ inc-consisi
def
= (((state ∧ inc1) ⊃ Yi(c1 ∧ ¬ri

co

i )) ∧

((state ∧ inc2) ⊃ Xi(c2 ∧ ¬ri
co

i )))

ensures that a new event labelled by cj (which is not a copy of some

event labelled by cj from the other agent) precedes/succeeds the

event corresponding to a state whenever the value of counter j is

incremented for j = 1, 2.

∗ dec-consisi
def
= (((state ∧ dec1) ⊃ Yi(c1 ∧XicoFalse)) ∧

((state ∧ dec2) ⊃ Xi(c2 ∧XicoFalse)))

ensures that the counter proposition cj at an event of agent i is not

copied to agent ico whenever counter j is decremented for j = 1, 2.

∗ z-dec-consisi
def
= (c1z ⊃ ¬dec1) ∧ (c2z ⊃ ¬dec2)

ensures that decrementing a counter is not possible if its value is zero.

∗ state-inc-dec-consisi
def
= state ⊃ (dec-options ∧ (qf ∨Xico inc-options))

where

dec-options
def
= (dec1∧dec2)∨(dec1∧¬dec2)∨(¬dec1∧dec2)∨(¬dec1∧

¬dec2) and

inc-options
def
= (inc1∧inc2)∨(inc1∧¬inc2)∨(¬inc1∧inc2)∨(¬inc1∧

¬inc2)

ensures that the counters are either decremented or incremented or

left unchanged at every transition.

– across-consisi
def
= state ⊃ ((qf ∨Xicostate) ∧ (ic ∨ ri

co

i )) ∧

c1 ⊃ ((Xicoc1 ∨Xi(state ∧ dec1)) ∧ (ri
co

i ∨Xi(state ∧ inc1))) ∧

c2 ⊃ ((Xicoc2 ∨Yi(state ∧ dec2)) ∧ (ri
co

i ∨Yi(state ∧ inc2)))

ensures that the counter values and the states are updated appropriately

from one agent to the other, implementing a transition of M .

We now show that αM is satisfiable iff a final configuration of M is reachable,

which implies that (finite) satisfiability of LD1 is undecidable.

Suppose there exists a run of M in which a final configuration is reachable, say

ρ = (q0, n0
1, n

0
2) → . . . (qk, nk1, n

k
2) → . . . → (qm, nm1 , n

m
2 ) where q0 = q0, n

0
1 = n0

2 = 0
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and qm = qf . We will show that αM is satisfiable by defining a Lamport diagram

DM and a valuation function VM and then by proving that M ′ = (DM , VM) is a

model of αM .

Define DM = (E,≤, φ) as follows:

• E = ∪0≤k≤mEk where Ek = {c1e(j, k) | 1 ≤N j ≤N nk1} ∪ {sek} ∪ {c2e(j, k) |

1 ≤N j ≤N n
k
2}.

For 0 ≤ k ≤ m, define

emaxk =

{
sek if nk2 = 0

c2e(n
k
2, k) otherwise

and

emink =

{
sek if nk1 = 0

c1e(1, k) otherwise

• φ(e) =

{
1 if e ∈ E2l, 0 ≤N 2l ≤N m

2 otherwise

• ≤
def
= (local ∪ comm)∗ where

local = {(emaxk, emink+2) | 0 ≤N k <N (m− 1)}

∪0<Nk≤Nm (∪{(c1e(j, k), c1e(j + 1, k)) | 1 ≤N j <N n
k
1}

∪ {(c1e(n
k
1 , k), sek) | n

k
1 >N 0}

∪ {(sek, c2e(1, k)) | n
k
2 >N 0}

∪ {(c2e(j, k), c2e(j + 1, k)) | 1 ≤N j <N n
k
2})

and

comm = {(sek, sek+1) | 0 ≤N k <N m}

∪ {(c1e(j, k), c1e(j, k + 1)) | 1 ≤N j ≤N min{n
k
1, n

k+1
1 }, 0 ≤N k <N m}

∪ {(c2e(l1(j), k), c2e(l2(j), k + 1)) | 1 ≤N j ≤N min{nk2, n
k+1
2 }, 0 ≤N k <N m}

where

– l1(j) = l2(j) = j if nk2 = nk+1
2 ,

– l1(j) = j + 1, l2(j) = j if nk2 > nk+1
2 and

– l1(j) = j, l2(j) = j + 1 if nk2 < nk+1
2 .

The valuation function VM is defined as VM(e) = Vk(e) for all e ∈ Ek where Vk

is defined as follows:
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• For l = 1, 2,

Vk(cle(j, k)) =

{
{cl, τ1} if k mod 2 = 0

{cl, τ2} otherwise

• Vk(sek) = {qk, τf(k)} ∪ {ic | k = 0} ∪ ∪l∈{1,2}({clz | n
k
l = 0}

∪ {incl | n
k
l >N n

k−1
l , 0 <N k ≤N m})

∪ {decl | n
k
l >N n

k+1
l , 0 <N n

k
l , 0 ≤N k <N m} where

f(k) =

{
1 if k mod 2 = 0

2 otherwise

We now show that M ′ is a model of αM .

• We can easily show that M ′ satisfies the formulas init, fin, state, ctr1 and ctr2

by using the definition of VM .

• We now show that M ′ satisfies transi. To show that M ′ satisfies
∨

t∈δ

θt, con-

sider an event sek ∈ Ek such that Vk(sek) = qk where qk 6= qf . Then, by the

definition of DM , we know that the event sek+1 ∈ Ek+1 is such that qk+1 ∈

Vk+1(sek+1) where (qk, nk1, n
k
2) → (qk+1, nk+1

1 , nk+1
2 ) in ρ (say, through the tran-

sition t′ ∈ δ). Using the definition of Vk+1, we can show that M ′, sek |= θt′ .

Let t′ = (qk, x1, y1, q
′, x′1, y

′
1). Suppose M ′, sek |= θt′′ for some t′′ ∈ T \ δ. Let

t′′ = (qk, x2, y2, q
′, x′2, y

′
2). By the definition of θt and from the fact that sek+1 is

the unique ico-successor to sek (where sek is an event of agent i), we know that

M ′, sek+1 |= q′. But, M ′, sek+1 |= qk+1 as well, and since M ′, sek+1 |= state,

we get q′ = qk+1. Similarly, using z-consisi, we can show that x1 = x2 and

y1 = y2, and using state-inc-dec-consisi, we can show that x′1 = x′2 and y′1 = y′2.

But then t′′ = t′ contradicting the assumption that t′′ 6∈ δ.

• We now prove that M ′ satisfies consisi. From the first definition on the local

ordering of events in Ek and from the definition of Vk it follows that seqi is

satisfied by M ′.

• To show that M ′ satisfies z-consisi, we know by the definition of VM that cjz

is true at an event sek only if state is true. In addition, we also know that cjz

is true at ek iff nkj = 0 for j = 1, 2. If nk1 = 0, then, from the definition of DM ,

we see that there is no event of the form c1e(j, k) immediately preceding ek.
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Since c1 holds only at events of the form c1e(j, k) we can conclude that Yi¬c1

holds at sek. Similarly, we can show that c2z holds iff Xi¬c2 holds at sek.

• We can show that M ′ satisfies inc-consisi, dec-consisi, z-dec-consisi and

state-inc-dec-consisi by using the definition of VM .

• Finally, to show that M ′ satisfies across-consisi, consider an event sek such that

M ′, sek |= state. If k = m, we know that qf ∈ Vm(sek) and so M ′, sek |= qf .

Also, if k = 0, we know that ic ∈ Vk(sek) and so M ′, sek |= ic. For 0 < k < m,

by the definition of DM , we know that sek+1 ∈ Ek+1 is such that sek l sek+1

and qk+1 ∈ Vk+1(sek+1). Also, φ(sek+1) = ico if φ(sek) = i. This implies

M ′, sek |= Xicostate. Similarly, sek−1 ∈ Ek−1 is such that sek−1 l sek and

φ(sek−1) = ico if φ(sek) = i. This implies M ′, sek |= ri
co

i .

Now, consider an event e such that M ′, e |= c1 where e is of the form c1e(j, k).

If j < nk1 then, we know from the definition of M ′ that c1e(j, k + 1) is such

that c1e(j, k) l c1e(j, k + 1), M ′, c1e(j, k + 1) |= c1 and φ(c1e(j, k + 1)) = ico

if φ(c1e(j, k)) = i. Hence M ′, c1e(j, k) |= Xicoc1. Suppose nk+1
1 = nk1 − 1.

Then, we know from the definition of VM that dec1 holds at sek and hence

M ′, c1e(n
k
1, k) |= Xi(state ∧ dec1).

Since k > 0, for j < nk1, the event c1e(j, k−1) is such that c1e(j, k−1)lc1e(j, k)

and φ(c1e(j, k − 1)) = ico if φ(c1e(j, k)) = i. Hence M ′, c1e(j, k) |= ri
co

i . When

nk+1
1 = nk1 + 1, we can show that Xi(state ∧ inc1) holds at c1e(n

k
1, k).

We can argue as above using the definition of ≤ in DM and the definition of the

valuation function to show that the sub-formula involving c2 also is satisfied.

Conversely, suppose αM is satisfiable. We have to show that a final configuration

of M is reachable. We will prove the existence of a run ρ of M such that ρ terminates

at a final configuration. Let M ′ = (D, V ) where D = (E,≤, φ) be a model of αM .

Since M ′ satisfies init, we know that there exists e0 ∈ E such that M ′, e0 |= init and

since M ′ satisfies fin, we know that there exists an event em ∈ E such that e0 ≤ em

and M ′, em |= qf .

Claim: There exists a set X = {f0, f1, . . . fm′} such that e0 = f0lf1l. . .lem =

fm′ , where φ(f0) = 1 and if φ(fk) = i then φ(fk+1) = ico for 0 ≤N k <N m. Also,

M ′, fk |= state for all k and for k ≥ 2, there exists no event e ∈ E such that

fj < e < fj+2, 0 ≤N j <N (k − 1) and M ′, e |= state.
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Proof of claim: We prove this claim by induction on k. Initially, set f0 = e0.

φ(e0) = 1 since M ′, e0 |= init. If q0 = qf , then e0 = em and we are done.

Otherwise, inductively suppose f0 l f1 l . . .l fk (k ≥ 0) has been defined such

that f0, f1, . . . fk satisfy the above properties.

We define fk+1 as follows. Suppose φ(fk) = i for i ∈ {1, 2}. Since M ′, fk |= state

we know that M ′, fk |= across-consisi and so there exists e′ ∈ E such that fk l e′,

φ(e′) = ico and M ′, e′ |= state. Set fk+1 = e′.

We now show that there exists no event e1 ∈ E such that fk−1 < e1 < fk+1

(k ≥ 1) such that M ′, e1 |= state. Suppose there exists such an event e1. Then,

M ′, e1 |= riico (since across-consisico holds at e1) and so there exists an event e2 ∈ E

such that e2 l e1 and φ(e2) = i. Now fk 6≤ e2 as it would contradict the fact that

fk l fk+1. Hence e2 ≤ fk. We can show that M ′, e2 |= state using the fact that

state holds at e1 and that e2 is the unique i-predecessor of e1. This contradicts the

inductive assumption for the events fk−2 and fk.

If the above sequence of events terminates at some fm′ such that fm′ = em, we

are done. Otherwise, since e0 ≤ em, we know that there exists a sequence of events

e0 ≤ e1 ≤ . . . em in D. Let f0, f1, . . . , f` (` > 0) be the sequence of events such that

ej = fj for all j, 0 ≤N j ≤N ` and e`+1 6= f`+1. That is, f0, f1, . . . , f` is the largest

common prefix of the sequences e0, e1, . . . , em and f0, f1, . . . , fm′ . We will now show

that there exists a path f0 l f1 l . . . f` l f`+1 ≤ em in D.

Suppose φ(f`) = φ(em) = i. Now, sinceM ′, em |= state, we know from across-consisi

that there exists an event e′ such that e′ l em, φ(e′) = ico. We can again argue that

M ′, e′ |= state. Since φ(e′) = φ(f`+1) = ico, and f` l f`+1, we know that f`+1 ≤ e′.

Hence f0 l f1 l . . . f` l f`+1 ≤ e′ l em in D. On the other hand, if φ(f`) 6= φ(em)

then, we know that φ(f`+1) = φ(em) and so f0 l f1 l . . . f` l f`+1 ≤ em in D.

We can repeat the above argument for the events f`+2, f`+3 and so on till we

reach an event fm′ such that fm′ = em. Hence induction on k is complete and we

have: X = {f0, f1, . . . fm′} as above and the claim is proved.

To complete the proof of the theorem, we define a sequence

ρ = (q0, n
0
1, n

0
2), (q1, n

1
1, n

1
2), . . . , (qm, n

m
1 , n

m
2 )

where qm = qf , qk is such that M ′, fk |= qk and nk1, n
k
2 are defined as follows.

Initially, n0
1 = n0

2 = 0. To define nk1 and nk2 for k > 0, consider the event fk. If

M ′, fk |= ciz, we define nki = 0 for i = 1, 2. Otherwise, we know that there exists

at least one event immediately before fk satisfying c1. Let e1, e2, . . . , em be the
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maximum sequence of events in E such that em l . . .l e1 l fk, φ(fk) = φ(ej) and

V (ej) = c1 for all j, 1 ≤ j ≤ m. Define nk1 = m. Similarly, we define nk2 = m′ where

e′1, e
′
2, . . . e

′
m′ is the maximum sequence of events in E such that fk l e′1 l . . .l e′m′ ,

φ(fk) = φ(e′j) and V (e′j) = c2 for all j, 1 ≤ j ≤ m′.

We now show that (qk, n
k
1, n

k
2) → (qk+1, n

k+1
1 , nk+1

2 ) for all k, 0 ≤ k ≤ m − 1

by using the fact that M ′ |= transi and that M ′ |= consisi for i = 1, 2. Consider

the event fk which satisfies qk. Suppose φ(fk) = i. We know that fk+1 is such

that φ(fk+1) = ico and M ′, fk+1 |= qk+1. Since M ′, fk |= transi and fk+1 is the

unique immediate successor of fk in ico, it follows that there exists a transition t =

(qk, x, y, qk+1, x
′, y′) ∈ δ such that M ′, fk |= θt. Let θt = r1

x∧r
2
x∧Xicoqk+1∧ξ

1
x′,i∧ξ

2
y′,i.

We have to show that nk+1
1 = nk1 + x′ and nk+1

2 = nk2 + y′. Suppose x′ = −1. Then,

since M ′, fk |= ξ1
−1,i, we know that M ′, fk |= dec1 and there exists an event e′ such

that fk l e′, φ(e′) = ico and M ′, e′ |= ¬inc1. Now using the fact that M ′ satisfies

dec-consisi, we know that there exists an event e′′ satisfying c1 which is immediately

before fk in i and it does not have an immediate successor in ico. Also, across-consisi

holds and so all the events in the past of e′′ satisfying the proposition c1 (representing

nk1 in agent i) have successors in agent ico. So, all the events satisfying c1 representing

the counter value nk1 get copied to agent ico except for the event e′′. Hence we can

conclude that nk+1
1 = nk1 − 1. We can similarly argue for the other values of x′ and

y′ using the fact that M ′ satisfies inc-consisi ∧ z-dec-consisi (when x′ or y′ is 1) to

show that nk+1
1 = nk1 + x′ and nk+1

2 = nk2 + y′. Hence ρ as defined above is a run of

M and since qm = qf it follows that ρ is a run of M ending in a final configuration.

This completes our demonstration that the reduction of the halting problem for

2-counter machines to finite satisfiability of LD1 is correct. 2

The proof of Theorem 4.1.1 follows from the above proof as the formulas of LD1

are also formulas of LD0 with the occurrences of the formula ¬rij replaced by the

formula τj ∧YiFalse and the formula rij by τj ∧YiTrue for i, j ∈ {1, 2}.

Theorem 4.2.2 The (finite) satisfiability problem for LD2 is undecidable.

Proof: The proof proceeds similarly as above, defining a formula αM of LD2 for

a given 2-counter machine M . We have to re-write some of the formulas used in the

proof of Theorem 4.2.1 using the global Y modality and special send propositions

instead of the global X modality. In addition, we create a new event preceding the
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event corresponding to the initial configuration. This helps us to re-write some of

formulas in a way that is symmetric to the corresponding ones in LD1. For the sake

of clarity, we only mention the formulas that are re-written below. The others will

be as in the proof of Theorem 4.2.1.

• init
def
= τ1 ∧ ic ∧ q0 ∧ c1z ∧ c2z ∧Y1False ∧X1G1¬ic ∧Y2((q0 ∧ c1z ∧ c2z) ∧

Y2False ∧X2G2¬ic).

• fin
def
= F1fin1∨Y2F2fin2 where fin1

def
= qf ∧G1¬s

2
1 and fin2

def
= qf ∧G2¬s

1
2.

• inv
def
= G1inv1 ∧Y2G2inv2.

• For t = (q, x, y, q′, x′, y′) ∈ T and q 6= qf , we define

θt
def
= (q′ ∧ ¬ic) ∧ (Yico(γ1

x ∧ γ
2
y ∧ q) ∧ ξ

1
x′,i ∧ ξ

2
y′,i))

where

γj0 = cjz γj1 = ¬cjz ξj0,i = ¬incj ∧Yico¬decj

ξj1,i = incj ∧Yico¬decj ξj−1,i = ¬incj ∧Yicodecj

Now, transi
def
= (q′ ∧ ¬ic) ⊃

∨

t=(q,x,y,q′,x′,y′)∈δ

θt ∧
∧

t6∈δ

¬θt.

• dec-consisi
def
= (((state ∧ dec1) ⊃ Yi(c1 ∧ ¬si

co

i )) ∧ ((state ∧ dec2) ⊃ Xi(c2 ∧

¬si
co

i ))).

• inc-consisi
def
= (((state∧ inc1) ⊃ Yi(c1∧YicoFalse))∧((state∧ inc2) ⊃ Xi(c2∧

YicoFalse)))

• across-consisi
def
= (state ⊃ (ic ∨Yicostate) ∧ (qf ∨ s

ico

i )) ∧

c1 ⊃ ((si
co

i ∨Xi(state ∧ dec1)) ∧ (Yicoc1 ∨Xi(state ∧ inc1))) ∧

c2 ⊃ ((si
co

i ∨Yi(state ∧ dec2)) ∧ (Yicoc2 ∨Yi(state ∧ inc2))).

• state-inc-dec-consisi
def
= state ⊃ ((ic∨Yicodec-options)∧inc-options) where dec-options

and inc-options are as defined for LD1.
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It is easy to see that relating models of αM and halting runs of M can be carried

out as in the undecidability proof for LD1. Given a run ρ of M ending in a final

configuration, we define a model of αM as done in the above proof. In addition, we

add the set E ′
0 to E and extend the valuation function suitably to take care of the

extra initial event satisfying ic.

That is, define a model M ′ = (D′, V ′) where D′ = (E ′,≤′, φ′) is given by

• E ′ = E ′
0 ∪ E where E ′

0 = {e′0} and E is as defined in the above proof.

• φ′(e′0) = 2 and φ′(e) = φ(e) for every e ∈ E.

• ≤′= (≤′ ∪{(e′0, e
′
0) ∪ (e′0, se0)})

∗.

Finally, the valuation function V ′ is given by V ′(e′0) = {τ1, q0, c1z, c2z, ic} and

V ′(e) = V (e) for all e ∈ E.

We now show that M ′ is a model of αM by arguing that M ′ satisfies all the

formulas which were re-defined for αM in this theorem.

To start with, M ′, se0 |= init as V0 = {q0, c1z, c2z, ic} and e′0 <c se0 is such

that φ′(e′0) = 2 and M ′, e′0 |= (q0 ∧ c1z ∧ c2z ∧ ic). We can show that the formulas

fin, transi, inc-consisi and dec-consisi are all satisfied by M ′ as done in the proof of

Theorem 4.2.1 above. To show that M ′ satisfies across-consisi, we first note that

Xicoβ ⊃ si
co

i for any formula β which is not False and the truth of sub-formulas

involving the Yico modality in across-consisi can be proved in a way similar to the

proof of Theorem 4.2.1.

Conversely, suppose αM is satisfiable. We construct a run ρ of M such that ρ

terminates at a final configuration as done in the proof of Theorem 4.2.1 above.

The set X of events satisfying states is defined in the same way and we prove that

events in X can be arranged in a sequence by working backwards from the event em

which satisfies qf . We can again define ρ and show that it defines a run of M to a

configuration containing qf . 2

4.3 Coping with undecidability

The results in this chapter show that our first attempts to define logics which are

expressive and decidable are not successful. It turns out that we get undecidability



Chapter 4: Modal logics over Lamport diagrams 82

even if one of the next or previous modalities is local in the presence of special send

or receive propositions.

With the aim of obtaining decidable and expressive logics over Lamport dia-

grams, we now consider the various restricting approaches. Two natural techniques

can be followed to possibly obtain decidable logics— one way is to further restrict

the expressive power of modalities (and omit/restrict the special send and receive

propositions) and the other is consider restricted or more structured sub-classes of

Lamport diagrams as models of formulas.

Restricted logics

The first approach we consider is to syntactically restrict the logics that we

define over Lamport diagrams. We consider one such logic called m-LTL in the next

chapter. This is a local temporal logic over Lamport diagrams—the syntax includes

local temporal modalities (X and U) for each of the n agents along with a non-local

previous (Y) modality. The previous modality is also less expressive in the sense

that it asserts the truth of a formula only at the “last” event of a particular agent in

its past and not at the send event. It turns out that this logic is expressive enough

to specify interesting properties of Lamport diagrams and the satisfiability problem

for this logic is also decidable.

Restricted models

The second approach of considering Lamport diagrams with more structure as

models is taken in subsequent chapters. We consider layered Lamport diagrams

as models. The syntax of the logic λ-LTL that we consider is also tuned to the

structure of LLDs. The logic has a two-level syntax: a temporal logic is defined at

the top level assuming an LLD to be a sequence of layers. This top level temporal

logic is built on formulas from a logic like LD0 which serves to zoom into each layer

of the LLD and talk about it structure. We then show that the satisfiability problem

of this logic is undecidable over the class of models based on bounded LLDs and

over the class of models based on communication closed LLDs. However, imposing

additional structure results in the satisfiability problem being decidable. The logic

becomes decidable over the class of models based on communication closed and

bounded LLDs and over the class of models based on channel bounded LLDs.
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The following table summarizes the various logics that we consider in this thesis

along with the results regarding decidability of the satisfiability problem. The stated

results for the logics m-LTL and λ-LTL are presented in the next two chapters.

Logic Syntax Models Satisfiability

LD0 Global X and Y Lamport diagrams Undecidable
LD1 Global X, local Y

and special
receive propositions Lamport diagrams Undecidable

LD2 Local X, global Y
and special
send propositions Lamport diagrams Undecidable

m-LTL Local X, weakly
global Y, local U Lamport diagrams Decidable

λ-LTL Global X and Y Bounded LLDs Undecidable
λ-LTL Global X and Y Communication closed LLDs Undecidable
λ-LTL Global X and Y Bounded and

communication closed LLDs Decidable
λ-LTL Global X and Y Channel bounded LLDs Decidable



Chapter 5

A temporal logic over Lamport

diagrams

In the previous chapter we saw that the main reason behind the undecidability of

the logics LDi (for i ∈ {1, 2, 3}) is the presence of global X and Y modalities. We

now consider a restricted temporal logic where both the X and Y modalities are

indexed, but the X modality is local and the Y modality is weakly global. Using

such a modality, a particular state of agent i in a Lamport diagram can assert

the truth of a formula at the last j-local state (for some j 6= i) seen in its past

(which need not be through a direct communication between i and j). We call

this temporal logic m-LTL. This logic is used to reason about local assertions on

Lamport diagrams. It is ’locally linear time’ in the sense of [Ram96]; locally, it is

linear time temporal logic and in addition, it includes a weakly global past modality

to refer to communications in the past.

The main aim of this chapter is to show that the satisfiability problem of m-

LTL is decidable. We will solve this problem using the so-called automata-theoretic

approach to satisfiability, i.e., given an m-LTL formula ψ, we will construct an SCA

Sψ such that the poset language accepted by Sψ is the set of all models of ψ. Then,

ψ is satisfiable iff the SCA Sψ accepts a non-empty poset language. Since the latter

problem is decidable, we also get decidability of the satisfiability problem.

The intuitive reason behind obtaining decidability of this logic (unlike the ones

in the previous chapter) is the fact that a particular agent cannot assert the sending

or a receipt of a particular message using just the local X modality and the weakly

84
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global Y modality. In other words, the communication modality is asymmetric,

i.e., the receiver of a message gets information about the sender’s past, whereas the

sender cannot access the receiver’s future.

Interestingly, it turns out that this logic is expressive enough to act as a speci-

fication language to talk about local properties of Lamport diagrams. We present

an example of a conference management system and illustrate the usefulness of m-

LTL as a specification language by writing properties of this system using formulas

from m-LTL. Many interesting safety and liveness properties involving distributed

systems can be specified using formulas from m-LTL. The fact that m-LTL acts as

a natural specification language also motivates us to consider the model checking

problem for m-LTL. The automata-theoretic approach to prove that satisfiability

problem is decidable also yields a proof of the decidability of the model checking

problem.

5.1 The logic m-LTL

Fix countable sets of propositional letters (P1, P2, . . . , Pn), where Pi consists of

the atomic local properties of agent i. We assume that Pi ∩ Pj = ∅ for i 6= j. Let

P
def
=

⋃

i

Pi.

Let i ∈ [n]. The syntax of i-local formulas is given below:

Φi ::= p ∈ Pi | ¬ α | α1 ∨ α2 | © α | α1 U α2 | �j α, j 6= i, α ∈ Φj

Global formulas are obtained by boolean combination of local formulas:

Ψ ::= α@i, α ∈ Φi | ¬ ψ | ψ1 ∨ ψ2

The propositional connectives (∧, ⊃ ,≡) and derived temporal modalities (3,2)

are defined as usual. The dual of �jα is given by ⊗jα
def
= ¬�j¬α.

The formulas are interpreted on Lamport diagrams. For technical convenience,

we consider only infinite behaviours. Formally, models are 2P -labelled Lamport

diagrams over a countable set of events. We will use the notation M = (E,≤, φ, 2P )

to denote such diagrams. The labelling of the events of M by subsets of P can be

thought of as associating a valuation function with the Lamport diagram. We choose

to consider the valuation function as a label as it would be easier to associate an

SCA with every formula later.
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While defining the semantics and in the decidability proof, we borrow notations

related to Lamport diagrams from Chapter 2.

Let α ∈ Φi and d ∈ LCi. The notion that α holds in the local state d of agent i

in model M is denoted M, d |=i α, and is defined inductively as follows:

• M, d |=i p iff p ∈ φ(e) where d = ↓e.

• M, d |=i ¬α iff M, d 6|=i α.

• M, d |=i α ∨ β iff M, d |=i α or M, d |=i β.

• M, d |=i ©α iff there exists d′ ∈ LCi such that dl d′ and M, d′ |=i α.

• M, d |=i αUβ iff ∃d′ ∈ LCi: d ⊆ d′,M, d′ |=i β and ∀d′′ ∈ LCi : d ⊆ d′′ ⊂ d′ :

M, d′′ |=i α.

• M, d |=i �jα iff there exists d′ ∈ LCj such that d′ l d and M, d′ |=j α.

The modalities © (next) and U (until) are as in standard linear time temporal

logic and are interpreted at the local future of a state. The new weakly global

modality �jα, asserted by i, says that α held in the last j-local state visible to i.

Notice that this need not be through a ’direct edge’ from j to i, i.e., there need not

be any communication between i and j directly.

Global satisfaction is defined in terms of local satisfaction at the initial events:

• M |= α@i iff M, εi |=i α.

• M |= ¬ψ iff M 6|= ψ.

• M |= ψ1 ∨ ψ2 iff M |= ψ1 or M |= ψ2.

We say that ψ is satisfiable iff there exists a model M such that M |= ψ. We say

that ψ is valid if for every model M , we have M |= ψ. Let Models(ψ) = {M |M is

a model of ψ}. The satisfiability problem of m-LTL is to check if a given formula ψ

is satisfiable or not.

A typical specification in the logic has the form: (2(p∧�2¬ ‘OK’ ⊃ ©(q ∧�2

‘OK’)))@1, which asserts that agent 1 can make a transition from a state satisfying

p into a state in which q holds only after hearing an ‘OK’ from agent 2, and must

block otherwise. We will see more examples of specifications using this logic later

in the chapter.
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5.2 m-LTL Satisfiability

In this section we show that the satisfiability problem for m-LTL can be settled

using SCAs. We now show that one can effectively associate an SCA Sψ with each

m-LTL formula ψ in such a way that Lpo(Sψ) = Models(ψ).

Theorem 5.2.1 Let ψ be a m-LTL formula of length m. Satisfiability of ψ over

n-agent Lamport diagrams can be checked in time 2O(mn).

The theorem is proved by associating an SCA Sψ over the distributed alphabet

(2P1, . . . , 2Pn) with every formula ψ such that Lpo(Sψ) = Models(ψ).

As mentioned earlier, we take the well-known automata-theoretic approach to

deciding satisfiability [VW86]. For linear time temporal logic, given a formula ψ,

Vardi and Wolper show how to associate a Büchi automaton which accepts precisely

the models of ψ. The automaton has atoms corresponding to ψ as its states, the

transition relation is defined to capture the © requirements and the U requirements

are checked through accepting states. We adopt the same idea in this setting. The

construction is extended to define local automata, one for each agent and we also

have to do additional work to capture the �j requirements through λ-constraints

of the SCA.

As usual, we begin with the definition of sub-formula closure. We can define,

for any global formula ψ, the sets of sub-formulas CL(ψ) and CLi for i ∈ [n], by

simultaneous induction in such a way that:

• ψ ∈ CL(ψ).

• α@i ∈ CL(ψ) iff α ∈ CLi.

• if ψ′ ∈ CL(ψ) then ¬ψ′ ∈ CL(ψ); a similar condition holds for CLi and here

¬¬ is treated as identity.

• if ψ1 ∨ ψ2 ∈ CL(ψ) then ψ1, ψ2 ∈ CL(ψ).

• if β1 ∨ β2 ∈ CLi then β1, β2 ∈ CLi.

• if ©β ∈ CLi then β ∈ CLi.

• if β1Uβ2 ∈ CLi then β1, β2, ©(β1Uβ2) ∈ CLi.
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• if �jβ ∈ CLi then β ∈ CLj.

It can be checked that |CL(ψ)| is linear in the size of ψ. For the rest of this

section, fix a global formula ψ0 ∈ Ψ. We will refer to CL(ψ0) simply as CL and

CLi will refer to the associated sets of i-local formulas. We also use Ui
def
= {αUβ |

αUβ ∈ CLi}, and Lji
def
= {�jα | �jα ∈ CLi}.

We say that A ⊆ CLi is an i-atom iff it satisfies the following conditions:

• for every formula α ∈ CLi, either α ∈ A or ¬α ∈ A but not both.

• for every formula α ∨ β ∈ CLi, α ∨ β ∈ A iff α ∈ A or β ∈ A.

• for every formula αUβ ∈ CLi, αUβ ∈ A iff β ∈ A or {α, ©(αUβ)} ⊆ A.

Let ATi denote the set of all i-atoms. Let AT
def
=

⋃

i

ATi. Let ÃT denote the

set AT1 × . . . × ATn. We let X̃, Ỹ etc to range over ÃT , and X̃[i] to denote the

i-atom in the tuple.

Let ψ be a global formula. We define the notion ψ ∈ X̃ as follows: if α ∈ Φi,

then α@i ∈ X̃ iff α ∈ X̃[i]; ¬ψ ∈ X̃ iff ψ 6∈ X̃; ψ1 ∨ ψ2 ∈ X̃ iff ψ1 ∈ X̃ or ψ2 ∈ X̃.

Define  on AT as follows: B  A iff for some i 6= j, A ∈ ATi, B ∈ ATj and

for all �jα ∈ CLi, �jα ∈ A iff α ∈ B. Let X̃ ∈ ÃT . The relation  will be

used to capture the �j-requirement at agent i through λ-transitions. We say X̃ is

self-contained, iff for all i 6= j, X̃[j] X̃[i].

We are now ready to associate an SCA with the given formula in the standard

manner. For i ∈ [n], Σi
def
= 2Pi constitute the distributed alphabet over which the

SCA is defined.

Definition 5.2.2 Given any formula ψ0, the SCA associated with ψ0 is defined

by:

Sψ0

def
= ((Q1, G1), . . . , (Qn, Gn),→, Init)

where:

• Qi = {(A, u, I, J) | A ∈ ATi, u ⊆ (Ui∩A), {I, J} ⊆ 2([n]\{i}) such that I ⊆ J} .

• Gi = {(A, ∅, ([n] \ {i}), ([n] \ {i})) | A ∈ ATi such that ©β 6∈ A for all

©β ∈ CLi}.
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• Init = {((A1, ∅, ∅, ∅), . . . , (An, ∅, ∅, ∅)) | ψ0 ∈ (A1, . . . , An) and (A1, . . . , An) is

self-contained }.

• (A, u, I, J)
P ′

→(B, v, I ′, J ′), where A,B ∈ ATi, iff

1. P ′ = A ∩ Pi.

2. there exists a formula ©α ∈ CLi such that ©α ∈ A.

3. for every ©β ∈ CLi, ©β ∈ A iff β ∈ B.

4. The set v is defined as follows:

v =

{
{αUβ ∈ B | β 6∈ B} if u = ∅

{αUβ ∈ u | β 6∈ B} otherwise

5. J ′ = {j | Lji ∩ A 6= Lji ∩B}.

6. for all j ∈ I ′, there exists C ∈ ATj such that C  B.

• (A, u, I, J)
λ
→(B, v, I ′, J ′) iff for some i, j such that i 6= j, A ∈ ATi, B ∈ ATj

and

1. A B.

2. i ∈ I ′ ∩ J ′.

3. for all k ∈ J ′ \ I ′, �kγ ∈ A iff �kγ ∈ B.

We will denote Sψ0 by S0 from now on.

The two components I and J in an i-local state q = (A, u, I, J) are used to take

care of the �jα requirements at q. The set J has all the indices j 6= i such that

�jα is asserted at q but not in the previous i-local state and its subset I is the

set of all indices k for which the corresponding �kβ assertion is via a ‘direct edge’.

That is, whenever some �kβ is asserted at q where k ∈ I then, the definition of

λ-constraints makes sure that •q ∩Qk 6= ∅.

Lemma 5.2.3 Lpo(S0) = Models(ψ0).

Proof: Consider M = (E,≤, φ, 2P ) ∈ Lpo(S0) and let ρ be an accepting run of

S0 on M . We have to show that M is a model of ψ0.
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Let d be an i-local configuration of M . We associate an i-atom Ad with d as

follows: for all d, ρ(d)[i] is a tuple (A, u, I, J), set Ad = A.

The following assertion can be proved by induction on the structure of formulas

in CLi.

Claim: For all α ∈ CLi, for all d ∈ LCi, M, d |=i α iff α ∈ Ad.

Proof: As mentioned above, we prove the claim by induction on the structure

of α.

(α = p ∈ Pi) M, d |=i p iff p ∈ φ(e), (where d = ↓e) iff p ∈ Ad.

(α = ¬β) M, d |=i ¬β iff M, d 6|=i β iff (by the induction hypothesis) β 6∈ Ad iff

¬β ∈ Ad (by the definition of an atom).

(α = β ∨ γ) M, d |=i β ∨ γ iff M, d |=i β or M, d |=i γ iff (by the induction hypoth-

esis) β ∈ Ad or γ ∈ Ad iff β ∨ γ ∈ Ad (by the definition of an atom).

(α = ©β) Suppose M, d |=i ©β. We must show that ©β ∈ Ad. Since M, d |=i ©β,

there exists d′ ∈ LCi such that d l d′ and M, d′ |=i β. By the induction

hypothesis, β ∈ Ad′ . Let d = ↓e and d′ = ↓e′ for some e′ ∈ Ei. If we show

that ρ(d)[i]
Ad∩Pi→ ρ(d′)[i] then, by the definition of →, we will have ©β ∈ Ad as

required. Now, dl d′ and d, d′ ∈ LCi implies that el e′ in M . Now, e′ ∈ Ei

implies φ(e′) ∈ Σi and since ρ is a run of S on M , we have ρ(d)[i]
Ad∩Pi→ ρ(d′)[i]

as required.

Conversely, suppose ©β ∈ Ad. We must show that M, d |=i ©β. By the

induction hypothesis and by the semantics of the modality ©, it suffices to

prove that there exists d′ ∈ LCi such that dl d′ and β ∈ Ad′ . Again, suppose

d = ↓e for some e ∈ Ei. Consider the state ρ(d)[i]. Since ©β ∈ Ad, we

claim that ρ(d)[i] is not a terminal state. We prove the claim by contradiction.

Suppose ρ(d)[i] is a terminal state. Since ρ is an accepting run, infi(ρ)∩Gi 6= ∅

and so it follows that ρ(d)[i] ∈ Gi. But this is a contradiction as ©α ∈ Ad.

Hence ρ(d)[i] is not a terminal state. Now, since ρ is a good run, there exists

e′ ∈ Ei such that e l e′. Let d′ = ↓e′. It follows that ρ(d)[i]
φ(e′)
→ ρ(d′)[i] in S0.

Therefore, ©β ∈ Ad implies β ∈ Ad′ . Also, by the choice of e′, we know that

dl d′. Hence M, d |=i ©β as required.

(α = βUγ) Suppose M, d |=i βUγ. We must show that βUγ ∈ Ad. Since M, d |=i

βUγ, there exists d′ ∈ LCi such that d ⊆ d′, M, d′ |=i γ and for all d′′ ∈ LCi :
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d ⊆ d′′ ⊂ d′ : M, d′′ |=i β. We show that βUγ ∈ Ad by a second induction on

l = |d′| − |d|.

Base case: (l = 0).

Then, d = d′ and so M, d |=i γ. By the main induction hypothesis, γ ∈ Ad

and (by the definition of atom), βUγ ∈ Ad.

Induction step: (l > 0).

By the semantics of the modality U, M, d |=i β and M, d1 |=i βUγ for d1

such that d ⊂ d1 ⊆ d′′. Therefore, by the secondary induction hypothesis,

βUγ ∈ Ad1 . From the definition of →, we have ©(βUγ) ∈ Ad (recall that if

βUγ ∈ CLi then ©(βUγ) ∈ CLi as well). By the main induction hypothesis,

we have β ∈ Ad as well. Combining these facts and using the definition of an

atom, we see that βUγ ∈ Ad as required.

Conversely, suppose βUγ ∈ Ad. We must show that M, d |=i βUγ. Since ρ

is an accepting run of S0, there exists d′ ∈ LCi such that d ⊆ d′ and γ ∈ Ad′ .

Once again, we do a second induction on |d′|− |d| to show that M, d |=i βUγ.

Base case: ((|d′| − |d|) = 0).

Then, d = d′ and so γ ∈ Ad. Then, by the main induction hypothesis it follows

that M, d |=i γ and so M, d |=i βUγ.

Induction step: ((|d′| − |d|) > 0).

Now, γ 6∈ Ad. From the definition of atoms, both β and ©(βUγ) must be in

Ad. By the definition of →, βUγ ∈ Ad′′ where d′′ ∈ LCi such that d l d′′.

By the secondary induction hypothesis, M, d′′ |=i βUγ. Simultaneously, by

the main induction hypothesis, M, d |=i β. Therefore, by the semantics of the

modality U, M, d |=i βUγ as required.

(α = �jβ) We first prove the following claim by induction on |d|.

Claim: For all i, for all d ∈ LCi, for all �jβ ∈ CLi,

�jβ ∈ Ad iff β ∈ Ad′ where d′ ∈ LCj such that d′ l d.

Proof: We prove the claim by induction on |d|.

Base case: |d| = 0. Then, d = εi. Here d′ = εj and since Init is self-contained,

�jβ ∈ Ad iff β ∈ Ad′ .
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Induction step: |d| > 0. Then, d = ↓e for some e ∈ Ei.

Case 1: d′ = εj. That is, εj is the j-maximal event in d. Hence Lji ∩ Ad =

Lji ∩Aεi. Hence, �jβ ∈ Ad iff �jβ ∈ Aεi iff β ∈ Aεj (by the base case above).

Case 2: d′ = ↓e′ where e′ ∈ Ej such that e′ is the j-maximal event in d.

Sub case 2.1: Suppose e′ l e.

Since ρ is a run of S0 on M , it should be the case that ρ(d′)[j]
λ
→ρ(d)[i] in S0.

Now, by the definition of →, it follows that �jβ ∈ Ad iff β ∈ Ad′ .

Sub case 2.2: Suppose e′ 6le.

Since d and d′ are non-trivial configurations such that d′ l d, it should be the

case that there exists an event e′′ such that e′′ l e and e′ is the j-maximal

event in ↓e′′. Let d′′ = ↓e′′. We have d′ l d′′.

If e′′ ∈ Ei then, Lji ∩ Ad = Lji ∩ Ad′′ . Hence, �jβ ∈ Ad iff �jβ ∈ Ad′′ iff (by

induction hypothesis, since |d′′| < |d|) β ∈ Ad′ .

On the other hand, suppose e′′ ∈ El, for some l ∈ [n] such that l 6= i. Again,

since e′′ l e, we know that ρ(d′′)[l]
λ
→ρ(d)[i] in S0. Now, by the definition of

→, �jβ ∈ Ad iff �jβ ∈ Ad′′ iff (by the induction hypothesis) β ∈ Ad′ .

Hence, induction on |d| is complete and the claim is true.

Now getting back to the proof through the main induction, M, d |=i �jβ iff

there exists d′ ∈ LCj such that d′ l d and M, d |=j β iff by the induction

hypothesis β ∈ Ad′ iff �jβ ∈ Ad (by the claim above).

From this it is easy to see that M |= ψ0 iff ψ0 ∈ (Aε1 , . . . , Aεn). But this follows

from the definition of Init, the set of initial states of S0. Hence M is a model for

ψ0.

Conversely, suppose M |= ψ0, where M = (E,≤, φ, 2P ). To show that M is a

member of Lpo(S0), we have to construct an accepting run of S0 on M . For any

i-local configuration d of M , let νi(d)
def
= {α ∈ CLi | M, d |=i α}. It is easy to see

that νi(d) ∈ ATi. Consider e1, e2 ∈ Ei such that e1 l e2. Then, by the semantics

of © modality, for any ©α ∈ CLi, ©α ∈ νi(↓e1) iff α ∈ νi(↓e2). Similarly, if

�jα ∈ νi(↓e), then there exists e′ j-maximal in ↓e such that α ∈ νj(↓e
′).

We now define a map ρ : Cfin
M → Q̃, the set of global states of S0 inductively as

follows: ρ(∅) = ((ν1(∅), ∅, ∅, ∅), . . . , (νn(∅), ∅, ∅, ∅)).
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Now, suppose that ρ(c) = ((ν1(d1), u1, I1, J1), . . . , (νn(dn), un, In, Jn)) is defined

for some finite configuration c. Consider c′ = c ∪ {e} where e ∈ Ei such that e 6∈ c.

Define ρ(c′) = ((ν1(d
′
1), v1, I

′
1, J

′
1), . . . , (νn(d

′
n), vn, I

′
n, J

′
n)), where for j 6= i, d′j = dj,

vj = uj, I
′
j = Ij, J

′
j = Jj and for all j ′, buf(j, j ′) = buf ′(j, j ′). Let A = νi(di) and

B = νi(d
′
i) where d′i = ↓e. If ui = ∅ then vi = {αUβ ∈ B | β 6∈ B}; otherwise,

vi = {αUβ ∈ ui | β 6∈ B}. Also, J ′
i = {j | Lji ∩ A 6= Lji ∩ B} and I ′i = {j | there

exists C ∈ ATj such that C  B}.

We now show that ρ is an accepting run of S0 on M . First to show that ρ(c) ∈

Init, we have to show that ψ0 ∈ (ν1(∅), . . . , νn(∅)) and that (ν1(∅), . . . , νn(∅)) is self-

contained. But, this follows from the fact that νi(∅) = {α ∈ CLi | M, ∅ |=i α} and

the assumption that M is a model of ψ0. Also, by the definition of νi(∅), �jα ∈ νi(∅)

for some j 6= i, iff α ∈ νj(∅). Therefore, (ν1(∅), . . . , νn(∅)) is self-contained.

Suppose ρ(c) = (q1, . . . , qn) and ρ(c′) = (q′1, . . . , q
′
n) where c and c′ are as before.

From the definition of ρ, we know that qi
φ(e)
→ q′i where φ(e) = νi(c) ∩ Pi. Suppose

•e ∩ Ej 6= ∅. Let e′ be the j-maximal event in ↓e. By the inductive definition

of ρ, (νj(↓e
′), u, I, J) is defined already and since e′ is j-maximal in↓e we have,

ρ(↓e)[j]
λ
→q′i in S0.

Clearly, if ©(α) ∈ ρ(c) for some ©(α) ∈ CLi then, ρ(c) is not a terminal state.

Hence ρ is a good run. We can show that infi(ρ)∩Gi 6= ∅ for all i by using the fact

that M is a model. Therefore, ρ defines a run of S0 on M , and indeed an accepting

run at that. Hence M ∈ Lpo(S). 2

From the above lemma, it follows that deciding satisfiability of ψ0 amounts to

checking emptiness of the SCA S0. From Theorem 3.1.7, it follows that emptiness of

the poset language accepted by an SCA can be checked in time kO(n), where k is the

maximum of {|Qi| | i ∈ [n]}. Now the time bound stated in Theorem 5.2.1 follows

by observing that each component in S0 has a maximum of 2O(m) states, where m

is the size of ψ.

5.3 Model Checking

The goal of this section is to formulate the model checking problem for m-LTL

and show that it is decidable. We again solve this problem using the so-called

automata-theoretic approach to model checking. In such a setting, the program is
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modelled as an SCA S the specification is given by a formula ψ in m-LTL. The

model checking problem is to check if the system satisfies the specification i.e, to

check if every “behaviour” of S “satisfies” ψ. To do this, we construct the system Sψ

accepting the models of ψ and check if the poset language of S is a subset of the class

of models of ψ. But, the system S, in general is given over some arbitrary alphabet

Σ̃ and the system associated with ψ runs over 2P . So, we have to “interpret” the

system S as running over 2P .

To make this precise, we define an interpreted system to be a pair S = (S, V al),

where S = ((Q1, G1), . . ., (Qn, Gn), →, Init) on Σ̃, V al : Q → 2P such that for all

q ∈ Qi, V al(q) ⊆ Pi. Consider any Lamport diagram D = (E,≤, φ,Σ) ∈ Lpo(S).

Let ρ be an accepting run of S on D. We define the associated model as M = D′,

where D′ = (E,≤, φ′, 2P ) where φ′ : E → 2P is defined as follows: For e ∈ E,

φ′(e) = V al(ρ(↓e)[i]), if e ∈ Ei.

We say that an interpreted system S = (S, V al) satisfies a formula ψ of m-LTL

iff {D′ | D ∈ Lpo(S)} ⊆ Models(ψ). We denote this by S |= ψ.

Theorem 5.3.1 Let ψ be an m-LTL formula of length m and S be an interpreted

SCA with k being the maximum of {Qi | i ∈ [n]}. Then the question S |=? ψ can be

answered in time kO(n)2O(mn).

Proof: To check if S |= ψ, we have to check if Lpo(S) ⊆ Models(ψ). From the

proof of Theorem 5.2.1, it follows that S |= ψ iff Lpo(S) ⊆ Lpo(Sψ). But then, this

is equivalent to checking if Lpo(S) ∩ Lpo(S¬ψ) = ∅. We know from Theorem 3.2.2

that the class of poset languages accepted by SCAs are effectively closed under in-

tersection and from Theorem 3.1.7 that the emptiness of the language accepted by

the resulting SCA is decidable. Hence the theorem. 2

5.4 System specification example

In this section, we illustrate the use of m-LTL as a specification language by con-

sidering as an example, a fragment of the “Conference Management on the Internet”

case study from the COORDINA working group [CNT98, MS99]. The example in-

volves a conference management system design developed to conduct a conference

where the organisers, the authors and the conference committee members are in ge-

ographically different locations. The various components of the system design talk
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about how interactions between the involved members happen during the process of

organising a conference.

We concentrate on the part of the system design which involves the sequence

of messages interchanged between the relevant members during the process of re-

viewing research papers submitted to a conference. Here again, to keep the pre-

sentation simple, we consider a restricted version of the system that has only five

components—the first two members are two authors (A1 and A2), a moderator (M)

is the third member and the reviewers (R1 and R2) are two more members. We view

these members as agents of the system. Both the authors are interested in publish-

ing their (individual) papers and both the reviewers review each submitted paper.

The authors submit their papers to the moderator who passes it on to the reviewers.

The reviewers pass on the result of the review to the moderator who communicates

it to the authors. There is no direct communication between the authors and the

reviewers. Papers are considered one at a time for review and a paper is accepted

only if both the reviewers choose to accept it.

The system is modelled as an SCA given in Figure 5.1. For simplification, we have

just shown the automata corresponding to A1, M and R1. The component automata

representing the author A2 and the reviewer R2 are similar to A1 and R1 respectively.

The set of actions corresponding to each local component is irrelevant in this context.

They are assumed to be a singleton set and omitted here for brevity. The set of

good states is empty for each component. The λ-constraints across the system are

shown by dotted-directed lines pointing to the respective sending/receiving states.

For example, q0
λ
→p1, p1

λ
→s1 and so on. The notation s3(R2) in the figure refers to

the state corresponding to s3 in the automaton for R2 (which is not depicted in the

figure). The λ-constraints associated with the states p′i and s′j (of the agents M

and R1 respectively) are symmetric to those associated with the states pi and sj

respectively and hence the corresponding lines are not labelled.

A1 submits at a state q0 (λ-constraint to state p1 of M). When the paper

submitted by A1 is accepted (λ-constraint from state p7 of M), it enters the local

state q2 (similarly, reject is state q3). M has two symmetric sub-components, one

for A1 and another for A2. When it receives a submission from A1 (local state p1),

it sends it to R1 and R2 and waits (in local state p2) for one of the four possible

outcomes, one of which results in the corresponding paper being accepted (local state

p3); the results are accordingly communicated in states p7 and p8. The automaton
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Figure 5.1: SCA representing a paper review system
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for R1 is simple; it gets a submission, makes a binary choice (accept or reject) and

reverts to waiting.

Various formulas specifying properties of the system can be given in m-LTL. We

begin by giving the set of propositions associated with each component:

• The set of propositions associated with the component A1 is the set P1 =

{waitA1, resultA1 = nil/acc/rej}.

• The set of propositions associated with the component A2 is the set P2 =

{waitA2, resultA2 = nil/acc/rej}.

• The set of propositions associated with the component M is the set P3 =

{readyM} ∪ {procAi
| i = 1, 2} ∪ {FBi = x | x ∈ Dec, i = 1, 2} ∪ {R = x | x ∈

Dec} where Dec = {acc, rej, nil}.

• The set of propositions associated with the component R1 is the set P4 =

{readyR1, review1(i), decided1(i), OK1(i) | i = 1, 2}.

• The set of propositions associated with the component R2 is the set P5 =

{readyR2, review2(i), decided2(i), OK2(i) | i = 1, 2}.

In the description above, the intended meaning of each proposition is implied

by its name. For example, resultA1 refers to the result of a submission by A1.

The variable FBi stands for the feedback from the reviewer Ri, for i = 1, 2. The

feedback can take any of the three values from the set {acc, rej, nil} depending on

the decision of the reviewer. Similarly, the result of the review is represented by the

variable R. The value nil of these variables can be thought of a shorthand notation

to denote the fact that the reviews are pending.

To describe the system completely, we need to specify the set of propositions that

hold in each of the local states. They are given in the table below. For simplicity,

we just mention the set of propositions that are true in each state. The valuation for

the primed states can be obtained from the corresponding mappings for unprimed

ones. For instance, the set of propositions true in the state s′1 is {review1(2)}.

A1:q0 {resultA1 = nil} R1:s0 {readyR1}

q1 {waitA1, resultA1 = nil} s1 {review1(1)}

q2 {resultA1 = acc} s2 {decided1(1), OK1(1)}
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q3 {resultA1 = rej} s3 {decided1(1),¬OK1(1)}

M :p0 {readyM , FB1 = FB2 = R = nil}

p1 {FB1 = FB2 = R = nil}

p2 {procA1, FB1 = FB2 = R = nil}

p3 {procA1, FB1 = FB2 = acc, R = nil}

p4 {procA1, FB1 = FB2 = rej, R = nil}

p5 {procA1, FB1 = rej, FB2 = acc, R = nil}

p6 {procA1, FB1 = acc, FB2 = rej, R = nil}

p7 {procA1, FB1 = FB2 = nil, R = acc}

p8 {procA1, FB1 = FB2 = nil, R = rej}

We are now ready to specify local properties of this system using formulas from

m-LTL. The following are some examples of such properties.

1. Moderator reacts to a publication request from A1 by accepting or rejecting

the submitted paper (local formula of agent 3).

2((FBi = nil ∧ R = nil) ∧ �1(resultA1 = nil ∧ ¬waitA1)) ⊃ ((procA1 ∧

¬readyM)U(R = acc ∨ R = rej))

2. A paper submitted by A1 is accepted by the moderator for publication only if

both the reviewers choose accept the paper (local formula of agent 3).

2((procA1∧(R = acc)) ⊃ (�4(decided1(1)∧OK1(1))∧�5(decided2(1)∧OK2(1))))

3. A paper is reviewed by R1 only if there was a submission (to the moderator)

from the corresponding author (local formula of agent 4).

2(review1(1) ⊃ �1(¬waitA1 ∧ resultA1 = nil))

Notice that R1 can assert the last formula in the list above despite having no

direct correspondence with A1. This is because R1 can assert �3�1(¬waitA1 ∧

resultA1 = nil) above, and by the semantics of the �j modality, the use of �1

suffices in the above formula.

We now intuitively argue that the system S given in Figure 5.1 satisfies these

properties. We present such an argument for the first formula (of agent 3) in the

list above. Consider any Lamport diagram D accepted by the interpreted system of

S. In order to show that D satisfies the formula (1) above, we have to show that

from every state of D in which the moderator is processing a request from A1 (local
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state of M is p1 and local state of A1 is q0), we eventually reach a state in which the

result is known (local state of M is p7 or p8). It is easy to see that this holds: when

the local state of M is p1, the components R1 and R2 can start reviewing (local

states s1(R1) and s1(R2)) the submitted paper and upon deciding, they inform M

(λ-constraints to states pj (3 ≤ j ≤ 6) of M). Depending on the decision of the

reviewers, M enters one of the states pj (3 ≤ j ≤ 6) after which the decision on

acceptance/rejection of the paper is taken (local states p7 or p8 of M) accordingly.



Chapter 6

Logics over layered Lamport

diagrams

Towards the end of Chapter 4 we had mentioned two approaches to get decidable

logics over Lamport diagrams. The previous chapter reflected the first approach—to

restrict the expressive power of the X and Y modalities. We consider the second

approach in this chapter—to restrict the class of models (Lamport diagrams) con-

sidered and look at possible ways of obtaining decidable logics over these restricted

Lamport diagrams.

From Chapter 4 we know that undecidability results hold for models based on

finite Lamport diagrams as well. But, these finite diagrams are unbounded in general

and hence we could place bounds on the size of diagrams and look for decidability.

The satisfiability of LD0 becomes decidable over bounded diagrams as there are only

finitely many different diagrams with bounded number of events. Given a formula,

we just check if it is true against each of the Lamport diagrams one by one to see

if it is satisfiable in one of them. We use this fact and consider logics over layered

Lamport diagrams as these have layers which are finite Lamport diagrams. We

define a temporal logic with two types of formulas over layered Lamport diagrams

as follows: Layer formulas which are defined based on the logic LD0 are used to

describe properties of layers and temporal formulas built from these using the usual

linear time connectives talk about the sequence of layers that make up an LLD.

Specifications written in such a logic describe a sequential composition of parallel

processes reflecting the structure of LLDs.

100
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We show that the satisfiability problem of this logic is again undecidable even

when we restrict the size of layers to be uniformly bounded. However, the logic

turns out to be decidable over the class of communication closed and bounded

diagrams and also over the class of channel bounded diagrams. We again illustrate

the usefulness of such a temporal logic as a natural specification language of systems

that are described using sequential composition of parallel components by using

examples.

6.1 Logic LD0 over bounded models

In this section, we consider the logic LD0 defined in Chapter 4 over models based

on bounded Lamport diagrams and show that satisfiability becomes decidable.

To recall the logic LD0 from Chapter 4, it is a standard modal logic over Lamport

diagrams. Formulas are built from propositions (which include special propositions

τi, i ∈ [n]) using boolean combinations and four modalities (X, Y, F and P).

Models are Lamport diagrams equipped with a valuation function and all the four

modalities are global.

A bounded Lamport diagram is one which has only boundedly many events. Fix

b ∈ N. A Lamport diagram D = (E,≤, φ) is said to be b-bounded if |E| ≤ b.

Theorem 6.1.1 The satisfiability of a formula of length m in LD0 over b-bounded

diagrams is decidable in time m · 2O(b2).

Proof: The set of b-bounded Lamport diagrams is a finite set, call it Lb. Given

a formula α ∈ LD0, the problem is to check if there exists a model for α among the

diagrams in Lb.

Consider a model M = (D, VE) where D ∈ Lb and a formula α ∈ LD0. To check

whether M, emin |= α where emin is a minimal event in M , we consider the following

simple labelling algorithm which labels each event with a set of sub-formulas of α

such that it terminates, and on termination, for every sub-formula β and every event

e in M , we have M, e |= β iff β ∈ label(e).

The set SF (α) of sub-formulas of α is defined to be the least set of formulas such

that the following conditions hold:

• α ∈ SF (α).
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• ¬β ∈ SF (α) implies β ∈ SF (α).

• β ∨ γ ∈ SF (α) implies β, γ ∈ SF (α).

• Xβ ∈ SF (α) implies β ∈ SF (α).

• Yβ ∈ SF (α) implies β ∈ SF (α).

• Fβ ∈ SF (α) implies β ∈ SF (α).

• Pβ ∈ SF (α) implies β ∈ SF (α).

Let {α1, . . . αm} be the sub-formulas of α. With each event e of M , we define

the label of e by associating an array of length m = |SF (α)| such that the entry

corresponding to index i in the array is 1 if αi ∈ label(e) and is 0 otherwise. Also,

if αi is a sub-formula of αj then, i ≤ j.

We can define such a labelling by induction on i. For the base case, we have

αi = p for some p ∈ P and we can fill up the corresponding entry of the array by

looking at the valuation function associated with M . For i > 1, if αi = ¬αj, then,

j < i. We just look at the entry corresponding to j and flip it to obtain the entry

for i. Similarly, for αi = αj ∨αk, we take the maximum of the entries corresponding

to j and k. For αi = Xαj, we look at the entries corresponding to αj for all the

immediate successors of e in M and if one of them has entry 1, we put the same

in the entry for i; otherwise, we put 0. The entries corresponding to αi = Yαj

are filled up similarly. For αi = Fαj, we do a depth first search starting from e

and if one of the events reachable from e has entry 1 corresponding to αj, we fill

up the Fαj entry of e with 1. If none of the events reachable from e have entry 1

corresponding to αj, we put 0 in the Fαj entry of e. The case when αi = Pαj is

handled similarly.

It is easy to see that this labelling algorithm runs in time O(k2 ·m), where the

size of M (that is the number of events in M) is k , and the length of α is m.

Thus, for checking satisfiability of layer formulas against the finite set Lb of Lam-

port diagrams, we can consider the diagrams in Lb one at a time and check if α holds

at a minimal event. From the argument above, given a model M of size at most b,

we know that the time taken to check the satisfiability of a formula α of length m

against M is less than or equal to O(m.b2). Lb consists of all Lamport diagrams of

size ≤ b, and the number of Lamport diagrams of size k is at most 2k
2
. Therefore,
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|Lb| ≤ 2n
2
+ 2(n+1)2 + . . .+ 2b

2
(since b ≥ n) ≤ b · 2b

2
. Hence the total time taken to

check the satisfiability of a formula of α against all the models in Lb is ≤ O(m · 2b
2
).

2

Since the logics LD1 and LD2 are translatable into LD0, the corresponding

theorem for them results as a corollary of the theorem above.

6.2 A temporal logic over layered Lamport dia-

grams

In the previous section, we saw that the logic LD0 was decidable over the set

of bounded Lamport diagrams. This motivates us to consider extensions of LD0

over Layered Lamport Diagrams (LLDs) as LLDs are obtained by concatenating

finite or bounded diagrams which occur as their layers. We define a logic, which

we call λ-LTL with a two-level syntax. We have layer formulas which come from

LD0 and temporal formulas which are built from the layer formulas using standard

linear time connectives. As we know, LLDs describe behaviours of systems which

work with a fixed finite set of communication patterns between agents where each

such pattern would be given by a finite diagram (layer) and the system would be

described by choosing patterns dynamically and composing them. The layer and

temporal formulas of λ-LTL also follow this structuring. The layer formulas describe

properties of a layer and temporal formulas describe the properties of the sequence

of layers which make up the LLD.

We fix a finite set of layer names, Γ.

The syntax of layer formulas is given as in LD0.

Φl ::= p ∈ P | τi | ¬ α | α1 ∨ α2 | Xj α | Yj α | F α | P α

where i, j ∈ [n]. Note that the X and Y modalities are global indexed modali-

ties. The formula Xjα interpreted at an event e of agent i asserts that there exists

an immediate successor of e in agent j at which α holds. Similarly, the formula

Yjα interpreted at an event e of agent i asserts that there exists an immediate

predecessor of e in agent j at which α holds.

Temporal formulas are given by the following syntax:
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Ψ ::= α@i, α ∈ Φl , i ∈ [n] | a, a ∈ Γ | ¬ ϕ | ϕ1 ∨ ϕ2 | © ϕ | ϕ1 U ϕ2

This is the same as the standard propositional temporal logic of linear time,

but built up from layer formulas and layer names. The propositional connectives

(∧, ⊃ ,≡) and the derived temporal modalities (2,3) are defined as usual.

The formulas are interpreted on countable layered Lamport diagrams. Formally,

models are layered Lamport diagrams equipped with two valuation functions: one

maps the events to a subset of propositions and the other maps a particular layer

to some layer name from Γ. We will denote models by M = (D, VE, Vλ) where

D = (E,≤, φ, λ) is a countable layered Lamport diagram, VE : E → 2P is such that

for all e ∈ E and i ∈ [n], τi ∈ VE(e) iff φ(e) = i and Vλ : λ(E) → Γ. VE and Vλ

are valuation functions which define the set of propositions true at each event and

identify a layer name with each layer respectively,

We will first define the semantics of layer formulas, over the layers of a given

model. For this, it matters crucially whether the layer is communication closed

or not, since the Xj and Yj modalities are constrained to be satisfied within the

layer or not, appropriately. For technical convenience, we always interpret F and

P modalities within layers, and locally for every agent. As we will see later, many

interesting specifications of message behaviours can be written even with this restric-

tion. Also, it turns out that the classes of LLDs over which this logic is decidable

have layers which are bounded (apart from other properties) and hence F and P

modalities interpreted within layers can be written using a “sequence” of local Xj

and Yj modalities respectively.

Let α ∈ Φl and e ∈ E. We define two notions below: the first notion that α

holds at e in M is denoted M, e |=l α and is defined inductively as done before. The

base case for propositions and the case when α is a boolean combination of formulas

are as done for the logic LD0. The semantics of the various modalities are given

below. We first consider LLDs where the layers need not be communication closed

and define the semantics of the various modalities.

• M, e |=l Xjα iff there exists e′ ∈ Ej such that el e′ and M, e′ |=l α.

• M, e |=l Fα iff there exists e′ such that e ≤ e′, φ(e) = φ(e′), λ(e) = λ(e′) and

M, e′ |=l α.
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• M, e |=l Yjα iff there exists e′ ∈ Ej such that e′ l e and M, e′ |=l α.

• M, e |=l Pα iff there exists e′ such that e′ ≤ e, φ(e) = φ(e′), λ(e) = λ(e′) and

M, e′ |=l α.

The second notion is defined on models with communication closed layers. Let

M be a model based on a communication closed LLD. The notion that α holds at e

in M is denoted M, e |=cl α and is defined inductively as above. The only changes

are:

• M, e |=cl Xjα iff there exists e′ ∈ Ej such that e l e′, λ(e) = λ(e′) and

M, e′ |=cl α.

• M, e |=cl Yjα iff there exists e′ ∈ Ej such that e′ l e, λ(e) = λ(e′) and

M, e′ |=cl α.

Temporal formulas are interpreted at layers of a layered Lamport diagram. Given

a model M = (D, VE, Vλ) and ϕ ∈ Ψ, the notion that ϕ holds in the layer k of D is

denoted M, k |= ϕ and is defined inductively as follows:

• M, k |= α@i iff M, e |=l α where e is the i-minimum event of the layer Dk.

• M, k |= a, a ∈ Γ iff Vλ(k) = a.

• M, k |= ¬ϕ iff M, k 6|= ϕ.

• M, k |= ϕ ∨ ψ iff M, k |= ϕ or M, k |= ψ.

• M, k |= ©ϕ iff M, k′ |= ϕ where k′ is the successor of k in νD (where νD

denotes the sequence of indices representing layers of M as in Chapter 2).

• M, k |= ϕUψ iff there exists k′ ∈ l(E): k ≤N k′,M, k′ |= ψ and for all

k′′ ∈ l(E) : k ≤N k
′′ <N k

′ : M, k′′ |= ϕ.

When M is a model based on a communication closed LLD, we define M, k |=c ϕ

exactly as above, except for the base case: M, k |=c α@i iff M, e |=cl α where e is

the i-minimum event of Dk.

For a model M and ϕ ∈ Ψ, we say that M |= ϕ iff M, kmin |= ϕ where kmin

denotes the first element in the sequence νD. The notion M |=c ϕ is defined similarly
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for a model based on a communication closed LLD. ϕ is satisfiable iff there exists a

model M such that M |= ϕ. ϕ is C-satisfiable iff there exists a model M based on

a communication closed LLD such that M |= ϕ.

We will be interested in other restricted satisfiability notions as well. We say

ϕ is B-satisfiable if there exists a model M based on a bounded LLD such that

M |= ϕ. The notion of Sb-satisfiability is defined similarly using a model based on a

channel b-bounded LLD, and Cb-satisfiability using a model based on an LLD that

is both communication closed and b-bounded. The various notions of validity are

also defined similarly.

6.3 System specification example

Before proceeding with the proofs of the various undecidability and decidability

results, we present an example of system specification using λ-LTL in this section.

We consider the distributed system corresponding to an Automatic Teller Machine

(ATM). At the level of abstraction we consider, the system has three agents—User,

Bank and ATM. The ATM provides options for the user to check the balance in

his/her account and to withdraw cash after validating the balance. The interactions

between the agents can be naturally described using Lamport diagrams. For ex-

ample, Lamport diagrams representing the possible computations for withdrawing

cash are depicted in Figure 6.1. As depicted in the diagrams, we again focus on

the sequence of messages exchanged between the components and not on the local

actions of a particular agent. The propositions that are true at events of various

agents are specified as message labels in the figure. For example, the proposition

Withdraw holds at the initial event of the agent User (which is a send event) and

at the initial event of the agent ATM (the corresponding receive event).

Figure 6.1 also shows the layering of the Lamport diagram representing the

computations. The initial layer contains the scenario corresponding to validating

the bank balance and is repeated in both the Lamport diagrams. These can be

combined and represented in a concise way. The resulting system can actually be

presented as a diagram automaton and is depicted in Figure 6.2. The automaton

represents the ATM system and accepts the set of computations of this system which

are represented using communication closed and bounded LLDs. Note that these

LLDs are obtained by concatenating the individual layers (finite Lamport diagrams)
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Figure 6.1: Lamport diagrams representing computations of an ATM
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Figure 6.2: A diagram automaton representing an ATM
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that occur while tracing paths in the underlying automaton.

The logic λ-LTL can be used to specify various properties of the above system.

The agents are refered to by their names, which are User, ATM and Bank. The

set of propositions is given by { Option, Withdraw, Req-Amt, Amount, Approve-

Amount, Amount-Approved, Give-Money, Not-Approved, Refuse-Money, Stmt, Req-Bal,

Bal, Print-Stmt }. As mentioned before, the propositions that are true at various

events of the system are presented as labels of messages (that the events constitute)

in the figure for the sake of clarity.

The following properties can be specified using formulas from λ-LTL.

1. ATM accepts options to either check balance or to withdraw cash.

2(((Option ∧ τATM@ATM) ⊃

©((τUser ∧ stmt@User ∨ (τUser ∧ Withdraw)@User))))

2. Every request for withdrawal from the user is approved or rejected by the

ATM depending on whether the bank approves or rejects the amount.

2((τUser ∧ Withdraw ∧XATM(τATM ∧ Withdraw)@User) ⊃

©((τBank ∧ Amount − Approved ∧

XATM(τATM ∧ Amount − Approved ∧XATMGive − Money)@Bank ∨

τBank ∧ Not − Approved ∧

XATM(τATM ∧ Not − Approved ∧XATMRefuse − Money)@Bank)))

6.4 Undecidable problems

We now show that B-satisfiability and C-satisfiability are undecidable. In case of

B-satisfiability we obtain undecidability (in spite of the models having layers with a

uniform bound) due to the fact that in a bounded LLD a particular message can get

delivered after unboundedly many layers. Also, there the number of pending send

events can grow unboundedly as we go down the LLD. Consequently, the number

of pending X requirements which have to be checked also grows unboundedly.

C-satisfiability becomes undecidable mainly because of the fact that the layers

of a communication closed LLD can have unboundedly many events. Consequently,

even though X and Y modalities are interpreted within a layer, they could be

matched after an unbounded number of events.
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Figure 6.3: LLD representing a run of M
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Theorem 6.4.1 B-satisfiability is undecidable.

Proof: The result is proved in the same way as we did in Chapter 4. We again

consider non-deterministic 2-counter machines and use the fact that the problem of

checking if a final configuration is reachable or not is undecidable. Given a non-

deterministic 2-counter machine, we construct a 2-agent Lamport diagram which

represents a run of the machine. Of course, the diagram constructed there was a

finite diagram, whereas we need countable diagrams as models here. This is easily

achieved by appending an infinite sequence of dummy local events to each process.

In addition, we have to define a layering which is bounded.

To show that B-satisfiability is undecidable, consider the layering which picks

exactly one event from each agent for a layer. Clearly this is a bounded layering

and it is not communication closed. Also, such a layering is not always channel

bounded. For example, consider the Lamport diagram representing a run of the 2-

counter machine M (as defined in Chapter 4) where counter 1 is incremented at every

transition. This implies that a new event labelled by c1 is added immediately before

every event labelling the resulting state of a transition. For example, a prefix of the

LLD corresponding to the run ρ = (q0, 0, 0) → (q1, 1, 1) → (q2, 2, 1) → (q3, 3, 1) . . . is
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depicted in Figure 6.3. Consider the prefixes of this LLD ending at events labelled

by states q0 and q2. There is only one pending send (from agent 1 to agent 2) at the

prefix ending at q0-labelled event whereas there are two pending sends (from agent 1

to agent 2) at the prefix ending at q2-labelled event. Using the fact that we consider

layers having exactly one event per agent, we can argue that the number of pending

sends from agent 1 to agent 2 will grow unboundedly as we consider successive layers

ending at state-labelled events. That is, such an LLD is not channel b-bounded for

any b ∈ N.

We can now show that such a layering as well as the diagram itself can be

described by a formula ϕM of the logic. The various formulas comprising ϕM are

basically the same as the one used in the proof of Theorem 4.2.1. We replace the

G and F modalities by 2 and 3 appropriately. In addition, we add two formulas

to describe the layering and to add dummy events at the end.

To start with, we define the sets P1 and P2 of propositions of agent 1 and 2 as

done in the proof of Theorem 4.2.1. In addition, we add a proposition d to represent

dummy events and define the set of layer names Γ = {a}.

The formula ϕM is given by ϕM
def
= ϕb ∧ ϕd ∧ ϕinit ∧ ϕfin ∧ ϕinv and these

formulas are defined below.

• The formula ϕb
def
= 2(a ≡ (τ1@1 ∧ τ2@2)) ensures that every layer includes

exactly one event of each agent.

• The formula ϕd
def
= 2(∨i=1,2(qf@i) ⊃ (c2@iUd@i)) ∧©2(((d ∧ τi)@i) ∧ (d ∧

τico)@ico) appends dummy events at the end of the finite diagram representing

a run of M .

• The formula ϕinit
def
= init@1 where init is as defined in the proof of Theo-

rem 4.2.1 specifies the initial configuration.

• The formula ϕfin
def
= 3(qf@1 ∨ qf@2) asserts that a final configuration is

reachable.

• The formula ϕinv
def
= 2(∧i=1,2(τi ⊃ invi)@i) where invi are defined below.

inv1
def
= (state ∨ ctr1 ∨ ctr2 ∨ dummy) ∧ trans1 ∧ consis1 and inv2

def
= (state ∨

ctr1 ∨ ctr2 ∨ dummy) ∧ trans2 ∧ consis2 where transi and consisi are as defined

in the proof of Theorem 4.2.1 and the other sub-formulas are defined below:
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– state
def
=

∨

q∈Q

(q ∧
∧

q′∈Q,q 6=q′

¬q′) ∧ ¬c1 ∧ ¬c2 ∧ ¬d.

– ctr1
def
= c1 ∧ (

∧

q∈Q

¬q) ∧ ¬c2 ∧ ¬c1z ∧ ¬d.

– ctr2
def
= c2 ∧ (

∧

q∈Q

¬q) ∧ ¬c1 ∧ ¬c2z ∧ ¬d.

– dummy
def
= d ∧ (

∧

q∈Q

¬q) ∧ ¬c1 ∧ ¬c2 ∧ ¬c1z ∧ ¬c2z.

– The formulas transi and consisi are the same as the one used in the proof of

Theorem 4.2.1 where we replace the special proposition rji by τi∧YjTrue

and ¬rji by τi ∧YjFalse.

We show that ϕM is 2-satisfiable iff a final configuration of M is reachable, thus

establishing the undecidability of B-satisfiability. Again, the proof is very similar

to that of Theorem 4.2.1.

Suppose there exists a run ρ of M in which a final configuration is reachable.

We will show that ϕM is satisfiable by inductively defining a model M ′ of ϕM . Let

ρ = (q0, n0
1, n

0
2) → . . . (qk, nk1, n

k
2) → . . . (qm, nm1 , n

m
2 ) where q0 = q0, n

0
1 = n0

2 = 0 and

qm = qf . We define the Lamport diagram DM and valuation function VM exactly as

done in the proof of Theorem 4.2.1. Now define M ′ = (D, V ) where D = (E,≤, φ, λ)

is given by

• E = EM ∪ {e1
i , e

2
i | i ∈ N} where eji 6∈ EM for all i ∈ N and j = 1, 2.

• φ(e) = φM(e) for e ∈ Ek and φ(eji ) = j for all i ∈ N.

• ≤= (≤M ∪{(e1
i , e

1
i+1) | i ∈ N} ∪ {(e2

i , e
2
i+1) | i ∈ N})∗.

• It is easy to see that ≤ is a total order on the events of agent j of E. Let

e1, e2, . . . be an enumeration of the events of agent 1 (with respect to ≤1) and

let f1, f2, . . . be an enumeration of events of agent 2 (with respect to ≤2).

Define λ(ei) = λ(fi) = i for all i.

and V (e) = VM(e) for all e ∈ EM and V (eji ) = {τj, d} for all i ∈ N and j = 1, 2.

It is easy to see that D is a layered Lamport diagram. The rest of the proof goes

along the lines of the proof of Theorem 4.2.1. 2
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Note: Since we get 2-agent Lamport diagrams in the coding and the layering is

such that it includes exactly one event per agent, the above result actually shows

that the problem of checking if a given formula has a model based on an n-bounded

LLD (where n is the number of agents) is undecidable.

Theorem 6.4.2 C-satisfiability is undecidable.

Proof: The result is again proved using non-deterministic 2-counter machines.

Dummy local events are appended to the finite diagram which represents a run

of M that ends in a final configuration. Now consider the part of the diagram

representing a run of M which ends in a final configuration as the first layer, and

each subsequent layer as containing exactly one event (which is a dummy local

event, without any communications) per agent. This is a communication closed

(but unbounded) layering, and this can be specified using a formula ϕM as well.

Hence C-satisfiability is also undecidable. The details are sketched below.

The set of propositions are as defined for the undecidability of B-satisfiability.

We use the formula αM as defined for the proof of undecidability of LD1. In addition,

we need to define a layering with the finite Lamport diagram representing a run

of M ending in a final configuration as the first layer and each subsequent layer as

containing exactly one event per agent. The following formulas capture this layering.

• The formula αM@1 where αM is the formula defined in the proof of Theo-

rem 4.2.1 specifies that the first layer is the diagram representing a run of M

ending in a final configuration.

• The formulas 2(©(
∧

p1∈P1\{d,τ1}

(¬p1∧d∧τ1)@1)) and 2(©(
∧

p2∈P2\{d,τ2}

(¬p2∧d∧

τ2)@2)) specify that the events of agent i from the second layer onwards are

labelled only by the proposition d.

• The formula 2(©(
∧

i

(τi ∧ Xi¬False)@i)) ensures that every layer (from the

second layer onwards) includes exactly one event of each agent.

Let ϕM denote the conjunction of all the above formulas. If M has a halting run,

then we inductively define a model M ′ = (D, V ) where D = (E,≤, φ, λ) and E, ≤,

φ and V are as defined in the proof of Theorem 6.4.1 and λ is given by λ(e) = 1 for

all e ∈ EM and λ(eji ) = i + 1 for all i ∈ N. The rest of the proof is along the lines
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of that of Theorem 4.2.1. 2

6.5 Cb-Satisfiability

Given that both B-satisfiability and C-satisfiability became undecidable, we now

turn our attention to further restricting the class of models considered. The first

such restriction we look at is Cb-satisfiability where the models are based on LLDs

which are both communication closed and b-bounded. In this section we show that

Cb-satisfiability is decidable. The proof is again using the automata-theoretic ap-

proach to satisfiability. Diagram automata were introduced in Chapter 3 and accept

communication closed and bounded LLDs. We show that Cb-satisfiability is decid-

able by associating a diagram automaton with every λ-LTL formula. The automaton

accepts precisely the communication closed and bounded LLDs which are models of

the formula.

Theorem 6.5.1 Given a temporal formula ϕ0 of length m, the satisfiability of ϕ0

over b-bounded communication closed diagrams can be checked in time 2O(m+b2).

Proof: We associate a diagram automaton A0 (over the alphabet of models

based on b-bounded layers) with ϕ0 such that LbC(A0) = {M | M is a model of

ϕ0 based on a b-bounded communication closed LLD}. Hence, ϕ0 is satisfiable iff

LbC(A0) 6= ∅. Since the emptiness of the language accepted by a diagram automaton

is decidable (Theorem 3.3.2), it follows that checking if ϕ0 is satisfiable is also

decidable. Note that the states and transitions are the same as what we would

use for LTL as λ-LTL is basically LTL and diagram automata are Büchi automata

running over LLDs; we only need to decide the diagram alphabet carefully, and this

relies on decidability of the logic LD0 over b-bounded diagrams (Theorem 6.1.1).

We start by defining the sub-formula closure CL(ϕ0) of ϕ0. Define CL′(ϕ0) to

be the least set of formulas such that the following conditions are satisfied:

• ϕ0 ∈ CL′(ϕ0).

• ¬ψ ∈ CL′(ϕ0) implies ψ ∈ CL′(ϕ0).

• ψ1 ∨ ψ2 ∈ CL′(ϕ0) implies ψ1, ψ2 ∈ CL′(ϕ0).
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• ©ψ ∈ CL′(ϕ0) implies ψ ∈ CL′(ϕ0).

• ψ1Uψ2 ∈ CL′(ϕ0) implies ψ1, ψ2,©(ψ1Uψ2) ∈ CL′(ϕ0).

Now define CL(ϕ0)
def
= CL′(ϕ0) ∪ {¬ψ | ψ ∈ CL′(ϕ0)} ∪ {a0,¬a0} with ¬¬

treated as identity and a0 ∈ Γ. The presence of a0 is to ensure that at least one

layer name is included, even if none is mentioned in ϕ0.

A set A ⊆ CL(ϕ0) is said to be an atom iff it satisfies the following conditions:

• for every formula ¬ψ ∈ CL(ϕ0), ¬ψ ∈ A iff ψ 6∈ A.

• for every formula ψ1 ∨ ψ2 ∈ CL(ϕ0), ψ1 ∨ ψ2 ∈ A iff ψ1 ∈ A or ψ2 ∈ A.

• for every formula ψ1Uψ2 ∈ CL(ϕ0), ψ1Uψ2 ∈ A iff either ψ2 ∈ A or

ψ1,©(ψ1Uψ2) ∈ A.

• | A ∩ Γ |= 1.

Let AT (ϕ0) denote the set of atoms of ϕ0. Let P0 denote the set of propositions

that appear in ϕ0 and Γ0 = Γ ∩ CL(ϕ0). The alphabet of the automaton A0 is

the set LCP0
b = {M = (D, VE, a) | D = (E,≤, φ) ∈ LCb and VE : E → 2P0

and a ∈ Γ0}. That is, the alphabet of the diagram automaton is the set of all b-

bounded Lamport diagrams along with their valuations. Notice that given a model

M = (D, VE, Vλ) where D is a communication closed and b-bounded LLD with

νD = 0, 1, . . . (without loss of generality), we can view M as an infinite word over

LCP0

b given by M = M0 •M1, • . . . where Mi = (Di, VE � Di, ai) for all i, Di is the

Lamport diagram corresponding to layer i of D and Vλ(i) = ai.

Define a diagram automaton A0 over LCP0
b as follows:

A0 = (Q,LCP0
b ,→, I, F ) where

1. Q = AT (ϕ0) × U where U = {ψ1Uψ2 | ψ1Uψ2 ∈ CL(ϕ0)}.

2. I = {(A, ∅) | A ∈ AT (ϕ0) such that ϕ0 ∈ A}.

3. F = {(A, ∅) | A ∈ AT (ϕ0)}, and

4. → is given by (A, u)
M
→(B, v) for A,B ∈ Q and M = (D, VE, a) iff

(a) a ∈ A,
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(b) α@i ∈ A iff M, e |=cl α where e is the i-minimum event in D,

(c) for every ©ψ ∈ CL(ϕ0), ©ψ ∈ A iff ψ ∈ B, and

(d) if u 6= ∅ then, v = {ψ1Uψ2 | ψ1Uψ2 ∈ u and ψ2 6∈ B}. Otherwise,

v = {ψ1Uψ2 | ψ1Uψ2 ∈ B and ψ2 6∈ B}.

In order to construct the set Q of states, we need to check for the satisfiability

of layer formulas present in atoms over b-bounded diagrams. The proof of Theo-

rem 6.1.1 gives us an algorithm to check this. Since the complexity of checking the

satisfiability of the layer formulas against b-bounded diagrams is m · O(2b
2
), it fol-

lows that Q is constructible in time 2O(m+b2). The proof follows from the following

lemma.

Lemma 6.5.2 LbC(A0) = {M | M is a model of ϕ0 based on a b-bounded commu-

nication closed LLD }.

Let M = M0 • M1 • . . . ∈ LbC(A0). We show that M, k0 |=c ϕ0. Let ρ =

(A0, u0), (A1, u1), . . . be an accepting run of A0 on M . We first prove the following

claim.

Claim: For all ψ ∈ CL(ϕ0), for all i ∈ N, M, i |=c ψ iff ψ ∈ Ai.

Proof of claim: The proof is by induction on the structure of ψ.

ψ = α@j M, i |=c α@j iff M, e |=cl α where e is the j-minimum event of Di iff

α@j ∈ Ai (by definition of the transition relation).

ψ = a, a ∈ Γ M, i |=c a iff Vλ(i) = a iff a ∈ Ai.

ψ = ¬ψ′ M, i |=c ¬ψ
′ iff M, i 6|=c ψ

′ iff ψ′ 6∈ Ai (by induction hypothesis) iff ¬ψ′ ∈ Ai

(since Ai is an atom).

ψ = ψ1 ∨ ψ2 M, i |=c ψ1 ∨ψ2 iff M, i |=c ψ1 or M, i |=c ψ2 iff ψ1 ∈ Ai or ψ2 ∈ Ai (by

induction hypothesis) iff ψ1 ∨ ψ2 ∈ Ai (since Ai is an atom).

ψ = ©ψ′ Suppose M, i |=c ©ψ′. Then, M, i+1 |=c ψ
′ where i+1 is the successor of i

in M . By induction hypothesis, it follows that ψ′ ∈ Ai+1 which implies ©ψ′ ∈

Ai (since (Ai, ui) → (Ai+1, ui+1) in A0). Conversely, suppose ©ψ′ ∈ Ai. We

have to prove that M, i |=c ©ψ′. Since ©ψ′ ∈ Ai and (Ai, ui) → (Ai+1, ui+1),

we have ψ′ ∈ Ai+1. By induction hypothesis it follows that M, i+1 |=c ψ
′ and

so M, i |=c ©ψ′.
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ψ = ψ1Uψ2 Suppose M, i |=c ψ1Uψ2. We have to prove that ψ1Uψ2 ∈ Ai. Now,

since M, i |=c ψ1Uψ2, there exists k ≥ i such that M, k |=c ψ2 and for all j,

i ≤ j ≤ k, M, j |=c ψ1. We will show that ψ1Uψ2 ∈ Ai by a second induction

on k − i.

Base case: (k − i = 0). Then, k = i and M, i |=c ψ2. By the main induction

hypothesis, ψ2 ∈ Ai and from the definition of atoms it follows that ψ1Uψ2 ∈

Ai.

Induction step: (k − i > 0). By the semantics of the U modality, M, i |=c

ψ1 and M, i + 1 |=c ψ1Uψ2. Now, by the secondary induction hypothesis,

ψ1Uψ2 ∈ Ai+1. From the definition of →, we have ©(ψ1Uψ2) ∈ Ai. Also,

by the main induction hypothesis, M, i |=c ψ implies ψ ∈ Ai. Since Ai is an

atom, we have ψ1Uψ2 ∈ Ai.

Conversely, suppose ψ1Uψ2 ∈ Ai. We must show that M, i |=c ψiUψ2. Since

ρ is an accepting run of A0 on M , there exists k ≥ i such that ψ2 ∈ Ak. We

will show that M, i |=c ψ1Uψ2 by using a second induction on k − i.

Base case: (k − i = 0). Then, k = i and ψ2 ∈ Ai. By the main induction

hypothesis, M, i |=c ψ2 and so M, i |=c ψ1Uψ2 as well.

Induction step: (k − i > 0). Now, ψ2 6∈ Ai and ψ1Uψ2 ∈ Ai implies

ψ1,©(ψ1Uψ2)inAi. Since (Ai, ui) → (Ai+1, ui+1), we have ψ1Uψ2 ∈ Ai+1.

By the secondary induction hypothesis, M, i + 1 |=c ψ1Uψ2 implies M, i |=c

©(ψ1Uψ2). Simultaneously, by the main induction hypothesis, M, i |=c ψ1

implies M, i |=c ψ1Uψ2.

Thus induction on the structure of ψ is complete and the claim is true. From

the claim it follows that M, k0 |=c ϕ0 as required.

Conversely, to show that every model of ϕ0 is in LbC(A0), let M = M0 •M1 • . . .

be such that M, 0 |=c ϕ0. We have to exhibit an accepting run of A0 on M . For

i ≥ 0, define Ai = {ψ ∈ CL(ϕ0) | M, i |=c ψ}. We can show that each Ai is

an atom. Now, define a sequence ρ = (A0, u0), (A1, u1), . . . where the Ai’s are

as given before. We define ui by induction on i. u0 = ∅ and for i > 0, define

ui+1 = {ψ1Uψ2 | ψ1Uψ2 ∈ Ai+1, ψ2 6∈ Ai+1} if ui = ∅ and {ψ1Uψ2 | ψ1Uψ2 ∈ ui,

ψ2 6∈ Ai+1} otherwise. We can show that ρ is an accepting run of A0 on M and

hence M ∈ LbC(A0). 2
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6.6 Sb-satisfiability

In this section we consider another restriction on the class of layered Lamport

diagrams considered as models and show that λ-LTL is again decidable. The class of

models we consider are those based on channel b-bounded LLDs (for a fixed b ∈ N)

i.e, Sb-satisfiability. We again consider the automata theoretic approach to solve

the satisfiability problem and show that Sb-satisfiability is decidable by associating

a fragment automaton with every formula such that every model of the formula

corresponds to an accepting run of the associated automaton, and vice versa. Then,

the given formula is satisfiable iff the associated fragment automaton accepts a non-

empty language and since the emptiness problem of fragment automata is decidable

(Theorem 3.4.2), we get decidability of Sb-satisfiability.

Note that this proof cannot simply mimic the proof of Cb-satisfiability, since

labelling events of fragments with layer atoms does not give models per se; we get

models only when the fragments are ‘tiled’ suitably, yielding a layered Lamport

diagram. Also, the complexity of checking for Sb-satisfiability of a given formula

turns out to be slightly higher than that of Cb-satisfiability as the time complexity

to check emptiness of fragment automata is higher that that of diagram automata.

Theorem 6.6.1 Given a temporal formula ϕ0 of length m, the satisfiability of ϕ0

over channel b-bounded diagrams can be checked in time 2O(m·b2).

We prove this theorem by associating a fragment automaton A0 (over an alphabet

of fragments which occur as layers of channel b-bounded LLDs) with every formula

ϕ0 such that LbS(A0) = {M | M is a model of ϕ0 based on a channel b-bounded

LLD }. Hence, ϕ0 is satisfiable iff LbS(A0) 6= ∅. Since the emptiness of the language

accepted by a fragment automaton is decidable, it follows that checking if ϕ0 is

satisfiable is also decidable.

The sub-formula closure CL(ϕ0) and the set of temporal atoms AT (ϕ0) are de-

fined as in the proof of Theorem 6.5.1. However, since Xj and Yj modalities need

not be satisfied within the same layer, we have to do extra work to take care of re-

quirements of the form α@i. We define layer atoms which are atoms corresponding

to formulas of LD0 and carry pending Xj and Yj with transitions of the automa-

ton till they are met. For every formula of the form α@i ∈ CL(ϕ0), the set SL(α)

of layer sub-formulas of α is defined below. Let SFl denote the set of layer sub-

formulas associated with ϕ0. That is, SFl = ∪α@i∈CL(ϕ0)SL(α). The definition of
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when A ⊆ SFl is called a layer atom is also given below. We use the notation ATl

to denote the set of layer atoms associated with ϕ0.

The sub-formula closure SL(α0) of a layer formula α0 ∈ Φl is defined as follows.

Define SL′(α0) to be the least set of formulas such that the following conditions are

satisfied:

• α0 ∈ SL′(α0).

• α1 ∨ α2 ∈ SL′(α0) implies α1, α2 ∈ SL′(α0).

• if Cα ∈ SL′(α0) then α ∈ SL′(α0), where C ∈ {¬,Xi,Yi,F,G,P,H},

i ∈ [n].

• if Xiα ∈ SL′(α0) then Xiα ∈ SL′(α0), i ∈ [n].

• if Yiα ∈ SL′(α0) then Yiα ∈ SL′(α0), i ∈ [n].

• XiTrue ∈ SL′(α0) for all i ∈ [n], and YiTrue ∈ SL′(α0) for all i ∈ [n].

• for all i ∈ [n], τi ∈ SL′(α0).

Now define SL(α0)
def
= SL′(α0) ∪ {¬α | α ∈ SL′(α0)} with ¬¬ treated as iden-

tity.

A set A ⊆ SFl is said to be a layer atom iff it satisfies the following conditions:

• for every formula ¬α ∈ SL(α0), ¬α ∈ A iff α 6∈ A.

• for every formula α1 ∨ α2 ∈ SL(α0), α1 ∨ α2 ∈ A iff α1 ∈ A or α2 ∈ A.

• if Xiα ∈ A then XiTrue ∈ A and Xiα ∈ A.

• if Yiα ∈ A then YiTrue ∈ A and Yiα ∈ A.

• if Gα ∈ A then α ∈ A.

• if Hα ∈ A then α ∈ A.

• | {τi | i ∈ [n], τi ∈ A} |= 1.

Define a relation � on layer atoms as follows: Let A and B be layer atoms such

that τi ∈ A and τj ∈ B. Then A � B iff:
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• if Xjα ∈ A then α ∈ B.

• if Yiα ∈ B then α ∈ A.

Call an n-tuple of layer atoms (A1, . . . , An) coherent if, for all i ∈ [n], τi ∈ Ai.

Given two coherent n-tuples of layer atoms (A1, . . . , An) and (B1, . . . , Bn), we say

(A1, . . . , An) � (B1, . . . , Bn) if for all i ∈ [n], Ai � Bi. Let ÃTl denote the set of

coherent n-tuples of layer atoms. Below, we will also need the set Atup = ÃTl ∪

{(⊥1, . . . ,⊥n)}, where the symbol ⊥i will be used to denote that no layer atom is

associated with i. By convention, set (⊥1, . . . ,⊥n) � X, for every X ∈ ÃTl.

We now move on to computing the alphabet of the fragment automaton A0 to

be associated with ϕ0. For this first define the set LF b(ATl) of b-bounded fragments

which are labelled by layer atoms. Define LF = (F, a) where F = (E,≤, φ, ATl, η)

and a ∈ Γ0 (Γ0 = Γ ∩ CL(ϕ0)). Define ν : E → ATl by: ν(e) = A, where

η(e) = (A, T ). We require that ν satisfies the following consistency conditions:

• for all e ∈ E, φ(e) = i iff τi ∈ ν(e).

• for all e, e′ ∈ E, if e<. e′ then ν(e) � ν(e′).

• for all e ∈ Ei, for all Fα ∈ SFl, Fα ∈ ν(e) iff there exists e′ ∈ Ei such that

e ≤ e′ and α ∈ ν(e′).

• for all e ∈ Ei, for all Pα ∈ SFl, Pα ∈ ν(e) iff there exists e′ ∈ Ei such that

e′ ≤ e and α ∈ ν(e′).

• for all e ∈ Ei, if (s, j, A) ∈ η(e) then XjTrue ∈ ν(e) and ν(e) � A.

• for all e ∈ Ei, if (r, j, A) ∈ η(e) then YjTrue ∈ ν(e) and A � ν(e).

By νmin(F ), we denote the (coherent) n-tuple of layer atoms (ν(e1), . . . , ν(en)),

where ei is the i-minimum event in F . Similarly, by νmax(F ), we denote the (coher-

ent) n-tuple of layer atoms (ν(f1), . . . , ν(fn)), where fi is the i-maximum event in

F .

We are now ready to define the required fragment automaton working on the

alphabet LF b(ATl) of fragments. The automaton construction follows the one used

for Cb-satisfiability, but states are now enriched with coherent tuples of layer atoms

(except initial states, where we resort to the use of ⊥i). Such a tuple corresponds
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to the layer atoms labelling the maximal events that the automaton has seen thus

far. Hence the transition relation checks that this tuple is �-related to the minimal

ones of the fragment labelling the transition, thus ensuring that the fragment may

be joined to the diagram being constructed by the accepting run of the automaton.

Formally, the automaton A0 associated with ϕ0 is defined as follows:

A0 = (Q,LF b(ATl),→, I, F )

where

• Q = AT (ϕ0) × U × Atup

where U = {ψ1Uψ2 | ψ1Uψ2 ∈ CL(ϕ0)}.

• I = {(T, ∅, (⊥1, . . . ,⊥n) | T ∈ AT (ϕ0) such that ϕ0 ∈ T}.

• F = {(T, ∅, X) | T ∈ AT (ϕ0), X ∈ ÃTl}.

• → is given by

(T, u, (A1, . . . , An))
LF
→(T ′, u′, (A′

1, . . . , A
′
n)) (where LF = (F, a), iff

1. a ∈ T .

2. For every ©ψ ∈ CL(ϕ0), ©ψ ∈ T iff ψ ∈ T ′.

3. If u 6= ∅ then, u′ = {ψ1Uψ2 | ψ1Uψ2 ∈ u and ψ2 6∈ T ′}. Otherwise,

u′ = {ψ1Uψ2 | ψ1Uψ2 ∈ T ′ and ψ2 6∈ T ′}.

4. νmax(F ) = (A′
1, . . . , A

′
n).

5. (A1, . . . , An) � νmin(F ).

6. for i ∈ [n], α@i ∈ T iff α ∈ Bi, where νmin(F ) = (B1, . . . , Bn).

Lemma 6.6.2 LbS(A0) = {M | M is a model of ϕ0 based on a channel b-bounded

LLD }.

Proof:

Let D = ((LF0 • LF1) • . . .) ∈ LbS(A0), where LFk = (Fk, ak). Suppose D =

(E,≤, φ, λ). Note that, from the way concatenation of fragments has been defined,

we can define the map ν : E → ATl (uniquely), based on the map νk. Now define

M = (D, VE, Vλ) by: for all e ∈ E, VE(e) = ν(e) ∩ P and Vλ(k) = ak.



Chapter 6: Logics over layered Lamport diagrams 121

Note that D has a crucial property: for all e ∈ Ei, if e comes from Fk, k ≥ 0

and (s, j, A) ∈ ηk(e), then there exists ` > k and e′ ∈ Ej such that e′ comes from

F`, (r, i, B) ∈ η`(e
′), e<. e′, ν(e′) = A and ν(e) = B. A similar assertion holds the

other way as well: for e, k as above, if (r, j, A) ∈ ηk(e), then there exists ` < k and

e′ ∈ Ej such that e′ comes from F`, (s, i, B) ∈ η`(e
′), e′<. e, ν(e′) = A and ν(e) = B.

In addition, if e1 is the i-maximum event of Fk and e2 the i-minimum event of Fk+1,

then by definition of the transition relation →, we have that ν(e1) � ν(e2). From

these, and the property of νk for each fragment Fk, we have the following, which we

call the successor labelling property:

• for all e, e′ ∈ E, if e<. e′, then ν(e) � ν(e′).

• for all e ∈ E, if XiTrue ∈ ν(e), then there exists e′ ∈ Ei such that e<. e′.

• if YiTrue ∈ ν(e), then there exists e′ ∈ Ei such that e′<. e.

We first prove the following claim.

Claim: For all e ∈ E, α ∈ SFl, M, e |=l α iff α ∈ ν(e).

Proof of Claim: The proof proceeds by induction on the structure of α. The

base case, when α ∈ P , is seen to hold by the way VE was defined. The cases when

α is of the form ¬β or of the form β1 ∨ β2 routinely follow by application of the

induction hypothesis and using the properties of an atom.

Now suppose α = Xiβ and let e ∈ E. If M, e |=l Xiβ, then there exists

e′ ∈ Ei such that e<. e′ and M, e′ |=l β. We then have, by successor labelling

property, ν(e) � ν(e′). By induction hypothesis, β ∈ ν(e′). Then, by definition of

�, Xiβ ∈ ν(e), as required.

On the other hand, if Xiβ ∈ ν(e), then by definition of layer atoms, XiTrue ∈

ν(e). By successor labelling property, there exists e′ ∈ Ei such that e<. e′ and hence

ν(e) � ν(e′). Since ν(e) is an atom, Xiβ ∈ ν(e) as well, and hence, by definition

of �, β ∈ ν(e′). But then, by induction hypothesis, M, e′ |=l β and hence we get:

M, e |=l Xiβ, as required.

The case when α = Yiβ is similar. The cases when α = Fβ or α = Pβ are

proved easily using the consistency condition on νk where k = λ(e) and the induction

hypothesis. This completes the induction, proving the Claim.

We now show that M, 0 |= ϕ0. Let ρ = (T0, u0, X0), (T1, u1, X1), . . . be an ac-

cepting run of A0 on D. For this, it suffices to show that for every temporal formula
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ψ ∈ CL(ϕ0) and every layer k, M, k |= ψ iff ψ ∈ Tk. The proof of this assertion,

by induction on the structure of ψ, is exactly as that of the corresponding one in

Lemma 6.5.2 except for the base case when ψ = α@i.

For the base case, observe that M, k |= α@i iff M, e |=l α where e is the i-

minimum event of the fragment Fk. But, from the claim above we know that M, e |=l

α iff α ∈ ν(e). By definition of →, α ∈ ν(e) iff α@i ∈ Tk, when e is the i-minimum

event of Fk. The other base case, when ψ ∈ Γ, is also easily seen to follow from the

definition of →.

Conversely, to show that every model of ϕ0 is in LbS(A0), let M = (D, VE, Vλ)

be such that such that M, 0 |= ϕ0. Let F0, F1, . . . be the sequence of fragments

associated with D. We show that LbS(A0) 6= ∅ by exhibiting an accepting run of A0.

For an event e of M , define Ae = {α ∈ SFl |M, e |=l α}. It can be easily checked

that Ae is a layer atom. Now let k ≥ 0. Define Tk = {ψ ∈ CL(ϕ0) |M, k |= ψ}. We

can show that Tk is a temporal atom. For j ∈ [n], define Ak
j as follows: A0

j = ⊥j;

Ak+1
j = Aej

k
where ejk is the j-maximum event of Fk.

Let LFk = (Fk, a) where for all e in the fragment Fk, νk(e) = Ae, and a ∈ Γ such

that M, k |= a. We now construct a sequence

ρ = (T0, u0, (A
0
1, . . . A

0
n)), (T1, u1, (A

1
1, . . . A

1
n)), . . .

of states of A0 and show that ρ is a accepting run of A0 on LF = LF0, LF1, . . ..

The sets uk are defined by induction on k. Define u0 = ∅ and suppose uk has

been defined. Define uk+1 = {ψ1Uψ2 | ψ1Uψ2 ∈ Tk+1, ψ2 6∈ Tk+1} if uk = ∅ and

uk+1 = {ψ1Uψ2 | ψ1Uψ2 ∈ uk, ψ2 6∈ Tk+1} otherwise.

We can then easily show that ρ is an accepting run of A0 on LF . 2



Chapter 7

Message Sequence Charts

In this chapter we present other related models for describing behaviours of dis-

tributed systems whose agents communicate by exchanging messages across buffers

and compare the expressive power of these formalisms with those of Lamport di-

agrams and layered Lamport diagrams. The model discussed in this chapter is

that of Message Sequence Charts (MSCs). We again talk about n-agent distributed

systems and their behaviours are now described as MSCs. MSCs focus on message-

passing (i.e., the sequence of messages exchanged between agents) happening in the

distributed system unlike Lamport diagrams which focus on causality.

We introduce MSCs, various models to represent collections of MSCs and com-

pare them against relevant classes of Lamport diagrams. We work only with MSCs

over a finite number of events (describing only finite behaviours of distributed mes-

sage passing systems) as some of the results discussed here will use this fact crucially.

Consequently, the Lamport diagrams are also finite, including layered Lamport di-

agrams.

We also present results related to the expressive power of collections of MSCs

with respect to each other and with relevant classes of finite LLDs. We introduce

a Monadic Second Order (MSO) logic over MSCs and over Lamport diagrams. In

the context of MSCs, we present an algorithm to model check CMSGs against MSO

specifications. In the context of Lamport diagrams, it is not surprising to see that

satisfiability problem is undecidable. We show that checking the satisfiability of

MSO formulas against communication closed and bounded LLDs and against chan-

nel bounded LLDs is decidable.

123
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7.1 Message Sequence Charts

Message Sequence Charts (MSCs) are a standard notion [ITU97, RGG96] widely

used to capture system requirements in the early stages of design of communication

protocols. The graphical layout of an MSC describes how the components (agents)

of a distributed system communicate by exchanging messages. In its simplest form,

an MSC depicts a finite pattern describing the exchange of messages between agents

of a system and represents a single partially-ordered and finite execution of the

events of the system.

The events of an MSC are labelled by actions from a finite alphabet which

identifies the event occurrence as send, receive or a local event. Towards defining

this alphabet, let us fix a finite set of messages Γm and a finite set of local actions

Γl for the rest of this chapter (unless they are defined explicitly). For i, j ∈ [n]

such that i 6= j, let Σi = {(i!j, a), (i?j, a), (i, l) | a ∈ Γm, l ∈ Γl} denote the set of

actions that agent i participates in. The action (i!j, a) should be read as “i sends

the message a to j” while the action (i?j, a) means “i receives the message a from

j”. (i, l) represents i doing the local action l. The alphabet of the system which

denotes the set of all actions is defined by Σ =
⋃
i∈[n] Σi. Note that this alphabet

is different from the distributed alphabet we considered in earlier chapters. Earlier,

the distributed alphabet was made up of a set of abstract actions whereas the one

considered here is made up of actions with a structure—they represent send, receive

or local event occurrences.

Definition 7.1.1 A Message Sequence Chart (MSC) over [n] is a tuple

M = (E, {≤i}i∈[n], `, η)

where

• E is a finite set of events.

• ` : E → Σ is the labelling function which identifies for each event an action.

Let Ei = {e ∈ E | `(e) ∈ Σi} denote the set of events of E which i participates

in. Also, let SE = {e ∈ E | `(e) = (i!j, a) for some i, j ∈ [n], a ∈ Γm}

denote the set of send events and RE = {e ∈ E | `(e) = (i?j, a) for some

i, j ∈ [n], a ∈ Γm} denote the set of receive events of E.
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chk-id

DatabaseUser Manager

data

data
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Figure 7.1: A Message Sequence Chart

• η : SE → RE is the matching function which associates with each send event,

its corresponding receive event. We require η to be a bijection and for every

e, e′ ∈ E, if η(e) = e′, then `(e) = (i!j, a) and `(e′) = (j?i, a) for some

i, j ∈ [n], a ∈ Γm.

• ≤i is a total order on Ei for each i ∈ [n].

• Let ≤̂ = (
⋃
i∈[n] ≤i) ∪ {(e, e′) | e, e′ ∈ E and η(e) = e′}. Let ≤= (≤̂)∗ be the

reflexive, transitive closure of ≤̂. Then ≤ denotes the causal ordering of events

in the MSC and we require it to be a partial order on E.

For technical reasons, we require MSCs to satisfy an additional non-degeneracy

condition [AEY00]. We say an MSC is degenerate if there is an agent which sends

two identical messages that are received out of order. More formally, an MSC is

degenerate if there are events e1, e2, e
′
1, e

′
2 such that `(e1) = `(e2) = (i!j, a), η(e1) =

e′1, η(e2) = e′2 and e1 <i e2 but e′2 <j e
′
1.

Figure 7.1 shows an MSC over three agents (User, Manager and Database). req, id

and data are the message labels and chk-id represents a local action of the agent Man-

ager. The labelling function ` and the matching function η are easy to extract from

the diagram, for instance, the label of the first event of agent User is (User!Manager,
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req). Note that the message id overtakes the message req between the agents User

and Manager. The local total orders of every agent are also illustrated in the figure:

the events of every agent are given along a line in order of their occurrence from top

to bottom.

7.1.1 MSCs and Lamport diagrams

We have introduced MSCs and Lamport diagrams as models describing be-

haviours of n-agent systems. In this section, we compare the expressive power of

these formalisms.

As the above definition describes, an MSC is a special kind of graph over an

underlying set of events such that the ordering relation defined by the edges of the

graph is a partial order. The set of events is partitioned into set of send, receive and

local events (according to their labels). The messages and the local total order of the

events of each agent define the edges of the MSC. The reflexive and transitive closure

of the edges gives the causal order of the events. Notice that the causal order gives

all possible dependencies between events among which a few edges are explicitly

identified as messages by the matching function. On the other hand, Lamport

diagrams mainly describe the causal dependence of the various events (which is also

required to be a partial order) and the underlying communication pattern is derived

from this order. With this understanding, Lamport diagrams can be seen as finite

partial orders generated by MSCs (as done in [AHP96], for example, even though

they do not use the term Lamport diagrams explicitly). Thus, Lamport diagrams

describe causality rather than messages as in MSCs. Also, Lamport diagrams can

have simultaneous send and/or receive events, an additional feature not modelled

by MSCs. We formalize these concepts below.

Given an MSC M = (E, {≤i}i∈[n], `, η), define the structure DM
def
= (E,≤, φ)

where for e ∈ E, φ(e) = i iff e ∈ Ei. It is easily seen that DM is a Lamport diagram

over a finite set of events. We call DM as the Lamport diagram associated with

M . Apart from being a Lamport diagram over a finite set of events, it satisfies the

following conditions:

• It has no simultaneous send events: for all e ∈ E, there exists at most one

e′ ∈ E such that e <c e
′.

• It has no simultaneous receive events: for all e ∈ E, there exists at most one
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Figure 7.2: An MSC and its associated Lamport diagram

e′ ∈ E such that e′ <c e.

• It has no event which is a send and a receive simultaneously: for all e ∈ E, there

exists at most one e′ ∈ E such that either e <c e
′ or e′ <c e.

For example, Figure 7.2 gives an MSC and the Hasse diagram of the Lamport

diagram associated with it. The labels of the event occurrences of the MSC are

omitted for the sake of clarity. Note that η(e1) = e6 in the MSC but, e1 6<c e6 in the

corresponding Lamport diagram. Since e6 is causally dependent on e1 (as shown in

the Hasse diagram on the right side), the message sent by e1 and received by e6 is

not modelled explicitly in the Lamport diagram.

Conversely, not every finite Lamport diagram can be represented by an MSC as

such. The main reason is the presence of simultaneous send and/or receive events

in a Lamport diagram, a feature not allowed in MSC. Given a Lamport diagram

D = (E,≤, φ) (with E finite) which has no simultaneous send and receive events as

above, we define the corresponding MSC as follows:

Fix Γm = {a}, Γl = {b} and for i ∈ [n], Σi = {(i!j, a), (i?j, a), (i, b)}. Define

the structure MD = (E, {≤i}i∈[n], `, η), where ≤i is the local ordering induced by D,

(e, e′) ∈ η iff e <c e
′ in D and ` is defined as follows:

• `(e) = (i!j, a) iff e ∈ Ei and there exists e′ ∈ Ej such that e <c e
′ in D.

• `(e) = (i?j, a) iff e ∈ Ei and there exists e′ ∈ Ej such that e′ <c e in D.

• `(e) = (i, b) iff there exists no event e′ ∈ E such that e <c e
′ or e′ <c e.
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It is easily seen that MD is an MSC and it has no ‘over-taking’ messages.

The following proposition summarizes the above-mentioned correspondence.

Proposition 7.1.2 A finite Lamport Diagram D with no multiple send events and

no multiple receive events is isomorphic to MD, whereas for an MSC M , DM is

isomorphic to MDM
.

Proof: The identity function on the set of events would be the required iso-

morphism from a Lamport diagram D to its corresponding MSC MD and also from

DM to MDM
as defined above. 2

7.2 Collections of MSCs

A single MSC just describes one partially-ordered behaviour of the underlying

system. The ITU standard [ITU97] also prescribes ways for representing collections

of MSCs to express a set of behaviours of a system. The most fundamental model

among such representations is the model of message sequence graphs. In addition

to those prescribed by the standard, various other models have been proposed to

represent collection of MSCs. The notion of regular MSC languages was introduced

in [HMKT00a] as a class of languages suited for specifying and verifying collections

of MSCs. In [GMP01], compositional message sequence graphs were introduced as a

generalization of message sequence graphs. We introduce all these models in this

section and keeping in mind the relationship between MSCs and Lamport diagrams,

we also compare some of these models with relevant classes of layered Lamport

diagrams.

7.2.1 Message Sequence Graphs

According to the ITU standard ([ITU97]), collections of MSCs can be described

using Message Sequence Graphs (MSGs) which are also sometimes known as high-

level MSCs. MSGs allow MSCs to be combined using the operations of choice,

concatenation and repetition. An MSG is a finite graph with designated sets of

initial and final vertices and is usually presented as a finite state automaton. The

vertices are labelled by MSCs and the language of finite MSCs represented by an
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MSG is obtained by asynchronously concatenating the MSCs labelling the paths of

the MSG starting from an initial vertex and ending in one of the final vertices.

We will first define concatenation of two MSCs. Concatenation of two MSCs is

done by asynchronously concatenating the events of each agent in the two MSCs.

Definition 7.2.1 Let Mk = (Ek, {≤
k
i }i∈[n], `k, ηk), k = 1, 2 be two MSCs with E1 ∩

E2 = ∅. The concatenation of M1 and M2 is the MSC M denoted by M = M1•M2
1

and defined as M = (E, {≤i}i∈[n], `, η) where

• E = E1 ∪ E2,

• for e ∈ E, `(e) =

{
`1(e) e ∈ E1

`2(e) e ∈ E2

,

• for e ∈ E, η(e) =

{
η1(e) e ∈ E1

η2(e) e ∈ E2

and

• for i ∈ [n], ≤i=≤1
i ∪ ≤2

i ∪{(e1, e2) | e1 ∈ E1 ∩ Ei, e2 ∈ E2 ∩ Ei}.

Note that concatenation is associative. Figure 7.3 shows two MSCs M1 and M2

and their concatenated MSC M1 •M2. Asynchronous concatenation implies that a

particular agent can proceed with the execution of events in the second MSC while

another agent is still executing events of the first MSC. Notice that this operation

is similar to the concatenation of finite Lamport diagrams (that occur as layers of

an LLD) defined in Chapter 2.

We now fix some notation for describing automata in order to define MSGs.

Let A be a finite alphabet. A deterministic finite automaton (DFA) over A is a

tuple A = (S, sin, δ, F ) where S is a finite set of states, sin ∈ S is the initial state,

δ : S × A → S is the transition function and F ⊆ S is the set of final states. δ can

be extended to δ′ : S ×A∗ → S by defining δ′(s, ε) = s and δ′(s, x.d) = δ(δ′(s, x), d)

where x ∈ A∗ and d ∈ A. We say that a word x ∈ A∗ is accepted by the automaton

A if δ′(sin, x) ∈ F . The language of A, L(A) is the set of words in A∗ accepted by

A.

We are now ready to define MSGs. Let us fix a finite set of MSCs M over [n].

We will refer to the MSCs in M as atomic MSCs.

1Note that we use the same notation for concatenation of Lamport diagrams in Chapter 1
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Figure 7.3: Concatenation of two MSCs

Definition 7.2.2 A Message Sequence Graph (MSG) is a tuple G = (Π,M, h,A)

where Π is a finite alphabet, M is the finite set of MSCs fixed above, h : Π → M is

a bijection that identifies an MSC M ∈ M with each symbol in Π and A is a DFA

over Π.

For x = d0d1 . . . dk ∈ Π∗, let msc(x) = h(d0) • h(d1) • . . . • h(dk). The language

of MSCs represented by the MSG G is denoted by L(G) and is defined as L(G) =

{msc(x) | x ∈ L(A)}.

For example, Figure 7.4 gives the MSG corresponding to the producer-consumer

problem where the producer p sends the message a continuously to the consumer c.

The figure shows the MSG and a typical MSC represented by it.

MSGs and communication closed and bounded LLDs

MSCs represented by an MSC are obtained by concatenating a fixed set of atomic

MSCs. This gives rise to a natural notion of “layering” where the events of each

atomic MSC constitute one “layer”. For example, the MSC corresponding to the

producer-consumer problem can be layered with each h(d) constituting one layer.

In the previous section, we had established a precise correspondence between MSCs
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Figure 7.4: A message sequence graph

and Lamport diagrams. Along similar lines, we compare Lamport diagrams corre-

sponding to MSCs represented by an MSG with classes of layered Lamport diagrams.

Since we consider only finite MSCs represented by an MSG, the corresponding Lam-

port diagrams (as defined in Section 7.1.1) are also finite. We show that Lamport

diagrams corresponding to the MSCs represented by a given MSG form a communi-

cation closed and bounded collection of finite LLDs. Note that the notion of layering

holds for finite Lamport diagrams too and so, we can work with finite LLDs. How-

ever, it is not always possible to pull out a set of finite layered Lamport diagrams

from the MSCs generated by a given MSG. It is because MSCs labelling the states

of an MSG need not have at least one event per agent, but, the layers of an LLD

defined in Chapter 1 have to include at least one event from every agent. So, we

consider MSGs with the requirement that all the MSCs labelling the states of the

underlying automaton include at least one from every agent.

Proposition 7.2.3 Given an MSG G = (Π,M, h,A) where every M = (E, {≤i

}i∈[n], `, η) ∈ M is such that Ei 6= ∅ for all i ∈ [n], the set of Lamport diagrams

defined by LG = {DM | M ∈ L(G)} is a collection of communication closed and

bounded LLDs over a finite set of events.

Proof: Consider M ∈ L(G). We know that M = msc(x) for some x ∈ L(A).

Let x = d0d1 . . . dk and let msc(x) = M0 • M1 • . . . • Mk where Mi = h(di) for

0 ≤ i ≤ k. For M as above, consider the associated Lamport diagram DM as

defined in Section 7.1.1. DM is a finite Lamport diagram and it can be layered as

follows: For an event e of DM , define λ(e) = i iff e is an event of Mi. We now show

that λ defines a layering of D(M). From the assumption that each M ∈ M has
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at least one event from every agent, it follows that every layer includes at least one

event from every agent. Consider e, e′ ∈ DM such that e ≤ e′. Then, e ∈ Mi and

e′ ∈Mj for some i, j such that i ≤N j and so λ(e) ≤N λ(e′). Since each Mi is a finite

MSC, every layer includes only finitely many events.

We now claim that {DM | M ∈ L(G)} is a collection of communication closed

and bounded (finite) LLDs. Consider DM as above and events e, e′ in DM such

that e <c e
′. Then, e, e′ ∈ Mi for some i and so λ(e) = λ(e′) = i. Hence DM is a

communication closed LLD. Also, DM is b-bounded where b = max{|M | |M ∈ M}

(|M | denotes the number of events in M). 2

On the other hand, not every collection of communication closed and bounded

(finite) LLDs can be represented by an MSG. For example, consider the Lamport

diagram h(d) given in Figure 7.4. For k ∈ N, let h(d)k = h(d) • h(d) • . . . • h(d)︸ ︷︷ ︸
k times

.

Then, the language L given by L = {h(d)p | p is a prime number } is a collection of

communication closed and bounded LLDs, but it cannot be represented by an MSG

as the underlying language {dp | p is a prime number } is not a regular language over

the finite alphabet {d} and hence cannot be accepted by any finite state automaton.

7.2.2 Regular MSC languages

In this section, we present regular MSC languages which were introduced in

[HMKT00b] and recall some results on them. A collection of MSCs comprising

a regular MSC language can be represented using a class of distributed automata.

We will introduce compositional MSGs as yet another model to represent collections

of MSCs in the next section and show that they subsume regular MSC languages

and MSGs. We start with defining linearizations of MSCs as regular MSC languages

will be defined using linearizations.

Linearizations of MSCs

Since an MSC is a partial order over a set of events, another natural way of

representing an MSC is by considering linearizations of the underlying partial order.

Consider an MSC M = (E, {≤i}i∈[n], `, η). An event linearization of M is a linear

order on E which extends ≤, the partial order of M . We represent event lineariza-

tions as sequences over E: a sequence e1, . . . , ek represents the event linearization
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v given by ei v ej iff i ≤ j, for 1 ≤N i, j ≤N k.

A linearization of an MSC M is any possible sequence of actions which the MSC

describes. Formally, lin(M), the set of linearizations of M , is the set of all sequences

`(e1), . . . , `(ek) where e1, . . . , ek is an event linearization of M . Linearizations are

hence represented as words in Σ∗. For a collection L of MSCs, let lin(L) = {lin(M) |

M ∈ L}.

While an MSC defines a non-empty set of linearizations, one can associate a

unique MSC (upto isomorphism) with a given linearization by defining an appropri-

ate set of events and matching the sends and receives using the fact that the MSC

is non-degenerate. For a linearization w ∈ Σ∗, we can define the MSC corresponding

to w as Mw = (E, {≤i}i∈[n], `, η), where

• E is the set of all non-epsilon prefixes of w,

• `(x.r) = r, where x.r ∈ E, x ∈ Σ∗, r ∈ Σ,

• for i ∈ [n], x.r ≤i y.r
′ iff x.r is a prefix of y.r′ and r, r′ ∈ Σi and

• η(x.r) = y.r′ iff r = (i!j, a), r′ = (j?i, a) for some i, j ∈ [n] and the number of

occurrences of r in x is equal to the number of occurrences of r′ in y.

We now identify words in Σ∗ which correspond to linearizations of MSCs. Con-

sider w ∈ Σ∗. If for every i, j ∈ [n], a ∈ Γm, and every prefix y of w, the number of

occurrences of (i!j, a) in y is at most the number of occurrences of (j?i, a) in y, and

the number of occurrences of (i!j, a) in w is the same as the number of occurrences

of (j?i, a) in w, then one can associate an MSC M (as above) for which w is a

linearization. We call such words well-formed words.

Let w ∈ Σ∗ be a well-formed word and b ∈ N. w is said to be b-bounded if for

every prefix x of w, the difference between the number of send events in x of the

type (i!j, a) and the number of receive events of the type (j?i, a) is at most b. A

language L ⊆ Σ∗ of well-formed words is said to be b-bounded if each word in L is

b-bounded.

Now, there are two ways of representing collections of MSCs. One way is to

represent a collection of MSCs through a set of representative linearizations as follows.

Let L ⊆ Σ∗ be a set of well-formed words. Then L represents the class of MSCs

msc(L) = {Mw | w ∈ L}. Note that we do not require L to have all the linearizations
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of the MSCs it represents, i.e. L need not be equal to lin(msc(L)). L is said to be

a representative linearization of a collection L of MSCs if L = {Mw | w ∈ L}.

On the other hand, we can represent a collection L of MSCs by taking all the

linearizations of each MSC in the collection (as done in [HMKT00b]). That is, L

can be represented by lin(L).

Definition 7.2.4 A collection L of MSCs over [n] is said to be a regular MSC lan-

guage if lin(L) is a regular subset of Σ∗.

Message Passing Automata

In [HMKT00b],an automaton model for regular MSC languages is presented in

terms of bounded Message Passing Automata (MPA). We briefly describe MPAs and

state relevant results that we will be using later. An MPA, like an SCA, is a col-

lection of local automata, one for every agent in [n]. These automata communicate

with each other by exchanging messages over FIFO channels. The global automaton

corresponding to an MPA is constructed by taking products of local automata along

with buffers which store actions corresponding to send events. Transitions are de-

fined by using local transitions of the corresponding automata and a transition on a

send (receive) event adds (removes) the corresponding action from the buffer. A run

of an MPA on a linearization of an MSC is defined by a run of its global automaton.

Some linearizations give rise to unboundedly many messages being stored in buffers

and MPAs accept regular languages when buffers are bounded. In [HMKT00b], it

is also shown that b-bounded regular MSC languages are precisely those accepted

by b-bounded MPAs (i.e., MPAs where the size of the buffers is bounded by b).

MPAs are very similar to SCAs—transitions of component automata in MPAs

add or remove messages from buffers depending on the actions (send or receive) and

messages in MPAs are taken from a message alphabet. On the other hand, contents

of local states of component automata in SCAs constitute the messages exchanged

and they are added/removed from buffers as dictated by the λ-transitions.

MSGs and regular MSC languages

In another paper ([HMKT00a]), it is shown that the class of MSC languages

represented by an MSG is incomparable with the class of regular MSC languages.

They go ahead and characterize the class of regular MSC languages which can be
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represented by MSGs. It turns out that the class of finitely generated regular MSC

languages is precisely the class of languages defined by a restricted class of MSGs

called locally synchronized MSGs (which were also studied in [AY99] and [MP99]).

Finitely generated regular MSC languages are those which can be obtained by the

operations of union, asynchronous concatenation and its corresponding closure over

a fixed finite set of atomic MSCs.

7.3 Compositional Message Sequence Graphs

A weakness of the MSG model was demonstrated in [GMP01], where the authors

present the model of Compositional Message Sequence Graphs (CMSGs) as a solution.

They illustrate how some standard protocols like the alternating bit protocol cannot

be represented by an MSG. A CMSG is a finite graph like an MSG but, the vertices

of this graph are labelled by Compositional Message Sequence Charts (CMSCs). A

CMSC is basically an MSC which, in addition to send and receive events in an MSC,

can also have unmatched send and receive events. These are special send (receive)

events which do not have corresponding receive (send) events in the same CMSC

and they will be matched up later using corresponding unmatched receive and send

events respectively, when the CMSC is composed with another. The collection of

MSCs represented by an CMSG again consists of all the MSCs obtained by tracing a

path in the CMSG from an initial vertex to a terminal vertex and concatenating the

CMSCs that are encountered along the path. While concatenating, we are required

to match up the unmatched send and receive events to generate an MSC.

Definition 7.3.1 A Compositional Message Sequence Chart (CMSC) over

[n] is a tuple M = (E, {≤i}i∈[n], `, η) where E, ≤i and ` are as in an MSC and

η : SE ⇀ RE is a partial matching function which associates with some send events,

their corresponding receive events. We require the function η to be injective and

for every e, e′ ∈ E, if η(e) = e′, then λ(e) = (i!j, a) and λ(e′) = (j?i, a) for some

i, j ∈ [n], a ∈ Γm.

We also require that the CMSC be non-degenerate with respect to the messages

matched by the matching function. We say that e ∈ SE is an unmatched send event

if η is not defined on e and e ∈ RE is an unmatched receive event if e 6∈ η(SE). Hence

a CMSC is like an MSC but, it could have unmatched send and receive events. A

CMSC without any unmatched send and receive events is just an MSC.
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We say that a CMSC has no unmatched sends if η is a function on SE and we say

that it has no unmatched receives if η is surjective. For a CMSC M and (i!j, a) ∈ Σ,

let

#unm
(i!j,a)(M) = |{e ∈ E | `(e) = (i!j, a) and η(e) is not defined }|

denote the number of unmatched sends of the type (i!j, a).

We now present the model of a Compositional Message Sequence Graph (CMSG)

introduced in [GMP01]. CMSGs are basically finite state automata like MSGs but,

the actions here are mapped to CMSCs. We consider accepting paths in the un-

derlying automaton of the CMSG and concatenate the CMSCs labelling adjacent

vertices in a path.

Concatenation of two CMSCs is done by (asynchronously) concatenating the

events of each agent, and by matching up some unmatched sends of the resulting

CMSC with corresponding unmatched receives.

Definition 7.3.2 Let Mk = (Ek, {≤
k
i }i∈[n], `k, ηk), k = 1, 2 be two CMSCs, with

E1 ∩ E2 = ∅. Also, let M1 have no unmatched receives. Then the concatenation

of M1 and M2 is M = M1 ◦M2
2 = (E, {≤i}i∈[n], `, η) where

• E = E1 ∪ E2,

• for e ∈ E, `(e) =

{
`1(e) e ∈ E1

`2(e) e ∈ E2

,

• for i ∈ [n], ≤i=≤1
i ∪ ≤2

i ∪{(e1, e2) | e1 ∈ E1 ∩ Ei, e2 ∈ E2 ∩ Ei} and

• η is defined as follows:

(C1) If e ∈ SEk
and ηk(e) is defined, where k ∈ {1, 2}, then η(e) = ηk(e).

(C2) Let e ∈ SE, η1 and η2 be undefined on e, and `(e) = (i!j, a). If there

is an event e′ ∈ RE2 such that η2 is undefined on e′, `(e′) = (j?i, a) and

|{f ∈ E | f ≤i e, λ(f) = (i!j, a)}| = |{f ′ ∈ E | f ′ ≤i e
′, λ(f ′) = (j?i, a)}|,

then we set η(e) = e′. Clearly, if such an e′ exists, it is unique.

(C3) η is undefined on all other events of SE.

We require that the CMSC M be non-degenerate — otherwise concatenation is

not defined.

2Note that we use the same notation for concatenation of fragments in Chapter 1.
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When we write a series of concatenations M1 ◦M2 ◦ . . . we always mean a left-

to-right application, i.e. the term ((M1 ◦M2) ◦M3) . . .. Note that concatenation is

not associative and is hence sensitive to the order in which it is made. The example

given in Figure 2.5 in Chapter 1 also applies here as the Lamport diagrams given

there are basically MSCs (with labels appropriately defined).

We are now ready to define CMSGs. Let us fix a finite set of atomic CMSCs M

for the rest of this section.

We say that a sequence of CMSCs M1,M2, . . .Mk from M is well-defined iff the

concatenation of the CMSCs M1 ◦M2 ◦ . . .◦Mk is defined. We say that it is complete

if the concatenated CMSC has no unmatched send or receive events — i.e. it is an

MSC.

Let Π be a finite alphabet and h : Π → M be a bijection. Given a word

x = d0d1 . . . dk ∈ Π∗, if h(d0), h(d1), . . . , h(dk) is well-defined, then x defines the

CMSC cmsc(x) = h(d0) ◦ h(d1) ◦ . . . ◦ h(dk). We say that x is well-defined if

h(d0), h(d1), . . . , h(dk) is well-defined and say x is complete if cmsc(x) is an MSC.

Definition 7.3.3 A compositional message sequence graph (CMSG) is a tu-

ple G = (Π,M, h,A) where Π is a finite alphabet, M is a finite set of CMSCs,

h : Π → M is a bijection, and A is a DFA over Π.

We require that every x ∈ L(A) is well-defined and complete. The CMSG repre-

sents the set of MSCs msc(G) = {cmsc(x) | x ∈ L(A)}.

For example, consider the CMSG in Figure 7.5. It depicts a variant of the

producer-consumer example where the producer p sends messages continuously to

the consumer c. At some point, c sends the “abort” signal to p requesting it to stop

sending messages but this message takes an arbitrarily long time to reach p. The

figure shows a typical behaviour and a CMSG which represents such scenarios.

MSGs are just like CMSGs except that the atomic CMSCs are in fact MSCs.

By definition, the class of CMSGs extend that of MSGs — in fact, the extension is

strict. The behaviour illustrated in Figure 7.5 cannot be represented by any MSG as

the set of MSCs generated by this CMSG have unbounded continuous sequences of

the message (p!q, a) in between the send event of abort and its corresponding receive.

Consequently, the underlying set of atomic MSCs also has to be an infinite set.
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Figure 7.5: A compositional message sequence graph

CMSGs and channel bounded LLDs

MSCs generated by CMSGs can also be “layered” naturally where a layer com-

prises of all the events of the CMSC labelling a particular vertex, i.e., a layer is

an atomic CMSC. As done in Section 7.2.1 for MSGs, we compare the language

of Lamport diagrams corresponding to MSCs generated by CMSGs with the class

of channel bounded LLDs. Again, keeping in mind the fact that a layering has to

include at least one event per agent, we work with CMSGs whose underlying CM-

SCs have at least one event per agent. It turns out that CMSGs represent channel

bounded LLDs.

We know that a CMSC can have unmatched send and receive events. While

concatenating the CMSCs labeling a path in the underlying automaton of an MSC,

a few send events might remain unmatched in the concatenated MSC. We can define

a notion of buffer which stores these unmatched events. It turns out that the size of

such a buffer in every CMSG is bounded as we assume that CMSGs generate only

finite MSCs, and hence we can relate the MSCs generated by a CMSG to channel

bounded LLDs over a finite set of events. We formalise this notion below.

Definition 7.3.4 A CMSC M = (E, {≤i}i∈[n], `, η) is said to be b-memory bounded,

where b ∈ N, if the number of unmatched sends of any type is at most b, i.e.,
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#unm
(i!j,a)(M) ≤ b for every (i!j, a) ∈ Σ.

A sequence of CMSCs M1,M2, . . . ,Mk is b-memory bounded if for all its prefixes

M1,M2, . . . ,Ml, the CMSC M1 ◦M2 . . . ◦Ml is b-memory bounded, where l ≤ k.

A CMSG G = (Π,M, h,A) is b-memory bounded if for every d1d2 . . . dk ∈ L(A),

the sequence of CMSCs h(d1), h(d2), . . . , h(dk) is b-memory bounded.

The fact that a CMSG defines a collection of finite MSCs forces it to be b-memory

bounded as every send event has to be matched up with a receive event within the

finite MSC.

Proposition 7.3.5 For every CMSG G, there exists b ∈ N such that G is b-memory

bounded.

Proof: Let G = (Π,M, h,A) be a CMSG and let A = (S, sin, δ, F ). We say

that a state s ∈ S is live if there exist words w,w′ ∈ Π∗ such that δ′(sin, w) = s and

δ′(s, w′) ∈ F . With each live state s ∈ S, we associate a memory-capacity function

fs : {(i!j, a) ∈ Σ} → N is such that for a word w = d1 . . . dn, if δ′(sin, w) = s

and M = cmsc(w) = (E, {≤i}i∈[n], `, η) then, for every (i!j, a) ∈ Σ, fs((i!j, a)) =

#unm
(i!j,a)(M). That is, fs gives the number of unmatched send events of each type in

any CMSC obtained when tracing a path from the initial state to s.

We first show that each fs is well-defined, i.e., for every w,w′ ∈ Π∗ such that

δ′(sin, w) = s = δ′(sin, w
′), we first show that #unm

(i!j,a)(cmsc(w)) = #unm
(i!j,a)(cmsc(w

′)).

Since s is live, let w′′ ∈ Π∗ be such that δ′(s, w′′) ∈ F . Since ww′′, w′w′′ ∈ L(A)

and every word in L(A) is complete, it must be the case that #unm
(i!j,a)(cmsc(w)) =

#unm
(i!j,a)(cmsc(w

′))

We can now define fs((i!j, a)) = #unm
(i!j,a)(cmsc(w)) for some w such that δ′(sin, w) =

s. We choose b to be the maximum value of fs(r) where s is live and r = (i!j, a) ∈ Σ.

G is b-memory bounded by the choice of b. 2

We are now ready to relate CMSGs with channel bounded LLDs.

Proposition 7.3.6 Given a CMSG G = (Π,M, h,A) where every CMSC M =

(E, {≤i}i∈[n], `, η) ∈ M is such that Ei 6= ∅ for all i ∈ [n], the set of Lamport

diagrams defined by LG
def
= {DM | M ∈ L(G)} is a channel bounded collection of

finite layered Lamport diagrams.
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Proof: We know from Proposition 7.3.5 above that there exists b′ ∈ N such

that G is b′-memory bounded. Let b′′ = max{|Mi| | Mi ∈ M} (|M | denotes the

number of events in M).

For an MSC M ∈ L(G), consider the associated Lamport diagram DM as defined

in Section 7.1.1. We can layer DM as done in the proof of Proposition 7.2.3 and

show that LG = {DM | M ∈ L(G)} defines a collection of finite layered Lamport

diagrams.

We now claim that LG is channel b-bounded where b = max{b′, b′′}. Every DM in

LG is b-bounded as every layer in DM includes at most b′′ events. To show that LG is

channel b-bounded, consider DM ∈ LG and a prefix ν ′ of νDM
. We have to show that

δν′(i, j) ≤N b (where δν′(i, j) is as given in Definition 2.2.5). Let νDM
= 1, 2, . . . , k

and ν ′ = 1, 2, . . . , l. Then, δν′(i, j) = |M1 ◦M2 ◦ . . . ◦Ml| and since G is b′-memory

bounded, we have δν′(i, j) ≤N b. 2

7.3.1 CMSGs and regular representative linearizations

We now show that every MSC-language represented by a CMSG is definable

using a regular language of representative linearizations and conversely, every regular

language of representative linearizations is represented by a CMSG. This would help

us to conclude that MSC languages represented by CMSGs subsume regular MSC

languages.

Theorem 7.3.7 Let L be a collection of MSCs over [n]. There exists a CMSG

G = (Π,M, h,A) that represents L iff there exists a regular set L ⊆ Σ∗ of well-

formed words which is a representative linearization of L.

Proof: Let G = (Π,M, h,A) be a CMSG such that msc(G) = L. For ev-

ery M ∈ M, let us fix one linearization of M and call it lin(M). Let L =

{lin(h(d1)) . . . lin(h(dk)) | d1 . . . dk ∈ L(A)}. Clearly lin(h(d1)) . . . lin(h(dk)) re-

spects the ≤i orderings of the concatenated MSC h(d1) ◦ . . . ◦ h(dk) (as we finish

with the events of an atomic CMSC before moving to the next). It also respects the

ordering defined by η — the send-events are always ordered before the corresponding

receive events since at any point the definition of concatenation requires that the

CMSC formed till then has no unmatched receives. It follows from the definition

of L that it is a representative linearization of L. L is regular as it is obtained by
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a homomorphism of the regular language L(A) where each letter d is replaced by

lin(h(d)) (and regular languages are closed under homomorphism [HU79]).

The other direction follows from [GMP01]. Let L ⊆ Σ∗ be a representative

linearization of L and L be regular. Take a DFA B = (S, sin, δ, F ) over Σ which

accepts L. We now define a CMSG G = (Pi,M, h,A) such that L = msc(G). For

every r ∈ Σj, let M have the CMSC Mr = ({er}, {≤
r
i}i∈[n], `r, ηr) where

• ≤r
j= {(er, er)}, ≤

r
i= ∅ for each i ∈ [n] \ {j},

• `r(er) = r, and

• ηr is not defined on er.

Let Π be an alphabet and h : Π → M be a bijection. Let G = (Π,M, h,A)

where A = (S, sin, δ̂, F ) is a DFA on Π with δ̂(s, d) = δ(s, r) where h(d) = Mr. It is

easy to see that G is a CMSG. Now, if w = r1 . . . rk ∈ L, then msc(G) has the MSC

Mr1 ◦ . . . ◦Mrk , which is clearly msc(w). Also, for any MSC M = Mr1 ◦ . . . ◦Mrk

in msc(G), it is clear that w = r1 . . . rk ∈ L and w is a linearization of M — hence

M ∈ msc(L). Therefore, L = msc(G). 2

Since a regular MSC-language L (as defined in Section 7.2.2) is such that all

the linearizations of all the MSCs in L form a regular set, it follows from the above

theorem that MSC languages represented by CMSGs subsume the class of regular
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MSC-languages as well. Figure 7.6 summarizes the relationship between MSGs,

regular MSC languages and CMSGs (we again note the fact that MSGs and regular

MSC languages are incomparable classes of MSC languages [HMKT00a]).

7.4 MSO over MSCs

We use monadic second order logic (MSO) as the specification language to de-

scribe properties of MSCs. Various results regarding model checking classes of MSC

languages against MSO specifications are known. We will introduce MSO over MSCs

in this section and also provide brief details regarding the decidable problems in-

volving model checking classes of MSCs against MSO specifications. We will finally

show that model checking CMSGs against MSO specifications is decidable in the

next section.

From the previous sections, it is clear that there are two ways of representing

MSCs—as graphs on events where the underlying relation is a partial order or as

the set of all/some linearizations of the underlying partial order. Accordingly, the

MSO can be defined on the graph representing an MSC or on set of words which

occur as linearizations of MSCs respectively.

We define MSO on the partially-ordered structure of the MSC. We have at our

disposal a countable number of first-order variables {x, y, z, . . .} and second-order

variables {X, Y, Z, . . .}. The atomic formulas are of the kind (x → y), (x ≤i y)

(for each i ∈ [n]), Qr(x) (for r ∈ Σ) and (x ∈ X). Other formulas are formed

using the boolean connectives ∨ and ¬ and using quantification over first-order and

second-order variables. Notice that the MSO is parametrized by [n] and Σ. We fix Σ

and [n] for the rest of the chapter and consider MSCs over [n] agent systems whose

actions are labelled from Σ.

Let ϕ be a formula. ϕ is interpreted over an MSC M as follows: Let M =

(E, {≤i}i∈[n], λ, η). An interpretation I of a set of first-order and second-order vari-

ables V is a function that assigns to each first-order variable in V , an event e ∈ E

and assigns a set of events to each second-order variable in V . For ϕ in MSO, let

Vϕ denote the set of variables which occur free in ϕ. In the following, given an

interpretation I, we will use the notation I[e/x] to denote an interpretation allots

an event e to the variable x and is the same as I for every variable apart from x.

Similarly, I[E ′/X] denotes an interpretation that allots a set of events E ′ to X and
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coincides with I on every other variable. We define the notion of when an MSC M

satisfies ϕ under an interpretation I of Vϕ, which we denote by M |=I ϕ, inductively

as follows:

• M |=I (x→ y) iff I(x) ∈ SE and η(I(x)) = I(y)

• M |=I (x ≤i y) iff I(x), I(y) ∈ Ei and I(x) ≤i I(y)

• M |=I Qr(x) iff λ(I(x)) = r

• M |=I (x ∈ X) iff I(x) ∈ I(X)

• M |=I ϕ ∨ ψ iff M |=I ϕ or M |=I ψ

• M |=I ¬ϕ iff M 6|=I ϕ

• M |=I ∃xϕ(x) iff there exists an event e such that M |=I[e/x] ϕ

• M |=I ∃Xϕ(X) iff there exists a set of events E such that M |=I[E/X] ϕ.

Hence (x → y) means that x is a send-event matched with the receive-event y,

x ≤i y says that the events x and y are causally ordered in the event-sequence of

agent i and Qr(x) says that the label of event assigned to x is r.

As usual, ϕ is a sentence if there are no free first-order and second-order variables

in ϕ. Given an MSO sentence ϕ, the language of MSCs defined by ϕ is denoted by

Lϕ and is defined as Lϕ = {M | M |= ϕ}. We say that an MSC language L is

MSO-definable iff there exists an MSO sentence ϕ such that L = Lϕ.

Model checking regular MSC languages against MSO specifications

In [HMKT00b], the authors provide an MSO characterization of regular MSC

languages.

Theorem 7.4.1 ([HMKT00b]) A language of MSCs L over [n] is regular iff L is

MSO-definable.

This theorem is proved by using MSO defined on words over Σ and using the fact

that a language over Σ is regular iff it is definable in this MSO ([Tho90, Tho97]).

Given an MSO sentence ϕ, they show that Lϕ is a regular MSC language by con-

structing a sentence ϕlin in MSO over words such that lin(Lϕ) = {w ∈ Σ∗ |
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w |= ϕlin}. Conversely, given a regular MSC language L, using the fact that

lin(L) is a regular language of strings over Σ, we know that by Büchi’s theorem

([Büc60, Elg61, Tho90, Tho97]) that there exists a sentence ϕ in MSO over words

such that L = {w ∈ Σ∗ | w |= ϕ}. They then construct a sentence ϕ̂ in MSO over

MSCs and show that an MSC M is a model of ϕ̂ iff w is a model of ϕ where w is a

linearization of M .

From the proof of the above theorem, it follows that the model checking problem

for regular MSC languages against MSO specifications is decidable.

Model checking MSGs against MSO specifications

It is also known that the problem of checking if the set of all MSCs represented

by an MSG satisfy a property given as an MSO formula is decidable.

Theorem 7.4.2 ([Mad01]) Given an MSG G and an MSO formula ϕ over MSCs,

the problem of checking whether all the MSCs represented by G satisfy ϕ is decidable.

This proof works by viewing MSGs as automata which run over the finite al-

phabet of MSCs (labelling the transitions of the automaton). An interpretation of

formulas is also encoded along with the MSCs into a finite alphabet. Unlike the

previous theorem, MSO here is defined on the partially-ordered graph of an MSC.

Given an MSO formula ϕ, the main idea behind the proof is to construct a finite

automaton Aϕ (over such an alphabet) such that Aϕ accepts a word iff the MSC

obtained by concatenating the MSCs labelling the letters in the word, under the

interpretation defined by it, satisfies ϕ. Now, the set of all MSCs represented by

the given MSG G satisfy ϕ iff the language of MSCs accepted by the underlying

automaton of G is a subset of the language of MSCs accepted by Aϕ.

7.5 Model checking CMSGs against MSO speci-

fications

As we have mentioned in the previous section, the problem of model checking

MSGs against MSO specifications was shown to be decidable in [Mad01]. From

the MSO characterization of regular MSC languages given in [HMKT00a], it follows

that model checking MSO specifications against regular MSC languages is also de-

cidable. Now, given that CMSGs subsume both these classes, it will be interesting
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to explore the possibility of model checking MSCs generated by a CMSG against

MSO specifications.

The model checking problem for CMSGs against MSO specifications is defined

as follows:

Given a CMSG G (or a representative linearization L), and a MSO sentence ϕ,

do all the MSCs represented by G satisfy ϕ?

We show that this problem is decidable. We also exhibit two proofs of this the-

orem, one which extends the proof of decidability of model-checking MSGs [Mad01]

and the other which extends the proof of decidability of model-checking for regular

MSC-languages [HMKT00b].

We first present the former proof of the above result. The following lemma will

be used to show that the model checking problem for CMSGs is decidable.

Lemma 7.5.1 Let Π be a finite alphabet, M be a set of CMSCs and h : Π → M

be a bijection. Let ϕ be an MSO formula and b ∈ N. Then the collection of words

w = d1 . . . dn ∈ Π∗ such that h(d1), . . . h(dn) is well-defined, complete and b-memory

bounded, and cmsc(w) |= ϕ, is a regular subset of Π∗.

Proof: The proof follows the corresponding proof for MSCs in [Mad01]. We

have to do extra work for the formula X → Y due to the presence of unmatched send

and receive events wherein we exploit the fact that we are working with b-memory

sequences. First, we can work with MSO formulas over a restricted syntax where

only second-order quantification is allowed and where we have as atomic formulas

X ⊆ Y (X is a subset of Y ), Singleton(X) (X is a singleton set), X ≤i Y and

X → Y (which mean that X and Y are singletons with X = {x}, Y = {y} and

x ≤i y or x → y respectively) and Qr(X) (which is true if X = {x} and Qr(x)). It

is easy to see that this syntax is exactly as expressive as the original one [Tho90].

Let ϕ be an MSO formula with free second-order variables Vϕ = {X1, . . .Xk}.

We augment the alphabet Π to get a new alphabet Πϕ which has letters of the form

(d, I) where d ∈ Π and I : Vϕ → 2E (where E is the set of events of h(d)) is an

interpretation of the free variables over the events of the CMSC h(d) corresponding

to d. The interpretation I can be encoded as follows: Let h(d) have m events and

without loss of generality, we can assume that these events are ordered. Then, a

matrix say, Z with 0 or 1 entries and with k rows and m columns can represent

I—the jth event of h(d) belongs to the ith variable iff the entry on the ith row and

jth column in Z is 1.
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The idea is to construct an automaton Aϕ which will accept a word (d1, I1) . . . (dn, In)

iff the sequence h(d1), h(d2), . . . , h(dn) is well-defined, complete and b-memory bounded,

and the MSC M = cmsc(d1d2 . . . dn) under the combined interpretation defined by

I1, . . . In on the events of M , satisfies ϕ. This is done inductively on the structure

of the formula.

First, the set of all well-defined and complete b-memory bounded sequences is

regular [HMKT00b]. We run an automaton accepting this in parallel with the

automaton we construct.

We now sketch the details of the inductive construction of the automaton. For the

sake of readability, we just provide a textual description of the automaton instead

of presenting the precise details. The various checks can be easily coded up into

automata.

Singleton(X) The automaton checks if the interpretation assigned to X is a single-

ton and rejects otherwise.

X ⊆ Y The automaton checks if the interpretation assigned to X is a subset of the

interpretation assigned to Y .

Qr(X) The automaton first checks if the interpretation assigned to X is a singleton

and if the corresponding event is labelled by r and rejects otherwise.

X ≤i Y The automaton first checks if X and Y are singletons and if they both are

events of agent i and rejects otherwise. Later, it checks if the event assigned

to Y is reachable from the event assigned to X.

X → Y The atomic formula X → Y is the hardest to handle. The automaton

checks if they are singletons — assume they are, with X = {x} and Y = {y}

and let λ(x) = (i!j, a), λ(y) = (j?i, a) for some i, j ∈ [n] with i 6= j. The

automaton rejects the input string if any of the above conditions is false.

The automaton now has to check if y is the corresponding receive event of x.

This is done as follows. Let the CMSC-sequence corresponding to the word the

automaton is reading be M1, . . .Mi, . . .Mj . . .Mp, where the interpretation of

x is an event ex in Mi, and y an event ey in Mj, i ≤ j with λ(ex) = (i!j, a) and

λ(ey) = (j?i, a). Since this sequence is b-memory bounded, we can associate at

each point k (k ≤ p), a number tk which is the number of unmatched sends of
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the kind (i!j, a) in the CMSC M1 ·M2 · . . .Mk and we know that tk ≤ b. Now,

let s be the number of unmatched send events of the kind (i!j, a) in Mi before

ex and let r be the number of unmatched receive-events of the kind (j?i, a) in

Mj before ey. It is easy to see that ey is the corresponding receive event of

ex iff the number of receive events of the kind (j?i, a) in all MSCs Mk, where

i ≤ k < j is l and ti + s = l + r. Note that ti + s is bounded by some b′ ∈ N.

We can check this property by the following automaton. Let r(j?i,a)(M) denote

the number of receive messages of the kind (j?i, a) in M for each atomic CMSC

M . Then, we can define an automaton with states u where u ≤ ti+s−r (note

that the range of u is bounded). From a state u, there is a transition on d to

u′ iff u′ = u + r(j?i,a)(h(d)). The initial state is 0 and the final state is then

(ti+ s− r). It is easy to see that this automaton verifies whether the sequence

Mi+1 . . .Mj−1 is such that in the CMSC M1 · . . .Mp, y is the matching receive

event of x.

Other cases The formulas obtained by disjunction, negation and existential quan-

tification can be handled by using the fact that automata are closed under

union, complement and projection respectively [HU79].

Now, given a sentence ϕ, we can construct an automaton over Π such that the

automaton accepts a word w = d1d2 . . . dn iff h(d1), . . . h(dn) is well-defined, com-

plete and b-memory bounded, and cmsc(w) |= ϕ. Hence the proof. 2

We can now solve the model checking problem for CMSGs against MSO specifi-

cations.

Theorem 7.5.2 The model checking problem for CMSGs against MSO-formulas is

decidable.

Proof: Let G = (Π,M, h,A) be a CMSG and ϕ be an MSO-formula. From

Proposition 7.3.5, it follows that there exists b ∈ N (which can be computed) such

that G is b-memory bounded. Now, for this b, using Lemma 7.5.1, we construct an

automaton Ab
ϕ over Π∗ that accepts a word w = d1d2 . . . dk iff h(d1), h(d2), . . . , h(dk)

is well-defined, complete and b-memory bounded, and cmsc(w) |= ϕ. Clearly, all

MSCs in msc(G) satisfy ϕ iff L(A) ⊆ L(Ab
ϕ), which can be checked. 2
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We now turn to linearizations and show that they can also be used to solve the

model checking problem. The following lemma will be used towards the proof.

Lemma 7.5.3 Given an MSO-formula ϕ and b ∈ N, the set of all well-formed words

w ∈ Σ∗ such that w is b-bounded and msc(w) |= ϕ is regular.

Proof: From ϕ, using the technique given in [HMKT99, Lemma 4.1], we get

an MSO formula ϕbstr over finite words in Σ∗ such that for w ∈ Σ∗, w |= ϕbstr iff w

well-formed, b-bounded and msc(w) |= ϕ. The required conclusion follows since the

strings described by MSO formulae on words form a regular set ([Tho90, Tho97]). 2

We can now give another proof of the result that model checking CMSGs against

MSO specifications is decidable using linearizations.

Alternative proof of Theorem 7.5.2:

In view of Theorem 7.3.7, let the CMSG be presented as a regular representative

linearization L via a DFA B accepting L. Words in L are well-formed words as

they are linearizations of MSCs. Since any regular language of well-formed words

is b-bounded (see [HMKT00b]), where b can be computed, we can find a b such

that L is b-bounded. Construct using Lemma 7.5.3, an automaton B′ that accepts

all b-bounded words which represent MSCs that satisfy ϕ. Clearly, all the MSCs

represented by L satisfy ϕ iff L(B) ⊆ L(B′), which is decidable.

Restricted Satisfiability

We can extend the proof of Theorem 7.5.2 to show the decidability of a restricted

satisfiability problem for MSO over MSCs.

Theorem 7.5.4 Given a finite set M of CMSCs, b ∈ N and an MSO formula ϕ,

the problem of checking if there exists a finite MSC M formed by the concatenation

of CMSCs in M, which is b-memory bounded and satisfies ϕ is decidable.

Proof: Choose an alphabet Π and a bijection h between Π and M. Using

Lemma 7.5.1, construct a DFA over Π which accepts a word w iff w is well-defined,

complete and b-memory bounded and cmsc(w) |= ϕ. The problem of checking if ϕ

is satisfiable then reduces to checking emptiness of this automaton. 2
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The general problem of satisfiability of an MSO formula over the class of all

MSCs is known to be undecidable [Thi01]. Also, in the above restricted satisfiability

problem, if b is not given, the problem turns out to be undecidable.

Theorem 7.5.5 Given a finite set M of CMSCs, and an MSO formula ϕ, the prob-

lem of checking if there exists an MSC M , formed by the concatenation of CMSCs

in M, which satisfies ϕ is undecidable.

The proof again follows from a reduction from the halting problem of non-

deterministic 2-counter machines. It is not difficult to see that the Lamport diagram

depicting a run of a 2-counter machine (as done in Chapter 4, for example) can also

be presented as an MSC. We can define an MSO formula describing this MSC and

the class of MSCs can be made to include all the MSCs witnessing runs of 2-counter

machines using the flexibility of unmatched send and receive events of the CMSG.

7.5.1 Linearization model checking

In [AY99], the authors study the model checking problem for finite MSCs and

MSGs. Given an MSG and a regular set of finite sequences of actions as the specifi-

cation, the model checking problem is to check whether for every MSC represented

by the MSG, all the linearizations of the MSC are included in the specification.

While the problem is easily seen to be decidable given a single MSC (describing the

behaviour of the system) and the specification given by a finite-state automaton, it

becomes undecidable when the behaviour of the system is given by an MSG. They

then identify a subclass of MSGs called locally synchronized (or bounded) MSGs for

which problem is decidable.

One important, though simple, consequence of dealing with representative lin-

earizations is the decidability of the above linearization model checking problem

for linearization-closed specifications. The linearization model checking problem for

CMSGs is: Given a CMSG G and a regular language L of finite words over Σ, is

lin(msc(G)) ⊆ L?

As we have mentioned above, this problem is known to be undecidable even for

MSGs [AY99]. However, if the specification L is linearization-closed, i.e., lin(msc(L)) =

L, then the problem turns out to be decidable.

Theorem 7.5.6 The linearization model checking problem for CMSGs against reg-

ular linearization-closed specifications is decidable.
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Proof: Let G = (Π,M, h,A) be the given CMSG and L ⊆ Σ∗ be the regular

linearization-closed specification given as a DFA B. Using Theorem 7.3.7, construct

L′ which is a regular representative linearization of msc(G). Now, we claim that all

linearizations of MSCs represented by G belong to L iff L′ ⊆ L. For, if there is an

MSC M ∈ msc(G) and a linearization w of M which is not in L, then all lineariza-

tions of M will not be in L. One such linearization will be in L′ and hence L′ 6⊆ L.

Also, if all linearizations of MSCs represented by G are in L, then clearly L′ ⊆ L. 2

Note that the above procedure works in polynomial time. If the CMSG G is

such that the underlying automaton A has n states and each atomic CMSC has at

most m events, and if B has l states, then we can model-check in time O(n ·m2 · l).

7.6 MSO over Lamport diagrams

We define an MSO over Lamport diagrams in this section. We consider a dis-

tributed alphabet Σ̃ as in Chapter 3 and work with Σ-labelled Lamport diagrams.

The logic is also parametrized by Σ and is denoted by MSO(Σ). Not surprisingly,

the problem of checking if a given MSO(Σ) formula is satisfiable (i.e., whether it has

a Lamport diagram as a model or not) is undecidable. We then show that checking

for satisfiability of MSO formulas is decidable over the class of communication closed

and bounded LLDs and over the class of channel bounded LLDs.

To recap, a distributed alphabet is an n-tuple Σ̃ = (Σ1, . . . ,Σn), where for each

i ∈ [n], Σi is a finite non-empty alphabet of actions of agent i and for all j ∈ [n]

such that i 6= j, Σi ∩ Σj = ∅. The alphabet induced by Σ̃ is given by Σ = ∪ni=1Σi.

Σ-labelled Lamport diagrams are then as defined in Chapter 3.

MSO parametrized by Σ, denoted MSO(Σ), is defined on the partially ordered

structure of Lamport diagrams. We have at our disposal a countable number of first

order variables which are denoted by x, y, . . . and a countable number of second order

variables which are denoted by X, Y, . . .. The atomic formulas are of the kind Qi
a(x),

for i ∈ [n] and a ∈ Σi, xliy for i ∈ [n], x <c y and x ∈ X. Other formulas are formed

by using the boolean connectives ∨ and ¬ and by using existential quantification over

first order and second order variables. More precisely, MSO formulas are defined by

the following syntax:

MSO(Σ) ::= Qi
a(x), i ∈ [n], a ∈ Σ | xliy, i ∈ [n] | x <c y | x ∈ X | ¬φ | φ1∨φ2 | ∃xφ
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The formulas are interpreted over labelled Lamport diagrams with an interpre-

tation function which assigns an event of the Lamport diagram to every first order

variable and a set of events to every second order variable. Intuitively, the semantics

of the atomic formula Qi
a(x) says that the label of the event assigned to the variable

x is a, a ∈ Σi in the labelled Lamport diagram, xli y says that the event assigned

to x is the immediate predecessor of the event assigned to y in the local total order

of agent i in the labelled Lamport diagram and x <c y codes up the fact that the

event assigned to x is a send event whose corresponding receive event is the one

assigned to y. Finally, x ∈ X says that the event assigned to x belongs to the set of

events assigned to X.

Models of formulas of MSO(Σ) are given by M = (D, I) where D is a Σ-labelled

Lamport diagram and I is an interpretation function which assigns an event of D

to every individual variable and a set of events of D to every set variable. Given

a model M and an MSO(Σ) formula ϕ, we write M |=I ϕ to denote the fact that

M satisfies ϕ under an interpretation I that maps variables in ϕ to events or set of

events in D and define it inductively as follows. We just present the semantics of

atomic formulas. The semantics of other formulas is done as in Section 7.4.

• M |=I Q
I
a(x) iff a ∈ φ(I(x)) ∩ Σi.

• M |=I x ≤i y iff I(x) ≤i I(y) in D.

• M |=I x <c y iff I(x) <c I(y) in D.

• M |=I x ∈ X iff I(x) ∈ I(X).

A sentence is a formula without any free variables. An MSO(Σ) sentence ϕ is

said to be it satisfiable if there exists a model M based on a Σ-labelled Lamport

diagram such that M |= ϕ.

We first show that the satisfiability problem of this logic is undecidable.

Theorem 7.6.1 Given an MSO(Σ) sentence ϕ, the problem of checking if there ex-

ists a model M based on a labelled Lamport diagram which satisfies ϕ is undecidable.

The proof is again by a reduction from the halting problem of non-deterministic

2-counter machines used to show the undecidability of the satisfiability problem of

the logic LD1 in Chapter 4. The underlying idea is exactly the same—to define
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Lamport diagrams representing runs of 2-counter machines. These diagrams will

now be described using MSO formulas instead of formulas from LD1. It is easy to

see that all the formulas of LD − 1 used in Chapter 4 can be described using MSO

formulas as all the modalities used in the logic LD1 can be described in MSO.

We wind up the chapter by considering layered Lamport diagrams and inter-

preting MSO over LLDs. The syntax of the logic is the same as above, there is no

special construct in the logic to reflect the structure of the layering of an LLD. The

formulas are just interpreted on LLDs. We obtain the following decidability results.

Theorem 7.6.2 1. Given an MSO formula ϕ and b ∈ N, the problem of checking

if ϕ is satisfiable over the class of communication closed and b-bounded LLDs

is decidable.

2. Given an MSO formula ϕ and b ∈ N, the problem of checking if ϕ is satisfiable

over the class of channel b-bounded LLDs is decidable.

The proofs are done by associating diagram automata (fragment automata) with

ϕ such that the automaton accepts precisely those communication closed and b-

bounded (channel b-bounded) LLDs that satisfy ϕ. We define the alphabet lay-

ers/fragments of the automaton in such a way that it codes up an interpretation of

the free variables in the formula along with the layers/fragments as in the proof of

Lemma 7.5.1. We can then define the automaton inductively as done in the proof

of the lemma.

Alternately, we can also define a homomorphism between a finite alphabet Π and

the alphabet coding up the interpretation above and use the results of Lemma 3.3.5

(and that of Lemma 3.4.4) in Chapter 3 to move back and forth between dia-

gram (fragment) automata and Büchi automata over Π. Then, in a way similar

to [HMKT99], we can define equivalent MSO formula interpreted over strings in Π∗

and reduce checking satisfiability of MSO over LLDs to MSO over strings. Since

the latter problem is decidable [Tho90, Tho97], we obtain the decidability of this

problem too.
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Conclusion

We summarize the work done in this thesis below.

• In Chapter 2, we started with the model of Lamport diagrams to represent

causal behaviours of distributed message passing systems. Notions of local and

global states of Lamport diagram were introduced along with a few properties

about them. Layered Lamport diagrams (LLDs) were introduced to describe

behaviours of distributed systems which consist of repeated patterns of finite

protocols. Various types of layerings were also discussed.

• Automata models for distributed systems were introduced in Chapter 3. Sys-

tem of Communicating Automata (SCA) served as the automaton model for

systems whose behaviour is a collection of Lamport diagrams. Dually, dia-

gram and fragment automata accepted LLDs. We also proved the decidability

of emptiness problem for these automata and showed some closure properties.

• Modal logics tuned to talk about message passing systems were introduced in

Chapter 4. The logic LD0 had next, previous, future and past modalities and

it was shown that the satisfiability problem is undecidable. In fact, we could

show that undecidability pertains even if we consider restricted versions of the

logic where one of next or previous modalities was restricted to special send

or receive propositions respectively.

• A temporal logic to reason about local assertions on Lamport diagrams was

introduced in Chapter 5 and it was shown that the satisfiability problem for

153
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this logic is decidable using the automata theoretic approach. Given a formula,

an SCA accepting the models of the formula was defined and decidability of

the emptiness problem for SCAs was used to show decidability of satisfiability

here. An appropriate model checking problem was also shown to be decidable.

• In Chapter 6, we introduced temporal logics over layered Lamport diagrams.

The logic was built on top of formulas from LD0 which were used to reason

about layers and the temporal modalities were used to talk about sequence

of layers that make up the LLD. We showed that the satisfiability problem is

undecidable, even if we restricted the size of layers to be uniformly bounded.

However, the problem was shown to be decidable over the class of models

based on communication closed and bounded LLDs and over the class of mod-

els based on channel bounded LLDs. We again showed decidability using

the automata-theoretic approach, by using diagram automata and fragment

automata.

• Message Sequence Charts (MSCs) were considered as alternate models of be-

haviours of message passing systems in Chapter 7. We compared Lamport

diagrams with MSCs and also showed that LLDs in general, are more expres-

sive than the models of Message Sequence Graphs (MSGs) and Compositional

Message Sequence Graphs (CMSGs). We also considered MSO interpreted

over Lamport diagrams and over MSCs. It was shown that satisfiability prob-

lem for MSO is undecidable in general, but is decidable when we restrict our

attention to models based on communication closed and bounded LLDs and to

models based on channel bounded LLDs. We also showed that model checking

CMSGs against MSO specifications is decidable.

Future Work

In this thesis, we presented a study of various possible modal and temporal logics

as specification languages of distributed message passing systems. It was shown

that most of the natural choices of modalities resulted in undecidable satisfiability

problems. However, exploiting the partially ordered nature of Lamport diagrams, we

could define expressive temporal logics like m-LTL which are decidable. It would be

useful to come up with more expressive logics like m-LTL that are also decidable. For
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example, m-LTL could itself be extended to include global next and until modalities.

It is not clear if such an extension would be decidable. The presence of a weakly

global previous modality (without receive propositions) does not suffice to code

up runs of non-deterministic 2-counter machines. The decidability of satisfiability

problem of logics where exactly one of the next or previous modalities is global and

the other is local (without any special send/receive propositions) is also open.

In the context of distributed systems whose behaviours are described by LLDs,

we again showed that natural choices of temporal logics resulted in undecidable

satisfiability problems. On the positive side, we could obtain decidability when the

formulas are interpreted over models based on communication closed and bounded

LLDs and over models based on channel bounded LLDs. The bounds considered in

both the cases were externally imposed irrespective of the specification. It would

be nice to consider models whose structure is dictated by the specification and

investigate the satisfiability problem over such models.

With reference to the decidability results presented in the thesis, questions re-

garding completeness of the algorithm also remain open.

There are many open questions on the automata-theoretic part. As mentioned

in Chapter 3, most of the automata-theoretic questions related to SCAs including

closure under complementation remain unanswered. It would be useful to develop a

full automata theory of these models. If we succeed in showing that these automata

define a robust class of behaviours of distributed systems, these can be used as good

models of distributed message passing systems.
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