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Abstract

This Thesis is mainly devoted to theoretical study of various aspects of low-energy
collective excitations in a trapped interacting alkali-metal atomic gases (Bose and
Fermi) and of fractional quantum Hall systems. In the first chapter we review some
of the basic properties of these quantum systems,

In the second chapter we derive an equation of motion for the velocity
fluctuations of a two-dimensional deformed trapped Bose gas just above the critical
ternperature in the hydrodynamical regime. From this equation. we caleulate the
eigenfrequencies and the corresponding density fluctuations for a few low-lying exci-
tation modes. Using the method of averages. we also derive a dispersion relation in
a deformed trap at very high temperature that interpolates between the collisionless
and hydrodynamic regimes. We make use of this dispersion relation to caleulate
the frequencies and the damping rates for monopole and quadrapole modes in both
the regimes. We show that the time evolution of the wave packet width of a Bose
gas in a time-independent as well as time-dependent trap can be obtained from the
method of averages.

In the third chapter, using the time-dependent variational approach and
most general Gaussian variational ansatz for the order parameter of the condensed
state. we calculate analytical expressions for monopole and two quadrupole exci-
tation frequencies of a two-dimensional anisotropic trapped interacting Bose gas
al zero temperature. Within the energy weighted sum-rule approach, we derive a
general dispersion relation of monopole and two quadrupole excitations of a two-
dimensional deformed trapped interacting (contact interaction) quantum gas. Using
this general dispersion relation, we also derive analytical expressions for monopole
and two quadrupole mode [requencies of a two-dimensional unpolarized Fermi gas
In an ansotropic trap.

In the fourth chapter we obtain a general condition for the universality of

the monopole mode {requency and dynamics of width of a class of Gross-Pitaevskii
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equation describing a trapped interacting Bose gas, at varying spatial dimensionality,
order of the nonlinearity and the scaling exponent of the interaction potential. We
also show that the dynamics of the width of this class of interacting Bose gas can be
described universally by the same nonlinear singular Hill's equation. We give few
examples which satisfy that particular condition and exhibit the universal nature of
the monopole mode frequency and the dynamies of the width of a system.

In the fifth chapter we consider a Bose condensed state with gravity-like
interatomic attractive interaction. Using the time-dependent variational approach
we derive an analytical expressions for monopole and quadrupole mode [requencies
of a Bose-Einstein condensate with gravity-like interatomic interaction, We estimate
the superfluid coherence length and the critical angular frequencies to create a vortex
around the z-axis. We also caleulate the monopole made frequency of the condensate
In presence of a vortex.

In the sixth chapter cooperative ring-exchange is suggested as a mech-
anism of quantum melting of vortex lattices produced in a rapidly-rotating quasi
two dimensional atomic Bose-Einstein condensates. A semiclassical path integral is
used to estimate the condition for quantum melting instability by considering large-
correlated ring exchanges in a two-dimensional Wigner crystal of vortices in a strong
‘psendomagnetic field" generated by the background superfiuid Bose particles.

Iu the seventh chapter we model two-magnetoroton bound state problem
at one-third filling fraction of quantum Hall systems. We show that a magnetoroton
is an oriented dipole analogous to the description of a magnetic exciton. We obtain
a momentum dependent, non-central effective potential between two magnetorotons
by using the oriented character of the dipole moment and solve it variationally
(analytically) to find a two-magnetoroton bound state.




Publications

This Thesis is based on the following publications:

1. Collective excitation frequencies and damping rates of a two di-
mensional deformed trapped Bose gas above the critical temper-
ature.

Tarun Kanti Ghosh, Phys. Rev. A 63, 013603 (2001).

2. Splitting between quadrupole modes of dilute quantum gas in a
two dimensional anisotropic trap.

Tarun Kanti Ghosh and S. Sinha, Eur. Phys. J. D 19, 371 (2002).

3. Universality of monopole mode and time evolution of a d-dimensional
trapped interacting Bose gas.
Tarun Kanti Ghosh, Phys. Lett. A 285, 222 (2001).

4. Collective excitation frequencies and vortices of a Bose-Einstein

condensed state with gravity-like interatomic attraction.
Tarun Kanti Ghosh, Phys. Rev. A 65, 053616 (2002).

oy

. Cooperative Ring Exchange and Quantum Melting of Vortex Lat-
tices in Atomic Bose-Einstein Condensates.
Tarun Kanti Ghosh and G. Baskaran, cond-mat /0207484 (sub-
mitted to Phys. Rev. Lett.).

6. Modeling Two-Roton Bound State Formation in Fractional Quan-
tum Hall System.
Tarun Kanti Ghosh and G. Baskaran, Phys. Rev. Lett. 87,
186803 (2001).

Vi



Acknowledgments

First of all, I express my profound gratitude to my advisor Prof. G. Baskaran for
his patience, advice, constant encouragement, and stimulating discussions during
the course of this work, without which it would have been impossible for me to
carry on. His quickness in getting to the essentials of any problems is something
which T shall always envy. Moreover his good taste in the choice of problems and
above all, treating the colleagues and students with kindness and respect are the
qualities which I shall always fondly remember,

L would like to take this opportunity to express my sincere thanks to my elder brother
Dr. Pijush K. Ghosh for his advice, constant encouragement and fruitful discussions

not only during my research work, but throughout the whole of my academic career.
I'am thankful to Dr. Sarbeswar Chowdhury and Prof, Asim Kwmar Ray for constant
encouragement during my college and university life. For encouragement, discus-
sions and various helps I thank Profs. M. V. N. Murthy and R. Shankar.

I wish to thank my friends Rathin da, Swarnendu, Prakash, Subrata. Santosh.
Shamindra, Arijit. Paramita, Rajesh, Manoj, Naveen, Golam, Soumen, Bobby for

hours of fun and their co-operation during my work.

I thank all the academic and administrative members of IMSe and also [ thank IMSe
for providing me financial support during my Ph. D. work.

Last, but not least, my parents, sister-in-law, brothers and my nephew, Ritaman, are

always with me even though they are thousands of kilometers away. [ thank them all,

Tarun Kanti Ghosh

vii



Contents

1 Introduction

1

1.1  Owerview and purpose 1

1.1.1  Bose-Einstein condensation 1

1.1.2  Order parameter and mean-field theory . . . . . . ., .. ... 3

1.1.3  Collective excitations and their importance in quantum systems 5

Ldid Dynamics ol RaValend oo o con aos owoen s w Ene B m e e T

1.1.5  Trapped atomic Fermigases. . . . . . . .. . . . oo .. i

1.1.6 Low dimensional BEC .. .« 0 o0 v v s i v s e s 7

1.1.7 BEC with gravity-like attractive interaction . . ... .. ... 8

1.1.8 Condensed state with vortices . . . . .. .. .., ... ... 9

1.1.9 The quantum Hall effect . . . . . . .. ... ..., . ..... L0

1.1.10 Inner strncture of collective modes in FQHE . . . . . . . . .. 11

1.2 Organisation of this Thesis . . . . . . . ... .. .. .. ... .... 12

2 Collective excitation frequencies and damping rates of a 2D de-

formed trapped Bose gas above the critical temperature 18

21 InEroduehion o ou wae oo siass v oeE S B BN Wes B8 % e £ LB

2.2 Hydrodynamic equation of motion for the velocity fluctuations . . . . 20
2.3 Eigenfrequencies and the corresponding density fluctuations in the

hydrodynarmic regime © oi @ 0 S 8 0 VLU R Vs e e W b e 22

24 Method of averages . . . . .. ... . ... ..., ... . . ...... 23

2,5 Summary and conclusions . ... . L e e 27

3 Collective excitation frequencies of a quasi-2D deformed trapped

quantum gas at T =0 30

gl ADEOAMEHION:: oo s woEse B o BN Es W oEN B N N B8 B X e -3

3.2 Modeling quasi two-dimensional trapped interacting Bose gas. . . . . 31
3.3 Collective excitation frequencies of a quasi-2D deformed trapped Bose

vill



[ ]

3.4
3.0

3.6

Universality of monopole mode frequency and dynamies of width

Sum-rules and collective excitations

Collective excitation frequencies of a quasi-2D deformed trapped Fermi

o

Summary and conclusions

of a class of an interacting Bose gas

4.1
4.9

4.3

4.4

Collective excited states of a Bose-Einstein condensate with gravity-

Introduction

Universality of certain observables of a class of trapped interacting

Bogh-g88 s sren om0 U EW Wm0 OF BRY MK FFW 5% Rh & e e

4.2.1 Universality of monopole mode

4.2.2  Universality of dynamics of width . .
Examples e

431 Quasi-2D trapped Bose gas

4.3.2  One dimensional Tonk-Girardeau gas
4.3.3  Calogero model

Summary and conclusions

like interatomic attraction

I

a1

5.2

B5

When the collective modes go unstable: Quantum melting of the

vortex lattices in a rapidly rotating quasi-2D atomic Bose-Einstein

Introduction

Collective excitation of Bose condensed state with gravity-like inter-
atomic attractive interaction
5.2.1 TPF-G regime
5.2.2 G regime

Vortex of a Bose condensed state with gravity-like interatomic inter-
action

581 TEGregimen: wom v b B S 0% S VS P e

532 Gregime ... ..

Summary and conclusions

Appendix: Mean-field energy of the gravity-like potential . . . . ., . .

Appendix: Exact forms of F,, (a9, B10, 8y, 6]
and F-'?I [L'1'1[|.! ,lﬂm.. rjrl'l'l i {5;'?1]

1%

36

40

[ S
ST

on
Ty

o gn ga oo
-] 1 gnoon

i
-]



condensate

(k)
6.1 IEGdUCEBN . v o sum e s s on Br o S She o EER BB B B 79
6.2 Hamiltonian of the vortices in a rapidly rotating quasi-2D BEC . . . 81
6.3 Coherent state path integration .. .. ... ... .. ... .... 83
6.4 Cooperative ring exchange mechanism , . . . . ... .. ... . ... 86
6.5 Calculation of the tunneling coefficient . . . . . . .. ... ... .. &7
6.6 Summary and conclusions . . .. . .. o ek mEe w6 0D
Af - Appendix: Caleulation of the parameters Q, and Q, . . . .. . . . . 90
Inner structure of collective modes: Modeling two-magnetoroton
bound state formation in fractional quantum Hall systems 04
Tk ndroduwefion:: @3 @ Gn V0 S0 B E0E I TRE W o il v eie s 94
7.2 Dynamics of a magnetoroton . . . . ., .., ..., . . ........ 96
7.3 Hamiltonian of two magnetorotons . . . ... ... ... .. .., 97
7.3.1  Kinetic energy operator . . . . .. ... ... L. 97
7.3.2 Two-body potential energy operator . ... ..... ... .. 98
733 Total Hamillonian . o wowe wen v s a0 5 5 s soe o won o 99
74  Variational wave function for two-magnetoroton bound state . . . . . 99
7.5 DBinding energy of a two-magnetoroton bound state . . . . . .. .. . 100
7.6 Summary and:conclusions & o v .0 L0 v oo o v bl w oW B b 102
Conclusions 106
5.1 Summary of this Thesis . . . ., . . ... . ... . .. ... ... 106
8.2 Ountlook for future studies . . . . . . .. ... . ... ... ... ... 109




List of Figures

3.1

3.2

3.3

3.4

£
[y |

6.1

Ratio of the widths of the condensate 1 vs the dimensionless effective
mnteraction strength P for A= 3.0

Monopole (solid line), quadrupole (dotted line) and scissors (dashed
line) mode frequencies of an interacting Bose gas vs dimensionless
effective strength P for A = 3.0

Difference between the two quadrupole modes of an interacting Bose
gas Ay fwy vs the dimensionless effective strength P for A = 3.0

Monopole (solid line), quadrupole (dotted line) and scissors (dashed
line} mode frequencies of an interacting unpolarized Fermi gas vs the
dimensionless parameter Ky for A=3.0. . . .

Difference between the two guadrupole modes of an interacting nn-

polarized Fermi gas Ogfwy vs the dimensionless parameter Ky for
P N T e

Sound velocity ¢, as a function of the dimensionless scattering pa-
rameter 5. L

Monopole and quadrupole mode frequencies vs the scattering param-
eter 5. The solid and dashed lines corresponds to the quadrupole and
monopole mode frequencies, respectively,

Crossing between monopole (dashed line) and quadrupole (solid line)
modes

Superfluid coherence length £ as a function of the dimensionless scat-
tering parameter S.

Critical angular frequency €, as a function of the dimensionless scat-
tering parameter S.

A schematic diagram of cooperative ring exchange events on a ring
and line

43

44

67

65



=1

=]
-2

=1
)

7.4

Schematic diagrams for (a) a single magnetoroton with momentum

k, and (b] a two-magunetoroton bound state with total momentum

K=0

Annular region in f-space that contribufes to K = 0 magnetoroton
bound state.

Two-magnetoroton bound state wave function in momentum space
for ady = 0.41 at which the energy is minimized. . . 2
Expected qualitative excitation spectrum of two-magnetoroton bound

state compared with excitation spectrum of a single magnetoroton,

xii

95

. 100

101

. 102



Chapter 1

Introduction

1.1 Overview and purpose

With the technological advancement it is now possible to make tunable finite size
interacting quantum systems made up of bosons and/or fermions in the laboratory.
Two most important examples are the trapped dilute interacting quantum gas of
atoms at very low temperature and electrons in two dimensional plane subjected to
strong magnetic lield perpendicular to the plane which exhibit quantum Hall effect.
Cold quantum gas clouds have many advantages for investigations of quantum phe-
nomena. On the one hand, the trapped bosonic atoms at low temperature forms the
Bose-Einstein condensed (BEC) state and on the other hand, the trapped fermionic
alkall atoms at very low temperature is the most promising candidate for formation
of Fermi sea and observing the atomic Cooper pairs.

1.1.1 Bose-Einstein condensation

The seminal work of 5. N. Bose [1] led to prediction of BEC by A. Einstein [2].
According to quantum mechanical theory, all matter behaves like waves. The de
Broglie wavelength, Ap = (22h% /M kgT)Y2, of an object with reasonable mass M at
room temperature T is extremely small, As the temperature of a system consisting
of particles goes down, the de Broglie wavelength of the particles increases. Below a
certain temperature (known as condensation transition terperature), the de Broglie
wavelength exceeds the mean interparticle distance, and the wave packets of the
particles start overlapping. Under this condition, it is favorable for bosons to fill
the single lowest quantum state and loose their individual identities. Tlis single

uantum state represents a coherent macroscopic quantum svstem which is known
I B




as Bose-Einstein condensation (BEC). The criterion for condensation of a free Bose
gas in three dimensions is pA3 = ((3/2) = 2.612, where ¢ is the Riemann zeta
function. The transition temperature is estimated al the critical point defined by
pA7. = 2.612 and the condensate fraction is (Ng/N) =1 — (%)” [3]. Evidence of
this quantum phenomena has been found in liquid *He [4]. Because of the strong
interatomic interaction among the helium atoms, only 10 percent of the hLelinm
atoms condense into the ground state even at very low temperature.
In the case of N bosons confined in a spherical harmonic potential V., =
smw?r?, the proper thermodynamic limit is obtained by letting N — oo and w — 0,
while keeping the product Nw® constant. The eritical temperature is given by [5]
( N AP o
kgl = lw | — . (1.1}
t,iﬂ]) dil-
and the condensate fraction is (Ny/N) = 1 — (%—); In 1995, BEC was observed
in a series of experiments with clouds of magnetically trapped weakly interacting
alkali atoms at JILA [6], MIT [7] and RICE [8], and later in more than 25 labora-
tories all over the world. BEC is achieved by using the evaporative cooling method
in which the more energetic atoms are removed from the trap, thereby cooling the
remaining atoms. The system is dilute enough to produce 99 percent condensation
of atoms at T = 0 "K. The transition temperature was found to be very close to
the value predicted by Eq. (1.1}, The gaseous atomic condensed state pxhibits very
different properties from those in liquid helium. These systems have become the
testing ground for the theoretical formalism of dilute condensates, and quantitative
predictions can be made for comparison with experiments. Most relevant features
of these trapped Bose gases are that they are inhomogencous and finite-size sys-
tems with the number of atoms ranging from a few thousands to several millions,
The size of the system is enlarged due to the effect of repulsive two-body forces
and the trapped gases can become almost macroscopic objects whose properties
are directly measurable using optical techniques. The inhomogeneity of these pases
have several limportant consequences. The different temperature dependence exhib-
ited by the condensate fraction compared to the uniform case is a consequence of
the higher density of states characterizing the harmonic oscillator Hamiltonian, At
T = 0 all particles are in the lowest eigenstate of the harmonic oscillator, namely,
[ —+ ég = %ﬁ.m. Thus the particle density has the form of a Gaussian and the same
1§ true for the momentum distribution, Unlikely the free gas. trapped BEC shows
up in momentum space as well as in co-ordinate space. This provides novel methods

for the investigation of measurable gquantities, like the temperature dependence of




the condensate, density profile, interference phenomena, collective excitation fre-
quencies and so on. Condensates in atomic gas can be manipulated and studied
using the powerlul techniques of atomic physics. Almost all the parameters can be
controlled at will, including nature of the interaction strength (repulsive or attrac-
tive) a between the particles [91. Since both liquid helium and dilute atomic gases
are systems of interacting particles, a crucial question concerns the role playved by

the interaction, that is, whether and how much the interatomic forces modify the
properties of BEC.

1.1.2  Order parameter and mean-field theory

The many body Hamiltonian describing NV interacting bosons confined by an exter-
nal potential V.., is given hy

2
B [utrulﬁ(r; l~%?2 + I-;d__,[r}] *If{r}—e—éfLil*dr'lbf[r}lﬁfh"ﬂf’f_r—r"jilf(r‘jﬁ:{rj,
(1.2)
where U7(r) and ¥(r) are the boson field operators that create and annihilate a
particle at the position r, respectively and V(r — r') is the two-body interatomic
potential. The ground state of the system as well as its thermodynamic properties
can be directly calculated starting from the Hamiltonian. However, the calenla-
tion can be very hard or even impracticable for systems with much larger values
of N. Mean-field approaches are commonly used for interacting systems in order
to overcome the problem of solving exactly the full many-body Schroedinger equa-
fiom. The basic idea for a mean-field deseription of a dilute Bose gas was formulated
by Bogoliubov. The key point consists in separating out the condensate contribu-
tion to the bosonic field operator, In general, the field operator can be written as
Wir) =¥, ¥a(r)a,, where ¥, (r) are the single-particle wave functions and a, are
the corresponding annihilation operators. The bosonic creation and annihilation

operators af, and a, are defined in the Fock space:
”'L. |';',|_n} = "."'J“u + 1|”--:t+1:': “ 3!}

aa|Ma) = Mallla-1}. (1.4)

where n, are the eigenvalues of the number operators n, = ala, giving the number
of atoms in the single-particle a-state. BEC occurs when the number of atoms ny
of a particular single-particle state becomes very large: ng = Ny > 1 and the ratio
Ny /N remains finite in the thermodynamic limit. In this limit the states with N, and

Ny £ 1 ~ Np correspond to the same physical configuration and consequently, the




operators ap and af can be treated as c-numbers: aq = al = N;. For a uniform
gas in a volume V. where BEC occurs in the single particle state, ¥; = 1//V
having zero momentum. Then the field operator W(r) can be decomposed in the
form P(r) = ‘-.r“ '\ /V +0'(r), where ¥'(r) is the field operator associated with the
noucondensed particles, The generalization of the Bogolinbov preseription to the

case of nonuniform and the time dependent configurations is given by
Uir.t) = ®(r, t) + V' (r,t), (1.5)

where we have used the Heisenberg representation for the field operators. ¢{r, 1) is
a complex function defined as the expectation value of the field operator:

B(r,t) = (P(r,t)) = |B]e'S, (1.6)

Its modulus fixes the condensate density through ng(r,t) = |®(r, ¢)|? and the phase §
is used to define a velocity field through v = 2T 5. The function ®(r, 1) is a classical
field having the meaning of an order parameter and is often called macroscopic wave
function of the condensate. It characterizes the off-diagonal long-range behavior of

the one-particle density matrix py(r',r,t) = (¥7(r'¢)|¥(r,t)). The time evolution
of the field operator W(r, ¢) is

b i B
il ) N LS TR + [d e Ve — ) | ey, (1)
it 2m

In a cold, dilute gas, ouly binary collisions at low energy are relevant and these

collisions are characterized by a single parameter, namely the s-wave scattering
length a. The effective two-body potential is then given by

4wak?
T

Vir—r') =

d(r—r'). (1.8)

Using the effective potential and replacing U by @, we get the following closed
equation for the order parameter:

L OP(r,t) - 4rah®
EET - _Ev “* Ic:rf{ j

|®(r, t)|*| B(x, ). (1.9)

This equation is known as Gross-Pitaevskil (GP) equation [10]. Its validity is based
on the condition that the s-wave scattering length be much smaller than the av-
erage distance between atoms i.e the gas parameters should obey the condition:
nlal* < 1, where n is the mean particle density. The GP equation can be used at

low temperature to explore the macroscopic behavior of the system, characterized
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by variations of the order parameter over distances larger than the mean distance
between atoms. In the available experiments on trapped atomic BEC, the total
number of condensate atoms is 10° — 10° in a trap with w/27 ~ 100 Hz. The width
of the condensate can be several pm, upto the order of 100pm. The scattering
length a is of the order of a few nanometer, The central density is of the order of
10* — 10%em ™, so that n|a? is less than 10~°, which ensures the applicability of
GP theory. Despite the very dilute nature of these gases, the combination of BEC
and the harmonic trapping enhances the effects of the atom-atom interactions on
important measurable quantities. The ground state properties of the trapped ¥Rb
system, including its geometry, momentum distribution, coherence length and criti-

cal angular velocity for vortex formation have heen discussed by Baym and Pethick

11].

1.1.3  Collective excitations and their importance in quan-

tum systems

The study of low-energy excitations is of primary importance in quantum many body
theories. It plays a crucial role in understanding the quantum nature of the particles,
two-body interactions and the effect of dimensionality. A peculiar feature of Bose
superfluids is that their excitations at low energy correspond to collective modes,
which can be described as fluctuations of the order parameter. This happens when
their wavelength is larger than the healing length. For uniform and dilute gas, the
spectrum of excitations is given by the Bogoliubov result, which are phononic at low
momentur & and single-particle excitations at large momentum &. Low momentum
excitations are phonons even in liquid helium, with sound velocity ¢ ~ 230 1 /s.
However, since the superfluid helium is dense and highly correlated, the interpolation
between the phononic and the single-particle regimes is more subtle. The phonon
branch reaches a maximum at k£ ~ 1471 and then forms a rather deep minimum at
ki~ 1947 The excitations near this minimum, whose dispersion is approximately
parabolic, are called rotons. Their wavelength is of the order of the interatomic
distances and slightly larger than the healing length, so that they still have collective
character, but which are of the order of the atomic scale.

‘The excitation spectrum of a trapped alkali-metal atomic BEC is discrete
due to the finite size of the system. The excited states are classified according to the
number of radial nodes, n., the angular quantum number ! and m, where m is the
projection of { onto the symmetry axis. The discretization is particularly important

for the lowest energy excitations, whose wavelength is comparable with system size
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R, and corresponds to oscillations of the whole system.

An example of the collective mode is the state withn, = Land ! = m = 0.
which is known as monopole or breathing mode in which the condensate alternately
expands and contracts. By keeping | = m = 0 and increasing n,, one finds density
oscillations in the radial direction having wavelength smaller than B. 1f n, is large,
50 that the wavelength becomes much smaller than R but still larger than healing
length, these modes can be thought as stationary states of bulk excitations which
propagate radially and reflect at the surface. For large B, these discretized states
approach a continuum and the spectrum becomes closer and closer to the one of a
uniform system, namely, the phononic dispersion in dilute gas and the phonon-roton
branch in liquid helinm.

Another interesting class of excitations is the one with n, = 0 and [ >
2. These modes correspond ta shape oscillations, or surface oscillations, in which
the spherically symmetric condensate distorts by alternately becoming prolate and
oblate without changing its mean density. The lowest mode with [ = 2 is called
quadrupaole mode.

The trapped Bose gas can be excited by applying small time-dependent
perturbation to the trap potential. With this method, dipole, monopole, quadrupale
modes have already been observed in three dimensional BEC [12], The experimental
results of these low-energy excitations [12] matches very well with the theoretical
predictions based on the mean field approach [13, 14].

Similar to the monopole and quadrupole modes of trapped BEC, there
15 another mode called scissors mode. These scissors modes are rather special since
they directly manifest the superfluid behavior of these atomic gases. A seissors mode
in & BEC is associated with an irrotational flow with a velocity field of the form
v = aV(ry), if the motion is taking place in the zy-plane. To excite a scissors mode
in the wy-plane, one can rotate the  and y axes of the trap slightly around the
z-axis. To such a perturbation the condensate will respond by oscillating around
the equilibrium axes. On the other hand, if the axes change through a large angle
this method excites the quadrupole mode. The study of the scissors mode in BEC
of alkali atomic gas has been suggested by Guery-Odelin and 8. Stringari [15] and
experimental realization of their ideas has already been given by Margao et al, [16].

Phonon-like excitations with wavelength smaller than the condensate size
can also be produced. For instance, one can suddenly switch-on a narrow laser
beam, focused on the center of the trap. An optical dipole force acts on the atoms

generating a wave packet of excitations which then moves throughout the condensate




as a sound wave, The velocity of this sound wave has been measured in [17] , finding
good agreement with the prediction of Bogoliubov theory. Phonon-like excitations
have been also generated in lizht-scattering experiments [18].

g g g

1.1.4 Dynamics of a system

So far we have discussed the behavior of shape osscilations of a trapped Bose con-
densate, It is also interesting to study the dynamics of the expansion of the gas.
following the switching-off the trap potential. The dynamics of the EXpAansion is an
important issue because much information on these Bose condensed gas is obtained
experimentally from images of the expanded atomic cloud. This includes in par-
ticular the temperature of the gas, the release energy and the aspect ratio of the
velocity distribution. The dynamics of the expansion of a Bose gas in eylindrical
geometry have been studied theoretically [19]. The agreement between theory and
experiment [20] is remarkable.

1.1.5 Trapped atomic Fermi gases

There is now renewed focus on the properties of trapped dilute gas of fermionic
atoms at low temperature. Magneto-optical confinement of fermionic gases has been
reported in [21]. It is also possible to cool down trapped Fermi gas to a regime where
effects of the quantum statistics become noticeable [22]. The attractive interaction

between "Li atoms holds promise of achieving Cooper pair states.

1.1.6 Low dimensional BEC

So far we have discussed the properties of the 3D BEC. The reduction in spatial
dimension of a guantum system is also the subject of extensive study in trapped
Bose systems as well as trapped Fermi systems. The statistical behavior of 2D and
1D Bose gases exhibits very peculiar features. In an uniform gas BEC can not
oceur in 2D and 1D at finite temperature because thermal fluctuations destabilize
the condensate. It can be seen that, for an ideal gas in the presence of BEC, the
chermical potential vanishes and the momentum distribution, n{p) = [exp(8p®/2m) -
1]71], exhibits an infrared -7 divergence. In the thermodynamic limit, this yields a
divergent contribution to the integral [ dpn(p) in 2D and 1D, thereby violating the
normalization condition. The absence of BEC in 1D and 2D can be also proven for

interacting uniform systems, as shown by Hohenberg [23].

In the presence of harmonic trapping, the effects of thermal Auctuations
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are strongly quenched due to the different behavior exhibited by the density of
states ple). In fact while in the uniform gas p(e) behaves as el42/2 where d is the
dimensionality of space, in presence of an harmonic potential one has instead the law
ple) ~ "1 and consequently the integral converges also in 2D, The corresponding
value of the critical temperature is given by [24]

>

N 1/2
kalhi=Nog e 1.10
B Ly ({,{Ej) ; ( J

where wy = /@, In order to achieve quasi-two dimensional BEC, one should
choose the frequency w. in the third direction large enough to satisfy the conditions
hw: 2> p = hwy and kgT < hw., where ft is the chemical potential of a quasi-2D
trapped Bose gas. It is worth mentioning two important theoretical works. namely,
the presence of conformal symmetry [25] and an explosion-implosion duality [26] in
one and two dimensional BEC with or without a time-dependent harmonic trap,
Recently, the lower dimensional (quasi-2D and quasi-113) BEC has been realized at
MIT [27]. The quasi-2D BEC has also been produced on a microchip [28, 20]. The
collective excitations play an important role in prabing microscopic interactions.
It is interesting to study the various low-lying collective excitation frequencies of
quasi-2D trapped Bose gas as well as Fermi gas [30, 31], which is given in the second
and third chapters of this Thesis. The excitation frequencies of a harmonically
trapped ideal Bose gas are simply multiples of the trap frequencies. However, for
an interacting system, deviations from these frequencies are expected due to the
effect of interaction. Interestingly, for an interaction potential with particular scaling
property the monopole mode frequency does not depend on the interaction strength.
Moreover, the dynamics of the width of the system with that particular potential can
be solved exactly and explained by the same Hill's equation. This universal nature
of monopole mode frequency and the dynamics of the width of a certain class of
Bose gas which is described by the GP equation [32] is being addressed in the fourth
chapter in this Thesis, These universal properties are due to the underlying SO(2, 1)
symmetry of the Hamiltonian [33, 25].

1.1.7 BEC with gravity-like attractive interaction

In the atomic BEC created so far, the atoms interact ouly at very short distances.
Most of the properties of these dilute Bose gases can be explained by considering
only two-body short-range interaction (Van der Walls interaction) which is char-

Cacterized by the s-wave scattering length o, However, the BECQ in the presence of



the dipole-dipole interactions has recently raised considerable interest [34]. If such
dipole moment is sufficiently large, the resulting dipole-dipole forces may influence
the properties of BEC. Novel physics is expected for dipolar BEC, since the dipole-
dipole interactions are long-range, anisotropic, and partially attractive. A new kind
of atomic BEC has been proposed by D. O'Dell et al, [35]. They have shown that the
particular configuration of intense off-resonant laser beams gives rise to an effective
gravity-like © interatomic attraction between neutral atoms located well within the
laser wavelength. This long range interaction potential is of the form, U(r) = —%,
where u = (117/15)(ag/cegA?) and 1 and Ay are the total laser intensity and wave
length respectively. g is the atomic polarizability at the frequency 2me/A;. This
suggests that it might be possible to simulate gravitational effects in the laboratory.
Particularly interesting is the possibility of experimentally emulating boson stars:
gravitationally bound condensed Bose systems of finite volume in which the zero
point kinetic energy balances the gravitational attraction and thus stabilizes the
system against collapse. The fifth chapter of this Thesis is devoted to the study of
various low-energy excitation spectrum and the vortex state of a Bose condensed

state with gravity-like interatomic attractive interaction [36].

1.1.8 Condensed state with vortices

Among the several questions that can be studied in quantum fluid is superfluidity.
The vortex state plays an important role in characterizing the superfluid properties
of an interacting quantum fluid systems, A small array of vortices has been observed
in liquid *He [37]. With the achievement of atomic BEC, it is possible to study these
phenomena in an extremely dilute quantum Auid. Vortex filament in the condensate
can be generated by rotating the condensate above the certain angular frequency,
known as critical frequency [11]. Many Vortices in the condensate can be nucleated
by rotating the condensate with higher angular momentum. Recently, the ENS [38]
and MIT groups [39] have observed the formation of triangular vortex lattices in
rapidly-rotating atomic Bose condensed gas. These vortex lattices are produced by
rotating the condensate around its long axis with the optical dipole force exerted
by blue-detuned laser heams. These triangular lattices contained more than 130
vortices [39]. The vortex lattices are highly excited collective states of condensate
states. It has been shown by Tin-Lun Ho that as the number of vortices increases,
a BEC state will become quantum Hall like state [40]. Tt is interesting to study how
and when the collective modes (vortex lattices) go unstable. In other words, what is
 the mechanism and condition for quantum melting of the vortex lattice structure?
|
|




It has been suggested that the vortex-lattice state of quasi-2D bosons melts due to
quantum fluctuations when the boson filling factor 1y, the ratio of boson density to
the vortex density, is smaller than 6 and 8 based on the exact diagonalization study
[41] and the microscopic caleulation [42], respectively. In the sixth chapter of this
Thesis, we [43] present how the vortex lattices can melt and attempt to estimate
the condition for quantum melting instability by cousidering large correlated ring
exchanges in a 2D Wigner crystal of vortices in a strong ‘pseudomagnetic field’
generated by the background superfiuid Bose particles. The rotating BEC or the
vortices in presence of the Bose superfluid is equivalent to the charged particle in
4 magnetic field. Can vortex liquid state exhibit the quantum Hall effect? This
question has been addressed in [41] and predicted that the vortex liquid can be
described as a Read-Rezayi parafermion states whose excitations obey non-Abelian
statistics [44].

The field of ultracold trapped atomic gases is progressing very fast. For

a detailed updated review on theoretical and experimental aspects of trapped alkali
atomic gases, sec the references [45)].

1.1.9 The quantum Hall effect

The quantum Hall effect is one of the most remarkable phenomena in condensed
matter physics. Under suitable conditions, electrons are effectively confined to two
dimensions by an inversion layer. Inversion layers are formed at an interface of a
semiconductor and an insulator or between two semiconductors. The basic exper-
mmental observation is the quantization of the Hall conductance. Oy = u'j,—' of a
system containing two-dimensional electron gas subjected to a strong magnetic field
(B) perpendicular to the plane, where e is the electronic charge, h is the Planck’'s
constant and ¢ is a quantum number. The Hall conductance is independent of
specific material parameters. The diagonal conductivity vanishes, so that the state
is dissipationless. The characteristic length scale for electrons in a magnetic field
Bisl; = ,/% Typical range of [; is 530-100 A and it is independent of material
parameters. The electronic states are parameterized by Landau levels of Cnergy
E,=(n+ %Jhwc, where w, = % 18 the cyclorotron frequency. Each Landau level
is highly degenerate and the number of states per unit area of one Landau level is
o = %. where ¢y = + 15 the unit of flux quantum. So the degeneracy of one full
Landau level is counted by the total number of flux quanta in the external magnetic
field. The filling fraction v is defined as the ratio of the electron density to the total

number of states per unit area, The case v =1,2,3.... corresponding to the integer
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quantum Hall effect was discovered by von Klitzing ef al. [46], The case v = EoeTT]
and p=1,2.... 15 = 1, 2...... corresponding to the fractional quantum Hall effoct
(FQHE) was discovered by Tsui et al, [47]. The case s =1 and v = |"*;:1T13 = 1 was
explained by Laughlin with his famous wave function [48] which is,
o'l M |:-|:
(T Rami T f
e = [](z —2)™ & == 4, (1.11)

i

Here, z is the position of the electron in the complex plane, N is the total number
of electrons. The Laughlin wave function is composed of single particle states in
the lowest Landau level and is properly antisymmetric in accordance with fermionic
statistics. Two main features of this wave function are the following: there is a zero
on cach electron and each electron sees other electrons as magnetic flux due to the
accumulated phase when moving one electron around another. The more general
case s 2 U, p > 1,v = 1= was explained by J. K. Jain using the idea of composite
fermions [49]. The FQH liquid is isotropic and imcompressible. Using the plasma
analogy, Laughlin [48] has shown that the elementary charged excitations at filling
fraction » = L are quasiparticles and quasiholes with fractional charges £=. The
quasiparticles and quasiholes also obey fractional statistics [30].

1.1.10  Inner structure of collective modes in FQHE

Despite the fact that the quantum Hall system is made up of fermions, the behav-
1or 15 also reminiscent of superfluidity since the current is dissipationless. Indeed,
within the ‘composite boson picture’, one views the FQHE ground state as a Bose
condensate [51], Using the single mode approximation, (like Feynmann used to
calculate the excitation spectrum for liquid helium) Girvin, Macdonald and Platz-
man (GMP) analyzed the collective excitation spectrum of fractional quantum Hall
systems [52]. This dispersion curve has finite gap at k = 0, quite different from
the case of superfluid helium and trapped alkali atomic Bose gas in which mode is
gapless. However like the case of the superfluid helium, it has a roton minimunrm,
called ‘magnetoroton’ minimum at finite k. The collective excitation spectrum is
different from the Fermi liquids. Girvin et al [52] brought out nou-trivial inner
structure of neutral excitations of the FQH systemns, This inner structure is VETY
transparent for the magnetoroton, the minimum energy neutral excitations at finite
wave vector kgly ~ 1.4 for the v = i quantum Hall state. They are approximated
by a Laughlin quasihole and quasiparticle bound state, whereas the roton in liguid

helium is considered as a localized highly excited state composed of few atoms. The
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exact diagonalization studies by Haldane et al [53] proved that the single mode
approximation is extremely accurate. The excitation spectrum of fractional quan-
tum Hall systems at v = % has been measured by resonant inelastie light scattering
experiment |34] which is in good agreement with the theoretical prediction. It was
observed by GMP [52] that the zero momentum neutral excitation, as observed by
numerical experiment (53] was in disagreement with their result. Since the numer-
ically observed result was slightly less than sum of the two magnetoroton energy,
they speculated that the minimum energy excitation could be a two-magnetoroton
bound state. In the seventh chapter of this Thesis we will be concerned with the
formation of two-magnetoroton bound state in fractional quantum Hall states at
v = 3. By focusing on the oriented dipole character of magnetoroton, we [55] model
the two-magnetoroton bound state with binding energy which is in good agreement
with the composite fermion [56] numerical results.

The quantum Hall systems are also interesting in the vicinity of even-
denominator filling fractions. For example, the quantized Hall plateau does not oceur
at v = 3 state [57] whereas the quantum Hall effect is observed at v = 2 state [38].
The basic elementary excitations at v = % are neutral, quite different from fractional
charged excitations at odd-denominator filling fractions. The Chern-Simons theory
[59] explained most of the properties at v = 1 filling fraction. Attempts have been
made to explain the v = % state by considering p-wave pairing states known as
Pfaffian states [60).

Theoretical understanding of the FQHE has progressed rapidly, but it is
not yet complete, For an updated veview and open problems in the quantum Hall
effect, see the books and review articles [61],

1.2 Organisation of this Thesis

This Thesis is organised as follows. In the second chapter we derive the low-energy
excitation frequencies and their damping rates of a 2D deformed trapped Bose gas
above the eritical temperature, In the third chapter we derive analytically the low-
energy excitation spectra of a 2D deformed trapped interacting Bose gas as well
as interacting Fermi gas at zero temperature. In the fourth chapter we show the

universality of the monopole mode frequency and the time-evalution of a class of

i trapped interacting Bose gas. The fifth chapter is devoted to the study of various

low-energy excitation spectra and the vortex state of a Bose condensate state with

gravity-like interatomic attractive interaction. In the sixth chapter cooperative ring
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exchange is suggested as a mechanism of quantum melting of vortex lattices pro-
duced in rapidly rotating quasi two dimensional BEC., We estimate the condition
for quantum melting instability of vortex lattices, In the seventh chapter we model
two-magnetoroton bound state formation in the fractional quantum Hall states at

v = % state. We present the summary and conclusions of this Thesis in the eighth
chapter,

13




Bibliography

[1] S. N. Bose, Z. Phys. 26, 178 (1924).
2] A. Einstein, Sitzber. Kgl. Preuss. Akad, Wiss. 261 (1924).
[3] K. Huang, Statistical Mechanics, 2nd edition (John Wiley and Sons, New York).

[4] P. L. Kapitza, Nature 141, 74, (1998):
J. F. Allen and A. D. Misener, Nature 140, 62 (1938).

(5] V. Baganato, D. E. Pritchard, and D. Kleppner, Phys. Rev. A 35. 4354 (1987).
[6] M. H. Anderson et al. Science 269, 198 (1995).

[7] K. B. Davis et al. Phys. Rev. Lett. 75. 3969 (1995).

[8] C. C. Bradley et ol Phys. Rev. Lett. 75, 1687 (1995).

[9] S. Inouye et al. Nature (London) 392, 151 (1998):
J. Stenger et al. Phys. Rev. Lett. 82, 2422 (1999).

[10] E. P. Gross, Nuovo Cemento, A 20, 454 (1961);
I L. P. Pitaevaskii, Sov, Phys. JETP 13, 451 (1961).

| [11] G. Baym and C. J. Pethick, Phys, Rev, Lett. 76, 6 (1996),

| [12] M. Edwards et al. Phys. Rev. Lett. 77, 1671 (1996).

[13] §. Stringari, Phys. Rev. Lett. 77, 2360 (1996).

[14] Victor M. Perez-Garcia et al. Phys. Rev, Lett, 77, 5320 (1996).

l

|[15] D. Guery-Odelin and 8. Stringari, Phys. Rev. Lett. 83, 4452 (1999).

I[lﬂv] 0. M. Margao ef al. Phys. Rev. Lett. 84. 2056 (2000).
|

14




[17] M. R. Andrews et al. Phys. Rev, Lett. 79 533 (1997) and Phys. Rev. Lett. 80
2967 (1998),

[18] D. M. Stamper-Kurn et al. Phys. Rev. Lett. 83 2876 (1999).

[19] Y. Castin and R. Dum, Phys. Rev. Lett, 77, 5315 (1996);
Y. Kagan, E. L, Surkov and G. V. Shlyapnikov, Phys. Rev. A 54, R1753 (1096);

F. Dalfovo, C. Minniti, L. Pitaevskii. and S. Stringari, Phys. Lett. A 227 259
(1987,

[20] U. Ernst et al. Europhys. Lett. 41, 1 (1998): Appl. Phys. B 67, 719 (1998),

[21] W. I, McAlexander et al. Phys. Rev. A 51, R871 (1995)
F. 5. Cataliotti et al. Phys. Rev. A 57, 1136 (1998).

a

[22] B. De Marco and D. 8. Jin, Science 285, 1703 (1999).

23] P. C. Hohenberg, Phys. Rev. 158, 383 (1967).

[24] V. Baganato and D. Kleppner, Phys. Rev. A 44, 7439 (1991).
[25] Pijush K. Ghosh, Phys. Rev, A 65, 012103 (2001).

[26] Pijush K. Ghosh, cond-mat /0109073,

27] Gorlitz et al. Phys. Rev. Lett. 87, 130402 {2001).

[28] W. Hansel et al. Nature 413, 498 (2001).

[29] H. Ott et al. Phys, Rev. Lett. 87, 230401 (2001).

[30] Tarun Kanti Ghosh, Phys, Rev. A 63, 013603 (2000).

31] Tarun Kanti Ghosh and 8. Sinha, The Eur. Phys. J. D 19, 371 (2002).

[32] Tarun Kanti Ghosh, Phys. Lett. A 285, 222 (2001).

[33] L. P. Pitaevskii and A. Rosch, Phys, Rev, A 55, R 853 (1997).
[34] K. Goral and L. Santos, cond-mat/0203542.
[35] D. O'Dell ef al. Phys. Rev. Lett. 84, 5687 (2000).

[36] S. Giovanazzi et al. Europhys. Lett. 56, 1 (2001):
Tarun Kanti Ghosh, Plys. Rev. A 65, 053616 (2002).

15



[37] E. J. Yarmchuk, M. J. V. Gordan, and R. E. Packard, Phys. Rev. Lett, 43, 214
(1979).

[38] K. W. Madison, Phys. Rev. Lett. 84, 806 (2000).
[39] J. R. Abo-Shaeer ef al. Science 292, 476 (2001).
[40] Tin-Lun Ho, Phys. Rev, Lett, 87, 060403 (2001).
[41] N. R. Cooper ef al. Phys. Rev, Lett. 87, 120405 (2001).

[42] J. Sinova, C. B. Hanna, and A. H. Macdonald, Phys. Rev. Lett, 89. 030403
(2002).

(43] Tarun Kanti Ghosh and G. Baskaran, cond-mat /0207484 (submitted to Phys.
Rev. Lett.).

[44] N. Read and E. H. Rezayi, Phys. Rev. B 59, 8084 (1999).

[45] F. Dalfovo et al. Rev. Mod. Phys. 71, 463 (1999);
A. J. Leggett. Rev. Mod. Phys. 73, 307 (2001);

C. J. Pethick and H. Smith, Bose-Einstein condensation in dilute gases, Cam-
bridge University Press 2002,

[46] K. von Klitzing ef al. Phys. Rev. Lett. 45, 494 (1980).

[47] D. Tsui et al. Phys. Rev. Lett. 48, 1509 (1082).

[48] R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).

[49] J. K. Jain, Phys. Rev, Lett, 63, 199 (1989),

[5{]] D. Arovas, J. R. Schrieffer, and F. Wilezek, Phys. Rev. Lett. 53, 145 (1984),

[51] S. M. Girvin and A. H. Macdonald, Phys. Rev. Lett. 58, 1252 (1987);
5. C. Zang, H. Hansson, and 8. Kivelson, Phys. Rev. Lett. 62, 82 (1989):
N. Read, Phys, Rev. Lett. 62, 86 (1989).

[52] S. M. Girvin, A, H. Macdonald, and M. P. Platzman, Phys. Rev. Lett. 54 , 581
(1985).

(53] F. D. M. Haldane and E. H. Rezayi, Phys. Rev. Lett. 54, 237 (1985).

16




[34] A. Pinczuk et al. Phys. Rev. Lett. 70, 3083 (1993);
H. D. M. Davies et al. Phys. Rev. Lett, 78, 4095 (1997);
M. Kang et al. Phys. Rev. Lett. 84, 546 (2000).

[35] Tarun Kanti Ghosh and G. Baskaran, Phys. Rev, Lett, 87, 186803 (2001).
[56] K. Park and J. K. Jain, Phys. Rev. Lett. 84, 5576, (2000).

[57] R. L. Willet et al. Phys. Rev. Lett. 71, 3846 (1993).

[58] W. Pan et al. Phys. Rey. Lett. 83, 3530 (1999).

[59] B. L Halperin et ul. Phys. Rev. B 47, 17312 (1903).

[60] F. D. M. Haldane et al. Phys. Rev. Lett. 60, 956 (1988): 60, 1886 (1988).

[61] R. E. Prange and S. M. Girvin, The Quantum Hall Effect (Springer-Verlag, NY,
1990);

5. Das Sarma and A. Pinczuk, Perspective in Quantum Hall Effects, (Wiley,
MNew York, 1997):

S. M. Girvin, The Quantum Hall Effect: Novel Ezcitations and Broken Sym-
metries. Les Houches Summer School 1998.

17




Chapter 2

Collective excitation frequencies
and damping rates of a 2D

deformed trapped Bose gas above
the critical temperature

2.1 Introduction

After the discovery of Bose-Einstein Condensation (BEC) in a trapped alkali atom,
the influences of the dimension of a Bose systems has been a subject of extensive
studies [1]. In our present technology one can freeze the motion of the trapped
particles in one direction to create a quasi-two-dimensional Bose system. In the
frozen direction the particles execute the zero point motion. To achieve this quasi-
two dimensional system, the frequency (w.) in the frozen direction should be much
larger than the frequency (wy) in the o —y plane such that kT < fiw. and g > fiwg.
It has been shown by V. Baganato ef al. [2] that for an ideal two-dimensional (2D)

Bose gas under harmonic trap a macroscopic occupation of the ground state can

exist at temperature T' < T, = v ﬁ’;\—*ﬂ‘l where NV is the total number of particles

and ((2) is the Riemann (-function. Then the condition for creating a 2D trapped
Bose gas above the critical temperature is \,r% hwy € kgT < hw..

At very low temperature, when the whole system is Bose-Einstein con-
densed state, the motion is described by the hydrodynamic equations of superfluids.
1If the temperature is larger than the critical temperature for BEC the dynamical be-
‘haviour of a dilute gas is well deseribed by the Boltzmann equation. Above the eriti-

cal temperature (T,), one can distinguish two regimes, the hydrodynamic(collisional )
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one where collisions ensure the local thermal equilibrium and collisionless where the
motion 18 deseribed by the single particle Hamiltonian, In the hydrodynamic re-
gion, the characteristic mode frequency is small compared to the collision frequency
(Wr << 1). In the collisionless region (wr >> 1 ). the collision are not impor-
tant. In the collisionless regime the system exhibits well defined oscillations which
are driven by the external potential. The low-energy oscillation frequencies of a
3D trapped Bose gas above T, have been measured in [3]. The low-lying collective
mode frequencies of a 3D trapped Bose gas above T in the hydrodynamic region
has been discussed by Griffin et al [4] by using the kinetic theory. Damping of the
hydrodynamic modes in a trapped Bose gas above the T, is also discussed by Odelin
et al. [5] and Kavoulakis ef al. [6]. These theoretical results are consistent with the
experimental results,

It is well known that the excitation frequencies for monopole mode is
2wy in a 2D isotropic trapped Bose gas. Using the approximation, w. >> wy, the
dispersion relation of the excitation frequencies for 3D trapped Bose gas above T,
obtained in [4, 5] does not produce the correct frequencies for monopole mode in a
2D trapped Bose system. The main aim of this chapter is to give analytic results for
the dispersion law of low-lying collective modes of a 2D deformed trapped Bose gas
above T; and their damping rates in both regimes, hydrodynamic and collisionless.

This chapter is organised as follows. We derive in section [2.2] a closed
equation of motion for the velocity fluctuations of a 2D deformed trapped Bose gas
just above the eritical temperature (T > T)), using the kinetic theory. We make
use of this equation in section [2.3] to calculate the excitation frequencies for a few
low-lying collective modes and the corresponding density fluctuations, In section
[‘5’ 4] we derive a dispersion relation of a 2D deformed trap Bose gas at very high
temperature using the method of averages that interpolates between the collisionless
and hydrodynamic regimes. From this dispersion relation, we calculate the elgen-
irequencies and damping rates for monopole and quadrupole modes. We discuss the
time evolution of the wave packet width of a Bose gas in a time-independent as wel

as time-dependent trap. In section [2.5] we present a summary and outlook of this
chapter.

19




2.2 Hydrodynamic equation of motion for the ve-
locity fluctuations

We shall discuss the collective modes of a 2D deformed trapped Bose gas in the
hydrodynamic regime just above T' > T, using the kinetic theory, In the low-energy
excitations, we can use the semiclassical approximation for the dynamics of a Bose

gas, using the following Boltzmann equation [7] for the phase-space distribution
function f{r,p.t):

E!f F ;
where I, 15 the mllismual integral, and F = —V{iir). The trap potential is

Ua(r) = smiw?e® + wly®). In the hydrodynamic regime, collisions ensures the
local thermodynamic equilibrinm. To the lowest order, the perturbed distribution
function produced by a slowly varying external potential is the equilibrinm Bose
distribution function:

Fir,p.t) = [exp(B(r, t)n(r,t) — 1], (2.2)

[p — mv(r, )"

2,
u(r.t) is the chemical potential. The inverse temperature is G(r, ) = E’Flt'r_f The

local density n(r,t), the local velocity v(r. ) and the local energy E(r,t) are defined
i

{rt

— plx, t). (2.3)

_ [ & ;
nlr,t) = [ o (=Pt (2.4)
d*p p
vir.t) = [[ Tt i) (2.5)
d? =
Elr.t) = [Eﬁ:’; il (r,p, 1). (2.6)

‘The conservation laws are [3]

dn(r,t)

En + V.[n(r, t)v(r. )] = 0. (2.7)
ma(r, ”c:.r = —[VP(r,t) + nlr,t)VU(z)]. (2.8)
aEé:‘” = =V.[(P(r.t) + E(r, t))v(r,t)] - n(r,t)v(r,t). VUs(r). (2.9)

These conservation laws are obtained from Eq.(2.1) by multiplying 1, p, é% and

tegrating the resulting equation over p. During collisions, the total number of
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particles N, momentum p, and energy é% are conserved, so the collisional term
vanishes, We are only interested in a small perturbations around the equilibrium
states, We linearize the density, w!ocit}' and pressure as follows, n{r,t) = ng(r) +
on(r,t), vir,t) = dv(r.t) and P(r ¢} = Py(r) + 6 P(r,t) with ne(r) and Py(r) being

the equilibrinm density and pressure, Le&pm.twul}. The linearized conservation laws
are

di”d{—:—” V. [no(r)dv(r. )] = 0, (2.10)

ddv " .
mngf,r}W = —|VPRy(r,t) + nplr, ) VUs(r)], (2.11)
ﬂﬁé? th V.(Flr) + E(r))dv] — ngdv.VU{r). (2.12)

Using the quantum-statistical mechanics, the pressure and density can
be written as

P 3
- i{f]‘ (2.13)
keT AZ
_ qlz)
n= L (2.14)
A2
where g,,(z) = f‘;l{;—,:] are the Bose-Einstein functions. z(r,t) = entlrd) i the
local thermodynamic fugacity, which is always less than one. A = i

—hT 15 the
thermal de Broglie wave length.

One can easily get the relation

P(r.t) = B(r.t) (2.15)

in 2D. The static local equilibrium values of the thermodynamic functions which

are given in the above can be obtained by setting dv(r.t) = 0,T(r.¢) = Ty and

= o, — efg%! where pig(r) = g — Up(r) and p is the chemical potential. Using
Eq.(2.13), Eq.(2.12) can be written as

a——P”éE:' Y 9 [(Py(x)avir, 8] — nodvlr, £) T Uo(r). (2.16)

Taking the time derivative of Eq. (2.11) and using Eqs. (2.10) and (2.16),
we obtain
8 dv Fy(r)

m g = 2 VIV = [V8v|VU(x) - VIav.VUo(r)].  (217)

The term "—“;':{-‘:3 of (2.17) is associated with the Bose statistics.
Without any external potential, U = 0, Eq. (2.17) becomes
ﬂzﬂv FQ(T}

=2
3#2 'J‘Tu{l'J

VIV.év). (2.18)
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It has the plane-wave solution with the dispersion relation w? = ¢2&2. The sound
velocity is _
e 2R(r)  2kpTh go(m)

= . 2.19)
ming(r) mo gi(z) (2.19]

whm‘v zg = e*8T, At high temperature (z << 1), the sound velocity becomes
ﬂfzﬂ This sound velocity exactly matches with known result.

From the continuity Eq.(2,10), we have

5ﬂr1r:r§:': J = —(V.0v)ne(r) — dv(r,t).Vng(r, ¢). (2.20)

The density fluctuation is given by dn(r, ) = dn(r)e=™*, In classical limit, the static
y 50 T B T

. ml:'.'_f:' L ]
density profile is ng(r) = ny(r = ﬂ]rz__"':{_w— , Where # = kgT,

2.3 Eigenfrequencies and the corresponding den-

sity fluctuations in the hydrodynamic regime

The different eigenmodes may be summarised as follows:

1) The normal-mode solution of (2.17) is dv(r) = V(z'), where z =
(z+iy) and | > 0. The excitation frequencies and the associated density fluctuations
are w® = lw? | dny ~ wlzz"Vpy(r) and w? = w2+ (I - Vs | dny ~ wlyzYng(r).
For an isotropic trap, the frequency is w = wyv/1, The cortesponding density fuc-
tuation is on(r) ~ ng(r)r'e™. At r =0, there is no density fluctuation. There is a

maximuin density fluctuation at r = /-2

:'rl'r..'ﬂlz :

2) The other solution of BEq. (2.17) is dv(r) = V][aa?+ 8% The positive

sign is for the monopole mode | and the negative sign is for quadrpole mode. In a
deformed trap, the excitation frequencies are

wi-:é[ 3wk +wp) = /(w2 + w2 )2 — 32u2w2] . (2.21)

For an isotropic trap, it becomes w, = 2w or w_ = 3wy Hence, in the anisotropic

trap. the monopole mode is coupled to the quadrupole mode, Ifw, << w,, the lowest
g . - 1 v

citation frequency 15 w = U‘%UJI. I w, >> w,, the lowest excitation frequency is

%wy. The density luctnation for the monopole mode is

miwrz® + wiy? .
Lt + ) ), (2.29)

onr) ~



where as the density fluctuation for quadrupole mode is dn(r) ~ (wiy” —wiz®)ng(r).

3) There is another quadrupole mode which has velocity field dvir) =

V{zy). This is also called the scissors mode [11]. The excitation frequency is
w* = w}+w? and the corresponding density fluctuation is dn(r) ~ (w?+w?)ayny(r).
In an isotropic trap, w® = 2w?, which agrees with that for the scissors mode in
hydrodynamic regime above T, [11]. The quadrupole and scissors mode frequencies

are degenerate in an isotropic trap., This degeneracy is lifted up due to the trap
deformation,

2.4 Method of averages

At very high temperature, the dynamical behaviour of a dilute gas is described
by the Boltzmann transport equation. Here we include the collisional term in the
Boltzmann transport equation, and study the eigenfrequencies for monopole and
quadrupole mode using the method of averages [5]. These two modes are coupled
in a deformed trap.

IFrom Eq. (2.1}, one can obtain the equations for the average of a dy-
namical quantity y{r,v) is [7, 9]

dix) F
—0 — (v.Vex) — (= = 2.9
dt {er‘{} <mv"’ﬂ {Ian!X}- l: 3}
‘where the average is taken in phase space, and < y > can be written as
1 W )
(x) = h—rfd"rd“tlf{r,v,tjx{r. V). (2.24)
;{xf‘-mu} can be defined as
1 g G
(el et} = m[dz”‘izﬂ[?ﬁl +x2 = x1 — Nalleat(£). (2.25)

fx = a(r) + b{r).v + clr}v?*, for elastic collision the collisional term is zevo [5, 7).
i, b, and ¢ are arbitrary functions of the position.

Now we define the [ollowing quantities:

X1 =1+, (2.26)
X2 =y — a7, (2.27)
Xa = rig + Wiy {?—-28]
X4 = YUy — TV, (2.29)
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Xs = U: + v

2 (2:30)
Xs =v; — v2. (2.31)

Using the Boltzmann kinetic equation (2.23), we obtain the following closed set of
efuations:

() = 200s) — tla) + elxa),

(2.32)
(X2} = 2(xs) — t{x2} + €{x1), (2.33)
{¥a) = 2e{xq) — 2t{xs}: (2.34)
(%) = Zelxs) — 2t{xa) — @ (2.35)
'2 _i_ti.
(X3} = elxe) — tixs) — etlna) + (X1}, (2.36)
(e) = —et{xy) + = ff {x2) + €{xs) — "-’*;i} — t{xa}y (2.37)

where double dot indicates the double derivative with respect to time. ¢ = w? +w
and € = w? — w?. yg is not a conserved quantity, so the collisional contribution
‘comes only through the x5 term. We have used the fact that (yel..n) = —%&, where

7 is the relaxation time. This relaxation time 7 can be computed by a Gaussian

ansatz for the distribution function. The relaxation time 7 is order of the inverse of

the collision rate Y. ~ n(0)vpop, where vy, = % is the mean thermal velocity.
Nmwdd . ; : . H
and n(0) = Sh,Ta. 18 the central density for a & quasi- -2D system. a; 1s the oscillator

length in the z direction. Hence 7 ~ g%

\j—i‘—. oy = 8ma” is the 3-D scattering
eross-section, It can be written in teu:us uf T.as

_ 1 2 asagy [T
‘ Wﬂd?r C(2)(NA): ( ) \/; (el

where ay = "'anJ:';E is the osscilator length. The relaxation time 7 varies as VT in a

uasi-2D) system, where as in a 3D system it varies as T [6] . Now we are looking for

4 solutions of Eqs. (2.32)-(2.37) as e ™', We have the following dispersion relation

o 9 o a ? B 2 il v
(w? = dw) (w* — dw?) + — [ma — Bwwi + i) + awfw;] =10. (2.39)

s dispersion relation interpolates between the collisionless and Lydrodynamic

In the hydrodynamical regime ( wr — 0 ), the first term does not
contribute. It gives w?® = 1 [3 wi +wl) & J Ol 4w}t — 32m§m5_1 This eigen-
ltequency exactly match with Eq. (2.21). a result we found using the equation of

motion for the velocity fluctuations even in a deformed trap. We have considered a
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few low-energy excitation modes for which V.dv is constant. The first term of the
right-hand side of Eq. (2.17) does not contribute in the excitation spectrum. Thats
why the frequencies of these normal modes are the same for a Bose gas Just above
T. and at very high temperature. In pure collisionless regime { w7 — 00 ), it gives
we = 2w, and we = 2w,

We can write phenomenological interpolation formula for the frequency
and the damping rate of the modes in the following form [5. 6]

2 2
73 " gy —.
N (B S (2.40)
1 —awr '

The imaginary part of the above equation for the damping rate gives

T i

. 2.41
21+ (wr)? (2.41)

where d = (w —w;). In the hydrodynamic limit (wr —+ 0), the damping rate is

Tap= %u’. (2.42)

where as in the collisionless region (wr — oc),

d

Ter = : 2.43
CL ELI.J?C-T ( :I

The damping rate depends on the difference between the square of the frequencies
i the collisional and hydrodynamical regimes, The damping rates can be calculated
for different values of temperature, and number of trapped atoms as well as of the
trapping parameters and scattering length through the relaxation time = (2.38).
For a monopole mode in an isotropic trap, the difference d is zero. Thus there is
no damping in the monopole mode in a 2D isotropic trapped Bose system when
the tempareture is very high. This was first shown by Boltzmann [9] and later by
Guery-Odelin et al. [5], in 3D trapped Bose system at very high temperature,

For an isotropic harmonic trap, Eqs. (2.32) - (2.37) decouple into two
ubsystems, one for the monopole mode and the other for the quadrupole mode.
The closed set of equations for monopole mode are

(X1) = 2(xs) — 2w (1), (2.44)
(Na) = —dag (xs), (2.45)
(x5) = 2wy {x1) + 2wilxa). (2.46)
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‘There is no collisional term in the above equations, Thus there is no damping for
the monopole mode of a classical dilute gas confined in an isotropic trap. We are
.'_Inqkiug for solutions of Eqgs. (2.44) - (2.46) like e ™', we obtain w = 2w,
Equations (2.44) - (2.46) can be rewritten as
() Q
— A1 2 :
Q) = o~ + 2wy (x1) = —, (2.47)
2a) ! {x1)
where @@ = 2({x1){xs) — {xa)") is an invariant quantity under time evolution. We
(define X(t) = y/{xa}. which is the wave-packet width and substituting it into Eq.
(2.47) gives
| 2y T s ¢ ;
A +wﬂl = ﬁ [248]
‘This is a nonlinear singular Hill equation. The same equation was obtained at
T =0in 2D by Gareia Ripoll et al. [10]. At equilibrium, X} = f'-g We linearized
Eq. (2.48) around the equilibrium point X,, we obtained

6X +dwlsiX = 0. (2.49)
One obtains that the oscillation frequency of the gas is w = 2wy, corresponding to

the frequency of a single-particle excitation in the gas.

For a time-dependent trap. the equation of motion for the width of the
wave-packet is

5 . (;J &
X 4wt} X = e (2.50)
e general solution [12] is X(t) = \/uz[t} + %vﬁ{t} where u(t) and v(t) are two
lingarly independent solutions of the equation j 4+ w?(t)p = 0 which satisfy u(t,) =
X(to), ulto) = X'(to), vlte) = 0, v'(ts) # 0. W is the Wronskian. The time-

dependent Hill equation (2.50) can be solved explicitly only for a particular choice
m{du[ﬂ-.

The closed set of equations for a quadrupole mode in an isotropic trap

(X2} = 2(xs) — 203 {x2), (2.51)
(b =~ o) — 22, (25

06e) = 2000 ~ 2 3z (253)

Solving this set of equations, we obtain the damped guadrupole maode,
2 e i y 9

w” —dwg) + —(w* —2wg) = 0.

{ “—’u} e {w u}
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In the hydrodynamic regime, the oscillation frequency is w® = 2wy, whereas in the

collisionless region the frequency is just a single-particle oscillator frequency. The
damping rate can be calculated by using Eqs. (2.42) and (2.43).

2.5 Summary and conclusions

In this chapter, we derived the equations of motion for velocity fluctuations of a Bose

gas in a 2D deformed trap potential just above the critical tetnperature, Without
any external trap potential ([ =

0), this becomes a wave equation, from which
we found the exact sound velocity at high temperature. We have also cornptted
the frequency of the scissors mode in a hydrodynamic vegime above T, which agrees
with the result obtained by Guery-Odelin and Stringari [11]. We have also calculated
the frequencies for monopole and quadrupole modes and the corresponding density
fluctnations in a deformed trap above TL.

Using the method of averages, we obtained a dispersion relation that
interpolates between the collisionless and hydrodynamic regimes at very high tem-
perature, In a deformed trap as well as an isotropic frap, we have found frequencies
and damping rates (in terms of the relaxation time) for monopole and quadrupole
modes in both the regimes. In the hydrodynamical regime, the excitation frequen-
cies for monopole and quadrupole modes exactly mateh with the previous result that
we found from Eq. (2.17). We have also shown that the relaxation time 7 varies as
VT in a quasi-2D Bose gas whereas in 3D 7 varies as 7.

We have shown that there is no damping for monopole mode in a 2D
isotropic trapped Bose gas when the temperature is very high. This is also true for
3D isotropic trapped Bose gas above the critical temperature which was first shown
by Boltzmann [9], and later by Guery-Odelin et al. [5].

We have also shown that the time evolution of the wave packet width of
4 Bose gas in a time-independent as well as time-dependent isotropic trap can be
obtained from the method of averages. This can be described by the solution of the
Hill's equation.

The objective for future work would be to develop the method of aver-

es by taking into account the effect of particle interactions. The contribution from
the mean field interaction energy in Boltzmann transport equation is also known as
lhe Vlasov contribution. One can derive the low-energy excitation spectra and the
dynamics of the width of a 2D frapped interacting Bose gas above the critical tem-
perature from the method of averages by including Vlasov term in the Boltzmann




transport equation. We believe that the monopole mode frequency will be indepen-
dent of the interaction strength and the dynamies of the width can be described by
the same nonlinear singular Hill's equation.
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Chapter 3

Collective excitation frequencies of
a quasi-2D deformed trapped
quantum gas at 7'=0

3.1 Introduction

In the previous chapter we have derived the low-energy excitation frequencies and
their damping rates of a two-dimensional (2D) deformed trapped Bose gas above
the critical temperature. In this chapter we will discuss the low-energy excitation
frequencies of a4 2D deformed trapped alkali-metal atomic Bose and Fermi gases at
gero temperature.

The low-energy collective excitation spectra of a three dimensional (3D)
trapped Bose condensed state has been discussed analytically by Stringari [1], us-
mg the sum-rule approach. A few low-lying excitations have also been calculated
analytically by using time-dependent variational approach [2]. The low-energy exci-
tation spectra obtained in sum-rule approach eoincides with the spectra obtained by
- using fime-dependent Gaussian variational ansatz in the lirit of large particle num-
ber. Also a similar type of scaling ansatz has been used ta describe the excitation
frequencies and the time evolution of the condensate in the large N limit [3, 4, ],
Experimentally the low-lving collective excitation frequencies of a 3D condensate
have been measured at zero temperature [6]. These observed values of the collective
oscillation frequencies are in excellent agreement with the theoretical results at zero
temperature.

The reduction in spatial dimensions of a quantum gystem is the subject of
‘extensive study in trapped Bose systems [T, 8, 9, 10, 11] as well as in trapped Fermi

a0




systems [12]. Recently. quasi-2D dimensional Bose-Einstein condensation (BEC)
has also been realized at MIT [13], So it is interesting to study the monopole,
quadrupole and scissors mode [requencies of quasi-2D BEC. The main purpose of
this chapter is to give an explicit, analytic description of monopole, quadrupole and
seissors mode frequencies of 4 2D deformed trapped quantum gas (Bose and Fermi)
at zero temperature and to caleulate the splitting between the quadrupole modes
for an arbitrary deformation of the trap.

This chapter is organised as follows. In section 13.2] we model quasi-two
dimensional trapped Bose system at zero temperature. Using the time-dependent
variational method we ealeulate the monopole and (quadrupole excitation frequen-
ties of a Lwo dimensional deformed trapped nteracting Bose gas. In section [3.3],
using the sum-rule approach we derive a general dispersion relation {or the monopale
and quadrupole excitation frequencies of a two-dimensional frapped quantim sys-
tem interacting through Fermi pseudo-potential. This relation is valid for both
Fermi and Bose statistics, We apply this general dispersion relation to caleulate the
same excitation frequencies of a trapped Interacting Bose system. We show that
the monopole and quadrupole excitation frequencies obtained from both methods
are exactly the same. In section [3.4] we consider trapped unpolarized interact-
ing fermions and apply the dispersion relation obtained from sum-rule approach to
Ic{:alculat.e the frequencies of monopole and quadrupole modes. In section 13.5] we
present the summary and conclusions of our work,

3.2 Modeling quasi two-dimensional trapped in-
teracting Bose gas

U BEC experiments. the trap potential can be approximated by an effective three-

dimensional harmonic oscillator potential, with tunable trap frequencies w. in the

I experiment ave very dilute and the interparticle interaction is well deseribed
the short-range pseudopotential and the interaction strength is determined by
swave scattering length o. Here we consider the case when the interparticle inter-

iction is strongly repulsive. The Gross -Pitaevskii(GP) [14] energy functional of the

Ely] = / d*rds [g—fﬁﬂ?fﬁ"[ri z)|* + T;I {w;.r'; + w_;yz + wf:‘) |t (r, 2)|*
+Z / Az (r — 1)z — ) |ilr’ )Pl e, ;]F] . (3.1)
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o . i 4 .
where g = % 15 the interaction strength determined by the s-wave scattering

length a, r is the position vector in © — g plane and 1(r, z} is the condensate wave
function.

[t has been shown by Baganato et al. [15] that for an ideal two-dimensional
Bose gas under harmonic trap, a macrascopic oceupation of the ground state can
exist at temperature T' < 7, = ﬁ%i—;ﬂ To achieve this quasi-two-dimensional sys-
tem, the frequency in the frozen direction should be much larger than the frequency
in the = — y plane and the mean interactions between the particles. Alternatively,
the trap frequencies are such that fiw, 3 p > hwy and kT < hw., where i is the
chemical potential of the two-dimensional trapped Bose gas.

For a quasi-two-dimensional system we may assume that the wave func-
fion in the z direction is seperable and is given by,

P -2
Ylz) = i R W
e|I [: .] {‘I‘.r—Tl_u;JlllrE{’ {3 }

‘where a, = /== is the oscillator length in the z-direction. Now we integrate out

(the z-component in the three dimensional GP energy functional, then we get the
Ceffective energy functional in two dimensions:

5 _f"'-'rhh_.'__‘ o h? n e 9 n 2 o -
.L'.' = —2— = fﬂr T [ﬂl‘??ﬁ'[r}l e E (MII "‘u.-‘”y ) |'i,|ﬂ'|:l'}|
+2 [ g - r'}|t,i'[r’]|2|1,-’,'lfr}|2] _. (3.3)

where gy = 2/ Imhw,aa is the effective coupling strength in two dimensions, a 1s the
g-wave scattering length in three dimensions and N is the total number of particles

1 the condensate. The same effective coupling constant is obtained in Ref.[8]. The
effective interaction in two dimensions is given by

Vi = gé*(r —1'). (3.4)

Recently, the two-dimensional Bose condensed state has been realized at MIT [13],

this experimental set up, they have loaded the number of condensate sodium

Hz, w, = 2 % 30 Hz and w, = 27 x 10 Hz. The scattering length for sodium atom

i0=2.75 nm. The chemical potential of a quasi-two-dimensional Bose condensed

state is jp = hwmhf'ﬁ% = Ji 0.19%ws ' N, where wy = 27 X, Sz, ~ 27 x 18Hz

a5

5 the average trap frequency. It is clear that the chemical potential and the trap



potential energy satisfy the condition for quasi-two dimensional Bose state. To show
the monopole and two quadrupole maode freqencies graphically we will use the above
mentioned parameter which we have taken from the MIT experiment [13]

3.3 Collective excitation frequencies of a quasi-
2D deformed trapped Bose gas

In two dimensions. the equation of motion of the condensate wave function is de-
scribed by the following Gross-Pitaevskil equation:

L) [ o e
R :[_z-mv"+V[f”ﬂzl'ﬂ’{rhz W(r), (3.5)

where V{r) = tm(wie® + wiy®) is the deformed trap potential in two dimensions.

The normalization condition for ¢ is [d*r|W|° = N. One can write down the

Lagrangian density corresponding to this system as follows:

.*..II 'ﬁz e _,12,.[}2_ 4 .
G -5 ) + (gIvel Vel + Zier). @0)

where asterisk denotes the complex conjugation. One can get the nonlinear Schroedinger
equation (3.5) by minimizing the action related to the above Lagrangian density
1.:{3,5}, In order to obtain the evolution of the condensate we assume the most gen-

B eral Gaussian wave function,

$(X, Y, t) = Q(e)e A eOX AT hatxv] (3.7)

where C{t) is the normalization constant, X and Y are the dimensionless variables,
X==Y =L where ap = \/E is the oscillator length and wy = /Wi, is
'the mean frequency. Further, & = o) + feeg, 3 = By + 153, and 4 = 4y + iy are
the time-dependent dimensionless complex variational parameters. The o, and
ate inverse square of the condensate widths in o and y direction, respectively. The
square of the normalization constant is |C(¢)]* = %@, where D = o3, — ¢, The
?rﬂussian ansatz (eq. (3.7)) tor the order parameter can also be generalized to three
dimensional anisotropic trapped Bose system to study various scissors modes.

The Gaussian variational ansatz becomes an exact ground state in the
fion interacting limit and in the presence of repulsive interaction it pives rise to
spreading of the condensate wave function, To describe the quadrupeles and monopole

oscillation, we consider the most general time-dependent quadratic exponent of the
wariational ansatz.
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We obtain the effective Lagrangian L by substituting Eq. (3.7) into Eq.
(3.6) and integrating the Lagrangian density over the space coordinates;

L 1 o . _
Nhwy 4D [_wm‘? + s = 2n%) + (o + 5D+ (6d + 454

+(83 +93)ar — 2ag + Bo)miva + A + %} + PR3, (3.8)

where A is the asymmetric ratio, A = = and P = \/g 2N+ In the MIT experiment
:'[1_3] A = 3.0. The equilibrium energy of the static condensate is given in terms of

the equilibrium values of the inverse square width of the condensate along the @ and
y directions,

E 1 . A l :
N 4 |}£ho + Bu) + (— A IEI—U) g Ctmfjm] : (3.9)

511}

“One can obtain the equilibrium value of the variational parameters, ag and g by
minimizing the energy with respect to the variational parameters

. P =
&jg = A — 5 %y cryg e, (3:10)
Bl =~- "ﬁlmf.ﬁmﬂw- (3.11)

ii‘n:um the above two relations, we Dbtaln

PP Pp 1

4

_I._ — — » .12
ST i (3:12)
where 7 is the ratio of the condensate widths in the r and y direction, n = /20

g’
From Eq. (3.12) one can see how 7 changes with the number of atoms N and

the coupling constant go. The variation of n with the the dimensionless effective
mteraction strength P is shown in figure 3.1.

' The ratio between the widths of the condensate n varies from ;,-l:i to
8 the interaction strength increases [rom zero to large value (Thomas-Fermi limit).

In the Thomas-Fermi limit, the equilibrium values of the parameters a; and 3, ave

2 1 42 . .
iy = -}t\l/:i_; fhe = R (3.13)

In this limit, the mwrg}f per particle is E, = ﬁmﬂ\/F In the non-interacting limit.
':":' = A and ,81,;, = . The energy per particle is ”* x#'“ A+ f
We are mterest,ed in the low-energy E}\Cltatlﬂﬂﬁ of a Bose system. The

'.-Eﬂerg}' excitations of the condensate correspond to the small oscillations of
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' ure 3.1: Ratio of the widths of the condensate 5 vs the dimensionless effective

inferaction strengih P for A = 3.0

1- cloud around the equilibrium configuration. Therefore, we expand the time-
dependent variational parameters around the equilibrivm points in the following
Way: oy = agp +day, f = Go + 08, and az = dag, fr = 88 v = vy, g = 0 and

Using the Euler-Lagrange equation, the time evolution of the inverse
square of the width around the equilibrium points are given by

. (8 + 3Py) Fin - ;
| vy + /"J.“—i.\E + P'Tj':] 5 [2 T Pﬂ}ﬁﬁl = f31—i—:|
B (8n+3F) _
08 + —————doy + —————d, = 0. 15
Yooy L AP 2= )
- WAt 1 B
vy + [m - (-’\ + E) oy = 0. (3]5}
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coupled equations of the modes @, and ), where the mode zy is decoupled. This
is due to the fact that the Hamiltonian is invariant under reflection, 2 — —z and
y—yorx — xand y — —y, and the modes which are odd or even under this
parity operation separate out,

Now we look for time-dependent solutions of &' tvpe, we obtain from
Egs. (3.14) and ({3.15),

wi _ A(8+3Py) 1 Bn+3P)  |[M8+3Pn) _ (8n+3P) )" ( Pap2 )’
wi 2 (2+Pn) 22 (2n+P) :

A2+ P 2A(2n+ P) 2+ Pn
(3.17)
For an isotropic trap,
e = Zuwg, (3.18)
8+ 2P
= MD\ '[I_($+—-P}] (319]
For large NV limit, w_ = /2wy, So wy and w_ may be identified as the monopole

-mode frequency and quadrupole mode frequency respectively. The monopole mode
:'-!'_'-mupled with the quadrupole mode in an anisotropic trap. However, the monopole
‘mode frequency in an isotropic trap is independent of the interaction strength of
the two-body potential and the number of particles in the condensate state. This is
(due to the underlying SO(2,1) symmetry in the Hamiltonian (9], [101.

From Eq.(3.16) we obtain,

w? 4hp? ( 1)
e PR o/ SRS TG 20
wi (24 Pn) R A (:30)

I an isotropic trap, w, = w_ and the quadrupole and scissors modes are degenerate
states. In the non-interacting limit, w, = w, + wy. In the Thomas-Fermi limit, Eq.
-3_,_2_!]} reduces t0 w, = y/w? 4+ w2 In an isotropic trap this mode corresponds to the
quadrupole excitation, This excitation is also known as seissors mode [16], and this
wseillation has been observed experimentally [17].

isionless regime the collective excitation frequencies of a confined gas are well
ibed by the sum-rule method. The collective excitation of any svstem is usn-

iliy probed by applying external fields. Given an excitation operator F, many




useful quantities of the excited system can be caleulated from the so-called strength
function [18],

S+(E) = ¥ |(n|FLl0)[*8(E — £,) (3.21)

where E, and [n) are the excitation energy and the excited state respectively, and

F.=F, F. = F' Various energy weighted sum rules are derived from the moments
of the strength distribution function,

mE = % f E*(S.(E) £ S_(E))dE. (3.22)

It is easy to see that, for a given &, the moments may be expressed in terms of the
commutators of the excitation operator F with the many body Hamiltoman H, We
give below some of the useful energy weighted sum rules,

my = 50l 7o), (3.28)

mt = SO1F", [, #)0), (3:24)

| m; = 3{0|lJ", J]j0), (3.25)
mi = OIF, H].[H, [H, FI0), J = [#, F), (3.26)

hw = | =2, (3.27)

Following Ref.[19], one can derive the above form of collective excitation
energy by using the variational principle. Given the many hody ground state it is
possible to find out the collective excitation energy and the excited state, if one is

1- to find an operator O7, which satisfies the following equation of motion :
[H,0Y = hw,OF, (3.28)
The excitation energy is then given by the following expression,

_ {ol[o, [#, 01)|0) .
= 0.0 (3.29)
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We may now take the variational ansatz for OF as, O = F+bJ with the variational
parameter b. By minimizing the energy with respect to the variational parameter,
we obtain the collective excitation energy as B, = \/% . which is same as eq.(3.27).

Similarly, we construct the most general excitation operator F' = 2 +bhy?
when monopole and quadrupole modes are coupled. b is a variational parameter. In
asymmetric trap potential, if & = 1, F is monopole mode and if b = —1, F is the
‘quadrupole mode. In the same way we can caleulate the lowest energy excitation
Jn this particular sector of excitations variationally. The lowest energy mode turns

out to be the quadrupole mode.

Calculating the moments my and my by taking the excitation operator
with the Hamiltonian, we obtain,

. 4R* E. (1 + AW + Bb) _
coll = ? (rg} I:]. + {:_sz} 5 (33[]}

| where A = 2, B = Ba 0= %;% and E; = (To) + (Vo) + 2B, By = (T)) + (V,) +

%{Eim} Here () denotes the expectation value of the corresponding operators iu
the ground state and T, V. and T,. V, represents the kinetic energy and potential
energy along « and y coordinates respectively, The interaction energy is given by
E,.,t = 2 [ [¥[*d*r. Now we minimize this collective energy with respect to the

variational parameter 8. The value of 3 for which the collective energy is minimum,
i§ given by

—2(C — A) £ ,/4(C — A)? +4B°C
by = SEC . (3.31)

the following collective oscillation frequencies:

=2 (8, B J(E_F_) 2, |
T ({wz’)Jr{fb VW @ A0 | (3:32)

2 A(B+3Py) L (By+3P) |[AS+3Pn)  (8n+3P) 1" [ P T
6 2(2+Pp 2\ (2n+P) 224+ Pn)  2M2n+ P) 24 Ppl”

(3.33)

38




It can be identified as quadrupole mode sinee in an isotropic trap, its excitation fre-
quency exactly matches with the quadrupole mode frequency, The above expression
for the excitation frequency Eq. (3.33) is exactly same as the mode frequency w_
in Eq. (3.17).

The higher energy excitation exactly matches within the monopole mode,
“although it is not the local minimum of the energy, Eq. (3.30). The dispersion
relation for this monopole mode frequency is:

212+ Pn)  2M2n+ P)

Wi _A(8+3Py) 1 (8n+3P) +J [A{S-Jr 3Py} (8n+3P) r ( Py )3

w2 (2+Py) A (2n+ P) 2+ P
(3.34)

Monopole. quadrupole and scissors modes vs P are shown in figure 3.2 for A = 3.
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re 3.2 Monopole (solid line). quadrupole (dotted line) and scissors (dashed

mode frequencies of an interacting Bose gas vs dimensionless effective strength
rA=3.0

For another quadrupole mode, the excitation operator is F = zy. Using




the commutation relation, we obtain,

j;-Z
M= 5—((2* + ), (3.35)
my = ms(T) 4+ my(v) + mz(ee), (3.36)
where,
. L,
my(T) = —((p; + 7)), (3.37)
; B oo o 3 pon & an
ma(V) = 3 (e + ) (s + ), (3.38)

ah | AN . (30 dp\
mylee) = o2 [fﬂf ro(r) (Ha ~ Ii:?y) plr) + fﬂ' "\ E3, s e il E (3.39)

Using the variational wave function, we can obtain all these moments.
In this case my(ee) exactly vanishes. So the frequency for the quadrupole mode is

w2 l}ﬂg
wi {”+Pﬂ ( R ) (340)

This expression for the quadrupole mode frequency is also the same as Eq.(3.20).

S0 w- in BEq. (3.33) and w, in Eq.(3.40) shows the splitting occurs between two

parameter P is shown in figure 3.3.

We have checked that the sum-rule method gives correct results for the
‘__t_atiuu frequencies of the two quadrupole modes for a system of interacting bosons
dnan anisotropic trap. Now we apply this method to caleulate the excitation energies

of the quadrupole modes of a system of interacting fermions in a deformed trap.

Collective excitation frequencies of a quasi-
2D deformed trapped Fermi gas

the discovery of BEC in alkali atomic gas, the behaviour of trapped Fermi gas is
in focus. It is also possible to trap the fermionic atoms at very low temperature,
the quantum effects can be observed. There has been experimental progress

wards cooling a Fermi gas into the degeneraie regime (T < Tg) [20]. Several
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e 3.3: Difference between the two quadrupole maodes of an interacting Bose gas
wy vs the dimensionless effective strength P for A = 3.0

have studied the thermodynamic properties [21, 22], collective excitation
ties in the normal phase [23, 24, 25] as well as in the superfluid phase [26, 27]
aree dimensional trapped Fermi gas.
In the previous section we derived the general form of the monopole and
iadrupole mode frequencies of a two-dimensional quantum gas with the short-
eraction potential between the particles by using the sum-rule approach.
pter we apply those general form of the excitation frequencies and discuss
ive oscillation of a two dimensional deformed trapped unpolarized Fermi
temperature within the sum-rule approach. Using this approach, the
excitations have been studied in other finite fermionic systems like atomic
etal clusters [28] and quantum dots [29]. This sum-rule method allows
ulate the monopole mode and the guadrmpole modes of a Fermi system
med trap where the equation of motion technique does not hold. These
| be observed in nano structures like quantum dots. When the two-body
15 long-ranged, the sum-rule method can be generalised.
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We consider a two dimensional deformed trapped unpolarized fermionic
atoms at very low temperature. The two-body interaction of the dilute gas can be
described by the short-range pseudopotential V(r — ') = gad?(r — v'), where g» is

the coupling constant and its form is given in the section [3.2]. The Hamiltonian of
the trapped fermionic atoms is given by,

e Z('Zn * Veu s ) +g:ZéE{rf_rj}|1 (3:41)
islj
where the confining potential is

; 1 !
Ve (D)= Emmlu (AI + }l) (3.42)

The Thomas-Fermi energy functional of this trapped interacting Fermi
system is given by,

Elp(r|] fdz, [ {r) + Viseo(r) + “P Bl }] (3.43)

re go = go/2. Here we assume the density of two spin components are same

py. The interaction energy density gopop,, can be written as 207, where p is

Re [. 3%

iy} = SKymal [l R?] R (3.44)
Rp = (AN Ky)*ag is the radius of the atomic gas which is determined from
ndition [ d®rp(r) = N and Ky =1 + ﬂh’? =1+ ﬁf— is a dimensionless con-
At very low temperature, collisions are suppressed due to Fermi statistics and
m is in the collisionless regime. We study the collective excitation frequencies
sregime by sum-rule approach.

In Sec.IIl we have derived the expressions for quadrupole excitation fro-
es within sum-rule approach. We can use expression Eq.(3.32), to calculate

the quadrupole mode frequencies for Fermi gas also.

We evaluate all the expectation values of the corresponding operators by
the Thomas-Fermi density (3.44),

B E mwi (3K + 1)
:I: | JErT 1] (}L:l: )
= 7 7 2 2K, A

ing Bqs. (3.32) and (3.45), we obtain,

(.

EEL 0= 0-7) 0w

(3.45)
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eter Ky for A = 3.0

1.2

1.3

‘3.4: Monopole (solid line), quadrupole (dotted line) and scissors (dashed
ode frequencies of an interacting unpolarized Fermi gas vs the dimensionless

for an isotropic trap, the monopole mode frequency becomes w, = 2uyq.

lowing moments:

h*RE
my E

& i
h‘- I'.tJl]RF

1
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T 48mPalw, K, Y A

4

ase also, my(ee) exactly vanishes. The quadrupole oscillation frequency is
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onopole , quadrupole and scissors mode frequencies of an unpolarized trapped
ing Fermi gases vs the K is shown in figure 3.4,

"

There is another quadrupole mode for which the excitation operator is

#=1y. Using the density for the trapped interacting Fermi gas at T = 0, we get

(3.47)

(3.48)

(3.49)



For an isotropic trap, w_ in Eq. (3.46) and Eq. (3.49) becomes
(14 K,
W =t = v"ﬂwu T u} (3.50)
Ky

Eq (3.46) and Eq.(3.49), w_ exhibits the splitting of the quadrupole modes of a
two dimensional deformed trapped Fermi gas. The scissors mode is also discussed
in Ref. [26] for superfluid Fermi gas.

The monopole mode frequency of an isotropic trapped interacting Fermi

for two dimensional fermions within Thomas-Fermi approximation. This splitting
eases almost linearly with increasing interaction strength.

0.88 -

0.84 — =

ﬂ.g'E 1 i L | i i I | | i I

e 3.5: Difference between the two quadrupole modes of an interacting unpo-
iwed Fermi gas Ay /wy vs the dimensionless parameter Ky for A = 3.0,
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3.6 Summary and conclusions

In this chapter, we have mainly considered monopole mode and two non-degenerate
quadrnpole modes of a quantum gas in an anisotropic harmonic oscillator potential.
We investigated the effect of interaction on the monopole mode, the two quadrupole
modes and the splitting between these quadrupole modes for an arbitrary trap de-
formation.

First, we have calculated a few low-lying collective excitation frequen-
cies of a two dimensional trapped Bose gas in an anisotropic trap, by using time-
dependent variational method with the most general Gaussian ansatz for the order
éﬁ:&ranmtm. We found that one quadrupole mode is coupled with the monopole maode
presence of the trap deformation. Another quadrupole mode associated with the
fuctuation of the average value of xy (which is also known as scissors mode) s
decoupled.

Using the energy weighted sum-rule approach we derived the general
dispersion relation of the monopole mode and two quadrupole excitations, Using the
same variational wave [unction for bosons we checked that the collective frequencies
abhained from the sum-rule approach are exactly the same as those obtained from
ﬂie variational method. The main advantage of the sum-rule method is that it
be applied to both trapped bosons and fermions to calculate the excitation
quencies in the collisionless regime. This method can be applied for any number
onfined particles and also it can be generalised for long-range interactions. This
energy weighted sum-rule method can be extended for Coulomb interaction to study
the quadrupole excitations in a deformed electronic nanostructure like an elliptic
guantum dots.  The splitting between the quadrupole modes obtained from this
'...I1 18 non-perturbative in the trap anisotropy parameter.

We considered a system of two dimensional spin unpolarised interact-
[ermions in an anisotropic harmonic oscillator potential within Thomas-Fermi
oximation. Applying the sum-rule technique to this deformed Fermi gas. we
ned the monopole, quadrupole and scissors excitation frequencies and the split-
between the quadrupole and scissors modes analytically. For both statistics,
amount of splitting between the quadrupole and scissors modes decreases with
mereasing interaction strength. For a two dimensional Fermi system the frequencies
and the splitting are independent of the particle number within the Thomas-Fermi

pach.
For an isotropic trap, the monopole mode frequency of a Bose gas as well

6 Fermi gas is 2wy, This monopole mode frequency is independent of the strength
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of the two-body interaction potential and the number of particles. This is due to
the underlying SO(2,1) symmetry in the Hamiltonian,

Recent experimental progress at MIT [13] on quasi two dimensional Bose
condensed state shows the possibilities of verification of our results. The above men-
. loned quadrupole modes are excited in the two dimensional plane and for simplicity
e consider only the two dimensional trapped quantum gas. This method and the
most general Gaussian ansatz for the order parameter can also be extended to three
dimensional anisotropic systems to study the various quadrupole modes. The split-
ing in these two quadrupole modes may be used to find trap anisotropy. It will be
erestmg to study the splitting between the quadrupole modes of an anisotropic

uantum system in presence of terms having definite chirality, like magnetic field or
otation.
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Chapter 4

Universality of monopole mode
frequency and dynamics of width

of a class of an interacting Bose
gas

B

teracting system, deviations from these frequencies are expected due to the effect
of the interaction. Similarly, the dynamics of a trapped ideal Bose system can be
solved exactly and described by the Hill's equation. But, for an interacting system,
it is expected that the dynamics of the system can not be described by the Hill's
equation. Interestingly, for an interaction potential with particular scaling property
monopole mode frequency does not depend on the interaction strength and the
amics of the system can be solved exactly which is explained by the same Hill's
tion. In the previous chapter we have already seen that the monopole mode

ncy of the two-dimensional (2D) isotropic harmonie trapped interacting Bose
independent of the two-body interaction strength. This peculiar nature of the
nonopole mode frequency of a 2D trapped interacting Bose gas have been found
[1, 2, 3]. This peculiar behavior of monopole mode frequency depends on

aling property of the interaction potential. Without trap potential, the 2D
se-Pitaevskii (GP) equation is scale invariant. Introduction of harmonic poten-

il breaks the scale invariance. Pitaevskil and Rosch [1] have pointed out that due

49




to the special property of the harmonic potential, SO(2,1) symmetry still exists.
:_'The:,f have shown the universal nature of the monopole mode frequency anly for 2D
GP equation bly constructing the generators of the S0(2,1) symmetry [1].

The main purpose of this chapter is to show the presence of the universal
ature of the monopole mode frequency and also the universal nature of the dynam-
ies of the width for a class of an interacting Bose system. In this chapter we obtain
-4 condition for having the universality of the monopole mode frequency and the
(dynamics of width of a class of GP equation describing the trapped interacting Bose
(ystem, at varying spatial dimensionality, order of the nonlinearity and the scaling
‘exponent of the interaction potential. Interestingly, the dynamics of the width of

@ class of GP equation can be described by the same Hill's equation if the Bose

system satisfy that particular combination or shows the universal monopole mode
frequency.

This chapter is organised as follows. In section [4.2], using the time-
'_endent variational analysis we show that for a particular combination of n, k and
the generalised GP equation describing the d-dimensional harmonic trapped Bose
gas exhibits the universal monopaole oscillation frequency 2w, We also derive the
__E-Evulutinn of the width of the d-dimensional trapped Bose system which satisfies
that particular combination which can be described universally by the same Hill's
puation. We also discuss the condition for exact self-similar solutions of the GP
equation. In section [4.3] we give three examples which show the universal nature
of the monopole mode frequency and the dynamics of the width. Two examples are
i the context of current Bose-Einstein condensate (BEC) experiment. In section

I

[44] we present the summary and conclusions of our work.

Universality of certain observables of a class
of trapped interacting Bose gas

10 show the universality of the monopole mode frequency and the dynamics of
width of a class of GP equation (also known as nonlinear Schrédinger equation
'_ ), we use the time-dependent variational method. This variational method

extensively and successfully used to explain many properties in BEC and
onlinear systems. Using this method, Garcia et al. [4] derived a general
ion relation for the low-energy excitations of a three dimensional deformed
d Bose gas which exactly coincides with the results abtained by Stringari [5]
large number of particles.
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Consider a system of Bose particles in d-dimensional (d < 3) harmonic
frapped potential Vi(r) = § Mwdr? at zero temperature and interacting with a trans-
lationally invariant interaction potential V; = g,V(r — r'), where r? = ol
and gg s the coupling constant in d dimension. M is the atomic mass and T
s a d-dimensional vector. Under the scale transformation, v — AL, we assume
¥ ['}lr} = A"Vi{r), where n is the scaling exponent of the interaction potential.

We are considering a generalized d-dimensional GP equation [6] describ-
ing a d-dimensional harmonic trapped weakly interacting Bose gas with a nonlin-
arity of order (2k 4 1) and scaling exponent n of an ar bitrary interaction potential
Vi=gVir—1')is
|

chf h
iﬁ% " [_ijv_fvv_k Vilr )+gdf¢£”‘r‘wj:‘|[r Wi — ) |w(r) |2{k_“] (),

(4.1)
where V' is the d-dimensional Laplacian operator and asterisk denotes the complex
tonjugation. The generalised d-dimensional energy functional is

Bl = [ o [ divuer + LA

e [T e E Ve - r’h’”fr'}l'ﬁi'fr}lﬂ“"_l]tﬁfr)] . (42)

If m = d = arbitrary dimension and V(r —r') is a d-dimensional delta
finction potential. the above equation gives the nonlinear term of order (2k +2).
ik=1and m =d > 1, Eq. (4.1) becomes ordinary GP equation and if k = 2
didm =d = 1, Eq. (4.1} gives the 1D modified GP equation in which the [
eraction term is present [7, 8, 9],

One can write down the generalised Lagrangian density corresponding to
his system which is

_ a "?E 1. _2 '1:2 W 2
7 = ( Y E.'t) . [EMWTH + Vi(r) |¢(x)|

{s.il}f'f’” )V (e — () (e PE V) | (48)

Without the interaction potential, Eq. (4.1) reduces to the linear Schridinger
ation which has the Gaussian wave function for the ground state. In order to get

i evolution of the square of the radius, we assume the following Gaussian wave

o1




function: : |
hir) = (j,'(ﬂe_igiu_u?'ﬁﬁ[ﬂ]

~ (4.4)
where C'(t) is the normalization constant which can be determined by the normal-
ization condition [ |¢[?d%r = N and ag = \/E is the oscillator length, N is the
fotal number of particles in the system. a(t) and F(t) are the time-dependent di-
‘mensionless variational parameters. a(t) is the square of the radins of the systerm.
Tn order to describe the dynamics of the variational parameter «(t), the phase factor

iB(t)r* is required [4]. Note that the same kind of phase factor 15 also present in Eq,

,i, ]uf Ref. [3] to get the dg,rnamms of the width of a system, We ubtam the EEE.E‘I:]‘I.E'

TTAngian deusity over the space coordinates

Nﬁ,uﬂ

Leﬂ' = 1

7

= r-lf nd fre — bl 1
[mcrﬁff i ad(1+ F) + Gya™ 5 (4.5}

- Anermn—ikd) dmge 4
Eﬂ’lvkﬂ.,j 2 2 o |t =R R2 )1y 0 — (R R (1))
( Ry )( =g )[R R-R), J.

(4.6)

Using the Lagrange equation of motion, we get the equation of motion
he variational parameter a(t). The time evolution of the variational parameter

(n+m — kd) (nsm—kd)

2
& = 2a4” e 2 = Gea 7, (4.7)

his “." represents the duwatne with respect to the dimensionless variable + = wyt.

The total energy of the system is

- 4F il inifn— k)
E=——_ —0ffd+ - +od+ G2 (4.8)
.f"':'ﬁl’..l..l'ﬂ 83
it equilibrium, 5 = 0 and '&E =lazay = 0. The equilibrium point oy satisfies the
1g relation in t.'.’—dimensmns
. n+m— kd o
ata ( Td f]Gdal{ﬂﬂTh kds1) _ o (4.9)

Universality of monopole mode

w the universality of monopole mode of a certain class of interacting Bose gas
thoose n, m, &k and d such that they satisfy the following relation:

n+m—kd+2=0, (4.10)
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IEn, m, &, and d satisfy the above relation, Eq. (4.7) can be written as
@+ 40 = 2E(a). (4.11)

We define I(t) = [d%[y(r,£)]*r?* which is the expectation value of the

square of the radius. The above equation can be rewritten as

.. 4B |
F4dwed = _E—E%—) (4.12)
Iy

From now onwards “." indicates derivative with respect to time f. For monopole

‘excitation, the average value of the collective coordinate 12 oscillates around ity
quilibriui value. We expand I(t) around its equilibrium point fy as I(t) = [y+481(t)
“and we get,

4E}

”T 43 = —L 2
ol + 4wl i (4.13)

where Fy = d (ﬁ + ap + %“) is the equilibrium energy of the system. This equation
i identical with the classical equation (1) of Ref, [1] which was derived using the
virial theorem. The solution of this equation is

Ey
e (4.14)

Aand § are constants which can be determined from the initial conditions on 1.

$ the square of the system radius oscillates with a frequency 2wy in any dimen-

It} = Acos(2wqt +8) +

.-_:‘g onifn+m —kd +2 = 0. Thig monupule frequency 2 wy is universal bvmuse it is

iteraction, dimensionality of the trap, order of the nonlinearity and the total num-
f atoms N. For ordinary GP equation in d(= m) dimensions, & = 1, then the

nw the universality of the time-evolution of a class of nteracting Bose gas,
':_'5;{;‘ ny, m, d and & such that they satisfy Eq.(4.10). Then Eq.{4.7) can be

......

{ :teu for time-independent, trap as well as for time-dependent trap as

f{z)—%w () I(t) = ﬁ;} (4.15)
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where (), = l:*:'f]f’ J2(L + Gy) is the positive invariants under time evolution. Let

X(t) = \/I(t) is the condensate width. The above equation can be written as

X(t)+wit)X(t) = % (4.16)

This is  nonlinear singular Hill's equation in d dimensions. This is an interesting
tesult because the time evolution of the width can be described by the same Hill's
equation in any dimensions il n +m — kd + 2 = 0. The dynamics of the width is
‘universal because the time evolution of the width can be deseribed universally by
he same nonlinear singular Hill's equation in any dimensions. Moreover, this Hill's
‘Bquation can be solved analytically and exactly, Eq.(4.16) can be viewed as the
classical motion of a fictitious particle in an effective d-dimensional potential

2 2
Vig = “‘?“{ZJX + g{“z, (4.17)
The general solution of Eq.(4.16) is X (t) = \/uﬂl[t} + f402(t) where u(t)
and v(t) are two linearly independent sulutiu::»n*a of the equation j+w?(t)p = 0 which
satisfy the initial conditions w(t,) = X{to), i(ty) = X'(ts), v(ts) = 0 and v'(ty) # 0.
'-, is the Wronskian. This time-dependent Hill's
only for particular choices of we(t).

s equation can be solved explicitly

For time-dependent periodic trap potential,
the equation is known as Mathien equation which is well studied. In most of the

Xit)= \/msz[imut} - f—islngﬁﬁwut}, (4.18)
Wi

To discuss the free expansion of the atomic cloud we suddenly switch-off

X = Y?—Ft} = Q. (4.19)

reduced system of a particle in an inverse-square potential is a well-studied
problem and the solution of this equation is given by [10]

X2 =14+Q4° (4.20)
From Eq.(4.10), we get kd = 2 for 1D modified GP equation, and 2D
ry GP equation with n = —2. This is the condition for self-similar solution

onlinear GP equation discussed in by Rybin et al. [7], and Kolomeisky et al,

lere is no self-similar solution in 1D ordinary GP equation since it does not




4.3 Examples

We now discuss few systems which satisfy Eq.(4.10) and shows the universal monopale

mode frequency and the dynamics of the width of the system that can be described
by Eq.(4.18),

4.3.1  Quasi-2D trapped Bose gas

In the previous chapter we have modeled the quasi-2D interacting Bose gas at zero
femperature. The effective interaction potential between atoms is Vi = g.8%{r — 1)
{11}, where go = 2y/27hw.aa. is the effective coupling strength in quasi-2D Bose
system and a is the s-wave scattering length in 3D. This quasi-2D BEC state can be
‘described by the ordinary GP equation which is valid only when a < a. [12]. The

ame effective coupling constant is obtained in (13]. Under the scale transformation.
't Ar, Vi(Ar) = L V(r). So this interaction potential has the scaling exponent

= —2. In this system, m = d = 2 and k = 1 which satisfy Eq. (4.10) and the
monopole mode frequency is 2w,

The time-evolution of this system is

X +wiX = %, (4.21)

Qs = %3_,-’?; (l + v’gﬁ"i). The same equation is obtained by using different
method at zero temperature [3, 14], Here, we have identified the value of Qs at
"_.' . 5o the dynamics of the width can be described by the Eq. (4.18). At
gquilibrium, X! = 95 When we linearize Eq. (4.21) around the equilibrinm point
Ko, we get

60X + 4w X =0. (4.22)

One dimensional Tonk-Girardeau gas

Lhas been shown by Petrov et al. [15] that in 1D trapped Bose gases the quantum
littuations suppresses due to the trap potential but do not destroy the condensate
bvery low temperature. We consider a dilute gas of N bosons confined in a very
long: 4 ted harmonic trap with radial and axial frequencies wy and w, (w. < wy). If

iperature and the interaction energy per particle do not exceed the transverse
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level spacing hewp, the system becomes effectively one-dimensional. The bosons in
4 cigar shape trap are in two regimes, Tonk-Girardeau (TG) regime and Thomas-
Fermi (TF) regime, depending on the gas parameter [9]. A one-dimensional gas of
impenetrable hosons referred to as a Tonk- Girardeau gas. When the gas parameter
\: small, the system is in the TG regime which can be described by the quartic
Anteraction in the non-linear Schroedinger equation (NLSE). On the other hand,
when the gas parameter is large, the system is in the TF regime which can be
‘described by the quadratic interaction in the NLSE. The gas parameter is defined
a5 the product of the density (n) with the effective scattering length |a,p| [16], i.e

|aw| The interaction energy per particle is given helow for two limiting cases [17],

efn) = E{Eﬁwna‘m il p| — oo, (4.23)
. Lath®
e(n) = E%W’ nlaip| — 0. (4.24)

The energy functional of 1D TG gas which can be deseribed by the
modified GP equation is

d;,,:
R f ¢ LM

In this system, d = m = 1, k = 2 which satisfy Eq. {4.10) and g, = 2"1,
The time-evolution of the system is

M{;sz'z EZ 2 : "
b+ Tl (4.25)

" o)
X+wX = el (4.26)
e () = %; [1+ bl ] The same equation is obtained in [7, 8] by using

ent method. But he1e we have identified the value of constant ¢}, This 1D

For 1D ordinary GP equation which describe 1D TF Bose gas, m = =
= 1, which does not satisfy the relation (4.10 ). The monopole mode frequency

. for a large number of particles. Thus the monopole mode frequency is

fied by the interatomic strength and the time-evolution of the system ean not

ibed by nonlinear singular Hill's equation. By measuring the monopole
frequency one can distinguish between two regimes of 1D trapped Bose gas.
ly, the monopole mode frequency of 1D TF and TG Bose gas is obtained by

he sum-rule approach which is same with our results [18].
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4.3.3 Calogero model

A system of trapped particles interacting through pair potential 4 is well known
as the Calogero-Sutherland model [19]. Only an inverse square pair potential, 4
has the scaling, n = —2, in any dimensions and it satisfies Eq. (4.10) for k = 1 in
arbitrary d. For m = k =0 and n = -2, we get Calogero model [19] in arbitrary d
which gives the same universal monopole mode frequency 2wy, In this systemn the
dynamics of the width can be described universally by the same Eq. (4.18). In fact,
?B'anja.min et al. [20] have shown that the energy spectrum of a system of harmonic
trapped particles interacting with ;13 potential is divided into sets of equidistant
'_iévels with separation 2wy in any dimensions. Also, B. Sutherland [21] considered a
(ane-dimensional system of particles interacting by an inverse square pair potential
\and shown that the monopole mode frequency is the universal frequency 2wg.

Apart from these two potentials, there are some other model potentials

glution of the width in a time-independent trap as well as a time-dependent trap
fora class of GP equation. Interestingly. this dynamics of the width can be deseribed
by the same Hill's equation (4.16) if the Bose system satisfy the condition, n +m —
fd+2 = 0. This Hill's equation is analytically and exactly solvable, This monopole
mode frequency and the time-evolution of the system is universal becanse it does
epend on the strength and nature (short-range, long-range, local, non-local) of
iteraction potential, order of the nonlinearity and the total number of atoms N.
the time-dependent variational analysis, we have also obtained the condition
-similar solutions, kd = 2, of a class of nonlinear GP equation.

As an example, we have shown that the quasi-2D trapped Bose gas de-
fibed by the ordinary GP equation, 1D Tonk-Girardeau Bose gas deseribed ly
g modified GP equation and a system described by the Calogero model shows the

sal nature of the monopole mode frequency and the dynamics of the width of
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the system.

These important results, the universality of monopole mode and the dy-
namics of the width of a trapped interacting Bose system, are not an artifacts of the
(Gaussian approximation, but also hold for an exact ealeulation using a set of time-
‘dependent transformations [22]. Note that the phase factor in the variational ansatz
of the wave function (Eq.(4)) is required to get the correct dynamics of the width
111] Similarly, the phase factor is also present in equation of the time dependent
transformations in [22]. Tn Rel[22], using those time-dependent transformations,
,_the universality of the monopole mode and the dynamics of the width is obtained
g-[r:rr a class of NLSE. Our results obtained from the variational approach are identical
tothe exact results of [22]. This is becanse of the similarity in the phase factor of the
variational ansatz for the wave function and the transformation equations ([Kq.(2))
m Ref. [22].

Our result is also valid for SO(2,1) invariant multicomponent NLSE de-
seribing an interacting Bose system [24]. These universal properties are also true for
rmi systems and at any temperature, Recently, quasi-2D and quasi-1D BEC have
| een observed at MIT [23]. Experimentally it is also possible to check the validity of
:_| e fwo-body potential in quasi-2D BEC state [1] and the order of the nonlinearity

in quasi-1D BEC state by measuring the universal monopole mode frequency and
the dynamics of the width of the Bose system.
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Chapter 5

_'Qollective excited states of a

Bose-Einstein condensate with
gravity-like interatomic attraction

5.1 Introduction

The discovery of Bose-Einstein condensation (BEC) in a dilute alkali-metal atomic
ga8 opens up a new perspective in the field of many-body physics [1, 2]. Most of

the properties of these dilute gases can be explained by considering only a two-

3]. However, the BEC in presence of the dipole-dipole interactions has recently
ed considerable interest. Novel physics is expected for dipolar BEC, since the
tipole-dipole interactions are long-range, anisotropic, and partially attractive, The
o-trivial task of achieving and controlling dipolar BECs is thus particularly chal-
|- gl

Recently, a new kind of atomic BEC has been proposed by D. O'Dell et
ik [4. They have shown that the particular configuration of intense off-resonant
'i.';_: beams gives rise to an effective gravity-like * interatomic attraction hetween
| atoms located well within the laser wavelength, This long range interaction
ial is of the form U(r) = —%, where u = (117 /15)(Jad/ce2A3). T and Ap are
ig tofal laser intensity and wave length respectively. ap is the atomic polarizability
it the frequency 2mc/Ap. In this system, the gravity-like % attraction balances
e pressure due to the zero point kinetic energy and the short-range interaction
fential. For a strong induced gravity-like potential, the BEC becomes stable

en without the external trap potential [5]. There is a competition between the




gravity-like potential either with the kinetic energy () or the two-body short-range

mteratomic interaction potential characterized by the s-wave scattering length o

(TF-G), which gives two new regimes for new atomic BEC, These two regimes are

obtained based on the Ganssian variational ansats for the pround state wave function
4],

In the TF-G regime, collective excitation frequencies have been calenlated

mumerically by solving the equations of collisionless hydrodynamies [6]. Moreover, in

this regime, an analytic expression of the ground state density is obtained [4]. Within
the sum-rule approach, collective excitation frequencies of a gravity-like self-

bound
Bose gas has been discussed in Ref, [7]. There has been

no systemaltic and detailed
study on the collective excitation frequencies and vortices of a gravitationally self-

bound Bose gas by using the time-dependent variational approach. The purpose

of this chapter is to give analytic expressions for collective excitation frequencies,

superfluid coherence length and eritical angular [requencies required to create a

wvortex of a rotating Bose eondensed stat

e and to compare qualitatively the results
ofthe TF-

G regime with the results obtained in the TF regime of an ordinary atomic

In section [5.2], by using the time-dependent variational method, we ol

Hain the excitation spectrum of a gravity-like self-bound Bose

2 lower bound of the ground state energy, monopol
iencies of the TF-CG

gas. We also calenlate
e and quadrupole mode fre-
and the G regimes. In section [5.3], we consider a rotating
tose condensed state with a single vortex along the z axis. We estimate the super-
ﬁd coherence length and the critical angular frequencies required to create a vortex

dlong the z-axis. We find that the TF-Q regime of a gravitationally self-bound Bose
tindensed state should exhibit superfiuid properties more prominently than the G
T e. We find that the monopole mode frequency of the condensate decreases due
??the. presence of the vortex. We present

a summary and conclusions of our work

Collective excitation of Bose condensed state

with gravity-like interatomic attractive inter-
action

lie equation of motion of the condensate wave function is described by the

gener-
bied Gross-Pitaevskii equation [8]




L OP(r,t) B2 . Twir? ‘
i it _'{ ey 5 T Valr)| ¢(r, ), (5.1)

(where Vi (r) is the self-consistent Hartree potential,

enl 2
E’:’f[r} 4;1'? |T,.-(I' E. /d.‘:: r“‘" I‘ fj' {r 2'}

=7k

e normalization condition for 4 is [ [(r, )Pd*r = N, where N is the total

mimber of particles in the condensed state. The original Gross-Pitaevskii

equation
tan be obtained by setting u = 0,

One can write down the Lagrangian density correspondin g to this system

i3 fl_‘i"{}WS,

- E % 5_1,{ A mwr?  Vy {r ”
L== (uﬂ‘ = a:.) —IVl* + (——2 )I‘airl2 (5.3)

"ere the asterisk denotes the complex conjugation. The nonlinear Schroedinger

'_ mation can be obtained from a minimization of the action, | = [ Ld?rdt. The
f='l- of charged bosons [9] confined in an ion trap can be described by the above
mentioned Lagrangian if we set —u = ¢2, where e is the electronic charge.

To calculate the excitations spectrum of an atomic BEC with gravity-like

éraction, we will use the time-dependent variational method. This technique has

wn first used to calculate the low-lying excitations spectrum of a harmonically

ipped atomic BEC in Ref, [10]. The result obtained from the variational

mtches with Stringari’s [11] result within the sum-rule approach.

method

In Ref. [7] it is shown that the oscillation frequencies obtained from the

et ground state and a Gaussian ansatz are in good agreement, In this system,
J
'1

ssian ansatz is also a good variational wave function. In order to obtain the
utmn of the condensate we assume the following variational wave function:

¥(p, 2,1) = C(t)e™ 3ol +8():7], (5.4)

ere C(t) is the normalization constant which ean be determined from the normal-
tion condition. p and z are the variables i in units of A, where A = ;’:‘; n—::-m

{he leugth scale in this system (similar to the harmonic-osscillator length) when

onic trap is absent and w, = ﬂl};‘i is the grawta.tmnal frequency. pis the

ensional vector. a(t) = H‘; + 10 and A(t) = ﬁ g7+ if2 are the dimensionless
el pendent parameters. o ami M are the condensate widths in the 7 — y plane
ung the 2 direction, respectively. The Gaussian variational wave function is

act ground state when the two two-body interatomic lteractions are absent.
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Substituting (5.4) into (5.3) and integrating the Lagrangian density over
the space coordinates, we get the following Lagrangian:

SNu s ) T 1 5 il
L = T {(ﬂlﬂg 4+ Eﬁfﬁz) - (E -+ 0:!?!’_12) = § (E +ﬁfﬁ§)
]

2 & FRLLLHQ-2)

A [:r
S ] Pt 0.9)
T\ aify h ?
o, ' z . i i : v
where § = o — SEA is a dimensionless scattering parameter similar to the

‘attering parameter P = *:—'-: [10] for an ordinary atomic BEC, Here, ay is the
harmonic-osscilator length. This S can be positive or negative, depending on the
sign of the scattering length a. The scattering parameter S can also be written as
8= (5287%/105)1(Na/A.)?, where [ — I/1y and Iy = (487 /7)(ch®e2 /mad)a is the
:_eshald laser intensity to create a self-bound condensate [5]. For a given intensity
'= L5, the realistic, stable and self-trapped system (for sodium atoms) containg 40
10400 atoms [5] and the corresponding range of §'is 1 to 100. This range can be alter
by changing the scattering length a [12]. F [%, 1; g-; (l - %;)] is the hypergeometric
finction.  The last term in Eq. (5.5) is the mean-field energy of the gravity-like
otential which is shown in the Appendix A5, We are interested to find out the
fititation spectrum of a self-bound Bose gas as well as in the TF-G and G regimes.
e have set V.., = 0 because the system is stable even in the absence of an external
fp potential [5].

The energy functional in terms of the variational parameter o in an

giropic system is
. NuS|[ 3 3R g
¥ [z—az* ﬂ:a'ﬂ]* ()

nimizing the energy functional with respect to @, one can get the equilibrium
gint w which is given by

e
Wil

85
w—E 3 14 (1+3—) ; (5.7)

T

The chemical potential is

uS | 3 2 £8 1 "
“=£lzwz+2 ;(@“a)" )

ind velocity ¢ = p/m vs the dimensional scattering parameter S is shown

G
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Figure 5.1: Sound velocity ¢, as a function of the dimension]ess scattering parameter

Using the Euler-Lagrange equation, the time evolution of the widths are

g o 2 [ﬂ’luﬁl]

fé;l = ﬁi‘f - \/E ( ;?82 + £, [I’.'E[,ﬁj_]) (5.10)

Folen, 81 is the derivative of F [ o ( -4 )] /1 with respect to ay. Similarly,
Filay, A1) is the derivative of F [ w3 (1 — )] /By with respect to 8;. The exact
o of By [0, 1] and Fy,[oy, fy] are given in the Appendix B5.

We are interested in the low-energy excitations of a gravity-like self-
bound Bose condensate. The low- -energy excitations of the condensate corresponds

b'the small oscillations of the state around the equilibrium widths ey and Ay,

_IJm efore, we expand around the time dependent variational parameters around
bt equilibrium widths in the following way: oy = ay +dag and f = By + 65,
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The time evolution of the widths around the equilibrium points are

o 3 2 g 2 g 1 9
= — I 3 == 15 = —“_.—EE — iy 4 |£ \‘5‘ ¥
b ('}fu + Y W‘-Ti'nﬂw) - T eyl i 2V Foultio, Bro, o, 661

(5.11)
- 2 S 3 2 S 2
I =—2 == boy — |- 022\ °F
P gy N (ﬁfu + ‘/;ﬂfn.g?u) & +¢;Fﬁ1 (a1, Bro, ocry, 0]
(5.12)

gﬂu[&:mﬁm-ﬁﬂl,ﬁﬁl] 15 the first-
h[-Fﬂl[r_rI,ﬁi]. Similarly, Fz, [e,
thie equilibrium points of Fy [y,

order fluctuations around the equilibrinm points

B, daq, §8] is the first-rder fluctuations around
Ai]. The exact forms of Fray [er10, Bro, ery, 01 and
5 [eg, Fro, devy, 8| are given in the Appendix B5.

We are looking for the solutions of e
fuations in terms of ayg, By and later we set

ihe excitations spectrum are

“! type. First we solve for these two

g = g = w. For isotropic systern,

w_g,_ _ 3 2 (‘45’ 2 )

w; T L3 T hNwd Jad ) (5.13)
w3 + 2 (S 1 ) et
w? moAwS 158 )" \8.14)

Xarg:- . X > -
= "‘—‘i‘,ﬁ”— is the gravitational frequency. The w. and w_ vs the dimension-

liss scattering parameter S are shown in Fig.5.2,
When S is small, the gravity-like 1 attractive
e repulsive psendopotential, In this limit,

liother words the system becomes less resistant to density changes. So one would

below quadrupole mode. From Fig. 5.2 we identify
liat the upper branch of the excitation spectrim

interaction dominates over
the system becomes more compressihle.

fpect, that monopole mode lies

is quadrupole mode ( w_ = e )

Wy =wys ). The monopole and quadrupole
nides shown in Fig. 5.2 matches very well with the spectrum obtained within the

fim-rule approach [7). When 8 = —1.169, wy, starts decreasing as shown in Fig.
82 At S, = —1.179, the system collapses. The value of 5, can also be obtained from

'E;_! (5.7). For large value of S, the monopole mode lies above the quadrupole mode
fause the repulsive psendopotential
deraction.

and the lower branch is monopole mode (

start dominates over the attractive long-range
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Figure 5.2: Monopole and quadru
5. The solid and dashed lines co
Irequencies, respectively.,

pole mode frequencies vs the scattering parameter
rresponds to the quadrupole and monopole mode

At S = 17.5, there is a crossing between these two modes which is shown

in the Fig. 5.3. Interestingly, this crossing of these two modes is also obtained from
the time-dependent variational method.

5.2.1 TF-G regime

Tor large s-wave scattering length, the kinetic and the trap potential energy can be
teglected. The gravity-like potential is balanced by the s-wave interaction strength.
The total ground state energy is Fy = —D.QﬁﬂlSNﬂ;.:‘—JT where A; = 2?1’\/% is the
leans wavelength which is the shortest wavelength to keep stable condensed state.
The ground state energy per particle varies as N. The sound velocity is ¢ = £ =
'Tlﬂﬁ%—-s-. So the sound velocity ¢, varies as N2 whereas ey~ NYS for an

finary atomic BEC in the TF approximation [13]. In this regime we neglect the

antribution of the kinetic energy term in Eqs. (5.9) and (5.10) and we find that
¢ monopole and quadrupole frequencies are Wy = 0.319951w,5~ %% and wy =
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2 5.3: Crossing between monopole (dashed line) and quadrupole (solid line)

20 85w, S, In this regime, the monopole and quadrupole frequencies are

ed by solving the hydrodynamic equations numerically in [7]. T

he monopale
adrupole

frequencies obtained from the variational approach are similar to
t numerical values. For an ordinary atomic BEC in the

TF regime, the wy,
are independent of the scattering length a [10, 11].

But, in this system,
i t_iepends on the scattering length a. Here, the ratio =M g 2

= 1.58114.
ly, this ratio is identical to the result of [7] which is obtained within the

approach, This is also true for trapped atomic BEC without gravity-like

faction in the large-N limit. Tt was first pointed out in [7, 11].

G regime

egime gravity-like potential is balanced by the kinetic energy. The trap

and s-wave interaction can be neglected.  This is analog of boson star

ivistic) [14]. The total ground state encrgy is By
ftlamty relation, we estimate the total

= ~ & hw,. Using the
ground state energy is Fy = —&py,
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which is very close to the energy obtained from the variational approach. So our

variational ansatz for wave function is good in this regime also. The ground state

energy per particle varies as N*. The sound velocity is ¢ = 0.159155%%. So the
3?-- velocity ¢, varies as N, [n this regime, neglecting the contribution of the
($wave interaction potential in Eqs. (5.9) and (5.10), we get the monopole and
(quadrupole modes are wy, = 0.0707355w, and wg = 0.118363w,. These frequencies
are very close to the frequencies obtained within the sum-rule approach [7]. Here,
L = \/E = 0.597615. This ratio is also identical (up to five decimal) with that of
., which is obtained within the snm-rule approach.

53 Vortex of a Bose condensed state with gravity-
like interatomic interaction

We consider a gravitationally self-bound Bose condensate state with a vortex along

Mg z axis. The experimental realization of a vortex state would be a direct signature
i acroscopic phase coherence of this new atomic BEC with an atiractive long-
interaction. Vortex filament in the condensate can be generated by rotating
densate above the certain angular frequency, known as critical frequency.
5 section we calculate the coherence length and eritical angular frequency to
a vortex along the z axis, We also study the monopole mode frequency
condensate state in presence of a vortex. One can use the time-dependent
ional approach to deseribe the vortex state. In the previous section we have
itly shown that the monopole and quadrupole mode [requencies obtained by
the Gaussian ansatz coincides with the numerical results. So it is a natural
to assume that a variational wave function of a self-bound BEC state with a

Y (r, 1) = c,,[t;pqe*we"?[?”m*"ﬂf”], (5.15)

=zt +y?, =22 +92 1 2% and ¢ =tan"'(¥). For simplicity, we consider

ifg=1and g = 2. By following the same procedure of the preceding section,
W d_r::bta.in the effective Lagrangian which is given by




._ — _tag)t _ 7 -
‘where g, = :,—f-m],?, €1 = 35 and ¢a = e

L=y ]

The energy functional of the vortex state in terms of the variational
| parameter o i3

~

_ NuS 3y 1 2 (9,5 ¢ "
“= " [(‘-"*i);ﬁ =6 —)] =)

By minimizing the energy with respect to the variational parameter o,

one could obtain the equilibrium width wy which is given by

urq =

Vaen (g+ %) + \/i’.w (q + %)2 + 12g,5¢;
2c,

, (5.18)
Where g, and ¢, are given above. The system collapses when 5, = —8.53694 for
§=1and 5, = —25.8875 for ¢ = 2. This critical value 5. 18 increasing with an

increasing of the number of vorticity. The expectation value of the square of the
spstem radius is J; = m = \/N(g+ 3)w,. The energy functional satisfies the
sability condition, -%ffﬂqu > .

The superfluid coherence length £ is a distance over which the condensate
wave function can heal. In the case of a vortex, it corresponds to the distance over
‘ the wave function increases from zero, on the vortex axis, to the bulk density.
,;-_cau be calenlated by equating the kinetic energy to the interaction energies.
kinetic energy term can not be neglected even for large S, since it determines
he structure of the vortex core. The system exhibits superfluid properties if the
erence length is small compared to the size of the condensed state, otherwise it

jill be less prominent to observe the superfluid properties, Equating the kinetic
mergy to the interaction energies,

ﬁZ 2
= dralNf B uN’ (5.19)
2me? mhRs £

iere R = a/V ﬁSE is the radius of the condensed state at S and

3 875 1
F—ﬁ"“\/;(;a—a)- (5.20)

i given in Eq. (5.7). After rescaling the above equation, we get a quadratic
pation of & whose solution is

£ _F+VF4+85VF

900 §
R 878 ‘ 84t)
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e 5.4: Superfluid coherence length £ as a function of t

he dimensionless scatter-
g parameter S,

lhe superfluid coherence length £/R vs S is shown in Fig. 5.4 for a wide range of

The vortex state play an important role in characterizing the superfluid

operties of the Bose system. The critical angular frequency required to produce a

Hex state is [15)

By — o) (5.22)

Nhq

F, is the energy of a vortex state with vortex quantum number ¢ and Fy is
gy with no vortex. The critical angular frequency €, vs the

ftering paraimeter S is shown in Fig.5.5.

The critical angul

g =

dimensionless

ar frequency decreases with mereasing S (or N). For
iiractive interaction, £, increases with the increasing of . This is also true for
'-';_'-;1 BEC in the TF regime [15].
The monopole mode frequency of the condensate state in

presence of the
state with a vortex number q is

7l
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Figure 5.5: Critical angular frequency Q as a function of the dimensionless scatter-
ing parameter S.

4 2
= I B 11 (ﬁgfie_."ia) 1 (5.23)
w? | w? m (G"+ 'E) wi

L |

. w, is given in Eq. (5.18).

3.1  TF-G regime

lor large s-wave scattering length, the kinetic energy can be neglected. The super-
iid coherence length can be obtain from Eq. (5.21). When § is large, one gets
F= 06142512 from Eq. (5.20). Then, £/R = 0.17655-5/%. When is S is very
ige, the coherence length is very small compared to the size of the system. The
BG regime should exhibit the superfluid properties. The mean size of the con-
ate with q=1and ¢g=2are [; = 2.21163v/S and I, = 2.4412/5 respectively.
ize of a condensate state with vortices increases with the number of vortic-
i The critical angular frequencies for ¢ = 1 and ¢ = 2 are £ = w,0.00775-1/2
h = w,0.00945 Y2 respectively. The monopole mode frequencies for one
70 vortices are wy = 0.299w,5% and w, = 0.26w, S, respectively. These
pnonopole mode frequencies are less than the monopole mode frequency of the

ex-free condensate. So, in the TF-G limit, monopole mode frequency of the con-
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densate decreases due to the presence of the vortex. The monopole mode frequency
- of an ordinary atomic BEC in the TF regime is independent of the vortex [16].

5.3.2 G regime

In this regime we neglect the contribution from the s-wave interaction energy. The
superfluid coherence length & can be obtained by equating the kinetic energy to the
gravity-like interaction energy, ,,”:E = “é‘, which gives £ = 0.886 2H, which is almost
equal to the radins (R,) of the condensed state in this regime. As we know that if
the coherence length is comparable to the radius of the condensat e, it is difficult to
exhibit the superfluid properties. In this regime, Jy = 12.92 and I, = 24.84. Here.
I, >> I,. The size of a condensate state (with vortices) expands abruptly with an
'merea.se in the number of the vorticity. For example, [ 1/fg o 2.8 and I,/ I; ~ 5.39,
.-"I'r'hEl'E' Iy = 4.604 is the mean size of the vortex-free condensate. The critical angular
frequencies for ¢ = 1 and g = 2 are O, =0. 0343w, and §l; = 0. 0215w, respectively.
Here, (2 < ). In this regime, the condensate state with vortex of g = 2 is
mbounded because || /h < 20, where uy = —0.0297u5/a is the chemical potential
in the rotating frame. So the vortex of g > 2 can not be created in this regime unless
{here is an additional repulsive potential. Note that although there is an indication
4 instability of vortex with g = 2, this may be just an artifact of the variational
::.s proach. The monopole mode frequency for g = 1 is wy, = 0. 014%9w,. The wy is also
w, than the monopole mode frequency wyy in the vortex-free condensate.

[t should be noted that the vortex has two different length scales, the
fondensate radius and the core radius, whereas the trial wave function (5.15) has
uly one variational length scale (@). In this variational approach the various nu-
merical values r:mlnputed for the energies of the two regimes and for the collapse are

Just indicative, but more accurate values can be obtained by other rigorous methods.

witalion frequencies of a self-bound Bose gas induced by the electromagnetic wave
:";_ wide range of the dimensionless scattering parameter S. Later, we consider
W new regimes, namely, TF-G and G regimes. In these regimes we have caleu-
ted the lower bound of the ground state energy, the sound velocity, monopole and
fidrupole mode frequencies. Qur results are in excellent agreement with the re-

its [7] obtained by using the sum-rule approach. Interestingly, the ratio wyy /wg is
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Jidentical (in both the regimes) with that of [7], which is obtained within the sum-
fule approach. In the TF regime of an ordinary atomic BEC, the monopole and
'.'r.'ma,drupulu mode frequencies are independent of the scattering length a. On the
(other hand, in the TF-G regime, the monopole and quadrupole mode frequencies
depend on the scattering length a. The local sound velocily ¢, varies as N2 in the
TF-G regime, whereas ¢, ~ N''® for an ordinary atomic BEC in the TF regime. For
& harmonic trapped Bose system, the excitation frequencies are determined by the
sscillator frequency of the trap potential. But, in this system, the monopole and
quadrupole mode frequencies are fixed by the gravitational frequency Wy

In the section 5.3, based on the time-dependent variational method and
simple ansatz for the wave function (Eq. 5.15), we have studied a rotating gravity-
like self-bound BEC states with vortices along the z axis. We derived an analytic
expression for the coherence length and the eritical angular frequency to create a
jortex in the condensed state. We found that the coherence length in the TF-G
fegime is very very small compared to the radius of the system. On the other hand,

' mherem:e lcngth in the G regjme is ::um;:-ara.blﬂ to the radius of the sy%tem

mmently than thc G regime. In the TF regime of an nrdmarg.r atomic BEC, the
pole mode frequency of the condensate does not change due to the presence of

vortex. But, the monopole mode frequency in the TF-G regime as well as in the

Gregime of this new BEC decreases due to the presence of the vortex. The change

-i:' monopole mode frequency due to the presence of a vortex can be used to
ftect the vortex in the condensate since the measurements of collective excitation

i _enmes can be ca,med out with high premsmn It would be mtem'atmg to study

'\_rhex in BEC with gravity-like attractive interaction.

Appendix: Mean-field energy of the gravity-
hke potential

mean-field energy of the gravity-like potential is

”fda Pr rﬂ{r}”{ r')

AB.1
T (A5.1)
e n(r) = [(r)]? is the condensate density. In momentum space it can be
e nln(
n(kin
B,=— [ & : (A5.2)
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iwhere n(k) = [d®re™ n(r) is the condensate density in the & space and n(k) =
n(=k). In the eylindrical co-ordinate system, the above equation is

- J{n2£“+#ﬂk1]

. ulV -
.Eag _ mfdkpdz 'ﬁ_—mk‘ﬁ ' (“'\ndg)

Here, &, and k. are the dimensionless variables. Using the standard integral [17],
we obtain )
py s ol (3 54
"7 2 Vo 5y ' '

B5 Appendix: Exact forms of Folano, Pro, 6, 651
and Fj a1, f1o, a, 65y

:_.f:.; 're, we shall give the exact form of Flog, By = F [ 2 (1 )] /81, its deriva-
five with respect to oy, 5; and the first order devmtmn fmm the equilibrium fune-
ff'.-'” Fa.[ﬂm,ﬁm] and Fm[ﬂmﬁm]-

2 2 4
Flowfil = o [1+1(1—“—;)+§(1 255+ E:)

1 a? at  af
1—3 1 N 5,
? ( + .ﬁi ﬁlﬁ) + ] [Ba l]

The derivative of Flay, f1] with respect o is given by

1] 200 4 ( o cr%) 6 ( o pof ai) ]

= |t g | = | =gt L +...| . (B5.2
[1451] ﬁl[ 3 5\ Bt BE) T\ BT TR g e
Expanding F,,[ay, 6] around the equilibrium widths ayp and By5. The
5t order deviation from the equilibrium function Fo [, Bro) is

: 2 1 i,
Foy oo, Fro, 6on, 854 k3 |._...i + g (____ 4 Eﬂ)

B | 364 B B

_l_g (_i +ﬁg_i:’ _ 5;?;) oo ] Sy,
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bR
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12 {ogq ady ﬂ?u) l
+w g — 4=+ 3= | ] 88y B5.4
(.r’fi*u B B e (BR)

The derivative of Flay, 8] with respect to 3, is given by
Folon B = —i[1+1(1—“%)+5(1 2_L +“1) ]
BRETS il 3\ B TS BBt

1 [20] 4(d? a‘f) ﬁ(cxf :::1 af) l
+ o lrmto - Felm =2t 2 b B5.5
i [3 B (ﬁl B) T \m T E )
Expanding Fj, {ah,ﬁ‘l] around the equilibrium widths oy, and M- The
st order deviation from the equilibrium function Fg, [ag0, 1] is the following:

1 2agg 4 ( o ﬂ%u) ]
tag, o, devy 661] = —— [ — 4 * iy e
[ 10 ,810 1 ﬁlE Eﬁ l 3,8]_'] 5 lﬁlﬂ Igln ;
1 [4ay 8 (Ctm ﬂfzin) ]
B —_—g = Eﬂ'
Bo [38% 5\ B Bl 1
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Chapter 6

When the collective modes g0
unstable: Quantum melting of the
vortex lattices in a rapidly
rotating quasi-2D atomic
Bose-Einstein condensate

6.1 Introduction

80 far we have discussed various properties of collective excitations of non

iomic Bose-Einstein condensates (BEC). What will happen if we rotate the atomic
BEC

W07 Many vortices will appear in the condensate by rotating the condensate with
ligher angular frequency. Recently, the ENS [1] and MIT group [2] have observed

-Totating

furmatx-:m of Lna.ngu.ld.r vortex latt:ces in rap1d1y~rotatlng atomic Eme—Emstem

Ilie creation and Dbservatmn of the triangular vortex lattices in a rd.pldh

—mtal.mg
iomic BEC has opened a new direction for

the study of quantum vortex matter.
leoretical predictions(3] for the existence of fractional quantum Hall like states
even higher rotational speeds in quasi two dimensional atomic BEC has given a
lither impetus to this fascinating field. The quantum melting of an ordered vortex
ftice to an exotic quantum fluid of atoms at very low temperatures is a quantum
i transition, where one would like to understand the mechanism of melting and
tiire of phase transition.

Melting of classical solids with short ran ge inter atomic potential in 2D
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is a well studied subject, where topological defects play a fundamental role. In the
presence of long range interaction, such as one component. coulomb plasma in 2D,

melting is dominated by ring exchanges [4] rather than topological defects. From
b this point of view the logarithmic repulsion among the imposed vortices in a rotating
BEC provides an opportunity to study quantum melting of a ‘pristine’ Wigner solid

-I with long range forces, that is free from the complications of solid state systems,

In this chapter we write down an effective Hamiltonian for the vortex

degrees of freedom, motivated by an analogy [5, 6] between the Magnus force acting

00 a vortex moving on a two dimensional neutral superfluid and the Lorenz force
acting on a charged particle in a magnetic field. We develop a theoretical approach,
borrowing heavily from pioneering ideas of Kivelson, Kallin, Arovas and Schrieffer
(KKAS) [7], developed in the context of fractional quantized Hall effect (FQHE),
and suggest a cooperative ring exchange (CRE) mechanism for quantum melting
of vortex lattices in quasi 2D atomic BEC and indicate a possible direction for a
microscopic understanding of the quantum liquid of molten vortices.

In contrast to many recent theorctical works on atomic BEC which ex-
1ta:}uts an analogy between the Hamiltonian of a rotating neutral boson atoms and
tharge parficle in an external magnetic field in two dimensions, our work uses the
gortex (collective) coordinates directly and provides another microscopic approach
tounderstand quantum melting and the quantum Hall-like state that may be formed

it these atomic system. Existing theoretical works focus on exact diagonalization (8]

of

ofsmall number of atoms to get some idea about quantum melting and the possible
fuantum Hall like melted states. A recent interesting work [9] that studies melting
if vortex lattices in a rapidly-rotating 2D BEC, also shows that BEC is destroyed
j the vortex lattices.

Expernnentally, at the plescnt moment it is a challcngmg task to pmduce

attions. With the rapid advances in the field of laser cooled atomic £Aases one can

ilicipate to get SIIdp.‘_-.thE of the melted configurations of the vortex lattic e, where

IRE should leave its w umque s1guatures as we mention in the section of suminary
i conclusions.

In the cooperative ring exchange approach to FQHE, KKAS view the
anghlin quantum Hall state as a Wigner solid of electrons in 2D in strong magnetic
#d, that has been quantum melted by cooperative ring exchange processes. Briefly,

ip exchange, as the name suggests, is a cooperative shift of a ring of contignous
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particles in an ordered lattice (figure 1) resulting in a cyclic permutation within the

ring. While the amplitude for a quantum tunneling event of a specific ring of

size
L sites is exponentially small ~ af (with a

+ the single particle tunneling amplitude

being < 1), the number of rings of size L is exponentially large ~ e*“. Thus the

total amplitude ~ o"e’™ may exponentially diverge, if —Ina < b, leading to a

proliferation of ring exchanges and a consequent quantum melting,

This melting depends on the electronic filling fraction, the ratio between

the density of conduction electrons and the density of flux quanta. For very low

illing fraction, electrons are expected to form a Wigner crystal. At higher filling
fraction, electrons forms an incompressible liquid state and exhibits quantized Hall
“effect. Similarly, we could also expect the quantum melting of the vortex lattices

depends on the vortex filling factor, the ratio of the total number of vortex to the
total number of boson.

This chapter is organised as follows. In section [6.2] we write down
an effective Hamiltonian for the vortex degrees of freedom. In

section [6.3] we
eview the coherent state path integration and

_ rederive the action for vortices in a
_iise'udmnagnetic field generated by the background neutral superfluid Bose particles.

In section [6.4] we suggest cooperative ring exchange as a mechanism of quantum

melting of the vortex lattices, We calculate the tunneling coefficient in

section [6.5].
@ present a summary and conclusions of this chapter in section [6.6].

5.2

Hamiltonian of the vortices in a rapidly ro-
tating quasi-2D BEC

e consider a large number of vortices in a rapidly rotating quasi 2D BEC: rapid
'tiun in a quasi 2D condensate is defined as Pogz < hw, and
the boson density and g, = 2v2mhu,a,
fuesi-2 D Bose system [10]. Also, 0

Pogz < 2R€). Here,
a is the effective interaction strength in
15 the trap rotational frequency and w, is the trap
iquency in the axial () direction. Recently, the quasi-2D Bose condensate (non-
ilating) has been realized at MIT [11]. A vortex in a fluid is an excitation in which

#th fluid particle is given an angular momentum m relative to the vortex center.
lnsequently, the velocity field v(r) of the fluid satisfies §.v.dl = | where my
the mass of the fluid particle and C is the curve that encloses the vortex center.

e, we treal a vortex as a point particle moving under the influence of

the Magnus
te. The Magnus force is an effective interaction between superfluid particles and




vortices in relative motion [5, 6]. The force acting on a single vortex is then
F =vx z(2xhpy), (6.1)

where v is the vortex velocity relative to the superfluid particles and py is the
superfluid particle density. The Magnus force is equivalent to the Lorentz force

acting on a charge particle (e) in a magnetic field. Hence, eB,gy = 2whpy is the
pseudo magnetic feld.

The interaction potential between two vortices separated by a distance

V(r)= Eﬂfp”m (%) : (6.2)

| where £ ~ | |+ is the coherence length of the vortex core and my is the mass of
| a superfluid particle. The above potential

15

is valid only when the distance between
two vortices is large compared to the coherence length. Notice that the interaction

strength between two vortices depends on the superfluid density as well as the s-wave
scattering length.

The Hamiltonian of a rotating BEC contdining vortices can be written
in terms of center of vortices (collective coordinate) as [5]

N = 2 @ 2
% (pi — ThppZ % 1y) 2mh° py vy — 74
H'u = === fi.
; o, + o Ein : (6.3)

where IV, is the total number of vortices and my, 1s an effective mass of the vortex,

The effective mass m, can be in principle derived from a microscopic approach [5].
This Hamiltonian is similar to that of charged particles moving under the influence
if the Lorentz force by a magnetic field Byy. The pseudo vector potential due to
lhe Magnus force is,

.ﬁ.p_ﬁ = —%r x Bﬂﬁ*. {:54}
for IV, number of vortices in an area A, one gets the vortex filling factor,

N, b N, .
= QB N (€:5)

N is the number of the superfluid particles. Notice that the vortex filling

vy is just inverse of the bosonic filling factor 1, = :TVJ For large N, the vortex

fsity is approximately uniform and N, = (2mwA)/(h). The eigen spectrum of
it single vortex Hamiltonian is uniformly spaced with energy gap hw.p, where
2_;&;;9, is the effective cyclotron frequency. Tt has been shown that the mass

> vortex is zero or finite but small [5]. The limit of m, — 0 and/ or large
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densily (py) is equivalent to the vortices are in the lowest Landau level (LLL). We
can project the Hamiltonian onto the LLL and the corresponding wave

are degenerate eigenfunctions of the angular momentum m given by

functions

1 L=

ﬂ’[z}*mz g "0, m=0,12. (6.6)

where z = & + iy and (r,y) are the pnsitiml coordinate of a vortex. The effective

| magnetic length is [y = /-1 = This is the smallest length scale in this
eByy m 5

problem. When the vortices are confined to the lowest Landau level, the kinetic

degrees of freedom of the vortices are frozen, since the spacing between Landau levels,
hwegr, is large compared to all other energies in the problem. Hence the vortices in
the LLL will remain localized about a given guiding center R indefinitely. The

guiding center coordinate R specify the center of a Gaussian-localized probability
amplitude of width {;.

6.3 Coherent state path integration

'In symmetric gauge, the wave function of a vortex in the LLL with

euiding-center
position R is

! Ir—R[? i(rxR).;:
drir) = ‘/h—fﬁﬂp [— T + 0 :I ; (6.7)

It has the same form as a coherent state in a two-dimensional phase space [12]. Here,

Alie state label R is a continuous variable. The coherent state overlap is given by,

(6.8)

;o i A C SR y
< Ry|R;y >= ezp Ry 2R:rl i iRy % .,Rﬂ z) ‘
4y 25

This coherent state IR > forms a nonorthogonal, overcomplete basis. Nevertheless,
e projection operator P onto the LLL is given by,

d* R
P_fg—m?m}c: R (6.9)

which is unity within the LLL since < R;|P|R; >=< R,|R, >.
We use the coherent state path integral [12, 13] expression for the parti-
lin function to caleulate the tunneling coefficient of a vortex. The partition function

bt 2D interacting vortices in a pseudomagnetic field due to the Magnus force is

Z(vy) = Tre FHv, (6.10)

=23




. Here, we discuss the main features of this formalism for a single vortex in the LLL

in the complex plane. This can be generalized for many vortex system very easily.
The coherent state in the complex plane is

_ 1 [zR—2R] |z — R
e \/zngwl 413 ]ﬂp lmT ‘ (6:1)

where B = X +14Y is the guiding center coordinate of a vortex in the complex plane

and the asterisk denotes the complex conjugation. The coherent state overlap in the
tomplex plane is

R;R; — R:R i — Ry]?
< Rj|Ry > = exp|XTE "5 —— | exp ——-——|R’ : ZR"! (6.12)
4l 215
l " * L
o

the usual way. First. we split the inverse temperature 9 into a ]arge. number of

equal intervals e = A/m, i.e., e Y is written as [e7V]", and then insert the projection
‘aperator P at each infinitesimally small interval. Then,

v S d*R; T ~
< Ryle ™ |R;>= [ 1= o I < Ryuale V18 >, (6.14)

where Ry = R;, Ry = F;. In general, the Hamiltonian can be written

< Iy|V|Ry >

VR, Ry) = < RlRs (6.15)

The matrix element can be written as

< HIEE"EH|R.,' > fH H < R:-i-lIR =

(2m fu}“
x |1 —1EV(R;+],R-J+G{EE}] (6.16)

neglecting terms of O(e?) and higher order terms by standard procedure.
'_.f._"L 'Eq.(6.12), and
dft; Ry — R;

T _‘—E—— (6.17)
obtain
Mo [T ER T (i (o ar, R )
, = fkl:_li {217:’.5}“'23:;} [IE {}gﬂ ;”_E (RJE" = T RJ+1 — V{Rj, Rj'_j.l} .
(6.18)
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The path integral is

f 1 dR  dR*
r, o " % T _ r *
7 o= f | | {ETEE 5 LI‘]‘J‘{ 'I/-u it LHE (R = R H) + V(R ,ﬁf)-|}

= [ DR,

(6.19)

This action is linear in time derivatives and hence discontinuous paths have finite
action. If implies that the coherent state path integral is dominated by discontinuous
paths and the limits is ill defined. Despite these difficulties, the continuum version
of the path integral can be used to develop a saddle-point approximation for the
partition function [7]. We are interested in the semiclassical limit when V(R)isa
slowly varying function of its argument over the length scale I and we can use the
saddle point approximation to evaluate the path integral.

| The single vortex path integral generalized to many vortex path integral

directly parallels that of the single vortex problem. The action for many vortex is

185 :
S(R) = f dt ! R- % R_,-) 2+ Y V(R - Ry . (6.20)
1 J<k
V(i) = (¢r(r)|V(r)|¢n(r)) is two-body interaction potential in coherent states

representation. In the qaddle point-approximation, the classical path is obtained
h}r minimizing the action

, m_m |r=r. = 0. The classical paths satisfy the following
T
equations of motion,

R; = i(vﬁ;}xz (6.21)
yhere V; = 5. V(R;~Ry). The guiding center dynamics in presence of a potential
] (R) is equivalent to the quantum dynamics of a particle in a two-dimensional phase
space such that X plays the role of the spatial coordinate, ¥ that of the momentum
of the particle, and 2 plays the role of A since Y] =g

The path integral can be expressed as a sum over saddle point contribu-
fion in which the contribution of paths in the neighborhood of each classical path is
taluated by expanding the action to quadratic order in & — R.. The partition func-
fion Z is calculated within the semiclassical approximation. The partition function

tan be expressed as a sum over classical paths, assuming the vortices to be bosons,

Z =3 DIRJe1, (6.22)




worry about it in this Thesis. The partition function Z can be written by considering
only the leading order contribution as 7]

Z =Zyy_ D[R,]JeSolfl (6.23)

- where § = S5 + S. Let us consider the contribution of a single large exchange
rng to Z. The real part of the action would be ey, where L is the number of

| vortices in the ring and aq is independent of path. The fluctuation determinant [7]
is D[R.] = —75 ' drexp|—bal +O(InL}], where 7 is the cooperative tunneling time.
We expect that the contribution from the fluctuation determinant is very small,
which renormalized og. The imaginary part, the phase change as a cooperative
motion along a ring is

0= j:f eAng.dl = 27N, (6.24)

where IV is the number of the superfluid particles enclosed by the ring [14]. This is

the analog of the corresponding result for a charged particle moving in a magnetic
field.

6.4 Cooperative ring exchange mechanism

How do the collective modes go unstable? To understand the melting of the vortex

lattices, the Lindemann criteria can not be used here sinee it is used in the melt-

:mg of classical solids. The vortices are noi executing almost independent thermal
motions as in a classical solid. The dynamics of the present problem is governed
: a Hamiltonian with only first-order time derivatives, which give rise to its own
peculiar properties. We give an argument how Wigner erystal can melt at T = 0.
U we consider a rigid Wigner solid and allow one ring of vortices to tunnel coher-
antly they see a periodic potential with the periodicity of the lattice (figure 6.1).
li we observe the coherent motion of one chain over a long time compared to 7,
-g;i:.- potential that it sees will not be periodic. The physically important rings being
me-dimensional and long, this can result in the destruction of the long-range order
tmg the chain rather easily. This in turn will feed back and affect the rest of the
eighborhood, resulting possibly in a molten state. This will also result in the path
;_ e wave packets of vortices being displaced away from the edges of the trian gle
iithe lattice, This means that the self-consistent potential seen by an vortex no

gnger has a component which has long-range order,

&6




Figure 6.1: A schematic diagram of cooperative ring exchange events on a ring and
- line

6.5 Calculation of the tunneling coefficient

The numerical value of the tunneling coefficient «(r,) determines whether the vor-
tices form the liquid state or Wigner crystal. To estimate this tunneling coeflicient
we consider the following simple exchange path which is shown in Fig.6.1. Con-

: sider the path in which one row of vortices exchanges one step in the X direction
in the background of the static potential of all other vortices, X;(3) = Xi(0) + d
and Y;(8) = Y;(0), where d = \/4‘,5_*%!” is the lattice constant of the Wigner crystal
for a given density v, There is no net phase change since this straight path does

a0t enclose any area. We are imposing the periodic boundary conditions in the X
direction, X;(r} = X; (7).

For |Y;| < d, the actnal potential can be approximated by,

¥ 4 b Qy z QI
MV {Z [+ gt - e

%E [K,_{j —k)(X; = X + K, (5 — k)(Y; — Yk]?-]}, (6.25)

Ik

ihere Xs and Y/s are in units of the lattice constant d. Here, K.(j—k) = ai g;k =
;T_u K, (j—Fk)= ;{,;; |k are evaluated along the classical paths. For example, the

st fit to the actual potential is obtained with i ~ 0.6 for v, ~ 1. Notice that
_ ,."Qy < | implies that when the one—:l:men&mmul chain moves coherently in the
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A direction, the potential barrier is much less than in the X direction compared to
that of the ¥ direction.

The dimensionless Eucledian action is given by,

y = N LY+ Dyey @ sonx
S = T {Z}: L}{j}j—i- glf}fj +{2:rrJ2{1 cas{ElXJj}] (6.26)

+—;— B [I{IU — k) (X5 — X)? + K (5 — k) (Y; — Yk}?]} . (6.27)
i=k

Since S is a quadratic form in ¥}, the motion in the ¥ direction can be integrated

out exactly. After doing the ¥, integration, we get an effective action S.g for the X
motion with a quadratic kinetic energy,

i<k

S = J:ilm ffd*r{z[%qfl;ﬂfftj—k}m+§m{j—k}c¢j—¢k}* (6.28)

+§: Eiﬁg(l—cos[qﬁj}]}, (6.29)

where 7 is the imaginary time variable, ¢ = 2rX; and

(MG = k) = [(% +3 ffyu}&jk) - Y K- k}] . (630)
3 j<k

S 1s the action for a one-dimensional sine-Gordan chain, The classical path satis-
:- fying the boundary conditions ¢;(0) = 0 and #;(8) = 2w, correspond to the simul-
taneous coherent motion of all the vortices, i.e. ¢;(7) = ¢o(r). Hence, S [Re] = e L,
where ag(p,) = ﬁ%r;-v\/% The ay is independent of K's. To evaluate the fuc-
tuation determinant we have to take the continuum limit of the effective effective
action Ser. To take a continuum limit of equation (6.28), (¢h; — ¢ is replaced by
(] — k)0z¢, but 25 72K, (j) is diverging linearly. This procedure does not work and
the continuum model must be constructed with care. Here, we do not calculate the

d which will be very small and it does not change the result drastically.
All the contributions from ring exchanges happening in a time interval

n are summed by modeling the change in the action by a discrete Gaussian model
in an imaginary field

Hpe = ali) ) (8 — 8,)° +ih(v) Y S, (6.31)

where Sy is an integer variable associated with every triangle in the lattice. S5,

tounts the number of clockwise minus counterclockwise ring exchanges that surround




a plaquette A. The function av,) = ag(v,) + der(r7,) is a measure of the tunneling
barrier. The function h(r,) is the phase factor which arises as a result of the pseudo
magnetic fux enclosed by the exchange rings. This model is known to have a phase
transition [15] at a critical value of & = ag(1,) ~ 1.1 [7]. For a(p,) > e ), the
ground state is a vortex Wigner crystal and for a(iy,) < (1), the ground state is
a quantum mechanical vortex liquid state. In our caleulation we find the tunneling

coefficient is ag ~ 1.1 when v, ~ é 5o the quantum melting will occur at p, ~

7+

When 14, > %, the vortices form the liquid state where as for v, < %, the vortices
form the Wigner crystal. Current experiments [1, 2] with », < L are in the regimes
of vortex lattice ground state. Based on the exact diagonalization, Cooper et al. [3]
have calculated the vortex filling factor v, at which melting instability occurs to be
5 Based on the Lindemann criteria, Sinova et al. [0] have shown that the melting
mstability occurs when the vortex filling factor is £. Our result is consistent with
the experimental result [8, 9], but does not match very well with the results based
on the exact diagonalization [8] and the Lindemann eriteria [9].

6.6 Summary and conclusions

In this chapter, we treated the vortices as new degrees of freedom and considered
@ model Hamiltonian of these interacting vortices produced in a rapidly-rotating
atomic BEC. Later, we assumed that the vortices are in the lowest Landau level ihue
to the low mass of the vortices and the high densities of the Bose superfluid particles.
We rederived the action for many vortices by usifig the coherent state path integral
method. The cooperative ring exchange is suggested as a mechanism of the quantium
melting of the vortex lattices in atomic Bose condensed state. Finally, we estimated
the tunneling coefficient by considering the contribution of large-correlated ring
exchanges to the energy of a vortex Wigner crystal in a strong pseudomagnetic
field generated by the superfluid Bose particles. We find that the vortices form
the Wigner crystal when 1, < 3. Latest experiments [1] with N ~ 10°, N, ~ 10
(v, ~ 107%) and [2] with N ~ 10°, N, ~ 100 (1, ~ 10~%) are in the regime in which
the ground state is a vortex lattice, Our result is consistent with the experimental
observation, but our result does not match very well with other results (8, 9]. It is
thallenging for experimentalists to produce a vortex liquid state in a rotating Bose
condensed state.

Our work, resulting in a discrete Gaussian model (6.31) predicts Laughlin

like even denominator hierarchy (bosonic vortex filling factor v, = % where p 1s an
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integer) to emerge on quantum melting. We can also determine the asymptotic form
of the wave functions [16]. Along with a rich phase structure the diserete Gaussian
model also determines the nature of the quantum melting transition. To the extent
the vortex degrees of freedom retain their identity, the results of CRE approach may
remain valid in the quantum melted region. This needs to be investigated further.

As mentioned in the introduction, CRE processes should leave its finger
print as specific fluctuation patterns (figure 1) that preempts quantum melting. It

should be interesting to look for snapshots of such displaced large rings in the actual
vortex lattice imaging.

A6 Appendix: Calculation of the parameters Q)
and (@),

Here, we show how to calculate the parameters (), and 2y, We consider the simplest
possible exchange path, namely one line of vortices shifting coherently within the
Wigner crystal. When the line £ is displaced, we have R; = T, + dd;z ¢, with &z
unity if and only if lattice site ¢ lies on the line in question. The matrix element of
the potential between two vortices in coherent basis state is

V(R) = (¢n(r)|V(r)|pr(r).) (A6.1)

Accordingly, the energy of the displaced line configuration relative to that of the

perfect Wigner crystal is

AE =3 [V(Ri—Ry) - V(T - T))]. (A6.2)
gy
This sumn is broken up into three terms, The first term includes all pairs (i, 7) in
which both sites i and j lie off the line. This contribution to AE is zero. The second
term involves all pairs (i, j) where one of the sites, say i, is on the line and the other,
1, is off:
AE,= Y [V(Ti+d-— T5) = V{(Ti—T;)]- (AG.3)
EL g0
Clearly the line energy is extensive, hence the energy per tunneling of the vortex
can be written

U(d) = AE;/L =73 [V(T; — a) — V(Ty)], (AG.4)
JEL
where we have chosen the origin to lie on the line. The third and final term is

that arising from both ¢ and j on the line. Since the tunneling is cooperative, this
contribution to the classical action vanishes.
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By allowing one line of vortices to tunnel coherently along the line, one
can fit the change in energy into a periodic potential with the appropriate choice
of the parameter ¢);. On the other hand, by allowing one line of vortices to tunnel
coherently perpendicular to the line, one can fit, the change in energy into a quadratic
potential with appropriate choice of the parameter 0y
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Chapter 7

Inner structure of collective
modes: Modeling
two-magnetoroton bound state

formation in fractional quantum
Hall systems

7.1 Introduction

In this chapter we consider fractional quantum Hall system at v = + filling fraction
[1]. This v = } state was explained successt‘ulll:,r by Laughlin's pioneering work [2].
Using the single mode approximation, Girvin, Macdonald and Platzman (GMP) (3]
analyzed the collective excitation spectrum of fractional quantum Hall states. In
the single mode approximation a neutral excitation is defined by (unnormalized)
wave function v, = Prrrper, where p; = ;€™ and Ppy, is the projection
operator onto the lowest Landau level. This dispersion curve has finite gap at
k =0, quite different from the case of superfluid helium and trapped Bose gas in
which mode is gapless. The minimum of energy (B, = Fio) occurred at k =
kp and this excitation was called magnetoroton, by analogy with roton of liquid
*He [4]. The pioneering work of GMP brought out non-trivial inner structure of
neuntral excitations of the fractional quantum Hall effect (FQHE) systems. This inner
structure is very transparent for the magnetoroton, the minimum energy neutral
excitations at a finite wave vector kgly ~ 1.4 for the v = i quantum Hall state.
They are well approximated by a Laughlin quasi-hole (%) - quasi-particle (—5) bound
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state, as shown in Fig. 7.1a. The composite fermion (CF) [5] approach, that goes
beyond Laughlin hierarchy of = filling, views the neutral excitations as a composite
Jermion interband excitons of the ‘pseudo’ Landau bands. The CF approach has also
suggested variational schemes that is amenable to numerical studies. Theoretical
studies of neutral excitations have become meaningful in the light of the Raman
scattering experiments [6, 7).

It was observed by GMP [3] that the zero momentum neutral excitation,
as observed by numerical experiment 8] was in disagreement with their result at
E(k = 0). Since the numerically observed results was slightly less than 2, (k = kq),
they speculated that the minimum energy excitation could be a two-magnetoroton
bound state, as shown in Fig. 7.lb. Within the Landau-Ginzburg theory, Lee
and Zang [9] also proposed that the k = 0 excitation consists of two dipoles (two
magnetorotons), arranged in such a way that it has quadrupole moment but the net

dipole moment is zero. Two-roton bound states are suspected to occur in liquid *He
[10].

la) single roton 1b) two—roton bound state

Figure 7.1: Schematic diagrams for (a) a single magnetoroton with momentum k,
and (b) a two-magnetoroton bound state with total momentum K = 0.

Park and Jain [11] have extended their CF exciton theory of magnetoro-
ton to two-magnetoroton bound state problem. Using parallel computing technique,
they have handled upto 30 particle systems. They have shown very convincingly

that the zero momentum lowest energy excitations is a two-magnetoroton hound
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state.

The aim of this chapter is to provide an effective microscopic model that
uses the essential structure of magnetoroton. In our parameter free theory we get
the binding energy of a two-magnetoroton bound state which is in good agreement
with the extensive finite particle system study result in the CF approach.

This chapter is organised as follows. In section [7.2] we discuss dynamics
of a magnetoroton and show that the magnetoroton is an eriented dipole analogous
to the description of a magnetic exciton [12, 13, 14] as well as Read’s [15] dipole
description of the neutral composite fermion at v = 5- In section [7.3] we write down
the kinetic energy operator for magnetorotons. We also derive velocity dependent
effective interaction between two magnetorotons by using the oriented character
of the dipole moment, analogous to the velocity dependent interaction found by G.
Baskaran [16], in the context of BCS instability of composite Fermi liquid. In section
[7.4] we propose a variational wave function for two-magnetoroton bound state, In
section [7.5], the resulting two body problem is solved variationally to find a bound
state. We present a summary and conclusions of this chapter in section [7.6].

7.2 Dynamics of a magnetoroton

According to Laughlin [2], the elementary charged excitations. at the fillin g fraction
L (m is an odd integer), are quasiparticles (gp) and quasiholes (qh) with
fractional charge ££. The effective magnetic length for a particle with fractional

s =

charge £ is lgy/m, where [; = fﬁ 15 the magnetic length for a particle with charge
e. A magnetoroton with wave vector |k| is a bound state of a qp and gh separated
by a large distances mkl}. A qp and gh have an attractive Coulomb interaction
Vir) = —T""fﬁ. In lowest Landau level at filling fraction v = L, they obey the
following guiding center dynamics [15, 16)

dr, B mié i

di — T?,_-V{TE = ]f',lt::l P oA {T-”
dr mis 5

rﬂ-h — huvhv(re _r.h:J b (?2}

where r, and 1 are the coordinates of the gp and the qh. These equations lead to
a drift velocity vg = SR of the center of mass of the pair:
_mlj

Wi S [V:V(r) x 2], (7.3)
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wliere r = r, — 1), is the relative distance between the qp and qh and R = L’@-ﬁ-

is the center of mass coordinate, Since the qp and gh carry opposite charges, they
both drift in a direction perpendicular to their separation vector ¢ direction,
2

! i
rvy= ?;;_nr. [VeVi(r) x 3] = ? [rx VeV(r)].z2 =0, (7.4)
. .

since r x V. V(r) is zero. Hence r.vy = 0. Laughlin's quasiexciton wave function
| (see Eq. (8) of Ref. [13]) can be rewritten in terms of the center of mass and the
relative coordinates as

B 1 :‘R.(k+ﬁ§) —Ji”‘—j:;ﬂi . o i
|zg == - _ffg ol e o5 58, 0m > dP e, (7.5)
VaZmlL

The amplitude of this wave function is maximum when r = mi?k x 3. S Laugh-

lin’s quasiexciton wave function strongly suggests the oriented nature of our dipole.

This dipole dynamics is very similar to the dynamics of a vortex antivortex in

fiuid dynamics. The distance between the constituent particles of a magnetoroton

(oriented dipole) is ¢ = mig(z x k). The dipole moment of this magnetoroton is

d= Emif(z x k) or d = el2(s x k). The dipole moment vector (d), the momentum

of the magnetoroton (p ) and the external magnetic field (2) form a triad (= [;.:I'_ITEI}'
The dipole moment is the same for p — sand v = * for a given k.

7.3 Hamiltonian of two magnetorotons

. 7.3.1 Kinetic energy operator
At filling fraction v = %1 there is a parabolic dispersion around the minimum energy
at finite & = k. The energy spectrum can be written around the

minimum energy
at k= ky as

-

ﬁ._
E[k} = Emt + :jﬂ—:r [:ik| — kﬂ::lz ; (-:-ﬁ:l

where £, is the minimum magnetoroton energy at k = ko and m, is the magne-
toroton mass. The minimum magnetoroton encrgy £ and the corresponding

are different for different filling fractions. So the

kinetic energy of a magnetoroton is
different for different filling fractions through m, and ky. For v = f{, E..=100755

el
1 o | F-,
18 the minimum magnetoroton energy at koly ~ 1.4, m, ~ %&‘:‘—u is the magnetoroton

mass. The mass of a magnetoroton is caleulated from the curvature of the
spectrum at v = 1 given in Ref. [3] by using the rel

excitation

. 2
atlon m, = Fi%m at k= ky.
ak-
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The kinetic energy for two magnetorotons with momenta ki and ks is

EE

T = o [(lke] = ko)® + (Jies| — ko)?] - (7.7)

=

7.3.2 Two-body potential energy operator

Since each magnetoroton is an oriented dipole, it is a natural choice to consider
the interaction between two magnetorotons as a dipole-dipole interaction. This
momentum dependent dipole-dipole interaction was first, suggested by €. Baskaran

[16] for v = % composite Fermi liquid. The classical dipole-dipole interaction energy
with two dipoles d; and d, is

dids _ {dir)dsr) (7.8)

[

=

£re
where ry and ry are the position vectors of the two dipoles and r = r; — 15 is the
relative distance between two dipoles. ¢ is the dielectric constant of the background
material.

dy = elj(2 x k;) and dy = el3(z x k,) are the dipole moments of the two
magnetorotons with wave vector ky and k., respectively, Using the dipole moments
d; and d; for the two magnetorotons, this interaction energy ean be rewritten in

terms of the total momentum K = ky 4 ko and relative momentum k=k; -k as

U= %“j {K: k) LG x (K +k). rjEz x (K — k). 0| (79)

This is a semi classical expression for the potential energy of two interacting oriented
dipoles.  Since an ortented dipole is a quantum mechanical particle, we pass on
to quantum dynamics by symmetrizing the above classical energy expression and
replacing the total momentum K and the relative momentum k by an operator

—i1Vr and —iV,, respectively. After symmetrization, interaction energy reduces to

etly [K® 1 1
o = B[S G-l
’ de [r"1 (?‘3)k s

_3{5; x K)r(z x K)r — (£ x k).r(z x 1{]‘1-]

(7.10)

ri

In operator form, it becomes

o {:Efg —?%{ 1([ 2 2(1 ) 3 az 1 e
If = ?[ ) + 5 ;:,;vrﬂ‘ Vi F) a‘i"' sin”(f + )= a5

a7 |
0 e b — 9 i rd
I—Lus{ + ) Rq ﬂ_+ms{p H}H}Rni sin 2(¢ Hjﬁi!ﬂﬁ})]’ (7.11)
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where ¢ is the angle between r and = axis and 0 is the angle between R and X axis.
The term %(Il—["?ﬁJ—‘?f, (;']-)) in the above expression is due to symmetrization
of %JL term.  Without symmetrization of this term }r% the interaction does not
give the correct binding energy. So quantum mechanics play a crucial role in the
interaction between two magnetorotons. This is a momentum dependent, non-central
potential between two oriented dipoles of nonzero total momentum. This momentum

dependent interaction energy is same for all v = BTy filling fractions, where m

and p are integers.

Since we are interested in pair formation, we concentrate on only two
magnetorotons with opposite momenta (k; = —ks), as done in BCS theory. Hence

the total momentum is zero. The interaction energy can be written as

o] O i A D 3 9
ot 4 W > el Y 2 J
“ de [2 (1‘3 VN (7‘3 T de?

7.3.3 Total Hamiltonian

(7.12)

The Hamiltonian for this two body problem with the total momentum K = 0
becomes

R o O 1 3 &
H= — Q0 | 2yd %(_))_ ' -
f dm, (1iV] of de |2 (T?' PV g # (7.13)

7.4  Variational wave function for two-magnetoroton
bound state

| We propose a variational wave function
¥(r) = Nrie o Jo(2ker), (7.14)

where NV is the normalization constant which is determined by the condition [ d2r|y(r)|?
1, Jo(2kgr) is the zeroth order Bessel function. « is the variational parameter which
can be determined by minimizing the energy expectation value.

In superconductivity, a Cooper pair forms at the Fermi surface between
two electrons with opposite momenta. Similarly, a magnetoroton pair forms af,
and near & = ky. The annular region in k space that contributes to the K = 0
magnetoroton bound state is shown in Fig.7.2. Like Cooper pair wave function,
we construct a wave function for the two-magnetoroton bound state with momenta

(kao, —ko) which gives Jy(2kyr) for s state. 2k is the relative momentum of these

99

R




Figure 7.2: Annular region in k-space that contributes to K = 0 magnetoroton
bound state.

two magnetorotons. Using the convolution theorem, we get the following variational
wave function in momentum space:

1 2 L2 Y S
(k) =N’%fu doF [2,2.5;1;—{ ko — Ehasd)) (7.15)

where N’ is the normalization constant and F[2,2.5;1;2] is the hypergeometric
function. This wave function is shown in Fig. 7.3.

7.5 Binding energy of a two-magnetoroton bound
state

To calculate the expectation value of the kinetic energy of this Hamiltonian, we
go to the momentum space. In momentum space the kinetic energy operator is
T'= ;‘M (k — 2kg)*. The expectation value of the kinetic energ_v In momentum space
is Ey(a) = 0.125E, [ d®k|p(k)]2(k — 2.8)2, where E. .! is the unit of Coulomhb
energy and & = aly and k = kly are the dimensionless variables.

The expectation value of the interaction potential energy is FEa(&) =
CBEE, where A and B are the following integrals:

A= [d Jo(2.87))26207 (7.16)

B f dil4 — 27267 4 287 — 15.6872]J2(2.87)e 257, (7.17)

We are numerically minimizing the energy functional E{&) = E\(a) +

Ea(a) with respect to the variational parameter &. The minimum enere for the
Y
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Figure 7.3: Two-magnetoroton bound state wave function in momentum space for
aely = 0.41 at which the energy is minimized.

two-magnetoroton bound state is 0.138 E. at & = 0.41. whereas 2K = 0,158, so
that the binding energy is 0.012F,. Park and Jain have found a minimum energy of
0.135 FE., and hence the binding energy is 0.015 E.. Qur binding energy is thus in
good agreement. with the extensive numerical results of Park and Jain [11]. So two
magnetorotons with opposite momenta form a bound state.

The root mean square distance between these two magnetorotons or the
effective size of the two-magnetoroton bound state is \/{Tzi ~ 6.7ly where as the
size of a single magnetoroton is approximately 4.2 l;. The structure of a two-
magnetoroton bound state is shown in fig. 7.1b, which has a net quadrupole moment
but total dipole moment is zero.

When the total momentum K of a two-magnetoroton bound state is in-
creased, the energy also increases. At K > K., the two-magnetoroton bound state
breaks into two magnetorotons. To get a qualitative idea of how the excitation spoe-
trum of a bound state goes with the total momentum, we use semiclassical aApprox-
imation. We consider ky = ky + q and ks = —k;, where la] < |kg]. One can easily
get the semiclassical energy E(K) = E, [0.3125(K1,)? - 0.01 (L+0.77(K15)?)]. The
critical momentum K, can be determined from the condition, E(K =0)+ E(K) =
2By, Using this condition, we get K.y = 0.22. The two-magnetoroton bound state

15 not the lowest energy excitation when K > K. Expected excitation spectrum
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Figure 7.4: Expected qualitative excitation spectrum of two-magnetoroton bound
state compared with excitation spectrum of a single magnetoroton.

of a two-magnetoroton bound state and the two magnetoroton continuum state is
shown in Fig. 7.4. and compared with a single magnetoroton excitation spectrum
which is given in Ref. [3]. The effective mass of a two-magnetoroton bound state

is M = 0.054m, which is 75 percent less than the sum of the two magnetorotons
masses.

7.6 Summary and conclusions

In conclusion, we have identified the magnetoroton as an eriented dipole. We derived
the momentum dependent, non-central interaction energy form between two mag-
netorotons from a classical dipole-dipole interaction energy. Finally we proposed a
wave function for two-magnetoroton bound state and showed analytically that at
= lnwest. energy excitation state is a two-magnetoroton bound state (with zero
totnl momentum) instead of a single magnetoroton.

This analytical approach has the great advantage of being useful to an-
alyze a more complex Hall system, For example, fractional quantum Hall effect is
observed at v = 2 state [17] whereas v = 3 state [18] corresponds to metallic state.
[t has been shown numerically by Scarola ef al [19] that two composite fermion
forms a p-wave bound state at v = £ but not at v = 3. One can investigate this as-

pect in terms of the Read's dipole picture and using our above mentioned analytical
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approach. The Read's dipole picture is equivalent to the Jain's composite fermion

picture. By modifying this two-body potential and the variational wave function for

higher Landau level, one can check whether two dipoles at » = 3 can
bound state.

form a p-wave
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Chapter 8

Conclusions

In this last chapter, we snmmarize our results which we have presented in this Thesis
and indicate possible future work arising out of the approach presented here.

8.1 Summary of this Thesis

The study of collective excitations is of primary importance in quantum many body
theories, It plays a crucial role in understanding the quantum nature of particles,
two-body interactions and the effect of dimensionality. This Thesis was mainly
devoted to theoretical study of various aspects of low-energy collective excitations in
a trapped interacting alkali-metal atomic gases (Bose and Fermi) and of fractional
quantum Hall systems. In the first chapter we have presented some of the basic
properties of the Bose-Einstein condensation and the quantum Hall effect.

In the second chapter we have analyzed few low-lying excitation frequen-
cies and damping rates of a two dimensional (2D) deformed trapped Bose gas above
the critical temperature T,. Using the conservation laws for number of particles, mo-
mentum and energy, we derived an equation of motion for the velocity fluctuations
of a two-dimensional deformed trapped Bose gas just above T}, in the hydrodynami-
cal regime. We recovered the sound veloeity in an uniform system from the equation
of motion of the velocity fluctuation. From this equation, we have calculated the
eigenfrequencies and the corresponding density fluctuations for a few low-lying exci-
tation modes. Using the method of averages, we also derived a dispersion relation in
a deformed trap at very high temperature that interpolates between the collisionless
and hydrodynamic regimes. We have made use of this dispersion relation to caleu-

late the frequencies and the damping rates for monopole and quadrupole modes in
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both the regimes. We found that there is no damping rate of the monopole mode
of a 2D isotropic trapped Bose gas above T.. We have first shown that the time
evolution of the wave packet width of a Bose gas in a time-independent as well as
time-dependent trap can be obtain from the method of averages. The time evolution
of the wave packet width can be deseribed by the non-linear singular Hill's equation.

In the third chapter we discussed the effect of two-body interaction on
the low energy excitation frequencies of a 2D trapped Bose systems as well as Fermi
systems at zero temperature, which is more meaningful in the context of current
experimental scenario [1]. Using the time-dependent variational approach and the
most general Gaussian variational ansatz for the order parameter of the condensed
state, we calculated analytical spectra of the monopole and two quadrupole excita-
- tion frequencies of a two-dimensional anisotropic trapped Bose gas at zero tempera-
ture. Within the energy weighted sum-rule approach, we also derived a general dis-
persion relation of monopole and two quadrupole excitations of a two-dimensional
deformed trapped interacting (contact interaction) quantum gas. This dispersion
relation is valid for both statistics. Using this general dispersion relation, we also
calculated analytical spectrums for the monopole and two quadrupole mode fre-
quencies of a two-dimensional unpolarized Fermi gas in an anisotropic trap. The
splitting between two quadrpole modes may be used to find the trap anisotropy.
This splitting decreases with increasing interaction strength for both statistics. For

a two-dimensional anisotropic Fermi gas, the two quadrupole frequencies are inde-

pendent of the particle number within the Thomas-Fermi approach. Moreover, the
monopole mode frequency for both statistics (in an isotropic trap) does not depend
on the two-body interaction strength and it is a single particle excitation frequency.
Recent experimental progress at MIT [1] on quasi-two-dimensional Bose condensed
state shows the possibilities of verification of our results.

In the fourth chapter we considered a trapped interacting Bose gas in any
dimensions d (d < 3) which can be described by the Gross-Pitaevskii equation. We
obtained a general condition (see Eq. (4.10)) for the universality of the monopole
mode frequency and dynamics of width of a class of Gross-Pitaevskii equation de-
seribed the trapped interacting Bose £as, at varying spatial dimensionality, order of
the nonlinearity and the scaling exponent of the interaction potential. We have also
shown that the dynamics of the width of these class of Gross-Pitaevskii equation
can be described universally by the same nonlinear singular Hill's equation. This
monopole mode frequency and the dynamics of width are universal because it does

not depend on the strength and nature (short-range, long-range, local, non-local) of
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the interaction potential and the number of particles. We gave few examples which
satisty this particular condition and exhibit the universal nature of the monopole
mode frequency and the dynamics of the width of the system. For example, we dis-
cussed the quasi-2D trapped interacting Bose gas, one-dimensional Tonk-Girardeau
gas and the various other systems which satisfy that particular condition and ex-
hibit the universal nature of the monopole mode frequency and the dynamies of the
width of a system. Due to the current experimental progress in low dimensional
Bose-Einstein condensate (BEC) state [1] it is quite possible to check the universal
properties of the monopole mode frequency and the dynamics of the width of a
trapped interacting Bose gas.

So far we have discussed about the low-enersy excitations of a Bose
condensed state with short-range interaction. In the fifth chapter we considered a
Bose condensed state with gravity-like interatomic attractive interaction. There 15
a compelition between the gravity-like potential either with the kinetie energy or
the two-body short-range potential characterized by the s wave scattering length a,
which gives gravity (G) and Thomas-Fermi-Gravity (TF-G) regimes, respectively.
Using the time-dependent variational approach, we derived an analytical spectrum
for monopole and quadrupole mode frequencies of a gravity-like self-bound Bose-
Einstein condensate. We also analyzed the excitation frequencies of the TF-G and
G regimes. Next, we have also considered a vortex at the center of the condensate
state. We have estimated the superfluid coherence length and the critical angular
frequencies to create a vortex around the z axis. We found that the TF-G regime
should exhibit the superfluid properties more prominently that the G regime. We
have also suggested that a vortex with ¢ > 2 can not be created in the G regime,
where ¢ is the vortex quantum number. Interestingly, the monopole mode frequency
of the condensate in presence of a vortex is less than the monopole mode frequency
of the condensate without a vortex. This may be due to the long-range interaction.
The change in the monopole mode excitation frequency due to the presence of a
vortex can be used to detect the presence of a vortex in the condensate sinee the
collective excitation frequency measurements can be carried out with high precision.

In the sixth chapter we considered the vortex lattice structure (highly
excited collective state) produced in a rapidly-rotating quasi-2D atomic BEC. We
treated the vortex as a particle degrees of freedom. Motivated by the analogy
between the Magnus force acting on a vortex moving on a two-dimensional neutral
Bose superfluid and the Lorentz force acting on a charge particle in a magnetic

licld, we considered a model Hamiltonian of a rotating BEC containing vortices
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n terms of the center of the vortices (collective coordinate). We have suggested
the cooperative ring exchange as a mechanism of quantum melting of the vortex
lattices. We have estimated the condition for quantum melting of vortex lattices
produced in a rapidly-rotating quasi-2D atomic BEC. A semiclassical path integral
is used to estimate the condition for quantum melting instability by considering
large-correlated ring exchanges in a iwo-dimensional Wi gner crystal of vortices in a
strong ‘pseudomagnetic field' generated by the background superfluid Bose particles.
We found that the quantum melting will ocour at Uy % When v, > %, the vortices
form the liquid state whereas for v, < 13 the vortices form the Wigner erystal. The
current experiments at ENS [2] with v, ~ 107" and at MIT [3] with 1, ~ 10~ are
in the regimes of vortex lattice ground state. So our result is consistent with the
experimental observations but does not match very well with the results based on
the exact diagonalisation, and the harmonic analysis and Lindemann criteria,

In the seventh chapter we addressed the two-magnetoroton bound state
formation in fractional quantum Hall systems at v = :_1‘: state. We modeled the two-
magnetoroton bound state problem at one-third flling fraction of quantum Hall
systems. We have shown that the inner structure of a magnetoroton is an oriented
dipole analogous to the description of a magnetic exciton. We obtained the momen-

tum dependent, non-central effective potential between two magnetorotons by using

the oriented character of the dipole moment. We proposed a variational wave func-
tion for the two-magnetoroton bound state. We have calculated the total energy and
found the minimum energy variationally (analytically) to find a two-magnetoroton

bound state. Our result is in good agreement with extensive numerical results based
on the composite fermion picture.

8.2 Outlook for future studies

Method of averages was used to calculate the low-energy excitation frequencies of
a three dimensional Bose gas above the critical temperature 7. [4]. In the second
chapter of this thesis we have used the method of averages to calculate the low energy
excitation frequencies and dynamics of width of a 2D Bose gas above T.. The two-
body interaction among the atoms have not been considered in this method. Our
future work would be to develop the method of averages by taking into account
the effect of particle interactions. The contribution from the mean field interaction

energy in Boltzmann transport equation is also known as the Viasov contribution.

Low-lying excitation frequencies and dynamics of the width of a two and three
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dimensional trapped interacting Bose gas above the critical temperature can be
obtained from the method of average by ineluding the Vlasov contribution in the
Boltzmann transport equation. We expect that the mean field interaction term does
not affect on the monopole mode frequency of a two dimensional Bose gas ahove T,
and the dynamics of the width of a two dimensional Bose gas can be described by
the same nonlinear singular Hill's equation.

The time-dependent variational method has been widely used in non-
linear problems. This method with the Gaussian variational ansatz was first used
by Victor M. Perez-Garcia et al [5] in cylindrically trapped Bose condensed state
to calculate analytically the low-energy excitation spectra. In the past few years,
this method is being used extensively and successfully to explain many properties
in trapped Bose condensed state. We have also used this method in this Thesis
to caleulate many properties of atomic Bose gas at zero temperature. For simplic-
ity, we considered most general Gaussian variational ansatz (see Eq. (3.7)) for
the order parameter of a 2D deformed trapped Bose condensed state to calculate
monopole and quadrupole modes. The time-dependent variational method and the
most general Gaussian ansatz for the order parameter can also be extended to three
dimensional anisotropic Bose systems to study the various quadrupole modes and
coupling between various scissors modes. It will be interesting to study the splitting
between the quadrpole modes of an anisolropic quantum system in presence of
terms having definite chirality, like magnetic field or rotation.

Low-energy excitation frequencies can also be obtained by using the sum-
rule method.  Using the sum-rule method, Sandro Stringari [6] derived the low-
energy excitation frequencies of a 3D trapped BEC. Using the energy weighted sum-
rule approach we also derived the general dispersion relation of the monopole and
quadrpole modes of quasi-2D trapped interacting (contact interaction) quantum
gas. The main advantage of the sum-rule method is that it can be applied to both
trapped boson and fermion systems. This sum-rule method can be extended to a
system with Coulomb interaction to study quadrupole excitations. For example,
one can calculate the quadrupole excitation frequencies in an elliptic quantum dots.
Moreaver, we wonld like to study the frequency shift in the quadrupolar excitation
frequencies (m = &1 and m = £2, m is the angular quantum number) due to
presence of the vortex in BEC with gravity-like interaction, by using the sum-rule
approach.

Cooperative ring exchange mechanism is suggested as a mechanism of

quantum phase transition of a vortex Wigner lattices produced in a rapidly-rotating
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quasi-20) atomic Bose condensed state. The cooperative ring exchange mechanism
provides another microscopic approach to understand the quantum Hall-like state
that may be formed in this atomic system. So our future work would be to investigate
whether or not the vortex liquid state can exhibit the Hall-like state.

In the seventh chapter we obtained a two-body potential energy between
two magnetorotons by using the oriented character of dipole moment of a magne-
toroton. We also proposed a variational wave function for two-magnetoroton bound
state. Our purely analytical approach has the great advantage of being useful in
analysing more complex quantum Hall states. For example, fractional quantum Hall
effect is observed at v = 2 state [7] whereas v = 3 state [8] corresponds to metal-
lic state. It has been shown numerically by Scarola et al. [9] that two composite
fermion forms a p-wave bound state at v = 3 but not at » = . This is the subject of
considerable debate and controversy [10]. One can investigate this aspect by using
the Read’s dipole picture and our analytical approach given in the seventh chapter.
The Read’s dipole picture is equivalent to the Jain's composite fermion picture. We
have the momentum dependent, non-central potential between two dipoles and their
wave function in the lowest Landau level. By modifying this two-body potential and
the variational wave function for higher Landau level, one can check whether or not,
the two dipoles at ¥ = 2 can form a p-wave bound state.
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