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Chapter 1
Introduction

The low energy properties of many strougly correlated electronic systems can be de-
scribed by an effective theory in terms of just the spin degrees of freedom. Heisenberg
model, one of the simplest interacting model, has been successhully used to deserihe
many such systems. It has also been studied as a theoretical model on its own right.

The hamiltonian has the form,

H=%"1;8,-8;. (1.1)
1,7

where 5;'s obey the SU(2) algebra: [SE. S]] = i &;; €*™8°. The above interaction
has its origin in Pauli’s exclusion prineiple and depending on the form of the elec-
tronic wave functions, Ji;’s can be either positive {antiferromagnetic) or negative
(ferromagnetic).

At low temperatures the system will predominantly be in its low energy states,
The first question then one asks is, what is the ground state? Classically, the
ferromagnetic ground state consists of all spins polating in the same direction -
the fully ferromagnetic state. This is independent of the structure of the lattice or
the range of the interactions. The quantum ground state also consists of all sping
polarised in the same direction. This state breaks the rotational symmetry of the
hamiltonian and there is a degenerate set of ground states connected to each other
through rotations. In the thermodynamic limit, the system gets frozen into one of

 these states and we have a spontancously broken sy minetry.

‘ 1
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For the antiferromagnetic case, say, for a bi partite lattice, the classical ground
state consists of all spins of one sub-lattice pointing in one direction and the Spins
in the other sub-lattice in the opposite direction (Néel state). For non-hipartite lat-
tices, the classical ground state can be more complex. Tt can be easily seen that in all
the cases, the classical ground state is not even an eigen state of the quantum hamil-
tonian. The determination of the ground state of the Heisenberg antiferromagnet
(HAFM) for even the simplest of cases is a hj ghly non-trivial problem.

What one would like to know first about the ground state is whether the rota-
tional symmetry is broken or not. The nature of low energy excitations and hence
the low temperature properties depend crucially on this. A broken symmetry would
mmply the existence of excitations arbitrarily close in energy to the ground state. In
the case of a bipartite lattice, spontaneously broken symmetry, or equivalently long

range order, means that,

{P;Sl} £ 0 and lim (FS; - PiS;) # 0

li=3]—0
where P is +1 for sub-lattice A and —1 for sub-lattice B.

The tendency of pairs of antiferromagnetically interacting spins to align anti-
parallel opens up the interesting possibility of competing interactions. It may not
always be possible to saturate every bond to its minimum energy, even classically,
and the system is then said to be frustrated. The interplay of frustration and
quantum fluctuations can lead to novel ground states and excitations, especially in
low dimensions. Frustration, in general, favors disorder and in combination with
low dimensionality can give rise to a variety of 'Spin liquids’ in which the spins are
not correlated over long distances.

There are some frustrated systems which have a macroscopic degeneracy for
the classical ground state. This degeneracy is unrelated to any symmetry of the
hamiltonian and is expected to manifest itself in peculiar ways in the gquantum
case, The quantum fluctuations may lift this degeneracy by picking out a unique
ground state. Heisenberg antiferromagnet on the two dimensional Kagomé lattice

Is & famous example of such a system. For s = 3,, the system is known to have

a unique singlet ground state with a gap to spin excitations [1], even though the
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s in the Néel phase for weak frustration. For a given §, beyvond a eritical value of

i ¥ 152

Figure 1.1: Dimerised spin chain with frustrating next-nearest neighbour interaction

classical ground state has a huge macroscopic degeneracy. The latter property shows
up in the form of a continuum of singlets {illing up the triplet gap.

[n this thesis we have studied the Heisenberg antiferromagnet (HAFM) on various
lattices and in different dimensions. In the rest of this chapter we briefly review the

systems that have been studied and summarize the work done in the thesis.

1.1  One dimensional systems

At lower dimensions, quantum fluctuations play a greater role. Tt is known that in
one dimension, the ground state is always disordered. But some systems can have

‘quasi long-range order’, in which case the spin correlations fall off as a power-law
q g ¥

in the asymptotic limit and the system is gapless, ie

o 0 |

1
S' =“: I: t-, SI'S TES | e = L]
{Si) n 4] i = j]°

where o is some positive fraction,

We will use “J; — J; — 8" model as a prototype to deseribe various phases of one
2 1 AR |

dimensional systems. The model has the hamiltonian (see Fig. 1.1),

T

H=J ) 1+ (=1)6]S; - 8is1 + 7; D 8i+Sips (1.2)
where v = Jy/J;.

Classically, the ground state exists in three phases (see Fig. 1.2). The system

the frustration, the system goes into a spiral phase. In the spiral plase, adjacent

spins make angles £y or 6,, depending on whether the bond is weaker or strouger,

3
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Figure 1.2 Classical phase diagram for the J, — .J, — § model.

with the angles determined by § and . At an even stronger frustration, the ground
state again becomes collinear in which the spins within each sub-lattice has an anti-
paralle] arrangement (see Fig. 1.3).

Though the quantum system does not have a broken symmetry, it has some short
range order which can distinguish between various ‘phases’. Also, in certain regime
it has quasi long-range order which makes it gapless.

This model has been studied numerically for s = 3 [2] and 5 = 1 [3] which are
the extreme quantum cases. The ‘phase diagram’ is obtained from the short range
correlations of the spin (see Figs. 1.4 and L5). The line 1 — d§ = 2 demarcates the
Neéel and spiral phases. For 5 = 1, the ground state is exactly solvable on this line.

Let (¢, j) denote the singlet state, 1.—:,3 (I ERE .I,T}), formed by the spins at sites

tand j. Then the state,

(—2,-1) (0,1) (2,3) (4,5) . ... (1.3)

is the exact ground state on the above line. This state is an extreme case of a
spin liguid with zero correlation between spins in different dimers. When § = 0

(Majumdar-Ghosh paint.} [4, 5], the system becomes translationally invariant and



b)
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Figure L.3: a) Néel, b) Spiral and ¢) Collinear phases.

the translated state

ceee (51,00 (1,2) (3,4) (5.6) . . .. (1.4)

becomes degenerate with the state (1.3).
For spin 1, the state (1.3} remains the ground state on the line 1 — § — 2v for
0 greater than a certain critical value (see Fig. 1.5). In general, for spin s, (L.3) is

the ground state for § > d..(s).

L.1.1  Uniform chain and Haldane conjecture

The uniform chain (6 =4 = 0) for s = L was exactly solved by Bethe using what is
now known as Bethe ansatz [6]. From Bethe's solution, it follows that the system is
gapless and has quasi long-range order. At that time there was no reason to suspect,
that spin 1 chain will behave any differently. Tf anything, s = 1 is ‘more’ towards
the classical limit and hence was expected to retain the quasi long-range order and
gaplessness. Thus it came as a big surprise when Haldane made the conjecture that
all integer spin chains are gapped.

Haldane’s conjecture was based on his mapping of the Heisenberg chain in the

cn
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Figure 1.4: Phase diagram for s = 31— Jo— 6 model. The solid line is gapless and

on the dashed line, dimer singlet is the exact ground state.
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Figure 1.5: Phase diagram for s =1 J; — J, — § model. The solid curve and the

point C are gapless. On the dashed line, dimer singlet is the exact ground state.



long wave-length limit to O(3) nonlinear & model (NLSM) with the topological

f-term [7, 8]. NLSM has the action,

" ]. l -f.-ll & 4 =
5= / iz dit | — (— - dn+ e don - ﬂmﬁ) . nedx den| (1.5)
) % & dmw
'|' .
g=- c=Js and 0 =273, (1.6)

For the action to be finite, we Lave to impose the condition that on the boundary of
space-time n(x,t) is a constant, i.e., space-time is topologically a sphere. Then the
topological term normalised by 47 is the winding number whiclh counts the number
of times the field configuration wraps around the target space S?,

Note that,

e For integer s the topological term contributes a phase which is an integer
multiple of 27 to the action, which is irrelevant for the path integral. NLSM

without f-term is known to be massive [9, lﬁ'[.

o For half-integer s the topological term is significant and adds a phase 7 for
configurations in the sectors with odd winding number. And s = % chain is

known to be gapless from Bethe's solution.

Based on the above facts Haldane made the conjecture that the uniform chain is
gupped for all integer spins and is gapless for all half-integer spins.

There is a spin-1 model of Affleck, Kennedy, Lieb and Tasaki (AKLT) for whicﬂ
the ground state can be solved exactly [11]. In addition ta the Heisenberg term, the

hamiltonian also contains a quartic term.

1.
Hopn = Z 8 S+ %{Si - Sin P (1.7)

=

They have also provided a general prescription for constructing models with a
so-called valance bond erystal (VBC) ground state. Their idoa is based on the fact
that a spin-s representation can be obtained as a symmetric product of 2 Spi]l—%
representations. AKLT states are constructed by forming singlets among these spin-

: %’s belonging to neighbouring sites. Then the ‘parent hamiltonian® for which a given

7




state is the ground state can be obtained as a polynomial in the scalar product of
Spill operators.

For s = 1, the hamiltonian in (1.7) has the state shown in Fig. 1.6 as the exact
ground state. This state has a finite gap to the first excitation. This is considerod
as a strong support for Haldane’s conjecture that all integer spin HAFM chains are

gapped.

Figure 1.6: AKLT state for spin-1 chain. Dots represent sl}in—%’s; dashed ellipses
mdicate that the spins within are symmetrized and solid lines represent a singlet

state

1.1.2  Dimerised spin chain and the ¢ term

f-term changes sign under the parity transformation, i — —n. For the spin chain,
parity corresponds to translation by one unit. Thus @ has to be 0 or 7 for the uni
form chain. This suggests that one should break translational invariance explicitly
to make # take arbitrary values. One simple way to do this is to introduce alternat-

ing bond strengths, known as dimerisation [12]. The dimerised spin chain has the

hamiltonian,
H = JZ (Sr1-S1a+ KSra- Sri11) (k= l;!i
2 ' b T L+46
Haldane mapping for the above model gives,
(1+ k) i
~——— o= ks and # =4drs .
g VH e (1+ &)

0 varies from 0 in the limit of completely decoupled dimers to 2rs for the uniform
chain.

One interesting consequence of # depending on & is that, at specific values of
i for which & = 7, the system becomes gapless. This is true for both integer and

half-integer spins.  For s = 1 this corresponds to the intersection of the zapless

8




curve with the y-axis (see Fig 1.5). Unfortunately, numerically observed ., does
not match the value predicted by the NLSM mapping [3]. In fact, from the Haldane
‘mapping, & does not depend on v whereas in the actual case it does.

For a spin-s dimerised chain, Haldane mapping predicts s gapless points for
integer s and s + 3 for half-integer 5. This has an interesting physical picture in
terms of AKLT states [13]. The gapless states are interpreted as a sea of valance
bonds with a Hpin-%, chain floating on the top. Fig. 1.7 illusirates this for s = -24
At each gapless point, one of the valance bonds between neighbouring dimers gets
shifted to within the dimers.

i = -

4 LA £y iy .
q) Tt el 4
i 1 "

.\"_ i

- Ll ! ——
ik} [t S T [~ S [
ke L L b Y oa
I'-I. r-\ "-1 "-\- "‘-\
p b R S R R SN S LR et S S
h) ! ep—t Ve e—
e La b L g Vi

il -t o o

Figure 1.7: Approximate picture for the gapless points of § = % dimerised chain.
Dots represent spin-3's; ellipses indicate that the spins within are symmetrized and
solid lines represent a singlet state. Dashed line represents the ‘ground state' of

uniform spin-3 chain. a) is first gapless point and b) is the second one at a larger

KET.

1.1.3 Quantum Hall effect and the physics of § term

The # term has a very physical significance in the theory of quantum Hall effect
(QHE). Levine et al. derived the Grassmann o model in the replica limit as the two
parameter scaling theory for a system of non-interacting electrons in two dimensions
in the presence of a disorder potential [14, 15, 16). This is the relevant theory for

integer quantum Hall effect. The Grassmann o model action is,

u ¢ ]- T Tz Trgp i -
o= / d*z 5 lr[ i aQa () — ?r”@ﬂ;{?ﬂjﬂ)] (1.8)

where @@ € U(N; + No)/U(N,) x U(N,), the Grassmannian manifold. Opr and

- oy are respectively the longitudinal and Hall conductances. The physical theory

9




corresponds to the limit Ny — 05 Ny — 0. For (}(3) ¢ model, Ny =Ny =1. The

corresponding Grassmanian manifold is 82, with
Q=i-o=UsU',

where 7 € SU(2) and @"'s are the Pauli matrices.
All Grassmann models in 2 dimensions are topologically equivalent in that, the

map from S* to any Grassmannian manifold falls under the same homotopy eroup
I ¥ ¥ B

BE

L‘r(;ﬁirl - .'a"."ﬂj .
) =7, the set of integers.
2 (L-'Iff‘fljl < U 'Tz}) . the set of integers

Thus the topological part of the action can be interpreted as the winding number
or topological charge,

The physies of QHE tells us that, Ty 15 quantized to integer values, whereas o,
is zero. This means that with renormalization group, ., should low to zero and
Opy L0 integers in the infra-red limit.

Chiral edge currents are known to exist in quantum Hall systems.  Thus we
need to allow free boundary conditions. This has an important consequence for the
topological term. For fixed boundary condition, i.e., when the edge is identified with
a single point, the space has the topology of a sphere. Then the topological charge is
an integer and the theory is periodic in Fzy. But with free boundary condition, the
topological charge will have a non-integer part and the theory is no lon ger periodie
7. Here we just mention that the action decouples into ‘edge’ and ‘bulk’ parts
with all the non-periodicity going into the ‘edge’ part. At the attractive fixed points
of RG (2 = 0, @,y = n) the theory is purely edge and is eritical.

Large N perturbative calculations done for the € pN-1 (Ni=N-1; N,=1)
model indicate that o, Hows to 0 at large length seales t.e., the theory is asymp-
tatically free [17]. Renormalization group flow derived from the ‘dilute instanton
gas’ approximation at weak coupling brought out features like renormalization of
Uy and masslessness at o, = 1/2 [18] (see Fig. 1.8).

The above facts lead one to expect all Grassmann o models to have the following

common features.

10



o At larger length scales, o., renormalizes to 0 and 0zy to integer values.
® 7., = +is massless,

o The bulk is gapped [or all other values of Trys bt there are massless edge

excitations.

1.1.4  Dimerised spin chain and strong coupling NLSM

From the Haldane mapping for the dimerised spin chain, it follows that the Jimit
i —  corresponds to g — oo and ¢ — 0. ie., weakly coupled dimers correspond
to NLSM at strong coupling near # = (. At weaker coupling between dimers, the
correlation length gets smaller. The phase diagram for the s = % madel shows short
range Neél order even for small values of x (see Fig, L.4). This ensures the validity
of the continuum limit.

The RG flow in Fig. 1.8 is based on weak coupling instanton gas picture. In
this thesis we have studied the dimerised spin chain with a view to understand 0(3)
NL5M at strong coupling. To this end we have developed a real space renormaliza-
tion group (RG) scheme for the dimerised spin ehain from which we have obtained
the anticipated RG How. By analysing a semi-infinite chain, we are able to correctly

deseribe the edge physics of the ¢ model.

1.2 Two dimensional systems

In two dimensions all unfrustrated systems have long range order. Even triangular
lattice HAFM. which is frustrated, is ordered [21]. Tt requires stronger frustration
to obtain a disordered ground state. Shastryv-Sutherland (SSM) model is HAFM on
the square lattice with an additional frustrating coupling which pairs all spins [22].
It is instructive to describe a ‘quadramerized’ version of SSM which has a rich phase

diagram [23]. The hamiltonian is,

H-_-.JZS,,-SﬁﬂJZSk-SE+nJ25m-sn (1.9)

AN ¥y [m, 7]

11
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n ﬂ+i

Figure 1.8: The renormalization group flow diagram for different values of Ny and
Ny. The unstable fixed points may be located at (a) oz = 0 as found in the large N
expansion of the CPY=" model; (¢) at a finite value of o, which is fypical for the
theory in the limit of small Ny, Ny > 0; (b) at a finite value g, but with marginally
wrelevant (0., > o}, ) and marginally relevant (o,, < 7, ) directions respectively,

rather than plainly frrelevant as in (¢). This behavior is expected for Ny =N, = 1

ny
n+1

B.'{."'.

(}

T (a)

(b)

XX

7 (c)

(O(3))and lies at the interface of cases (a) and (c).
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Figure 1.9: Quadramerized Shastry-Sutherland model.

where the different bonds are shown in Fig. 1.9

The classical phase diagram for this model (see F ig. 1.10) is exactly equivalent
to that of the one-dimensional J, —J; —§ model in Fig, 1.2. For the classical ground
state, the two models are connected by the transformation,

O s
o 1+ 3

A qualitative phase diagram for s = L quantum model based mostly on numerical
analysis is shown in Fig. 1.11. For strong frustration, i.e., large o, dimer-singlet is
the ground state. As was discussed in the case of 1 — d systems, this is a highly
disordered state with zero correlations between spins residing in different dimers.
If e = 2 it can be rigorously shown to be the exact ground state. a = 0 : f=1
is the nearest neighbour square lattice, which has long range Néel order. As the
frustration is turned on, the system goes into a disordered plaquette-singlet phase,
through a second order transition [24]. It is interesting to note that, on the line
f# =1, the plaguette-phase spontaneously breaks the translational invariamce of the

hamiltonian. Also the classical spiral phase is completely wiped out from the phase

diagram, but the evidence for this is not conclusive [25, 26]. At a stronger frustration,

13
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Figure 1.10: Classical phase diagram for the quadramerized Shastry-Sutherland
model,
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Figure 1.11: Phase diagram for the s = % quadramerized Shastry-Sutherland model.

Solid and dashed curves represent second and first order transitions respectively,

Above the dotted line, dimer-singlet is rigorously the exact ground state,
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Figure 1.12: Ordering pattern for the Néel and collinear phases

the system goes into the dimer-singlet phase through a first order transition.

Another interesting limis of the model is at # = 0. As « is increased from 0 to
o0, the model goes from decoupled ‘plaquettes’ to decoupled ‘dimers’. At a = 1,
the model is topologically equivalent to one-fifth depleted square lattice. For small
a, the ground state is a plaquette ordered singlet. At a ecritical o, the system frst
goes into a ‘collinear’ ordered phase. This corresponds to the ‘Nel’ phase of the
one-fifth depleted square lattice (see Fig, 1.12). At a higher & the system again
becomes disordered, but now it goes into the dimer-singlet.

Shastry-Sutherland model can be looked upon as the two-dimensional analogue
of Majumdar-Ghosh model, as both are frustrated systems with exact dimer-singlet
ground states. Initially SSM was of theoretical interest because it was perhaps the
first two dimensional model with an exact ground state. Recently it was experimen-

tally realized in the compound SrCus(B0;), [27, 28].

1.2.1  S5rCuy(B03); and the Shastry-Sutherland model

The compound SrChus( B0 ), has a layered structure and the low Lemperature mag-
netic properties can be described by a two-dimensional model. Cu?t ions CAaTTY a
spin s = £ and the structure of the two-dimensional lattice formed by them is shown

in Fig. 1.13a. This is topologically equivalent to Shastry-Sutherland lattice (see Fig.

16
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Figure 1.13: () Lattice structure of ('u?* jons in SrCuy(BOy), and (b) the Shastry-
Sutherland lattice

1.13b).

SrCuy(B0y), shows the following features:

1. The magnetic susceptibility has a maximum at around 20K and drops rapidly

to zero with decreasing temperature. This shows that the ground state is

disordered and has spin gap.

2. Low energy neutron scattering experiments shows an almost flat dispersion.

This is due to highly localized triplet excitations.

3. At high magnetic fields, magnetisation plateaus have been observed at frac
tions 1/8, 1/4, and 1/3.

All these features have been understood within the frame-work of SSM,

In this thesis, we have constructed a generalized SSM in arbitrary dimensions,
Since mean-field theory becomes exact as d — oo, we have been able to do a 1/d
gxpansion to probe the model away from ¢ = oc. This provides an extra tool

to study the physical two-dimensional madel, The general model at d = 3 has a

hysically feasible lattice structure.
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1.3 Magnetisation plateaus

Another interesting phenomena shown by low-dimensional spin systems is Lheir re-
sponse to an external magnetic field. For many one-dimensional models, the mag-
netisation is not a smooth funetion of the field, but undergoes discrete jumps and
develops plateaus at specific fractions of the ful] magnetisation . This has also been
observed experimentally [29] - [32]. The magnetisation per site, m, is quantized

according to the condition [33]T

n(s —m) = integer, (1.10)

where s is the spin and n, the periodicity of the ground state. At the plateaus, the
ground state may or may not break the translational invariance.

SrCuy(BO3)s is one of the first two-dimensional systems in which magnetisa-
tion plateans were observed. The plateaus can be understood by treating localized
triplets in a sea of singlets as hard-core hosons [34, 35]. In this picture the mag-
netic field is analogous to the chemical potential and thus decides the density of the
triplets. There is a competition between the kinetic and interaction energies of the
triplets and at certain densities, it might be energetically favourable for the triplets
to crystallize. This can lead to formation of plateaus.

Magnetisation plateans due to the above mechanism can be demonstrated exactly
for some models [36, 37, 38]. The common thread that connect these models is
that the ground state at zero field consists of product of dimer-singlets and, more
importantly, the total spin on each dimer is a conserved quantity.

In this thesis, we have studied the arbitrary dimensional generalized Shastry-
Sutherland model in the presence of an external magnetic field. Ground state ean
he exactly solved in the large d limit and we have obtained a 1/2-platean.

We have generalized & = % models for which plateans can be solved exactly,
to arbitrary values of spin. We have also explored the possibility of two different

hanisms for the plateau formation in different parameter regimes.




1.4 An outline of subsequent chapters

From second to fifth chapter we study the dimerised spin chain and its connections
with O(3) o model. In chapter 6 we derive Grassmann o models from SI7 () spin
chains. In chapters 7 and & we study models with exact ground states before we
draw conclusions in the final chapter. The following is the detailed break-up of each

chapter:

Chapter 2 discusses the Haldane mapping for SU( 2) spin chains. We first do the
path integral representation for a single spin in a magnetic field in the coherent
state basis. Next we do the same for a two-spin system and a rotor and the
two are compared. We derive NLSM for a semi-infinite dimerised spin chain
as well as for a generalised ladder. The chapter closes with a discussion on the

validity of the Haldane mapping,

Chapter 3 describes NLSM at ‘bare’ strong coupling. We derive the effective edge
theory which is exactly equivalent to a single spin system. Correlation func-
tions are caleulated from the generating functional for a Spin in a magnetic
field. We then discuss the correspondence between the edge theory and the

dimerised spin chain.

Chapter 4 describes the Renormalization group scheme. We define the RG step
of integrating out alternate dimers. Fixed points are found neglecting time
derivatives. Then we retain time derivatives and obtain a system of ‘fermionic

rotor” chain. RG and NLSM derivation are repeated for the general model.

Chapter 5 introduces effective spin-3 models for higher spin chains. We project
a spin-s dimer to the singlet-triplet subspace using a Schwinger boson repre-
sentation. The effective model obtained has a ladder structure. We do the
RG for a general ladder. The effective model for the spin-1 system is used to

determine its papless point.

Chapter 6 gives the derivation of Grassmann o model for dimerised ST (N) spin

19




chains. We introduce Grassmann coherent states in a [ermionic representation.

Using the standard procedure NLSM parameters are derived.

Chapter 7 gives a construction of generalised Shastry-Sutherland model in arbi-
trary dimensions. We first give a geometric prescription to construet gener-
alised Majumdar-Ghosh models using which the d-dimensional model is con-
structed. We discuss the physical feasibility of the 3-dimensional model. Using
a large-d mean-field expansion we study the Néel-dimer transition and bring
ot the difference between odd and even dimensions. Ground state CNeTgy is
corrected to leading order in 1/d and this expression is used to estimate the

transition point for the physical 2-d case.

Chapter 3 starts with the mean-field solution of generalized SSM the presence of
a magnetic field in the large d limit. We then discuss spin-s models with
exact magnetisation plateaus. In certain parameter regime we exactly solve
the ground state of ‘Gelfand ladder’ in the presence of a magnetic field for
arbitrary s. Beyond the exact point, we argue for a different mechanism far

the magnetisation process. The results are extended to a general model.

Chapter 9 summarizes and discusses the results. We outline the possible routes

that can be taken in the future.

Appendix A gives the caleulation of the solid angle term in the action for a dimer

systemn.

Appendix B describes the caleulation of the free energy of a dimer to all orders
in . We also obtain the effective hamiltonian to all orders, neglecting time

derivatives. ‘T'his is then used to calculate the critical value of k.




Chapter 2

Haldane mapping for dimerised

SU(2) spin chains

In this chapter we review Haldane's mapping by deriving it for a semi-infinite
dimerised spin chain (DSC). In the process we take care of the subtlety of the
edge while taking the continuum limit. We also do the wapping for a generalised
ladder consisting of weakly coupled dimers.

We first do the path integral formalism for a sin gle spin coupled to a magnetic
field. Then we do the same for a dimer and discuss the conditions under which
A dimer can be approximated by a rotor. This is one of the key approximations
in the derivation of NLSM. In the next step we derive NLSM for DSC and the
generalised ladder. Finally we discuss the circumstances in which we can expect
Haldane mapping to be valid,

We shall follow Fradkin [39] and Affleck [12] for the derivation of the o model.

ut there is a difference in our view-point from the theirs, They treat the system as

wly varying in the Néel order parameter, whereas we treat it as a coupled dimer
systenn,
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2.1 Path integral for a single spin in a magnetic

field

The basic observables of the system are the components of the spin vector 8. T hey

obey the 5U(2) algebra,
IS“? S!.I] — ,E-IE_nf.-cSt.' {21:}
The Hilbert space is a spin-s irreducible representation of SU (2),
5.8 |1h) = s(s+ 1)) (2.2)
The hamiltonian is given by,
H =By.8 (2.3)

Without loss of generality, we can choose the z axis to be along By, The ground

state is then,

H| —5) = —sBy| — 5 (2.4)
where,
S%m) = m|m) (2.5)
n=—8,—54+1,...,3

2.1.1 The coherent state basis

Consider the set of states [40],

l9) = D'(g)| - s), (2.6)

where g € G = SU(2) and D(g) is the spin-s representation matrix of g. Let H © (3

denote the U(1) group of rotations about the z axis. We then have,
Di(h)| —s5) = & —g)
= |hg) = e g). (2.7)

Hence [g) and |hg) differ only by a phase and represent the same physical state.

Ihe distinct physical states are therefore in one-to-one correspondence with the



coset space G/H = SU(2)/U(1) = 5%, We represent the unit vectors n € S? by

2 % 2 hermitian mairices,
() = n.a, (2.8)

where ¢'s are the Pauli spin matrices. We then have,
Q) = Di(g)|— ), (2.9)
Q = —g'dy
The set of coherent states defined above satisfy the following three properties,

1. Resolution of Identity:
[ wiavai= 21, (2.10)

where d€) denotes the normalised measure on the sphere. In polar coor-

dinates,

d@) = %Hin & dit dip. (2.11)
- 2. Expectation Value:
1
(@I5%Q) = sa—traaQ. (2.12)
3. Overlap:
(@ +3Q|Q) = ™(H+01%), (2.13)

where L® = Lir(a%dgy’).

_-_,1.2 The generating functional

Define the generating functional by looking at the system in a (Euclidean) time

_p:Eﬂdent magnetic field, B(7), where B(0) = B(g) =
Z[B(r)] = trT (e £ 4B S) (2.14)

Z{B(r)] generates the time ordered N point spin-spin correlation functions,

N N
= 11 Jﬁi,[,ﬁ_} ZB(7)] lp=p, = tr(e™ T HS‘“(T ))) (2.15)
Gy({ri, ai})

23




where,

SH{T} = E‘HHSHE?_'SH (Zlﬁ]

2.1.3 The path integral representation

We now derive a path integral representation for the generating functional, Z (B(7)]-

We divide the interval 0 — 8 into N intervals of Ar — B/N. We then use the

tesolution of unity in Eq. (2.10) after each interval to get,

N—1 M—1 .
2B = [ T] d@u T[{Quarle-rtratmanianyg (2.17)
n=fl m=(

Bl hiere B(r) = BY(7)0 and Qn = Q5. We can now use Eq. (2.12) and Eq. (2.13)
to get,

N—1 N=1
Z[B(r)] = /' H dQ, H A TmZh AT( 25L(mAr) - LirBmAr)Q(mAr)) (2.18)
Yon=a =0

?,Wherc we have denoted Q(mAT) = Q.. We can now take the limit N — oo to get
the path integral,

Z[E{T?J] ZfD[Q{T]]FHi dr{ i?.aLa[TJ—%!rH{TJQ{TJ} {219}

here (2(0) = Q). Note that the coefficient of the phase of the funetional inte-
grand is an integer (25). This is forced by the requirement of single valuedness of

the integrand.

We can write the generating functional in terms of the unit vector defined in Eq.
(2.8). We then have,

- :aHI!'ﬁ- ﬁ:-:,h—'g‘r Thalr
ZIB(7)] = f DIi(r)] I8 1y s ivbrinoni i dr B(ryacr (2.20)

¥

.2 The dimer system

Consider a system of two spins, S; and S, Let H be the Hamiltonian of the system
:i" b}rr

1
Ho=5(8+8,)° (2.21)
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‘The Euclidean path integral in the colerent state basis is,

Z = 'E‘—Sdi:ll.rr-l‘I
A g 2
where, Stimer = —is / 7 f il Zﬁ“ -dn, % dn,
0 o =1
2 8 _
+2 f dr(ny + 1a)? (2.22)
1
Defin,
S L‘ﬂ;_“ﬂ (2.23)
{:fl-l & '.l".l:g}
} = 5 . (2.24)

n, = V1i—-0Fm+1 (2.25)
n, = —vVI1—-Fm+41, (225)

Jas
Sitimer = f dr (—2is 1+ 1h x 8,1h + 25° [7) , (2.27)
{

above expression is exact and not an O(1%) ezpansion. But it should be mentioned
that the integral is globally well-defined only when h + 0.
We now write down the Hamiltonian and the path integral representation for a

totor and make a comparison with the dimer.

2.2.1 The rotor

e rotor Hamiltonian is,

'

1
Ifralar = Ein {228]

here L*'s are the angular momentum generators. The action in the path integral

representation has the form,

1
STULUT- = fd’r "z"arﬁ = Ia-;ﬁ.. {2-29}
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We could obtain the above action by integrating out [ from the action for dimer
given in Bq.(2.22), except that now the range of [ has to be 0 to oo unlike for the
dimer where, I < 1. This is the essential difference between the two cases and ean
‘be understood as follows.

The Hilbert space of the rotor consists of one representation of each spin-j,
1=0,1,2,..., 00, the spectrum being E, = 3307 +1). The spin-s dimer has an
;identi-::aj Hilbert space aud spectrum, except that it is truncated at 7 =25 Thus
the approximation becomes exact as s — 0.

In the next section we consider a semi-infinite chain consisting of coupled dimers

and do the Haldane mapping.

2.3 Haldane mapping for semi-infinite dimerised

spin chain

‘The spins are denoted as Sr,o where T is the index for the dimer and o takes values 1
and 2. Within the dimer the bonds are of strength J and the (weak) bonds between

R

dimers are xJ (see Fig. 2.1a). The Hamiltonian is given by,
oo o0
H= [Z S_r,1 ; Sr.z + H:Z Spa- S;_HJJ . |:23ﬂ:]
I=q FE|

Notice that for large values of & the roles of ‘dimers’ and ‘weak bonds' get in-

o o
H=] {SE By 1 +F‘:ZSF.1 S +ES;.2 . S;_,_]‘l:[ s [2.31}

=0 =0

Here, & = x~' and J = R~'J = kJ. Notice that as & — ( the system not only
consists of weakly coupled dimers but also has a dangling spin Sg located at the

T
edge (see Fig 2.1b).

The Hamiltonians # and H indicate that apart from edge effects the spin system
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- ————eo-------- e ----

tlr} J 1 2 I 2 1 2

_ - F'=1 i I1=2 e =3

b 7 0o ...l - m s =
} J F 1 2 i 2 1

E‘igure 2.1: Semi-infinite dimerised spin chain with no edge spin (a) and with the

it B_gnﬂtic field.

188 4 dual symmetry

kK = g1

J o= wd (2.32)
is symmetry has a different meaning dependent on the value S of the spin. In
what follows we shall separately derive the effective action of the Spin system in the
tompletely equivalent representations given by H and H respectively.

To proceed it is helpful to introduce a staggered magnetic field B in i

H— H+Y B-(S;,—8S;2). (2.33)
I=i

lis term favours an anti-ferromagnetic spin arrangement of the semi-infinite chain

(See Fig 2.1c). Notice that the same anti- -ferromagnetic order is induced by acding

:‘f following terms to 1

o
.ﬂr o E‘PBQ'SE‘—ZB‘{SL]_—SLQ}- {23-1}

I=n
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In the coherent state path integral representation we obtain the action is,
[ =]
F = 15 Z Q1] + Qg5
f=0

oo 1 ) ) : .
+s7J f I’ifz S +0y2)" + a0y, - fipg,

= 2

pu s ]

—}-Sfdf Z B- {fl_[,-l = flfl-g]l. [:235}
I=0

Similarly we obtain in the dual representation,

L3

o = Sedgu + §b111k1 {236}

Siage = 18Qfig] + 2J f dif fp -y, + s / dtBg - fig (2.37)

Stk = 18y Q] + Qffy ]
=0

(= u)

gz 1. . " . i :
+-‘:"!Jv/ il ; E[nfll - Ilfigl_]'E + KRy - Ny
0o
—'.‘:‘f it Z B- {ﬁ;.l — ﬁjg;l. [338]
i=0
Qlf] = f dsdth: Om x D, (2.30)

2.3.1 Change of variables

Asin the case of the single dimer we now make the change of variables from 1, and
1, to m and 1 defined in Eqgs. (2.25) and (2.26). Here the variable i describes the
quantum fluctuations of the antiferromagnetic ordering whereas the 1 is associated
a ferromagnetic ordering of the spin chain. Sinee one expects the former to
gontrol the physics of the problem, the idea next is to eliminate the 1in a standard

manner and formulate an effective action in terms of the field variable i alone.
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Using Eqs. (2.25) and (2.26) we can rewrite the different terms in the Action.

[:flj_; + .'EL[;;}E = -'HE, (2.-‘1{_]}
: } : - :
D dygdig, = > (lf S R VR 5 (s — ;)
(g —my)),  (241)
np—np = 2|1- 7 B (2.42)

The solid angle term becomes (see Appendix A),
ﬁ[l:l;-j_] + ﬂ[ﬁjz] = Ejdt l; . Ii:l.j b4 aﬂilj, {2,43}

The effective action, S, is obtained by substituting Eqs. (2.40- 2.43) into Eq.(2.35)

)
integrating over the Gaussian fluctuations in the 1 fields (which amounts to a sys-

tematic expansion of the theory in powers of 1/s) and after taking the continuum

=] i
5.._.”=f dn:/ dt L, (2.44)
i i
18K
—] tor 11 - chia a5
L [ﬂ! dr [ (1+H)m dhm x dom
atsta 1
—  Jm-Omt—— 8. 96
T am+2{l+ﬂ}JaaEm O
8
) - ) A5
-B-m ] (2.45)

ere, a/2 is the lattice spacing. It is important to remark that the theory is defined

T

grromagnetic ordering,

an be written as,

2 B oo o o -
S f di Lot f i f L, (2.46)
] [H Wil
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Lo= — Qg
’Es* (1~ (g mg)*) — dfng - 1y x iy
+ 2(4 + 3%) -+ 2rng - T
— 2By fig (2.47)
. i
L= w n- I 5:1: i
R a8 Xio
. L P i - Oy
Ml Sl o - chm
Hl+r) " ™ 2(1 + k) Ja t L
1
- —B:.m. 2.4
-B.m (2.48)

' On the basis of the classical equations of motion, however, it is readily established
the appropriate result for 5,7/ is obtained if one identifies the veetors np and

m 1ot only at the edge but also at each and every point in space-time, i.e.
fgiz,t) = iz, {): (2.49)
Under these circumstances Eq. (2.47) reduces to

Ly = ~isf)[xny] — 2By - ring, (2.50)

uivalently,

a f poa 4
f dt Ly = :&/ / dr m - dyn x ﬂxﬁl-—ﬂsf df By - my. (2.51)
0 i} i} a

We are now in a position Lo compare the theory S.;; and the dual theory ﬁgﬂ and

how that they are the same. More specifically, we obtain the lagrangian for the

an



standard O(3) nonlinear sigma model,

1 : o o e - B
Lyisy = 3 f:ﬁIm+5‘,m+Eﬂ£m-atm _EB.m

+ E—E-ﬁ-l cdhan = Ao, (2.52)
dhar

spin-wave velocity e, the coupling constant g and the instanton angle § are

pxpressed as follows,

o (L+ k) -1 (1+ &)
I )
ki K
= 4 = 4 1-— . 2
i B8 'JTS[ 1+F.:'] (2.53)

ere g and @ depend only on one parameter - %, the dimerisation strength. Thus
for a fixed spin s, DSC will map onto a curve in the 1 /5 — 0 plane, the parameter
ce of NLSM. With this in mind we now proceed to do the Haldane mapping
for a generalised ladder. This also consists of weakly coupled dimers but with
extra couplings. We can then associate every point in the 1 Jg — 8 plane with a

corresponding spin model,

Nonlinear o model for a generalised ladder

The Hamiltonian for the system is,

1
i Z 5{5” +512)" + #0pSra-Sra1 g, (2.54)
I

[ is Z Qg | + Qfy 4]

'
Lo o Moy B )
5t f At 5l +irg)? 4+ magig s, (2.55)
I

I
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=2

Figure 2.2: A Generalised ladder consisting of weakly coupled dimers

;g;jiﬁre [n] is defined in Bq. (2.39). Now we make the change of variables from f,
and ny to m and 1 as defined in Eq. (2.23). Only the inter dimer term in the Action
1§ different from the previous case aud in terms of the new variables it becomes,

1 1
Rapllio Dy = Kag ?i—f.—l]” my ). - —1']'ﬁmf+x
2 2

-

1 1
— E (Z Hm‘j) 11.1;4_1 — E (Z l[:—]_}"‘il H.,-_-,ﬁ) 1[.111;4_1

afd

‘21— (Z {—l}u Nuﬁ) 1;.,_1.1'11;

e

(Z{ -1)+A uﬁ) Mgy, (2.56)

|

[\.-'1|—

Ky = — Z{—l]“*ﬁﬁnﬂ = (Kao + K1 — K1y — ),
afd
B = Z{—IJ“ Kag = (Ko1 + Kon — K12 — Kyq ),
Ky = —Z{ 1 ks = (K12 + figp — Ky — r1),
Ky = = Z.ﬂiﬂﬂ = (}{.” ‘-I-.f"im + Koy +H'-22},
o/t
2 2 L
EJE Kaplia-Nre = Js Z (_lf Ly — 7'2- Afamy oy + kymy_y)
I
_'ﬁum[.mj’+!), EESTJ
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Now we substitute Eqs. (2.40), (2.43) and (2.57) in (2.53) and take the continuum
limit. Keeping only up to quadratic order in 1 and derivatives and integrating out

1, we get the effective action,

' 1 : Jas? g
Sq = / drdir [EJH (1 = M_u%ﬂ] drm. d.m + g d.m.d.m

is{ty — 1) .
2(1—+‘_§”_} 1m. ﬂrm ® ﬂzm] 3 {Z.DSJ

Comparing with the standard NLSM action in Eq.(2.52) we get,

& o= Jﬂs‘/ﬁﬂ (1+Hn—;mﬂ), (2.60)

4 S{ﬁg — K1)

i
2.61
2(1_'__ n“—zl-rcg [ [.' ]

o = Hop -+ Kz — K1 — Foo.
Mo+ Ha

Fap -+ fqa,

o — Ky

= M2 — Kby

tion is satisfied by a s = 1/2 generalized Majumdar-Ghesh (see Chapter 2)

r which has a dimerised singlet as the exact ground state. We also prove

The generalised Majumdar-Ghosh ladder that we consider consists of coupled

fimers and has the Hamiltonian,

H=> h, (2.62)
T
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where hy can be diagrammatically represented as in Fig 2.3,

g : 1 3 4 THy 4
. \‘*-,!f':u _."”
’ ' : T \}’.: §77]
,“i;"'u “‘_\
1 2 2 1 2 I-‘__;;G ..... 5

Figure 2.3: One unit of the generalised Majumdar-Ghosh ladder.

Here each triangle corresponds to the term, §;(S; - S + Siz « 83 + 83 - 844,
Si1; Siz and S5 are the three spins forming the triangle and 4, is the coupling

strength. Comparing L.H.S and R.H.S, we get the following set of equations,

b +83 = Jryy, (2.63)
di+d0y = Tk, (2.64)
1‘5[ -+ EE;J,- — JH.}_:J_\, [265

l‘i:e-i-ﬁ.l = Jﬁgl, (266

§j+ﬁg+§3+§4 = i [:26?

ations can be solved for 6;'s. We can explicitly construct the solution for Eqs.
63) through (2.66) as follows.
Let 6 = Jv, where - is arbitrary. Then,

63 = J(#n — Kz +7) (2.68)
b = J(rig ~7) (2.69)
8y = J(ka —7) (2.70)

rms a solution of Egs. (2.63 - 2.66) if kg = 0. Eq. (2.67) will then be satisfied
Kb =1 (2.?1:]
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Therefore we are getting an additional condition other than just the strong coupling
condition for the Hamiltonian to be written as sum over triangles. When only #y = 0

15 satisfied, we will have an additional term in the Hamiltonian of the form,
Hn! = ZS“ : Sm {2?2]
1

where ¢ = 1 — #i; + tige. When ¢ > 0 the dimer singlet remains the exact ground

0y

2.5 Validity of Haldane mapping

The following two assumptions went into the derivation of Haldane mapping,

‘1. Small 1 : In keeping terms only up to quadratic order in 1, { = [1] is assumed
small.  Also while integrating out 1 we took the range of [1| to be 0 to o

whereas in fact |1| < 1.

2. Large correlation length : While going from the lattice model to the con-
tinuum model, it is assumed that the correlation length £ >> a, the lattice

parameter.

€ us see when we can expect these assumptions to be valid.

fj]mpping O(I*) terms amounts to dropping O(l [(\/s }3) terms. We know from
Section 7? that the contribution to the action from within the dimer is exactly
iadratic in [, So all the O(/®) terms come from the inter-dimer terms. Thus

ing O(1) terms should be a good approximation at small & even for small <.



For the continuum limit to be valid € should be >= a. At stronger coupling (i.e.
larger

“values of g) £ gets smaller and at some point this assumption is bound to

break down. For the dimerised chain, the coupling constant g given in Eq.(2.53) is,

g= {ISE} (2.73)

Smaller spin and stronger dimerisation (small k) implies stronger coupling for NLSM.
Thus we expect the continuum limit to be valid for large s and weak dimerisation

(5= 1). From the above discussion we can make the following conclusions.

~® Both the approximations get better at large s.

~» The rotor approximation is good at strong dimerisation whereas the continuum

limit is good at weak dimerisation.

‘In this thesis we are interested in NLSM at strong coupling, which corresponds
ongly dimerised spin chains. In this regime NLSM will describe the low ENergy

sics if the continuum limit is valid. The following are a {ew indications to believe

hat this may be the case.

‘¢ In the previous section we saw that generalised Majumdar-Ghosh ladders with
dimer singlets as the exact gronnd state satisfies the strong coupling limit con-
dition for NLSM. This fits in with the picture of isolated dimers corresponding
to the strong coupling limit of NLSM.

' For the dimerised spin chain with an edge, we shall see that the strong coupling
edge theory of NLSM exactly corresponds to decoupled dimers with a dangling

edge spin. This will be elaborated upon in the next chapter,
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S[Q) = % /dz di tr (E! tr 0G0, Q4 rl tr 0y Q) 5tQ)
ﬂ fdx dt tr E;jQﬂ;Qan

167
27

f / dz dt tr 70, (3.1)

or & system with an edge, we have to specify the boundary conditions satisfied

pthe O fields. As always, this has to be decided by the physies of the system
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nnder consideration. It was shown in [19] that free boundary conditions implied the

‘existence of chiral edge currents. Deriving motivation from quantum Hall Physies,
Where such states are relevant, we thus use free boundary conditions.
" The most important consequence of the free boundary conditions is that the

topological charge is not quantized. In general we hLave,

=

q[&]

Il

Bi?r f iz tr ;00,00,0

= n[Q] + 4[] (3.2)
ere n[Q)] is the integer part and dq[Q)] is the fractional part of the topological
harge [Q]. We now seperate the “edge”and the “bulk” modes as follows. We put,
Q=1t""'Qut (3.3)
where, Q) satisfies,
Qoledge = 7° 4[Qa] = n[Q] (3.4)

'ffi'j'_!.n 5 Oy contains information about the winding in the bulk and ¢ specifies the edge

modes which cause the fluctuations of the topological charge about its quantised

he effective action for the edge modes is obtained by integrating aver (Jy,

E-...”[llz./t e~ 51t Qot] [3_5;]
o

By general symmetry considerations, the effective action has to be of the form,

Sepslt] = frin dt 4%;"“ (c tr .00, + % tr Q) ('}tQ)

IE].F
+ E/Eﬁl‘ il tr EianiQan
.Bi
bT / dz di tr 7°0. (3.6)
e have defined Q = ¢7'7%¢. ¢/, ¢ and B! are the renormalized parameters,
examine the theory in the strong coupling limit of the ‘bare’ parameters

i

§=0and # = 2xm. Then the action becomes simply,

sia1=" f d tr ;Q0,:00;Q, (3.7)
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‘which can be written as,

S[Q] = Trim QEQQ] 4+ ? ‘% el - Lrl["ra?ﬁ?i_]}. {38)

-"'-'s_igniﬁcance of the quantization of # = 2rm is now clear. When g = 0, the action
only the integer valued toplogical charge (@] of the bulk configuration. For
e quantized values of #, the partion function and correlation functions becomes
ependent of (Jy. Hence a quantized # implies that the system is completely
sitive to the bulk configuration and depends only on the edge part which are
 luctuations of the # term about its integer values.

The effective action is then trivially seen to he

Sl =7 55 dF - (P47 (3.9)

Qi3 (2) = 2 ()i () (3.10)
Whete 12, () are the fermion operators and the action is,

m T i
SH.F = /. i 'ﬁbﬂ-i" ("'i-l'.)JT‘l —_ 'E-T.fda#)pp, 'i’:.l_rf'{,ipr {3+llj

.;{;, the standard notation, : O := O — (), the only non-vanishing two point

(: Q;:’dl (®1) s Q::_#E{Igj ) = M0y o, 02 — xg}e_z“"{m‘_’ﬂ (3.12)

Aw =0, there is no length scale involved and hence the edge theory is eritical.

Edge spin

ﬁge—-autic}u in (3.7), which is the fractional part of the # term, is the solid angle
[ the curve traced out on the sphere by 7t as it goes around the edge. In terms of

Eunit vector field defined by @ = - 7, the edge-action can be written as,
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5(Q]) =is f dr dy i -0 x dyn + 27 Poagetwns® (3.13)
with s = 2. This is exactly the action obtained for the problem of a spin-s system
rived in Section 2.1. The euclidean time of the spin system is identified with the
inate that parametrizes the edge, say . The other coordinate, y, that goes into
ulk plays the role of the fictitious dimension that it is necessary to introduce
in the spin problem in order to write down a globally well defined action. We now
ealeulate the correlation functions for the spin system using an operator formalism.
The Hamiltonian is,

H=B8,-S. (3.14)

[he generating functional (defined in Section 7).

Z[B(z)] = trT (e~ I 4=B(=)5) (3.15)

] e g s T
7B E 5B () Z[B(x)] lp=p, = tr (e T( 1:[5 ;) ) )3,15)
Gl ai})

i

S5%(z) = P §ue T (3.17)

Some of the correlations functions of (() can be computed easily using equation (3.16).
lhie partition function (zero point function) is,

&

&g = Z £

51;11_1{[5 + £)5Bs)
sinh{i'-'%} (3.18)

1

%a‘“tr{e’ﬁﬂéﬂa}

= g EEEIHZ

= —F ((1+§1;) coth ((s—i—%) ﬁﬂ_u) = Ecuth (ﬁ “))3.19]
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In the limit 5 — oo, the result simplifies to,

lim (@) = o (3.20)
B
[ the § — oc limit, the 2 point funetion Q-4 (1)@ —(22))5 can be calculated as
follows.. We have,

. 1 ¥ _
(@t (21)Q - (2))5 = Zatrle PHT(87 (21)8* () (3.21)
ug equation(3.17) and equation(3.14), we get,
S7(x;) = ePomg- (3.22)
St(xy) = e Homgt (3.23)

e then have,

Jim (@ (21)Qs_(z4))s = g—lgf_ﬂulrl_lefe[m — 3} (—35|ST87| — s}

f—toa

+0(2s — z1)(=s[S*5| — )

Bz — zp)eBoler-=) (3.24)

il the bare strong coupling limit is exactly the same as that of a single spin-1

amiltonian for the spin system as defined in Section 2.3 is,

g«

Hpsc= ) J (Sa - Sars1nSan - Sargn) (3.25)
=0

The results in the previous section implies that the bare strong coupling limit

the NLSM is exactly equivalent to the low encrgy phyics of spin-7 dimerised
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pin chain (DSCJ, in the strong dimerisation limit, We first cousider the case of

-infinite DSC's and will discuss the ease of finite chains later, The hamiltonian

a0
Hpse = zv’ (Sar - Sars168as1 + Sapya) (3.26)
=0

=0, the model consists ol decoupled dimers and is trivially solved. All dimers
g in the singlet state constitutes the ground state. Any one of the dimers being
e triplet state constitute the lowest energy excitations. Thus the system has a
= J and there are no excitations at energy scales small compared to J.

At 5 = oo also, the model decouples. The hamiltonian can be written in a dual

esentation where the roles of the ‘dimers’ and “weak’ bonds get interchanged,

- m -

Hpse = Z J (RSai - Sip1 + Saist - Saiga) (3.27)
1=l

e we have defined & = 2, J=nxJ. Thus & =00 & & =0. The system now
uples into a set of dimers and a free spin at the edge. The dynamics at energy
es small compared to J will therefore be that of the free spin at the edge.
Thus, consistent with the Haldane mapping, the low energy physics of the DSC
itk = 0 and x = oo is the same as that of the NLSM at 4= o9, = and
g =linfty, ¥ = 2mm respectively. In the former case both models have no low
y dynamics and in the latter case both have low energy dynamics confined to
adge with identical correlation functions,

After having established the correspondence between DSC and NLSM at the
are’ strong coupling and quantized #, we now go one step ahead and extend it

ey from this limit. This chapter and the previous one have now set the stage

v the real space renormalization group analysis that we do for DSC in the next




hapter 4

Real space RG for s = 1/2

limerised spin chain.

N the previous two chapters we derived O(3) NLSM as the effective low energy the-
r the semi-infinite dimerised spin chain (DSC) and found that the low eneTgy
ics of the latter in the strong dimerisation limit is exactly reproduced by the

ponding strong coupling limit of NLSM. Now we push this correspondence

e do & real-space renormalisation group analysis for DSC to throw light on NLSM
it strong coupling.

The RG scheme is formulated using a combination of hamiltonian and path
gral techniques. It involves integrating out spins residing on alternate dimers to
a systematic perturbative expansion in the weak inter-dimer coupling and in
erivatives. We compute the RG equations to lowest non-trivial order in hoth
upling and derivatives and then discuss the solutions. The RG flow suggests
e start with a more general model for which DSC is a special case. We repeat

_:I'ﬁ':rr the general model and finally do the mapping to NLSM.




The decimation scheme

A

The dimerised spin chain was defined in Section 77. The hamiltonian is,

H = Z ( (S11+Spa)* + 58Sy - 51+1.|) . (4.1)

the spin coherent states we can derive the path integral representation for the

______ on function,
Z=Tre™® fH‘D [fijq)e 5181l (4.2)
ction is,
by = Z —isQ[fy,] + Js* j:s ﬂ"rE G{ﬁn +1ipy)? + kg - ﬁH“) , (4.3)
I I

_"[1*1] is the solid angle subtended by the curve that fi(r) traces out on the

phere. Tt is given by,

Qla] = j drds 8.0, x O, (4.4)
[his can also be written as,

Qfa] = f A7 Ao (1), 11, (4.5)
ghere A, is the vector potential of a magnetic monopole of unit strength placed
il the center on the sphere described by fi.

The first RG step

gintegrate out the odd dimers in the path integral in Eq.(4.2) to obtain an effective
etion for the even dimers,
P 1
g = Z —istfior ] + JSA‘/ dr Z §{ﬁ21,1 +fiara)? + S5
T L T

0 is given by,

A4



ﬂxp{_S:ﬂf:f} = fHD[ﬁﬂHﬂ]exp (?:SZﬂ[ﬁgf,Hn]
fre I

A 1
=I5t [ dr Y —(n i ?
5 fn et EI:ng.r+1,1+n_u+l.2}

i

A
2 . - - - -
—Js / ffTE H{Ilzr,z'112.r+1_.1+ﬂgf+1,2'11ﬂ+:a,1})
o !

= H f D[, | D]iny] exp (isz.ﬂ{ﬁﬂ]
I i
P .1
—Jsﬂf d’ri{ﬁl +1ig)® 4+ Ky fpryng + fydigyn) | (4.7)
i

Therefore, computing S&77 involves computing the partition function of a two-
spin system in the presence of time dependent external fields. This two-spin problem

ean be expressed in the hamiltonian formalism as,

E—F[ml,m?] =Tr (Tﬂ—j,'f dr{hu—.l-.'ch.'n::l) : {-‘-LB}
¥ ; |
hiﬂl - 5|.1112['T} + Sg.mll::".l':], {4‘1[‘}
| we have defined,
Im;, = s ﬁf_..]_J (4.;11}
My = § 01412 (4.12)

iom now, we will concentrate on the s = 1/2 case,

s = § dimer system

malism for the « = 0 problem.




The hamiltonian hg is trivially diagonalised. We label the vigenstates by the

total spin quantum number, and its > component. Define,

S =88, (4.13)
';'Z'-uu we have,

SS|L, M} = L(L+1)|L, M) (4.14)

SHL, My = M|L,M) . (4.15)

The only possible values for L are 0 and 1. The singlet is the ground state with
y 0. The three triplet states are degenerate with energy J. From now, we will
et J = 1, i.e., all energies will he in units of .J.

We now construct operators that act on the singlet state and produce a triplet

and vice-versa. First define,

S]—Sg

L : (4.16)
xﬂ = Eﬂbc SgSIE E"-I:-l?}
Th ese operators satisfy the relations,
[hm ﬂn] e —f-xa {4-41'8}
[ho, %] = in® R
i iy (4.20)
A = 40 pine (421)
[hoy A% = -4 e
Ehu} _.f{ﬂr] — Aﬂi’ i {4,23}

@ (euclidean) time evolution of these operators is very simple.
A%r) = e A%YD) (4.24)
A = Aoy (4.25)
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These operators also satisfy the relation

1 )
.‘1“;‘1“ = uh (:I - 51.52) . I["-LEG}
'_ sing equations (4.24-4.26), The correlation functions of A A%t ean easily be com-
puted. We have,
(0|7 (A“[Tl}f{"il:?‘gj) 0) = e "B(n —5) + ey, — ) (4.27)

—_ E_lTI—?'El k {4.23}

._'.Z ol

F=—=g5 |  dndnaT(hum)h(m))|0) (4.29)

The 2-spin hamiltonian can be written in terms of the operators defined in Eqs.

1
a’llg = ‘E—SS {:‘1303
+ 1m-
M = ﬂ—zﬂ (4.32)
m = 1my— ms. {4.33]

jice 5°|0) = 0, Eq. (4.29) can be written as,

| F=—g }_l: dr, ﬁl dry (0[n® (71 )n®(72))10) m*(r1) mb(m) (4.34)
(4.16),(4.17),(4.20),(4.21) and (4.27) we compute this to be,

B —§ ]m iy f " e s ) (4.35)
b = H%z [:_drﬁmdt et m® (r+1/2) m®(r —¢/2) (4.36)
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For fields slowly varying over a time scale of ~ 1, we can expand m"(r +1) about

7 and develop a local derivative expansion for F.

414 TFixed points neglecting the time derivatives

_r'the moment we neglect the derivatives and get,
HZ o

= ——"f dT Iy .o {"—1'3?}
8 J s

Using Eqs. (4.6),(4.7),(4.11),(4.12) and (4.37) and relabeling the sites 27 — T, we

get the effective hamiltonian,

Hepp = Z (S11-Sr2 + K'S14.814 1) (4.38)
I

- K" 2
g = {‘_.-)} (4.39)
n solution to this recurrence relation is,
ﬁ'-u E
K% =0 (E) , L=2" (4.40)
there are two fixed points,
£°=0 and &* =2 (4.41)

unt (see Appendix B). Then we obtain x* = 0.61, which is still not very good.
Independent of the uniform chain being gapless, & = 1 has to be a fixed point
8 RG flow is closed within the one parameter space involving only & (we have

med this by neglecting the time derivatives). This is because x —= 1 is dual
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symmetric, i.e., invariant under £ — 1/k and RG flow must preserve this symine-

ry. Thus it has become clear that neglecting time derivative terms is not a good

approximation and we need to retain them.

= —%2 [: dr [m.“lf*r} m®*(7) + % (E}Lm“{r] m* (1) — m®(7) B,.m“{fr})

— d.m*(r) ﬂTm“[T}] (4.42)

iting in terms of m; and ms,,

il

R o8 1 : :
_[ml,mg] = %[ dr (_Z Emg 1+ )m, + %ml 1+ a:}mg) (4.43)

~

ﬂ}ﬂ = ﬁ?fu* {44-1}

We now have the result for S5/ defined in Eq. (4.7),

it

Sl = 3 F a2 8,00 (4.45)
I
fa ] 5! ~ H.i .. .
= f drz (E Z:[ﬂrlflj.ﬂ:]l2 + IE}E- (1-+ Bf}ln‘}H’l) . (4.46)
o I o

the above expession we have defined the renormalised coupling constant,

2
f i

K=— (4.47)

]

i effective action is then given by,

s <] I < 5 1
Sﬂff = f—m LETZ: E[a'rnin} - -EAmm{ﬁfu} ’ a”'ﬁfﬂ

i

1
+ gl + fip)* + J o2 (1+ Hf}ﬁp,l,l) . (4.48)
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the last step we have dropped the superfix */ * from the fields.

The system described by the action above is no longer & spin chain. It now
gorresponds to a system of charged particles confined to the surface of a sphere
With & unit monopole at the center. If we neglect the derivative terms coupling
‘meighbouring sites, the Hilbert space at each site has one representation of all half
odd integer angular momenta, J = 1/2,3/2,5/2,.... Namely, at every site we have a

mionic rotor. Thus under renormalisation, the spin chain goes over to a fermionic

otor chain (FRC). This can be understood qualitatively as follows. The degree of

edom at each site in the effective action corresponds to the motion of the original
Spin at that site and a block of even number of spins that have been integrated

it Thus we can expect many excitations with higher (half odd integer) angular

We therefore begin with a general fermionic rotor chain described by the action.
2

e Kys' i
S = -/_m dr [E ( 42 aTnI&-ﬂfnfﬂ == EA{nfn}-arﬂIn)

Tex

+ Z s (11“ Mg + Nyg. (K + ke af]ﬂﬁl,l )j[ (4.49)
1

e have introduced three coupling constants, #,, ty and k3. §' = 3/2 for reasons
will become clear later. This type of a model, for a uniform chian, has been
eviously considered by Read and Shankar [41],

The action for the dimer problem is,

e 42 &
B = f d—r[Z(“3; afnﬂ.arnﬂ-%mnuj.&rnn)

4 §%ny.0g + 57 Enu, mu] (4.50)
m; = {K-| -+ H-ja.?.} ﬂ.j’,._llg {451]
my; = (K + #207) npy 4 (4.52)

ab)



Tl

ie hamiltonian corresponding to the action in Eq.(4.50) is then,

il.lﬂr = -’lu o ir!-mg {‘-1-53}
1 1
= : ardg — = :
= o Z (J, 4) (4.54)
jii'fn! = |E|"rznl BT "-:'Ji Z .1, EI-LEIE}

"lu]{jlfml},(sz:m_z}} = Ejmgf[.}'l,mu}.I[.';'zfm-z}} {"1*55}
1 i 1
Ejgy = WZ (J&l:}u + i] - E)
iy

gith j, = 1/2,3/2... and m,, = — Ja--Jo The ground states are the four j, = j, =

=

3
5. When & << 1, the gap between the (1/2, 1/2) states and the excited states is

large. Iu this limit, to a very pood approximation, we can project the model into

2 1
(3:01|n? |}, o) = 79" =58 (4.57)

-S"

s to leading order in k3, we recover the two-spin system as the effective hamil-

1’13_”' = S].Sz -+ ZSE+II1“

sion relations to second order in the x's. They are,

(e
E{lwl-u B :

il oo (4.59)
2
[ri-1] (Hin})
Fig = 5 — + KTk, (4.60)
0 o () |
my D= pny g F Ky Ky (4.61)




42.1 The strong coupling fixed points

The recursion relations in equations (5.53), (4.60) and (4.61) can be solved explicitly

with the initial conditions,

H.Eﬂ} = Kij: Hén} = Kag, Ky = Kig (4.62)
The solution s,
i = gy (4.63)
kY = (al —1) i (4.64)
h:gm = tap + “z_]: sy {4.65)
m=0

bre L = 2" as before and @ = (1 + #1p/k2). Note that the flow does not depend

figg O Ky except for an overall additive constant to .

e

Ky = [.]1 Ko = U, Hy = ﬁ?.;[f’ﬁm: Hap, H-_aﬂ:l E4.ﬁﬁ]

iis corresponds to decoupled dimers. For any fyg < 2, the couplings flow to
I8 above fixed point. The larger the value of K10, the larger is k3. At gy = %
- not change but xy and consequently diverge. Thus the itermediate
upling fixed point, & = 2 obtained earlier now corresponds to the fixed point
=2, k) = 00, k) = oo). However, the recursion relations have been derived
approximation that ry << 1. So they are valid if 5} << 1. Figs. (4.1-4.3)
'_a_ flow of the couplings for different values of Kig With ke = ryg = 0. It
1 be seen that the above condition is indeed true for xy = 0.5 or less. Thus the
angular momentum states and hence the derivative terms can be neglected in
itegime. However, as we approach the non-zero fixed point, the higher angular
mentum states are important and have to be taken into aceount. Thus we need
0o higher orders in the perturbation theory of the dimer hamiltonian in Eq.
i3] ] n order to analyse the intermediate coupling fixed point.

i the next section we derive the NLSM for the general model to establish the

spondence between the RG flow for the above and that for NLSM.




T — VeT (4.67)

The action can then be written as,

- T

; [ o0 Sri!
g = —ifmd?'ﬁ[:nfﬂlq aq-]'iin"‘\/f'_ﬂ;a j:md'r Z_E_avnfq-arnfn

i -
+ Z 5’21'1“ dijs -+ Z Srzﬂf_ﬂ, {H-] + ‘5—2 ﬂjjﬂuﬁ] 1:[ {4{38}
[ I 8

. faa] o (¥
S = —%f dr Alng,). d.n;, +Jf_cg/ dr {ZS—E- S (VPN FO

— — fl:.‘l:

+ Z H;z (11“ e + Hlﬂm.n{HH 1) :[ {4.59)
i
e see that /iy scales out of the real part of the action, The path integral

en performed in the saddle point approximation in the large k5 limit, We

d exactly as in Section 2.3 and obtain the NLSM parameters.

2 al
= 21+ =& 4.70
g { +hrt) (P‘i’-j{-glﬁilfﬂg+81|‘:3+2}) {4? }
1
Ko 2
¢ e g 4,
: (m{Sl&;m;—]—Blﬁa—FZ}) ST
Ky
( e 2 i
/ e (4.72)

Ihe above derivation of NLSM is valid for large #y. But we are interested in

e where 3 is small. This requires a more careful treatment than what we

es may be different.




Discussion

s mmarise the results of this chapter, we started with the real space RG for DSC
and found that the system flows to a niore general fermionic rotor chain (FRC). After
we extended the RG scheme to FRC and finally did its Haldane mapping to
the NLSM parameters. Now we are in a position to translate the RG flow of
fiz and #y that we obtained in Section 4.2 for FRC to the flow for NLSM in the
I/g 0 plane. This is shown in Figs. (4.4-4.6), corresponding to different values of
an Thus we obtain the anticipated renormalisation of #. With successive steps of
fand g approach 0 and oo respeetively.

] uw let us consider the case of the semi-infinite chain. When the dimerisation is
ich that there is an unpaired spin at the edge, the fixed point would correspond to
sno longer a spin degree of freedom sinee 5 7 0. But, for small values of K3, 45 we
Section 4.2, we can restrict ourselves to the s = 1/2 subspace. Thus we still

an effective spin degree of freedom at the edge. This fixed point corresponds

5 the semi-infinite DSC demonstrates the following two generic features ex-
Beted of all U(N + M)/U(N) x U(M) Grassmann o models, in the context of the
(3) (N = M = 1) model.

® Renormalisation of § to integer multiples of 2.

. Masal edge excitations.
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SM in certain parameter regime. The RG procedure we developed is valid at

(dimerisation and thus we are able 1o access INLSM at strong coupling near

tised chain with an unpaired spin at the edge. Thus it would seem that we
i to do RG for the spin-3 model to access the said region. This in turn would
ving the spin-%' dimer problem which gets progressively more complicated
to higher spins. But there is a way to get around this difficulty. We will
in the strong dimerisation limit the spin-5 chain can be approximated with
ve 5 = % maodel.

is chapter, we first derive the effective spin-§ model. The RG analysis of
ious chapter is then extended to the effective model. In the s = 1 case, we

jise the effective model to estimate the gapless point.
3




5.1 Spin-s dimerised chain

| ili_,i_mjll.unian for the spin-s dimerised chain is,

H= Z[ {Srl‘l‘Sp +ES;2-SH.[1 i I:El.l:]

i=0.1,2...,25. Thus,

S1.81|LiMy) = Li(Ly + 1)| Ly M) (5.2)

bere, L, = 1,2, ..., 25 and M, = =Lt (=Lg+1); 0 (Lr—1)s Ly Then,

{Ly, M} = [ [ ®|LsMy) (5.3)
I

basis for the Hilbert space of the chain.

The effective spin-i model

om Eq. (5.2) we see that the singlet is the ground state, the triplet has gap equal
ythe L = 2 has a gap of 3 and the higher angular momentum states have larger
. 50 for £ << 1, the low energy excitations should be dominantly composed aof
e 1 l_;_ats. This motivates us to project out the L; > 2 states and take the low
igy subspace to be composed of the singlets and triplets alone, Thus the subspace
ned by the basis defined in Eq. (5.3) with the constraint that L, < 1.

ow have a collection of dimers in the singlet-triplet subspace. Therefore,

th dimer can be modelled as an effective system of two s = L spins, i.e. effective




_.'dimtars. The mapping being explicitly given by,

|TT} = |1:1}.-

1
[t = v_’ﬁf 1,0} + 10,0} ),

1 .
[it) = E[|I.H}—|U,U}}1
I'Hf) = |11'_1}'

1S mapping can be used to derive the effective hamiltonian in terms of the elfective
aperators which we will denote by S;.. It is clear that the total spin operater

spin-s dimer will project to the total spin operator of the effective spin-

P{S_“ +Sjg:|.P e gn +§f2 {5—1}

the projection operator has been denoted by . Since the hamiltonian in
has only nearest nieghbour dimer-dimer interactions, so will the effective

onian. The most general spin-1 dimer-dimer interaction is of the form,
FadS1a.-Sag (5.5)
tive model will therefore be a spin-3 chain with a hamiltonian of the form,

L= = I
Hepp = Z (E{Srl +Sp)* + ﬁuﬂsm-SrHﬂ) (5.6)
!

Schwinger bosons

ill use the Schwinger boson representation for the two spins composing the

[Za0s 2hot) = Baplor 1 @, 8=1,2 and a,0" =t,4 (5.7)

perators are,
1
S = S i, (5.8)

]’ that,

Ny (N,
Sa8a = (? + 1) (5.9)




N, =zlz, (5.10)
Thus we have the constraint,
Nty = 2s)ih) (5:11)

define the valence bond ereation operators,

P .
Vi= E(w T P e (5.12)

e 7 is the identity matrix and %, = 1,2,3 are the Pauli spin matrices. It

then follows that,

: L o .
1"“ = —E{ITEE-T“L,EULEIJIZQJE 1:513}
It can also be checked that,
[S-“,Hf] =0 (5.14)
(85, Vd] = ity (5.15)

0,0) = :,%n-z:}“m} (5.16)
L) = —=Viv o) (5.17)

"//EH f

there n = 2s, fy and g, are normalisation constants and,
24 |0) =10 (5.18)
falence bond operator algebra

compute the normalisation constants and the matrix elements of the spin oper-

etweenl in the singlet-triplet subspace, it is useful to compute the algebra of

gvalence bond operators. A straightforward computation yields,
. 1 5 ok
b [Wa¥l]= 5 (zI{T”T'“}zl + 2 (T ()T () %) 2 + 25“”) ~ (5.19)
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. N+1
Vavyl] = Al (5.20)
Vo, V] = a", (5.21)
[I{,,Lﬂ] = e (5.22)
- - (N +1 ,
[LL, H;T] = drxb( ;_ )‘-I‘-'EEML-SE. (523}
‘ ‘ere we have defined,
N = & + 212 (5.24)
S = 8,48, (5.25)
n = 5; -85, (5.26)

Ihe commutation relations between S, nand the valence bond operators are given

[sw;ﬂ] =0 (5.27)
(8%, V] = iesteyrt (5.28)
[n.“ﬂ Vil = vt (5.29)
[n“,lﬁf] = bV (5.30)

alisation constants

We will now use the valence bond operator algebra to compute the normalisation

mstants f, and g, of the singlet and triplet states as defined i Egs. (5.16) and

_..'.-_ L

= (0[Vav" |0y
{nllval__] (JV;—?T gl EFJ{J‘\F -+ 21 A=l 1 T“ lN—'r 2) ]ﬂl}
—{n+ I = —-{n+ Lin
g8 given by,

1 = fn—1
g = SOV VLV o) (5.31)
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Using the identity,
5

" 1. ]
ETu'zalTug-;-"g" * Edﬂ'lf?:‘i?"aﬂ‘d = f}mﬂadﬂudd {532}

Vi = (ﬁ.r, +2) (%, +2) =LV

. Z
= (i}—“) VeV (5.33)

e have used the lact that we will a] ways be in the Ny = N, = N/2 subspace.

thien follaws that,
¥ +4)’
- + R | e =
— ((T) - hhf) v o

== % (l:'n + 1}2 Ty = fu) = ki 2}

G|

P 5§

1
3 I

'The effective model

0w compute the matrix elements of the operators n = 8; + S, Angular
mentum conservation implies,

(00[n|00) = 0 (5.34)

d under parity (S, ++ S,). Hence

it changes the parity of the state that it
1. This implies,

(1a|n|1B) = 0 (5.

n-+2
il = J.
n*|00) = n = |Lat)

ire have,

(1b[|00) = 6,5 21/ f['“"—;ﬂ — (004 1a) (5.37)




omparing the expressions for spin-; and spin-s, we get,

PSP = a(s)S) +b(s)S, (5.38)
PS,P = b(s)S, +a(s)S, (5.39)
as) = %+ S[""‘;‘” (5.40)
B E__ s{s+1) =ss
bs) = 3 3 (5.41)

he coupling constant matrix & for the effective hamiltonian as defined in Eq. (5.6)

s a(s)b(s)  b(s)* (5.49)
a(s)*  a(s)b(s)

s given by,

The effective model that we have derived is a general ladder consisting of weakly
toupled dimers. Tn Section 2.4 we derived the NLSM for this system. In the next

section we extend the RQ scheme that we developed for the dimerised chain in

Chapter 4. to the case of the ladder.

1 .
H= Z EI::S“ -+ SJ‘:}J + KagSia-8rn g {5+43}
'8

K = h.n*i—h-,'ﬂg.

—
=)
|

1 ;
;(Sl + SE}J : h‘inl‘ = Z Su-mﬂ

and m, = SZ{mnﬂnHm—i—rsLﬂn;_w) (5.44)
| a
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Now we can use the results from the previous chapter to integrate out the dimer.
To leading arder in derivatives and  (sce Eq. (4.36)), the interaction term in the

effective action is,

s = hT] / dr m(r)m(7).

Sl = [ drmi(r) Puymy(r) (5.43)
1 -1

P = (5.46)
= 1

ituting Eq, (5.44) in Eq. (5.45) we get,

,..
_b‘l"
Sfr{!'f = T /d’." ({:Mipﬁjngn;_;_] a1 5T+ {HFEi}nﬂﬂ;_lu.ﬂf_] g

+ 2(kPr) sty |:r.~n!+|,|'i) (5.47)

Then the effective interaction hamiltonian between two dimers is,

. =1 1
‘!’}j, = z (_LL_ ((x'Pr) + [!-:PHJr])L‘E S1a-Srp — ﬁ{EFN]uﬁSIn-Srﬂﬁ) (5.48)

3.3.1 The recurrence relations and the strong coupling fixed

point

:"";. the case of DSC, RG has now generated not just inter-dimer terms, but a
--mﬁpliug the spins within a dimer as well. From Eq. (5.48) it follows that the

@ hamiltonian obtained after integrating out alternate dimers s,

Hyp = (14 F)8n.Sp + FosSiaSiius (5.49)
:

1
f = —E ({H.Tpﬂ-i- H.P."E-T}lg + {H:fFH,-F Hpﬁf:lgl} (545{]]
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1
R= kP (5.51)

The factor (1+f) in Eq. (5.49) can be absorbed by rescaling the time (temperature)

i0 that the effective hamiltonian has the same form as the original one (Eq. (5.43))
1 .
H:Z'E-[:S“ +S;2}i+ﬂfaﬂs;n,5;+1g (552}
[

thus under the R.G transformation x goes to,

- =1 :
A = mhpﬂ {553}

It is convenient to analyse this equation in a basis where P is diagonal. This is

ved by the following transformation,

; 0 .
0 0
1 1 -1
V= 5.55
V2l o (3:59)
e _.’his transformation, & becomes,
s 1 Ko ki )
Ul == (5.56)
Hea — kg
ho = _Z{_l}&-i-ﬁﬁ'ﬂﬂ = {E'li "I"‘ g — 1 — HE!}
exd
S Z:{_] }aﬁﬂ.ﬂ = (H‘EJ_- “F Kigg — Ko — h'-u}
afd
g = E{_lj'ﬂﬁqﬂ = (Kig + K3z — Kay — K1)
ofd
W= E Kag = (K11 + K12 + Kyy + Kaa) (5.57)
exid
then computed using Eq. (5.50) to be,
—hglky + K
= p= 2t ) 21 2 (5.58)

GG




, 1

Ky = mﬁﬁ (5.59)
o= m—i—ﬂﬁum (5.60)
Ky = 2—_{~11+—”Hnmz (5.61)
my = _m’“”z (5.62)

It can be easily seen that x, = 0 is a stable fixed point.

54 RG flow in the 1/ — 0 plane

Now we have at our disposal spin models, through which we can access NLSM at,
strong coupling near # = 2mm for all values of m. The spin model corresponding
10 a particular m is the spin-2 dimerised chain. In the strong dimerisation limit
" which corresponds to the regime we are interested in) these models ean be well
approximated by an effective s = § ladder. The real space RG for the ladder shows
that (1/9 = 0 . 6 = 2mm) are stable fived points. At these points we have an

titctive edge spin of magnitude . The expected RG flow in the 1 [g — 8 plane is

in Fig. 5.1.

Effective model for s = | chain and the gapless

points

= 1 in Eq. (5.42) we get the effective coupling constant matrix to be,

-42 1
1.73 —.42

=i
Il
=1

(5.63)

S

aubstituting for ;; in Eqs, (2.59-2.61) we get the NLSM parameters for the
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'l.lr .|r
Q/ T s 37 4
f

¢ 5.1 The solid circles are the critical points at # — (2n+1)7 corresponding to

the half-integer spin uniform chains. The solid squares are the points with a eritical

fige. The real space RG for the spin models aceesses the circled regions,

tffective model as,

. {14183 .

& a %\/E,GTN.“ + 1.83k) (5.65)
= 1.63x

(B 5.
o ¥ lam (5:66)

'_g know that NLSM is gapless at # = 7 [41]. 8 for spin-s dimerised chain i

o
0 = dxs 0.67
7T‘rl+H { }

L{3] have done a DMRG study of the spin-1 dimerised chain and found fge = D.6:
fus the NLSM result is well off the mark.

Now we estimate the gapless point by equating @ for the effective model, given
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i Eq. (5.66), to .

f; =7 = k=107 [558}
\The effective model thus gives a better estimate of the gapless point. Right now it
Uisnot very clear why 5. estimated win the effective spin~% model should be better

Cthan that estimated directly. Afterall, in both the cases ultimately we are using the

same Haldane mapping,

Pati et al also found that if a frustrating next nearest neighbour coupling is

:_'f_glif

* his leads to.

abk + (a* + b)) bk + Zaby

= . . (5.70)
a'r+ 2aby  abi 4+ (@® + By
— 428 +1.83y 0.1k — 83y
L73k — 83y =42k +1.83y
‘l:au be computed Lo give,
- L63x
& = 2m 5.71
"1+ 1.83% — 1.667 (5:71)
This gives,
ke = 0.7 — 1L.16% (5.72)

The gh k. now depends on -, the frustrating coupling, the depedence is not in
'ement with the DMRG result where #.. increases with ~, Thus it is crucial to
alenlate the effective hamiltonian to a higher order for a better understanding of

lie gapless points,
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In Chapters 2 - 5 we studied dimerised SU(
0(3) NLSM. The latter is Ny = Ny =1 case of the Grassmann ¢ model defined on

the manifold EHT’;S’,TJ ik It has the action,

2) spin chain and its connections with

1 I 1 : i0 |
D= / i ot ETI [E&dﬂ:ﬂ;dﬂ?@ + Hﬂ;Qﬂ:Q - EQQIQE,;QJ {'ﬁ.‘]_}

. Q € L 1'||I'1+.|'\r2
& HN I B ATY

In the O(3) case, we used SU (2) dimerised spin chain to daccess the strong cou-

pling regime of NLSM. In this chapter, analogons to the Haldane mapping for SU/(2)

it chains, we derive the Grassmann o model

as the cffective long wave-length the-
iy for dimerised SU(NY spin

chains. Thus the latter can be used to used to study
LSM at strong coupling,
We first introduce Grassmannian coherent states and write the path integral
presentation for the system in that basis, The

n we do the standard change of
i _IES and intngrating out

of fast luctuations to finally obtain NLSM in the
tinium limit,



6.1 Grassmannian coherent states

6.1.1 U(N, + N,) generators

vr a=10,1,.. (N*~1) be the generators of U(N) in the fundamental repre-
N

sntation [42]. A} is defined to be the identity matrix. We then have,
(X M ] = i, (6.2)

Bhere ¢ = 1,2,..,N? — 1 and fo are the SU(N) structure functions. We can

iways choose the basis where,

tr(Am) = @
tr{A“Ab] = fiub

bra=1,2,..., (N2-1).
Let N = Ny +N,. Then for our purposes it is convenient to label the U( N, + Na)
generators as follows. We first define N? + N2 matrices with non-zero entries only

! e top left N} x Ny and bottom right N, x N, blocks respectively,

I:)]ITBJ“T o'yl = ‘Eplﬁjfl{}*i’t}na‘ {GE}
{)lj'ujnp alpr = 513—1‘5;"—1{‘3‘%-’:]”# [E"”

i the remaining 2V, N, generators, NNy can be chosen to have non-zero entries
uly in the top right Ny % N, block and the other Ny Ny to have non-zero entries

'i the bottom left N7 x Na block.

{’\‘+d].ﬂr}1 a'pt X Jplﬁj:’—l {G.E}

AT = (et (6.6)

F’* M and A= form a basis for the (N +Na)* dimensional UV, +N,) algebra
the fundarental representation. Hereinafter, \'s without explicit subscripts will
ferto V) + N> dimensional matrices.

éﬁue

A=Al _ 80 (6.7)
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It can be checked that,

[A,518] = 0 (6.8)
[A3% = 0 (6.9)
A AT = 9)te (6.10)
(A, A%

[A A7) = o) (6.11)

{"s'r’&wa:x“p'} = Oat by (6.12)
a = 1,2, M me=1

= 1,2 ..N; p=-1

Uap|0) = 0 (6.13)
This Hilbert space carries a representation of U(Ny + N;). The generators are

given by,
J = ‘tl._'l_lrtp{}nar:lnp a'p! 'r"jlﬂxp.l [ﬁl-l:]

fhere - runs over 1, |, + and —. These operators do not change the total number of

eplica fermions and therefore can be block diagonalised into subspaces defined by,

(O + T |p) = n|d) (6.15)

eh n-replica fermion subspace forms an irreducible representation of the U(Ny +
gebra, corresponding to the fully antisymmetric product of n fundamental
ntations [42].

We denote the U(N; + N,) matrices as,

T = P70 (6.16)

e 0°7 parametrise the group elements, The corresponding operator in the replica
mion space is denoted by U(T),

U(T) = e"mo™ (6.17)

T2




6.1.3 Coherent states and the path integral

Consider the replica fermion system with the hamiltonian,
H=w(J - J%) (6.18)

the ground state of the system is then,

GS) =[] wi_,j0) (6.19)

Since the hamiltonian does not change the total number of replica fermions, under

(7T J%)|6) = Nylg) (6.20)
EEI’1

JUNGSY = 0 (6.21)

JHGS)Y = 0, a#0 (6.22)

JHGSsy = Nas) (6.23)

thus the little group of this state is 7 (M) % U(N2). The coherent states can

W constructed using the standard procedure [40]. The states are in one-to-one

wrespondance with points on the grassmanian manifold, U(N; + No)/(IT(N,) x
labelled by,

Q=TT (6.24)

ey are given by,
Q) = U(T)|G'S) (6.25)

0 we derive the standard properties of coherent states.

lesolution of identity

NiIN!
/ dQ |QQ)| = NI:M‘:}TI (6.26)
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Proof: Let U be an operator in the N, particle sector representing an element of
U(N; + N3). Then,

U f dQ 1Q)(Q) = j}s@* @NQ| U ;YU

:_'Ere we have made the transformation UjQ) = (@), By Schur's lemma, any

gperator that commutes with all the group elements in an irreducible representation

As

i proportional to the identity operator. Thus,

f i [QNQ| = ¢ L.

Taking trace on both sides, we get,

. , ; 1+ Np)!
I = ¢ % dimension of the N, particle sector = ¢ M
NN, !
..... N]_]l‘l'l'rzl
0= ————
{I‘\"l + J""-rgl_]!
‘we have the result.
Expectation values
ar l gl 0r
(QII1Q) = =5 Tr (\*Q) (6.27)

QII*IQ) = (GS| U ] X U |GS) = T3 Ty A, (GS|l|GS)

rotation,
UMhU = Ty (6.28)
UMIU =T (6.29)
1
(GS[ili|GS) = 51— Ay (6.30)

ating that Tr A* = 0 and using Eqs. (6.24) and (6.30) we have the final result,

(@10 = 5 Tr (1°Q)

T4




(Q +40Q|Q) = exp (%Tr{T“:ETM) (6.31)

(Q+0Q|Q) = (GS|(UT + sUMU|GS) (6.32)

TH+IT =T =T4+7T g S
¢ 9 is an infinitesimal matrix. Then we have,

T-16T =iy . (6.33)

Uarrespondingly,

Gy

U+ 48U = Ue' |

here 4 = 1} v;;16;. Then,

SUN U = —iy = —f (T16T) 50, (6.34)
I__‘tuting Eq. (6.34) in (6.32) and using Eqs. (6.28) (6.29) and (6.30) we get,
(Q+8QIQ) =1 - 5 Te(T~4T)(1 - A)

i 4 suitable choice of gauge, the first term in the above equation can be made 0.

| '.-| IIHVE,

(Q+6Q|Q) = exp (% Tr{T‘lﬁTﬂ}) (6.35)

14 Correlation functions

B fenerating function,

O

It

Z Bt} TeT (e‘f‘fﬂm'")
_ f D[Q(r)] el 43 AT 0. )~ tr ()t (6.36)

Th




B(toc) =

i' Is convenient to compute the correlation functions in the operator formalism.

he feuchdean]l equations of motion are,

Jrn- [Ju;r HJ {E.E?]
equations (6.8-6.11),

8-ty = 0

a,J*(r) = 0

a‘r.fa'!'i-r} = —EJE-I-

8, 0% (r) = 4240

fliich have the solutions,

chain

8 J%s are the SU(N) generators.

JMr) = Jo(0)

JE ) JED)
JH ) JoH e
Ju_['?'} J&—{ﬂ}e+2wr

ing these solutions, all correlation fanctions clearly can be reduced to computing

of products od the U (N, +N,) generators in the appropriate representation.

Haldane mapping for dimerised S{/ (N) spin

s section we derive the Grassmann o model as the long wave length effective

iy for the dimerised SU(N) spin chain, The Hamiltonian for the system is,

H= ZJ“J” il (6.38)




1 the Fock space of N} species of fermions with chirality +1 and N, species with

=, that we coustructed in Section 6.1.2, each particle sector carries an irredueible

fepresentation of SU{NV), where N = Ni+Ny. In the Ny-particle sector, the coherent

i 2 . H . I
Maies are in one to one correspondence with the Grassmanian manifold, mﬁ%’%%

the eucledean path
al for the system. Following the standard procedure (see Chapter 2)

is representation, we use the colerent state basis to write

, we obtain

1 | 1 ,
8= fd?‘-z ETI' (@nQmn + 5QpQry 1) — :?*IZ:Tr Tl o Trah (6.39)
I E

e LN+ V4
e Q € 7)o

Change of variables

W, similar to the SU(2) case, we split the field into a slowly varving part and the

it that Huctuates about it,

{A%} be the generators diagonal in the chirality index and {4}

the off-
al ones. Define,
Qi = Te"Ae 7! (6.40)
(Jy = —Te A 7! (6.41)
g = AT (6.42)

ere m — 70a

We now caleulate the different terms in the action in terms of the pew variables.

e first term hecomes,

Tr ¢h)s = 8Tr #* (6.43)

i we have made use of the result Tr TATA = =Tt 72 Before rewriting the
Edimer term, we first take the continuum limit.

2
Qraldro) = QnQn + aQpd,Qp + %Qmafﬂ?n + (6.44)

REas. (6.40-6.42),

".[.'1' QEEIQJ. = —’I‘I' anQ + 4i Tr Qﬁ:,@?‘r {Eh-lf)]

i




g

here ™ = Tw1~'. Using the relation Tr Q90 = 0 we get,

Tr 28,0 = 4iTr (Jo.0x
Tr aszale = -Tr ﬂ:'@&z@

.ﬂL = r [1 == iF}T_l{I"}ET‘f' iﬁ:T?r + 'E.Taf_ﬂ'}ﬂ.
= [} T_EafTﬁ + ¢ Tr T_IagT['ﬂ'1 ‘!ﬁx]

1 + s, only odd powers of 7 appear.
ﬂl -+ ﬂz = TI'[];‘I', Q]ﬂtT P

1.2.2 Effective action

f;f.‘:.l; (6.43), (6.46), (6.47) and (6.49) in Eq.(6.39), we get,

fhe rotated generators as,

A = T
§s = Tl
ﬁ':'ﬁ'“ﬁﬂ

action can then be written as,

S= fd.-n dt (gTr 02Q0:Q + 2(1 + k) w7 + W“P“)

Po= Tr(mc;rax@c?“ — i[d°, QJ&TT”)
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f dz dt Tr (2(1 + )t 4 ikQ0.QF + EBIQ&IQ = i[7, Q1T T‘l)

(6.16)
(6.47)

(6.48)

(6.49)

(6.50)

(6.51)
(6.52)

(6.54)

(6.55)




Tr QOQA* = Tr(AT'ATAN + OTITA") =0 (6.56)
'.'f';"‘- A% = 0. Similarly,
Tr 2QN = () (6.57)
QIQ = §* Tr(QaQs") (6.58)
9Q = 5 Tr(60s") (6.59)

tom Eqs. (6.58) and (6.59),

{

D PPt = K Tr0,00,Q — TraQ0,Q + 25 TrQ8,Q00 (6.60)

inally integrating out {7°} and using Eq.(6.60) we get the effective action as,

W s
Szfr..t';r. dt ( ey

1

-+ m TFﬂ:Qf}LQ

M

T ii+m ¥ Qﬂ*QﬂEQ) e

515 the action for the Grassmann o model. We can see that the o model param-

B are independent of Ny and N,




Chapter 7

Generalised Shastry-Sutherland

’delS

ry-Sutherland model (SSM) is defined on a square lattice and has the following

1 ._t.,ﬂnja_u:

(i) [, d]
ere (, ) indicates nearest neighbours and [,] indicates the dimer bonds as shown
e, 7.1,
— — L ]
- *
Y *
S .
~ "a
k1 LY
bl LY
* k1
b Ll
L .
@ - K =1
1"
J.
vf
"\ £ L d
\'ﬁ J \'i
L w
b Y
b LY
b ~
b LY
LY bl
LS b
. L
.
\-. & LY

Figure 7.1: Shastry-Sutherland model,
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In this chapter we give a generalisation of $SM to an arbitrary number of di-

mensions, . The aim is to use the d-dimensional model to do a mean field theory

ey &

jiltich becomes exact as d — oo. Then one can do & systematic 1/d expansion about
= .

_ﬁﬂfe first give a geometric prescription to construct generalised Majumdar Ghosh
wodels (GMGM). Using this we construct a model in 3 dimensions. The construction
then readily generalises to d dimensions. We also discuss the experimental feasibility
ofthe 3 — d model. Finally we do a mean field analysis, valid for large d, to study

Néel-Dimer transition.

Generalised Majumdar-Ghosh models

We define a class of models referred to as generalised Majumdar-Ghosh models

|

GMGM) as follows. Consider Hamiltonians of the form,

H=>"Juhy (7.2)

Where the sum is over all passible sets of three points formed by the sites of the

aitice, J,'s are arbitrary positive semidefinite couplings and h, are given by,
Jin = 8(r:).8(r;) + S(r;).8(ry) + S(ry).S(r;) (7.3)

S(r;) and S(ry) are the spins at sites r;, r; and rp respectively and n labels
gset formed by them. A particular r, can be a part of more than one h,,,

0t was noted in [22] that if, in the set corresponding to iy, two of the spins are
g a singlet, then the state will be a ground state of k. It was also pointed
t hy, could be more general than given above. It could be spin anisotropic,
ithree terms could have different coefficients and the spin could be arbitrary. In
fable parameter ranges the dimer state will remain the ground state [22, 43].
ittice is said to be dimer-covered when all the sites have been grouped into
y exclusive pairs. Each pair is called a dimer. Suppose that it is possible

limer-cover the lattice in such a way that the set of three sites corresponding

81




Jn— 1 IJn+ 1

Figure 7.2: A generalised Majumdar-Ghosh Chain

l

of assigning the non-zero couplings to the sets such that a dimer covering of the
ahove type is possible. We will now give a class of solutions to this problem which
taturally gencralises the SSM to arbitrary dimensions, For simiplicity, we will work

ith hy, as in Eq. (7.3) and with & = 1/2.

1.2 The generalised SSM

- * * 3 -~
iody diagonals are assigned as follows, The sites are denoted by, x = ¥t Ty

Q-takﬂ integer values and &, are three orthogonal unit vectors. The spin S(x) is

vix)=x+ D(x) (7.4)
3
D(x) =) (-1)™1g, (7.5)
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- where we define @y, = ;. Two such body diagonals are shown in Fig. 7.3.

Note that D{y) = —D(x) as it should be, since if S(x) is paired with S(y),
then S(y) should be paired with S(x). All the four body diagonal directions oceur
m equal numbers and the VBC has cubie rotational symmetry, It is not parity
invariant, the other parity choice being given by replacing (=1} by (=1)%-1 in

Eq. (7.5).

Figure 7.3: The 3-d lattice containing 18 sites, depicting the diagonals along which

dimers are formed

flagonal) and hence is the exact ground state of Hamiltonians of the form given in

tg. (7.2), The Hamiltonian can be explicitly written as,

3
H = E E J(x, p)h(x, p) (7.6)

® p=l

hiere,
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hlx, ) = S{x}.S(z[xTuj)+E(z[x,,u]l).5(}']—I—S{y}.S(xj (7.7)

2(X, 1) = x+(-1)%"e, (7-8)

2(x, 1) and x form the 3 edges emanating from x in the direction of the body
diagonal Dix) and y is given by Eq. (7.4). J(x, pt) is the coupling associated with
the triangle formed by x, y(x) and z(x, p).

Consider the simplest case when all the couplings are equal. Le. J(x,p) = J.
The triangle corresponding to h(x, ) contributes a strength J to the edge it contains.
ach edge is contained in exactly one triangle. Thus all edges have bond strengths
J. Each triangle contributes a strength J to the face diagonal that it contains.
Half the face diagonals are contained in exactly one triangle each and the other half
are not contained in any triangle. Thus hall the face diagonals have bond strength
Jand the others have no bonds. Fig. 7.4 illustrates the situation. Finally, each
langle contributes J to the body diagonal. Half the body diagonals are contained
. six triangles each and hence have hond strengths 6.7 and the other half have 1o
bonds. See Fig: 7.3.

The generalisation to higher dimensions, d = 4.5, .. is straightforward, Simply
teplace 3 by o in all formulas from Eq. (7.4) to Eq. (7.8). All the 2¢-1 body diagonal
::L.. ections ocenr in equal numbers in the d dimensional VBC. The model is a simple
:-;-. per-cubic lattice with bonds of strength J along all the edges and along one of the
e diagonals of each (d — 1) dimensional face, There are also bonds of strength 2d.J

dlong one of the body diagonals of half the hyper-cubes. The construction ensires

It can be seen that the madel reduces to SSM at o — 2, shown in Fig. 7.1. The
diagonals are given by Eq. (7.4). The strength of the bonds along the diagonals is
Al d = 2 is a special case in that the (d — 1) dimensional face diagonals are also
¢ edges. Thus the strength along the edges is 2.J, i.e., the strength of edge bonds

are half that of the diagonal ones. Thus we have recovered the 2-d SSM.
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Figure 7.4; A cube containing diagonal bond, All the bonds are shown
7.3 Experimental feasibility of the 3 — d lattice

Now we come back to the d = 3 case. As it stands, it is not very physically realistic

since the stronger bonds are between spins further apart. The same is true in the

We move all sites along the body diagonals with non-zero bond strengths. The

new sites are then,

R(x) =x+D(x) (7.9)

L




_-Figure 7.9 A deformed cube. Now the strongest bond is between nearest neighbour

sites

translations by two units. After deformation, the lattice periodicity is also halved.

It remains a cubic lattice but with 8 sites in a unit cell,

The lengths of the edges, face diagonals and body diagonals can be computed
and are plotted as functions of s in Fig. 7.6. As we can see, for & more than around
T or 5o, the edges and face diagonal with bonds become almost cqual in length,
are longer Lthan the body diagonal with the bond and shorter than the other face
onals and body diagonals. When s=1 the body diagonal becomes of zera length,
The rthombohedron is then squashed into a hexagon lying in the plane orthogonal
o the body diagonal.

We will now examine the models away from the exact ground state point at
-+ co. We put the bond strengths along the body diagonals equal to d.Jp /2, along
gdges equal 1o Ji/2 and along the face diagonals to Jp /2. Actually, the VBC is an
exact eigenstate when Jp = Jp = J' lor all Jy [44]. Tt is proven to be the eround
date when J' < 0.5.Jp. However, the ground state is Néel ordered for Jp=0=Jp.

50 there will be a phase transition somewhere. The location and nature of the
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tigure 7.6: The various bond lengths as functions of s. £, is the length of the edpes,
lﬂ that of the face diagonals containing bond and { sz corresponds to face diagonals
without bond. 1y is the length of the diagonals along which dimers are formed and

g, Lz and Ig correspond to body diagonals without bonds,

transition at d = 2 have been topics of much activity [28, 25, 24, 26, 23, 36)].

74 Mean field theory for dimer-Néel transition

Since the VBC is the exact ground state in some parameter range for all d, it is
dear that mean field theory in terms of the spin variables fails even as d — oo,
This is because one of the hond strengths grows as d and so the interactions cannot
be approximated by an average field. However, if we take the dimers, i.e the two-
5pin systems on the body diagonals to he the basic units, then each dimer interacts
with ~ d of the dimers around it with bonds of strength ~ 1. Thus the mean field
theory in terms of the dimer variables is exact at d = 0o in this class of models.
erturbation theory around the mean field Hamiltonian then vields a systematic 1/d
spansion for the fluctuations. We will now use this mean field theory to explore
%-1" physics at large d.

We label the spins as S;,, where I labels the positions of the centers of the
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dimers and o = 1,2 label the two spins that form the dimer. The Hamiltonian can

be written as,

Z Jra, 05510518 (7.10)

idJ ;
H= EJ TD{S“ +Spa)* +
e i

t\:III—‘

Where J io,4 denote the edge and face diagonal bonds. The mean field Hamiltonian

il J -
Hyr = E 1” (Sit+8p)” + E Jr0,08010.85 — = E Jriaasbrabys  (7.11)
7

ladf IJ:': S

The self consistency Eqgs, are then,

by = (S1a) (7.12)

In different parameter regimes, the VBC as well as a variety of other phases
e possible. The 1/d expansion, which is valid in all the phases can he used to
yse the phase diagram. Here we study the Néel-VBC transition at large d.
5. ere is a gualitative difference between odd and even dimensions and we treat
them separately,

In even dimensions, the dimer lattice is bipartite and both the sites of a dimer

have the same parity. The parity of a dimer is defined fo be same as that of its

sites. The Néel-state is described by the ansatz, by, = Prbz, where Py is +1 on one
ab-lattice and -1 on the other. Then the mean field Hamiltonian is,

, dJ )
e =5 (—”{5“ +S12)* + P2dJ'b (S5, + S5,) + M.{FJ*) (7.13)
i

.I ere J' = (Jp + Jp) /2. For all values of o = J'Jp, all the dimers forming
f:glets, e, VBC, is a mean-field solution with & = 0. The state has energy 0,

When o > 1/2, the Néel state is a solution with b = 1/2 and has energy,

NdJp

ol —(1-a) (7.14)

where N is the number of sites. However, this solution has lower energy than the

UBC only when a > 1, Thus we get a first order transition at o = 1 at d = co.
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Now we compite the leading order correction to the ground state energy in the

Néel phase by treating (H — Hyp) as a perturbation. We get,

_ NJp I

Y
1 (“i“ k)= %(4.:1- =g 5}) (7.15)

E

At d = 2, the transition now oceurs at a ~ 0.8, More sophist
=2 [26, 2

icated caleulations at
8] put this number at 0.69. There are indications that the transition
- may be second order [36] or that there may be an intermediate phase [25, 24, 26, 23].

In odd dimensions the two sites of a dimer are not of the same parity. By

tonvention, we assign a = 1 for the odd site and & = 2 for the even site. Then the

Néel ansatz is by, = (—1)"hz. The mean feld Hamiltonian is then given hy,
dJ :
Hold = Z (_ZE (811 +8p2)* + 2dbAT (83, — 52,) + znzb?a.f) (7.16)
7

Where AJ = (Jg — Ji) /2. In the ground state the dimer wave function is given by,

W) = cos (6/2) [0,0) + sin (#/2) |1, 0) (7.17)

ere in [, m), | is the total spin and m the = component and

sind = 20 1b|/(1/J2 + (8AJ[b)2) (7.18)
The self consistency equation ( 7.12) reduces to,

AAT
—_ — ] 7.19
VT3 + (8ATh])? (7.19)

Thus the transition oceurs at Jn

= 4AJ. The sub-lattice magnetisation, |b| goes
wontinuously to zero at the transition as ~ (L= (Jp/4AJ)Y2. The interesting thing

s that unlike in even dimensions, the transition point depends on the difference of

fp and Jp. So the VBC ean ocenr at relatively low values of 1,

The different physies in the even and odd dimensions arises from the fact that the
o spins on a dimer belong to the same sub-lattice in former and on opposite ones
i the latter. Consequently, the dimer wave-function in the VBC and in the Née|
slate have the same value of 5%(=0) in odd dimensions whereas in even dimension

¥ =0 in the VBC but §7 = +1 (on odd and even sub-lattices) in the Néel state.
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__.in-:u the 57 symmetry is unbroken in hoth the phases, the mean field Hamiltonian
always conserves it. Thus in even dimensions the VBCO state cannot smoothly transit
10 the Néel state and we get a first order transition whereas in odd dimensions it
an and we get a second order transition.

A remark about the scaling of the diagonal bond is in order here. For the dimer

diagonal bond is proportional to AJ = (26522} and can be made arbitrarily

1 ib}r.-.sujtahle choice of Jg and Jp.




Chapter 8

Exact magnetisation plateaus for
spin-s models
In this chapter we study the response of certain frustrated systems to an external

magnetic feld. We first do the mean-field analysis of the generalised SSM in o

dimensions.  After that we generalise the results of some exactly solvable spin-%

models to the case of higher sping. s = 5. We then argue that, in the case of higher

pins, there are two different mechanisms by which the system gets magnetized.

8.1 Magnetisation plateaus of generalized SSM

The mean field equations can be solved in the presence of an external magnetic field

B. The mean-field Hamiltonian in the presence of B = Bz is given by,

. il.J
Hyr = z T”{Sn +8p)% + Z Jrasabra. Sz
o oA
" I
= BY Sia=5 Y Jiausbiabis (8.1)
lov T Iaudf

We concentrate on the regime where the VBC is the ground state, in the absence
fB. A state in which one of the dimers is excited to a triplet with §% = 1 and the
est are all in singlets is a self-consistent solution of the mean-field Hamiltonian of

1. (8.1), with by, = 0 [or those dimers in singlets and by, = %2 for the one in
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triplet. The energy of this state is d.Jp/2 — B. Thus as we increase the strength
of the magnetic field, when B > dJp/2, it is energetically favourable to excite as
many dimers as possible into triplets pointing along B, but no two of them being
connected by a bond.

In even dimensions, nsing the fact that the lattice formed by the dimers is bi-
partite, we shall now show that the maximum fraction of dimers that can be excited
without any two of them being connected by a bond is 1 J2

Let us start with isolated dimers with no bonds connecting them. Now we add
edge bonds such that every dimer is connected to one and only one other dimer,

This can be done as lollows, As mentioned before, bath the sites of a dimer have

the same parity. Each coordinate of the two sites will be differing by +1 or —1.
Choose an even dimer and pick ont the site with odd xi-coordinate. Put the edge
'_lmud from this site in the positive z-direction. This way every even dimer can
be uniquely connected to one and only one odd dimer. Suppose these were the
anly bonds present. Then the configuration that maximizes the number of triplets
Without two of them being connected is where in every pair of connected dimers one
put in & singlet and the other in a triplet. Now the original model can be obtained
by adding the remaining bonds. But in the presence of additional bonds also, each
o the pairs that were initially connected can at the most have one triplet, Thus
the maximum fraction of dimers that can be excited without auy two of them being

ponnected by a hond is 1/2, This upper bound can be satisfied by putting triplets on

with by, = 0 for those dimers in singlets and by, = 37 for those in triplets.
The state with the remaining singlets also being excited into triplets is also A
mean-field solution and has energy %{di p/2+dJ' — B) above the half-magnetized

ftate. Thus when B > dJ p/2+d.J" all the remaining dimers are excited into triplets
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seen that out of the 4d dimers that are connected to

a particular dimer only 4 are
of the same parity. Since the eritical B, at which it is energetically favourable to
:I_:v'e isolated singlets, scales as d, this difference between odd and even dimensions
isinsignificant at large d.

For both the cases, there is a plateau at 1/2 magnetisation for dJp/2 < B <
Ulp/2 + d.J'. At stronger fields, the system is Tully magnetized. The 1/2 plateau
torresponds to all the dimers on even sites in the triplet and the ones on the odd sites

in the singlet state. At d = oc, the dimers have only nearest ueighbour interactions,

Previous work [28, 45, 34, 35, 36] indicates that the othor fractions are due Lo longer

interactions induced by fluctuations. Thus it s reasonable that only the 1/2

platean occurs at d = oo,

8.2 Gelfand ladder

is section we analvse in detail, the prototype model which can be solved exactly

ithe presence of a magnetic field - the Gelfand ladder. This then readily generalises

]

0the other models since the basic mechanism is the same,

-1 ! I+1

Figure 8.1: Gelfand ladder.

_"e' hamiltonian for the system is (See Fig. 8.1)

¥

1
3 |55+ S+ K8+ S1) - (Sins + Suna) - BSH 4 53] (52
|3

=3

18, S7, = s(s + 1). Define the total spin on a dimer as,

St +8ma=17;, (8.3)




_“ug Eq. (8.3) and after doing a shuffling of terms, the hamiltonian takes the form,

1 i & . "
H: E [(E—H) J?‘i"ﬁ [J;"—JHIJ‘J!—BJ}' . {34:}
i

arly the total spin on each dimer, J3, is conserved. i.e.,
92, H] =0,

.’us the energy eigen states can be labelled by the eigen values of J3%,

Let us first consider the case of zero magnetic field. Then it is easily seen that for
3, in the ground state each dimer is a singlet (this state [rom here on will be
;ad to as the ‘dimer-singlet’). In this case, both the terms in the hamiltonian
tepositive definite and the dimer-singlet is the only state for which both have eigen

¢ 0. Note that this is true for any value of s.

i0r § = %, the dimers can either be in a singlet or a triplet. The first term of
Eq. (8.2) costs energy for the dimer to go into a triplet, but it can gain in
eraction energy through the second term by Neel ordering. So at large enough
e system can form clusters of triplets. A dimer in such clusters will act like a
pin-1 and thus a cluster will be like a wniform string of spin-1. The ground
ergy per spin for a finite uniform spin-1 chain decreases with the size of the
and converges towards the value for the infinite chain [46]. Thus if any dimer
to a triplet, then every dimer will follow suit. Comparing the dimer-singlet
jergy and the energy of the triplet state (numerically calculated for the uniform
chain) Gelfand estimated the transition to take place at x* = 0.714,
s reasonable to expect a similar scenario for higher spin cases. For the spin s
ound state will be the singlet for x < &* and for x > x* the dimers go into

multiplet and form the corresponding uniform chain ground state.
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8.2.2 DMagnetisation plateaus

Now we look at the system in the presence of magnetic feld. It is convenient to

write the hamiltonian as follows,

H = ¥ hyy (8.5)
I

171

5 i
hy = 5(5—5) (Jf+-]-f+1]|+§{‘]£+-]f+l~l}2_ (7 +Ji,) . (8.6)

Ground state for x < 1

When < 1, the ground state can be solved exactly, In this case it is enough to
solve the two dimer problem. Since the ground state for the two dimer prablem
turns out to be a product of dimer states, we can simply string the states together
t0 obtain the ground state of the full hamlitonian.

We first solve the two dimer hamiltonian,

: 1 3 L o x
h= % (2 . ﬁ) (B+I)+ g (Jy + Ju)* — g (J7 +J5) . (8.7)

_Iietj{j-'rl}, 1, i+ 1) and ja(ja+1) denote the eigen values of (Ji+J4)%, (JF+J3)

I} and J3 respectively. Note that all these four operators mutually commute and

tan therefore be diagonalised simultaneously. The cigen values of h will then be,
L /1 Yo T KoL B

E=3(5-x) (st 1)+ hlh+ D) + 5 i +1) -2 m. (8.8)
212 2 2

.jur a given j, the minimum energy state will be sueh that

Ji+Ja=j (8.9)

ther, the first term in E, which is = [jl{jl + 1) + daljo + 1}], is minimized by
e following choiee,
h=

: Ja ==, if j is even, (8.10)

el LSRN AL £ S
i
B[, p s,

i = ., ifjisodd (8.11)

B =

+

P de=

(]

ie last term in £ is minimized by the choice,

m=j. (8.12)
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In the basis labelled by the eigen values of J3, J7, J3and J5, { |71, my) @ s, ma) I

the minimum energy state is then,

|31 1} @ |z, Ja) (8.13)

where jy and jp are given by Egs. (8.10) and (8.11). Substituting Eqgs. (8.9 - 8.12)

in Eq. (8.8), we get the minimum energy for a given j.

_ : B

g = 35 o 2 410 - 25, foreven,  (814)
1 -2« - B :

Eolt — ( : K) G+1)2+ g Hi+1)— 3 i, for odd j. {8.15)

j will now be determined by B. It is straightforward to caleulate the critical fields
‘at which j changes. The value of the field at which j goes to j+ 1 for even and odd

j are respectively given by B*" and B9,

1+ 2g)j

poen - (LT2K)] 2”)"’+1 (8.16)
B S

B:fd — {1 =+ ‘-'HZJ{J 23 1] {8,1?:]

Exactly at B, the states having J* eigen value j and j + 1 are degenerate.
Now we have completely solved the two dimer problem for all values of the

magnetic field. The ground state of the full hamiltonian trivially follows from the

above solution. Tt is,

ey B |J.:|1 J'J.> @ |j2: J'?:II @ |jl1 ..Irl} & |j21 J-‘-} @ . {818]

where j, and j,, depending on B, are determined by Eqs. (8.10), (8.11). (8.16) and

(8.17). This state is simultancously the ground state of hy , ¥ I and hence is the

gound state of H.

Exactly at the critical field, the condition for the ground state is that every pair

for j;. Let j be an even number, say, dn. Then for B < B.., all the dimers have

=1 At B = B, any state for which Jr=mnorn+1%, but with no two

eighbouring dimers having j; = n+ 1, will be a ground state. Thus right at B,

he ground state has a macroscopic degeneracy.
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Let us summarise the results for & < }E The ground state is the dimer-singlet
at B = 0. As B is increased, the magnetisation per site goes up in 4s equal and
discrete steps till it is fully saturated. i.e, there will he plateaus of magnetisation at

the fractions,

1 2

T A o 1
| Is' Is' (B19]

The dimer lattice can be divided into two sub-lattices. Let A and 2 denote the
sublattices consisting of even and odd dimers respectively. We represent the relevant
states as (jy, j2), where j; is the magnetisation of A-dimers and Jo that of B-dimers.

Then the sequence in which transition takes place can be represented as,
(0,0) = (1,0) = (1,1) = ... — (25,25 — 1) = (28, 25)

The critical values of B at which the jumps occur are given by Eqgs. (8.16) and

(8.17). At successive critical values of the field, the dimers of the two sub-lattices
lternately gei excited to a spin one unit higher. Exactly at the critical fields, the

ground state has a macroscopic degeneracy.

Ground state for x =

T j—

At 5 = L the two dimer hamiltonian becomes,

1 B .
I?.=~1-{J1+J2}'2—;{JF+J§]~ (8.20)
The minimum energy for a given j is,

s ko B
=230+ -4 (8.21)

45 before, B will determine the value of j. Now the eigen value does not depend on
Ji or ja. There are numerous ways in which 41 and j» can be chosen to ohtain j as
e total spin. More precisely, j; and j. should be such that,

lis = Jal < § < i + Jo

A the ground state of H, we want to construct a state such that the total spin

two neighbouring dimers is j. One obvious way of doing this is to choose

a7




J1+ 7z = j such that the state is a product of dimer states as before. This can be

cdone in 7 + 1 ways,
(dz) = (2,00, (5 = 1,1), v (od—1%00:7);
Thus for a given j, all the states,

e @ L1, J1) @ oy J2) © 1y 51) @ iy J2) @i G1 =+ n | (8.22)

are of minimum energy, The above set of states exhausts all the minimum ENErgy
states which are products of dimer states. But there could be other states which
have the same energy.

As before, there are further macroscopic degeneracies at B, owing to local 1-

dimer excitations becoming gapless,

|
- Ground state for x > 1

For & > 5. the ground state can no longer be solved using the above method. The

ground state of i is then not a product of dimer states and so we cannot construct
astate which will simultaneously be the ground state of hy . ¥ 1.

For the time being, let us assume that at x = 5, those states given in (8.22) are
the only ground states and proceed. This assumption, in other words, says that any
gther state has a finite gap at k= L.

The hamiltonian (8.4) has the form.
H = Hy+xH, — BH,, (8.23)

fly, Hy and Hy mutually commute and thus the eigen states do not depend on & or
while the eigen values will be linear funetions of & and B. This fact in conjunction
ith the above assumption implies that there is a finite neighbourhood around & = |
here the ground state will be among those at x = 3
For & > § the first term of h in Eq. (8.7) has negative eoeflicient and thus
Bl + 1) + Jalje + 1]] needs to be maximised. From among the ground states at

= &, this is satisfied by the choice,

jl =J:1n }ZZH + 1{.}' E 251:
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andl,
| h=25 ja=j—12s, ifj>2s

The states are,

\ @ e, 0@, H 0, 0)@..; forj<2s,

and

o @28, 25) ® (73— 25), (j—25))® |2, 25) @ |(j — 2s), (J—28))@....; forj>2¢.

Thus for & > 2, the magnetisation would still go up by the same set of fractions as
in (8.19), but the states and the critical values of the field are now different. In the
present case, as B is increased from zero, at successive eritical values, the spin of
the dimers belonging to one sub-lattice Jumps by one unit, while those in the other

sub-lattice remain zero. Only when the first sub-lattice has been saturated does the

other one start getting magnetized. The sequence of transitions will be,
(0,0) = (1,0) = (2,0) = .... —(2s, 0) = (25,1) = .... — (2s,25)

The critical valnes of the field at which the total spin of 2 neighbouring dimers

goes from j to j + 1 is calculated to be,

By = f41, i§j<2s (8.24)

Bey = (dr—1)j+25—dgs+1, for j > 2¢ . (8.25)

The above results erucially rely on the assnmption of gap at g = % Honecker et
al. have numerically studied the system for 5 = 5 [37]. Their results indicate that
is assumption is correct except at the critical feld at whicl the system gets fully

magnetised, where it becomes gapless. This gapless state corresponds to that for




For s = E the magnetisation shows only one plateau - at the fraction % Far
> %, the range of B for which the system is gapless widens and we no longer have
an abrupt jump from hall to full magnetisation. In the range of B for which the
system is gapless, magnetisation has an initial jump from % to an intermediate value
from which it increases smoothly to the saturation vahe,

The above authors have also studied a three leg ladder for s = 5. In their model

the total spin on each rung is conserved. The hamiltonian has the same form as in
Eq. (8.5) with,

Jy=8n+81+ 55

For v < % there are plateaus corresponding to the fractions -; and 2, The sequence

of transition is then, (3,0) = (3,4) — (3,2) = (3. 8), where j; and j, are the

magnetisations of the rungs belonging to A and B sub-lattices respectively . In this
case too their analysis showed that, at & = %_. the system becomes gapless at the
critical values of the field. At the transition point from (j,, j.) to (f1 + 1, 32), the
gapless state is that of the uniform chain consisting of spin-(jy+1) in one lattice and
spin-ju in the other.

One can expect a similar scenario for higher spins. ife.,, at & = 3, the gapless
states set in at the critical values of the field. For s > 3, but not very large, the
plateaus may still survive but now there could be gapless phases in between. A more

rigorous analysis is required fo get the accurate phase diagram for the full range of
K =

Bl

We have argued that there are two different mechanisms for plateau formation
\depending on the value of . This opens up the possi bility of a first order transition

between two states of same magnetisation, but different ordering pattern.

8.3 Higher dimensional models

The most important feature of the one dimensional model that leads to the formation

of magnetisation plateaus is the conservation of total spin of individual dimers. This

I turn means that there are spin excitations localised to a dimer. When the field is
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high enough to make the ground state unstable to such excitations, a whele lot of
them will go up resulting in a macroscopic jump in magnetisation. This mechanism
s independent of the number of dimensions and one can expect a similar behaviour
for models in higher dimensions which have the property of conserved dimer spins,

Miiller-Hartmann et al. [36] introduced a generalised Shastry-Sutherland model
in two dimensions by introducing extra couplings. At specific values of the cou-
plings the total spin on each dimer is conserved. Sutherland [38] constructed a
d-dimensional version of the Gelfand ladder consisting of edge sharing tetrahedra,
Both the above mentioned authors discuss only the s = % case. We now generalise
the results of the previous section to these models at higher spins. To this end,

it is instructive to define a general model consisting of coupled dimers in arbitrary

dimension.

8.3.1 A general dimerised model

The system consists of coupled dimers! in an arbitrary number of dimensions. The

dimers live on some lattice whose sites are labelled by 1. The sites within a dimer

labelled by o which takes values 1 or 2. The hamiltonian is,

l -
H= ZE{SH‘FSIE}Z-FH. Z (S;] -+ SM:] -(SJ’] +E__il':_'gj _BZ{SFI —|—Sf_a} ; (ggﬁ]
! I

<lI>

here < = indicates nearest neighbeours, As before, we define,

S“'FSJQEJJ .

o can write,

1 1.oa o
JJ"JJ=§{JI+JJ}2—§(JF+JﬁJ‘
hen M takes the form,
lq ' =
H= ~J5 + & J; - J, - B Jr ;

"The model can be defined for any number of sites in ane unit, instead of two for the dimer.
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Now we write the hamiltonian as a sum over bonds.

H:ZI11J1

[2.4]

‘where [, ] represents a bond hetween two dimers and.

1/ , B .
iy =1 (E - ﬁ.) I+ + 5@+ -2 5. (528)

Here 2 is the coordination number of the dimer lattice, For the Gelfand ladder
2= 2. The 2-dimensional model of Miiller-Hartmann ef ol and the 3-dimensional
cone of Sutherland both have =z = 4.

Now all the steps for the 1-dimensional case can he exactly repeated. When
K< 1, we can construct the ground state from that of the two dimer hamiltonian,

provided the dimer lattice is bipartite. As before, magnetisation plateanus oceur at

fl;ha fractions - n = 1, 2, ..., 45 with dimers of both the sub-lattices going
to higher spins in tandem. Extrapolating the 1 — d result. we can expect gapless
States to come into the picture for & > l The plateaus will still survive, but with
gapless states coming in between. The sequence in which the magnetisation of the
iwo sub-lattices goes up will now be different. Dimers of one sub-lattice will get,
saturated first, only after which, the dimers of the other sub-lattice start getting
magnetised.

The results we have derived are independent of the number of dimensions. The
0 :j’ condition is that the dimer lattice he bipartite. So we can construct a large
mmber of models which have the above properties. What is special about the
models of Gelfand and Sutherland is that they can be realised such that bonds of

tqual lengths have the same strength, a physically realistic situation,
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Chapter 9

Conclusions

In this thesis we have studied the antiferromagnetic Heisenberg model on varions
lattices and in different dimensions. In this concluding chapter we summarise and
discuss our results.

In the first part we have studied spin chains and their connections with the
nonlinear o model with a topological term. We have analysed the correspondence
using 5 = % dimerised spin chain as a prototype. Our aim has been to demounstrate in
the case of the O(3) moadel, the ‘super universal’ features expected of all Grassmann

g models: asymptotic freedom, 0 renormalisation and gaplessness at 8 = 7 |

e We have done the Haldane mapping for a semi-infinite spin chain. The map-
ping shows that the correspondence between NLSM and the spin chain is

‘exact’ in the strong coupling limit at quantized values of 6.

o We have analysed the s = % spin chain using a real space renormalisation

group. The RG confirms that g flows to oo and # renormalises ta 2mwn.

Our RG analysis could not access the § = 7 critical fixed point. TFor this we
need to go to higher orders in perturbation. The next step would then be
to do the above and thus obtain a complete picture of the NLSM-spin chain
correspondence.  Apart from this, our method is a new way to do RG for

quantum systems and it will be interesting to apply it to other systems.




o We have obtained effective 5pin—% maodels for higher spin chains. This enables
us to access strong coupling NLSM near ¢ = 27n, ¥n. As a bonus, the effective

model also gives a good estimate of the gapless point for the spin-1 chain,

* As the last step, we have derived Grassmann o models as the long wave-length

effective theories for SU(N) spin chains.

This sets us up with lattice models which ean be used to access all Grassmann
models at strong coupling. The extension of this will be to do RG for dimerised

SU(N) spin chains.

In the second part of the thesis we have studied some Majumdar-Ghosh Tike

models for which ground state can be solved exactly,

o We have given a geometric preseription to construct generalised Majumdar-
Ghosh models. This can be used to construct a variety of models in any dimen-
sion with a VBC ground state. In particular, we have applied the prescription
to construct a generalised Shastry-Sutherland model in arbitrary dimension.
This provides us with an additional calenlational tool to probe the two dimen-
sional model which has been experimentally realised in SrCua(BO;s},. We

have doue a 1/d correction to estimate the Neel-dimer transition.

The model, in the only other physical dimension i.e. d = 3. has been shown
to be experimentally feasible. Thus we have constructed a spin-gapped three
dimensional model with an exact ground state which has a realistic lattice
structure, The mean field analysis shows that, the Noel-dimer transition is

second order in odd dimensions and first order in even dimensions.

Shastry-Sutherland model in two dimensions is known to have a disordered
plaquette phase in between the dimer and the Néel phases. Tt will be interesting

to see il the d-dimensional model has an analogous phase,

We have generalised previous models which showed exact magnetisation plateaus
for s = % to higher spins. Interstingly, there is a fairly large range of the cou-

pling parameter for which the ground state in the presence of an external

104




magnetic field can be solved exactly for all s. The spin-s model develops 4s
plateaus. We have argued that, beyond the exact line, the platean formation
is through a different. mechanism. This also implies that there is the possibil-
ity of a first order transition between two states of same magnetisation but

different ordering pattern.

Our anlysis has not been rigorous outside the exact regime. A more careful
analysis, possibly numerical, is required to get the phase diagram in the full

parameter space.
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Appendix A

Solid angle for a dimer

Figure Ad: m(t), 0,(¢) and —ny(t) trace out closed curves on the sphere.

Let ny(t) and na(t) be two unit vectors varying in time. Also let the motion be

periodic with period T'. Define,
n, = V01— m+l, (A.1)
n; = —/(1-2)m+]1, (A.2)

We now calculate the total solid angle subtended by ny(t) and fg(t) during one
period. Let, £2(n,) be the solid angle subtended by n,(¢) during one period. Then

we can write {(n,) as the sum of Q((—1)"m) and the area of the strip between
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Figure A.2: The area swepl as h — m + Jim and n; — /; + dny

m(t) and o, (f), say, A, (see Fig. A.1). We have,

;) = Q(m)+ 4, (A.3)
Qny) = —Qh)+ Ay, (A.d)
where we have used the result Q(—m) = —Q{m). Now we triangulate the strip of

area swept as m — m + dm and 0, — 0, + dn, as shown in Fig. A2, We then
havve,

T
A= [ (dA; + dAy) (A5)
J0O

dAy, the area of the triangle formed by m, m+ dm and i, +dn;, can be calenlated

as follows (see Fig. A2 and Fig. A.3).

dd, = (dmx%-rh) (%)s

Now define (see Fig. A.3),
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Figure A.3: Here d = 1 — Zand s=1-+1-102

Then the area of the triangle formed by m, n, and n; +dn; is,

{f.-'i-_; _ _1{ F 11 if ff-l'h (] - m)
=
1

E(1—J’1—x2) [VI=F 1w x din Flemxd|,  (AS)

where we have used Eqs. (A1) and (A7) for i and k respectively. Substituting

Eqs. (A.6) and (A.8) in Eq. (A.5) we get,

3 _ 1—+/1-1
Ay = [ it (1- m % o+ % } l1-m x atl) : (A.9)
Ji '

To obtain Ay, we replace m with —m in the above expression.

7 1-VI—P
L\'h-! = / ift (l S x {;_}!_Iil = {—,l“ 1 l-m = Hﬂ) : [_—I'L].Dj
1 g

Finally we get the total solid angle subtended by 0, and ny by adding Eqgs. (A.3)

and (A.4), and using Eqs. (A.9) and (A.10].

s
Qi) + Q(ig) = 2 / dt (1 1h % Oyri). (A.11)
J 100
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Appendix B

Dimer perturbation theory to all

orders

In this appendix we calenlate the free energy for the dimer to all orders in &, We
also calculate the effective hamiltonian to all orders for the case in which the time

derivatives are neglected,

B.1 Free Energy

The partition function for the dimer is,
Z =Tr []' ({l:-:p—/ d7(h + hch,-“,})] =e¢ 7, (B.1)
Jo
where,

J 4
hy = E(SL‘FS’!:'_-. (B.2)

hing = Si.my(7) + Sp.my (7). (B.3)

Now we do a cumulant expansion for the free the Free energy.

7 .
F:ZEE}&“ ; (B.4)

r=ll
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where,

1L g F

ﬁ_,jh_ﬂ / Hff;n (r[ Hmr 'Tm:l) Conn

m=l m=1

1l

= (-1 / dr, f @73 (O (r1) S (7)., 8 (s I (1) [0)
h - xan® (7 ) M™ (7a)... MP= (7, (B.5)
The vacuum expectation value is,
(0% (71) 8% (T2)...s 8" (g I (7)) = %{{J|.=1..{n]5“' B gebwrte AL e 0)
where A, and A} are defined in Eqs. (4.20) and (4.2] ). Let T3 = deqp.. Then,
(0n%(71) 8% (1)....8%1 (13, Jnf(7,)|0) = if:-[“ G LT o (B.7)

Using Eq. (B.7), we get

1 EI_'.JHI'_' e T 7y n—l ) n—1
m [jh'." e j; ﬂ:?‘] / fitJ."-:"l {H — 2}] j H lrid."_rn. T H TMI:Tm}

=1

1 —
xrlf"" '"'*m"{-n}m“{m}

Next we calculate the nth derivative of free energy at » = 0.

1 a*F - & 1
= f n’ﬂ/ .'ng4 “=mlge ()

m ah'?‘!_
n—2 n—2%
(rn—2)! [ H i (H T 1{{,,”1 ) me(my)

2 om=1 m=1

w=i

We get the fnal expression for free energy as,

. i ) Ty
F = l+r.-"’/ Efﬂf drs le Sl ()

s &

Z il f H dw’“ 4 (H T M "m ) ”"h{T‘ﬂ]
ity

n=ll T2 m=1 m=1

In a more comparct notation,

L i 1
F = 14 f{“f dr / ;j:«l.-!EE—(Tl_-r'_-_I],nn[_r]}

T (ﬂ" {5 ‘hrT'M{TF’) m®(72) (B.8)
fit]
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B.2 Effective hamiltonian

Next we caleulate the effective hamiltonian in the case where the time derivatives

are neglected. Then we can do the 7 integrals in the expansion for the free energy.

F=1+ h-f‘-f dr> " K'cn (B.9)

=il
where,

&, = im“[—r}(T.NI(:r}l)” mt(7)

ak
~1 T8Y" |
= _ll:l"ll = "';u]' (T) {-‘hi = r.llh:l.

ah

Now S%4;, =0 and .-1},5'1' = ). Therefore,

%:h”(L;S) :Jf{’r’

[
. :h‘gﬂ'"‘l = — Eeuh ','l:f.lr.lf"-lllljli
Thus,
(T_S) Ap =241 (B.10)
als
Except for n = 0, we get,
l 3 {1
gl e AT B.11
e 40 b 4 (L 1 _) { }
and
1 R |
Ly = Irn”rn-“ - (S = 3 51-53) {D,l[&}

Finally we have the effective hamiltonian as,

o3

1 b = 1 l = n'3 1' 1 ¥
F=1+%x f dr E — ESL 52 + Z?E _I _l_ 51.53 {B]-j}

Thus under RG, & Hows to
. K 3

= B.l4
& 5 +—l[_1—H-J ( 1-'

Solving for &' = &, we get the fixed points as &* = 0 and 0.61.
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