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Abstract

In this thesis, we have formulated a unified approach to study possible connec-
tions between the geometry of moving space curves in three dimensional space and
integrable nonlinear evolution equations in (1+1) dimensions. Existing literature
shows that each solution of such an evolution equation can be associated with one
moving curve. Our unified formalism leads to the interesting result that the same
solution can be associated with two more distinct moving space curves in addition
to the existing one mentioned above. Applications of the formalism to two nonlin-
ear evolution equations, namely, the nonlinear Schrédinger (NLS) equation and the
Lamb equation, are presented in detail. Our main results are summarized below.

Lamb has given a procedure which helps identify a certain moving space curve
with a given solution of an integrable equation. Examples such as the NLS equation,
the sine-Gordon equation and the modified Korteweg-de Vries equation have been
considered by him. A space curve is described in terms of the usual Frenet-Serret
equations for the unit orthonormal triad of vectors consisting of the tangent t, the
normal n and the binormal b to the curve. Central to the Lamb formulation is
the introduction of a particular complex function, namely the Hasimoto function
¥ = sexpi [* 7 ds’], where (s, u) and 7(s,%) are the curvature and torsion of the
moving curve. Here s is the are length of the curve and w, the time. It is this
funetion that satisfies various integrable equations in Lamb’s work. By comparing
the functional form of 4 with a soliton solution of a given integrable equation for v,
one can identity & and 7, and hence obtain the associated nIOvIng curve parameters
that correspond to a certain integrable, shape-preserving curve motion. In other
words, corresponding to any given (s, u), we have a curve in space, moving in
time, thereby generating a surface. This in turn unravels a certain special geometric
structure of the given soliton-bearing equation.

We first present a unified analysis to show that in addition to W, two other
complex functions, defined as @ = rexpli [*k ds] and y = k + ir, also arise from
the basic curve evolution equations, just as naturally as the Hasimoto fanction 1l
does. We demonstrate that these can also satisfy various soliton equations. This in
turn leads to the interesting result that each such integrable equation is associated
with not just one, but three distinet classes of space curve motion. and therefore has
a much richer geometric structure than hitherto envisaged.

We then proceed to apply our formalism to the NLS equation, ig, + ss + =ql%g =
U. This is an integrable nonlinear partial differential equation (NLPDE). We first

show that any given solution of the NLS gets associated with three distinet space



curve evolutions. The tangent vector t, of the first of these curves. the binormal
vector by of the second and the normal vector ny of the third, are all shown to
satisfy the same integrable Landau-Lifshitz (LL) equation, S, = S x Ss. This
equation is well known to be the spin (S) evolution equation of a classical Heisenberg
ferromagnetic chain, in the continuum limit: Of the above three connections. the
first is just the converse of Lakshmanan’s mapping where, starting with the LL
equation, and identifying S with the tangent to a moving curve, it becomes possible
to obtain the NLS for ). The other two are shown to represent new geometries
connected with the NLS. Furthermore, the converses of these two are also seen
to hold good, ie., starting with the LL equation, and identifying S with b and
n successively, we can show that the NLS for & and y are obtained, respectively,
These are two analogs of Lakshmanan’s mapping. The LL equation is known to be
completely integrable. Tts exact solutions can be found, We provide a method to
derive expressions for ry(s, u), ra(s, u) and ry(s, u), the position vectors generating
the three moving curves underlying the NLS, in terms of an exact solution S of the
LL equation. As an example, the three surfaces swept-out by the moving curves
associated with a stationary envelope soliton solution of the NLS are explicitly
derived and displayed.

Next, we focus on the intrinsic kinematics of the three moving curves associated
with the NLS. We obtain three sets of coupled evolution equations for the evolution
of the enrvature and torsion, one set for each curve. The first set is given by the
usual Da Rios-Betchov (DB) equations. The other two new sets are certain analogs
of the DB equations. We show that each of the three moving curves is in general
endowerd with an infinite set of geometrie invariants.

We also show that the velocities (at every point) of the two new moving curves
underlying the general NLS evolution are certain nonlocal functions of the curve
variables, quite in contrast to the local expression for the velocity of the usual mov-
ing curve that has thus far been associated with the NLS. We suggest possible
application of our results to vortex filament motion in fluids. We also obtain the
three moving curves for a non-stationary envelope soliton solution of the NLS and
compare their behaviors,

Finally, we consider the application of our formalism to an integro-differential
equation, namely, the Lamb equation, given by ig, + g, + ¢ [ |g]* ds' = 0. This
equation can also be written in the form of coupled NLPDEs. This equation can
be mapped to the elliptic Liouville equation. The general solution of the elliptic

Liouville equation being known, the mapping implies the so called C-integrability of
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the Lamb equation. We then demonstrate that the Lamb equation can be associated
with three moving curves. The tangent of the first curve, the binormal of the second
and normal of the third all satisfy the Belavin-Polyakov equation, m, = m x m,,
with m? = 1. This equation appears in a variety of physical contexts, including
the description of low energy excitations of classical Heisenberg antiferromagnets,
static configurations of two dimensional ferromagnets and the O(3) nonlinear sigma
model. Tt is also known to possess interesting exact solutions such as ‘twists’ and
‘instantons’. We then demonstrate that these correspond to an “envelope-soliton™
q'*) and an “envelope-instanton” ¢'"), respectively, of the Lamb equation. The three
moving curves associated with the Lamb equation are obtained in terms of an exact
solution m of the BP equation, using an analog of the methad we developed for
obtaining the geometry of the NLS. The explicit expressions for the three surfaces
corresponding to the above soliton solution and the three surfaces associated with
the instanton solution are derived and displayed pictorially. We conclude the thesis

with a summary of our results and a brief discussion of related open problems.
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Chapter 1

Introduction

Systems governed by integrable [1] nonlinear evolution equations are important,
for they allow one to make global statements about their behavior, in contrast to
chaotic systems [2] which have a sensitive dependence on the initial conditions. Some
of the general features exhibited by these equations include (i) an associated Lax
pair [3], (i) exact solvability by the inverse scattering transform method [4], (iii) an
mfinite number of integrals of motion in pairwise involution [5], and (iv) interesting
solutions, such as solitons. A soliton [6] is a solitary traveling wave solution, which
retains its identity (ie., shape and velocity) even after a eollision with another
soliton. This particle-like feature makes it a particularly interestin g special solution
to look for. Although the concept of a soliton first arose in hydrodynamics {7, 8].
1t is now widely used to explain certain nonlinear phenomena in various other areas
such as nonlinear optics [9, 10], condensed matter physics and plasma physics, as
well as certain field theories [11, 12, 13],

The study of possible connections between the geometry of MOVINE SPACe CUTVEs
and integrable evolution equations deserves attention, especially because many prob-
lems in physics can be modeled in terms of space enrves. A vortex filament in a fluid
[14], and in a superfluid [15], an interface between two phases of matter [16], scroll
waves in chemical dynamics [17, 18, 19], a polymer chain [20] and a biomolecular
strand such as DNA [21], are obvious examples of a space curve in three dimen-
sions, A more subtle example is that of a magnetic moment vector of a magnetic
spin chain in the continuum limit: Here a spin vector may be regarded as the nnit
tangent vector to some space curve [22, 23]. The mathematical tools of classical
differential geometry prave to be ideal in finding the links between moving curves
and integrable equations.



We begin by briefly ontlining some of the basic features of the space curve for-
malism. Consider a static space curve r{s) in three dimensions. Here, ¢ stands for
the arc length of the curve. Tts unit tangent vector t(s) = dr/ds, along with the
unit normal, n{s), and unit binormal b(s) = t x n. form an orthonormal triad at

any point on the curve, and obey the Frenet-Serret (FS) equations [24],
t:=#6n; n,=-kt+7b; b,=—rn, (1.1)

where & is the curvature and 7, the torsion. Here, the subscript s stands for differ-
entiation with respect to the arclength s. From Eqs. (1.1), it is easily verified that
x* = t? and 7 = t.t, x t,,/t2. While the curvature describes how locally the curve
deviates from linearity, torsion is a measure of its local deviation from planarity. A
planar curve, for instance would have zero torsion. The functions & and 7 uniquely
determine a curve except [or its orientation and origin in space.

Clearly, a moving curve is described by (s, 1), where u denotes time. The con-
nection between moving curves and solitons is a topic with a fascinating history
[25], going back almost a hundred years. Using the so-called local induction APProK-
imation in Huid dynamics, Da Rios [26] showed that the velocity vigiu) = ry,at
each point s of a vortex filament regarded as a moving space curve, is given by the
following local induction equation [27]:

v=ri= wh (1.2)

Here, the subscript u stands for differentiation with respect to time u. For non-
stretching curves, using compatibility conditions r,, = Fsu =ty = x;b — k7n, along

with similar compatibility conditions for the unit vectors t and n leads to [26]
Ky =—(KT)s — 1aTs T = [(Kus/8) — 72y + KiK. (1.3)

Subsequently, the above coupled equations for k and 7 were also derived indepen-
dently by Betchov [28], and hence Eqs. (1.3) are referred to as the Da Rios-Betchov
(DB} equations.

Hasimoto |14] was the first to unravel the connection between the movine curve
o

equations and solitons. He showed that by defining the complex function

Y= HEJ{I}I?:/ T ds'], (1.4)

the two equations in (1.3) can in fact be combined to give the nonlinear schrodinger
equation (NLS), '

. . 1 -
i + s + S0 = 0. (1.5)
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The NL5 is an integrable nonlinear partial differential equation (NLPDE), whose
initial value problem can be solved through the inverse scattering technique [29] and
possesses soliton solutions [5, 301, A shape-preserving filament motion in a finid,
corresponding to the soliton solutions of the NLS were hence suggested by Hasimoto
[14], and were subsequently experimentally observed [31].

Motivated by this result, Lamb [32, 33] gave a procedure which helps identify a
certain space curve evolution with a given integrable equation. In addition to the
NLS, other soliton supporting equations such as the sine-Gordon and the modified
Korteweg-de Vries (mKdV) equation were considered by him. Here it is important to
note that, central to Lamb’s formulation is the use of the complex function 1 defined
in Eq. (1.4). This function will be referred to as the Hasimoto function. It is this
function that satisfies several integrable evolution equations in Lamb's work, and is
nsed frequently in the study of various aspects of curve-dynamics [34]. Further, it is
clear that by comparing the functional form of ¢ (Eq. (1.4)) with a soliton solution
of a given integrable equation for 1/, one can identify x and 7, and hence obtain the
associated moving curve parameters that correspond to a certain integrable, shape-
preserving curve motion. Thus, corresponding to any given solution (s, u) of the
evolution equation, there exists a certain curve in space, moving in time, thereby
sweeping out a surface. This in turn yields a corresponding geometric realization
of the evolution equation satisfied by . However, as is well recognized, finding the
explicit solution of the position vector (s, u) of a moving curve, riven the parameters
t and 7, is a4 nontrivial task in general.

In this thesis, we take a deeper look into the structure of the basic curve evo-
lution equations, namely the FS equations and their temporal counterparts (which
will be explained in the next chapter) to present a unified formalism and find new
connections between moving eurves and integrable equations. As is well known by
now, integrable equations can be broadly divided into two categories [35]): (i) S-
integrable equations, for which it is possible to obtain an exact solution through the
imverse scaffering technique and (i) C-integrable equations for which it is pessible to
find a suitable change of variables to another equation with known general solutions
(Hence the letters ‘S* and *C’ to distingnish them). Clearly, NLS, sine-Gordon, etc.,
are S-integrable. A well known example of C-integrability is the Burgers equation,
which can be transformed into the linear diffusion equation, with known solutions,
via the Hopf-Cole transformation [7, 8]. We shall apply our formalism to two phys-
ically interesting systems, one of which is S-integrable and other, C-integrable. We

then study them in detail to unravel the geometric structures associated with each



of them.

In Chapter 2, we formulate a unified analysis [36], to show that in addition to the
Hasimoto funetion ), defined in Eq. (1.4), two other complex functions, defined by
P = 7expli [ kds] and x = (K +i7), arise from the basic curve evolution equations
in a natural fashion. We then demonstrate that all the three functions 1, and
x satisfy the same nonlinear evolution equation such as the NLS. This leads to
the result that each integrable equation is associated with not just one, but three
distinct space curve evolutions, and therefore has a much richer geometric siructure
than hitherto enmsaged.

In Chapter 3, we illustrate this by applying the two new methods to the example
of the NLS [37]. We first show that any given solution of the NLS gets associated
with three distinet space curve evolutions, by demonstrating that the curve evoliution
parameters are distinct for the three curves. Next, the tangent vector of the first of
these curves, the binormal vector of the second and the normal veetor of the third,
are shown to satisly the integrable Landau-Lifshitz (LL) equation. This equation
is well known to be the evolution equation for the spin S of a classical Heisenberg
ferromagnetic chain, in the continuum limic:

S, =8%X8,: 8 =1 (1.6)

Of the above mentioned three results for the NLS, the first is just the converse of
Lakshmanan’s mapping [22] where, starting with the LL equation, and identifying
S with the tangent to a moving curve, it becomes possible to obtain the NLS for .
The other two moving curves clearly represent new geometries connected with the
NLS.

As is well known, the LL equation is completely integrable [38] and its exact
solutions can be found [22, 38, 39]. We provide a method to derive general expres-
sions for the position vectors ry, ry and rs, which gencrate the three MOVInE curves
that induce the NLS, in terms of any given exact solution S of the LL equation.
As an example, the three surfaces swept-out by the moving curves associated with
a stationary envelope soliton solution of the NLS are explicitly derived analytically
and displayed.

Next, we focus on the intrinsic kinematics of the three mMoving curves associated
with the NLS [40]. We obtain three sets of conpled evolution equations for the
evolution of the curvature and torsion, one set for each curve. The first set is given
by the usual DB [26, 28] equations, Eq. (1.3). The other two new sets are certain
analogs of the DB equations. We show that each of the three moving curves is in

eneral endowed with an infinite set of eeometric invariants,
()



We then show that the velocities (at every point) of the two new movi ME CUTVes
underlying the general NLS evolution are certain nonlocal functions of the curve
variables, quite in contrast to the local expression for the velocity of the nsual mov-
ing curve that has thus far been associated with the NLS. We also obtain the three
moving curves for a non-stationary envelope soliton solution of the NLS, display
them graphically and compare their behaviors. Interestingly, shape preserving vor-
tex filament motion has been observed experimentally in fluids [31]. We suggest a
possible application of our theoretical results to vortex filament motion in fluids.

In Chapter 4, we consider the application of our formalism to the Lamb equation
[32]. This is a nonlinear integro-differential equation

iy + s +q[ lg|* ds' = 0. (1.7)

We shall refer to Eq. (1.7) as the Lamb equation, since (to our knowledge) it
was first introduced by Lamb in connection with moving eurves (see Fq. (3.24) in
[32]), although the soliton nature of other integral equations of this type had been
considered earlier [41, 42]. Note that by defining Q = g ds', Eq. (1.7) can be
written in the form of coupled NLPDEs for ¢ and (.

C-integrability of the Lamb equation has been shown in [43], essentially by map-
ping it to the following elliptic Liouville equation:

flu.:"'_f.-.x — _Ezf- {J.B:I

(Tt can be verified from Eq. (1.7) that || = exp(f) and arglg) = — [ f. ds'). The
exact general solution of Eq. (1.8) is well known and will be elaborated further in
chapter 4.

Using the three distinet formulations ebtained in Chapter 2, we first show that
any given solution g(s,u) of Eq. (1.7) can be assaciated with three corresponding
moving space curves such that the tangent vector of the first curve, the binormal of
the second curve and the normal of the third all satisfy the Belavin-Polyakov(BP)
eruation

m, =m¥m;; m>= 1. (1.9)

This equation first appeared [44] in the context of the nonlinear sigma model field
theory, and in the static two-dimensional elassical Heisenberg ferromagnet in the
continuum limit [L1]. More recently, this equation has been shown [45] to describe
very low-energy dynamics of a classical Heisenberg antiferromagnetic chain in the
continuum limit.



The instanton solution of Eq. (1.9) is well known [44]. This is a solution localized
in both space and time. In addition, the BP equation also supports a domain wall-
like twist solution [45], which is a special kind of a traveling wave. (The nature of
this solution will be explained in Chapter. 4). As illustrative examples, we consider
two specific solutions of the Lamb equation (1.7), which correspond to the above
two physically interesting solutions of the BP equation. One is an ‘instanton-type’
solution that corresponds to the BP instanton. The other is a ‘soliton-type’ solution
connected with the BP twist. The expressions for the three surfaces (swept out
by the three moving curves), corresponding to each of the above two solutions are
derived and displayed pictorially.

Chapter 5 contains a short summary of our results and a brief discussion of
related open problems. Details of the derivations of certain salient results used in

the text, as well as the technical details of some intermediate steps of our formalism,
are contained in Appendices A to D



Chapter 2

New connections between moving

curves and soliton equations

2.1 Introduction

Over two decades ago, Lamb [32, 33] presented a formalism which showed that cer-
tain completely integrable, soliton-supporting [1] nonlinear partial differential eaLi-
tions (NLPDE), such as the NLS, the sine-Gordon equation, the modified Korteweg-
e Vries equation, the Hirota equation, ete., can each be associated with a certain
corresponding moving curve. Consequently the corresponding curve evolution can
also be termed integrable. Lamb’s formulation arose as an extension of Hasimoto's
earlier work [14], which had established a connection between the NLS and the so
called “local-induction” equation of motion of a vortex filament [27] regarded as a
moving space curve. Since all soliton equations [1] possess similar characteristics
such as Lax pair [3], solvability by the inverse scattering transform (IST) method
and an infinite number of constants of motion in pairwise involution, Hasimoto's
procedure for the NLS motivated Lamb to provide a certain formulation to obtain
the curve evolution that gets associated with each of the above mentioned example
of soliton supporting equations.

In particular, using Lamb's formulation, one can identify a certain specific moving
curve with each solution of a given integrable equation. This raises the question as
to whether, in addition to that curve, other distinct moving curves can also be

associated with thai solution. In this chapter, we show that the answer to this



is in the affirmative; There are indeed two other distinet moving curves that get
identified with each solution of the integrable equation in a natural fashion. With
these two new connections, we see that a given integrable equation cets associated
with, not just one but three (classes of) moving curves. As we shall demonstrate,
this happens essentially because of the following reason we outline below.

In Lamb’s formulation the complex Hasimoto funetion v, defined as

Y = Kexpli ] T ds'] (2.1)

appears and is shown to satisfy various integrable equations. In this chapter, by
starting with general curve evolution equations, and combining them appropriately,
we shall demonstrate that two other complex functions, © = Texpli [*k ds'] and
X = (% +i7) appear just as naturally as 1) does. In addition, these also can sat-
isfy various integrable equations as i did. Hence, by comparing a solution of the
integrable equation concerned, with v, & and y respectively, we can identify three
distinet pairs of curvature and torsion functions for that solution. In other words,
there are three distinct moving curves associated with the same solution.

We shall begin with the basic evolution equations of moving curves. First we
briefly review the formulation proposed by Lamb [32, 33] and then present our two
additional new formulations [36] that lead to the emergence of new geometries for a
given integrable equation.

2.2 Moving space curves

A moving space curve embedded in three dimension may be described in parametric
form by a position vector r(s, u), where s is the arclength and u, time. Let t =
dr{ds be the unit tangent vector along the curve. As mentioned in Chapter 1, an
orthonormal triad (t,n, b), can be defined at every point s on the curve. At a qiven

nstant of time, these vectors satisfy the following Frenet-Serret(FS) equations [46]

t, = xn, (2.2a)
n, = —kt + 71h, (2.2b)
hﬁ = —7n, {22{,}

where k and 7 denote, respectively, the curvature and torsion of the (moving) curve
and the subseript s denotes 9/@s. As before, Eqs, (2.2) lead to

=405 (2.3)



s - (2.4)
Note that in the case of a moving curve, x and r are functions of both s and u.

We write the temporal evolution of the triad at any point s in the general form
47],

t, = gn+ hb, (2.5a)
n, = —gt - 7,b, (2.5b)
b, = —ht — 7,n, (2.5¢)

the subscript u denoting 9/0u. Clearly, for a moving curve, the parameters g.h, 7,
(appearing in Eq. (2.5)) are also funetions of both s and w.

On requiring the compatibility conditions t,, = t,. and O = Ny, which to-
gether imply b,, = by, (since (t,n, b) form a orthonormal triad). a short caleulation

using Eqs. (2.2) and (2.5) leads to the following equations for the scalar parameters
KT, g 7y

Ry = Bs — ﬂh". {26}
Tu = Tos + "":h: {2?}
he = K7, — 79, (2.8)

In the next section, we briefly describe Lamb's formulation, which shows how
the connection between the moving curve equations (Bqgs. (2.2) and (2.3)) and an
imtegrable equation, can possibly arise.

2.3 Lamb’s connection: Formulation(I) using the

Hasimoto function 1

In this section, we review Lamb’s formulation [33], which will be referred to hereafter
as formulation (T). In this formulation, the second and third equations of the FS set
(2.2) are combined to yield

(n+ib), + ir(n +ib) = —xt, (2.9)

This immediately suggests the definition of a certain complex vector

N = (n+ib)exp|i fs T ds']. (2.10)



Differentiating Eq. (2.10) with respect to s and using Eq. (2.9). we wet

N, = —wnexpi [ T ds']t. (2.11)

Thus the Hasimoto function ¢ (Eq. (2.1) appears in a natural fashion in the above
equation, and we may write

N, = —yt. (2.12)

Using the definitions of N and ¢ given in Eqs. (2.10) and (2.1) respectively, the
first equation in the FS set (2.2), takes on the form

n=§wm+¢ww (2.13)

where the asterisk denotes complex conjugation. It is convenient to use the vectors
(t,N,N*) instead of (t,n,b). These satisfy the relations, t N = t. N* = N.N = 0
and N.N" = 2. Differentiating Eq. (2.10) with respect to u and using second and
third of Eqgs. (2.5), a short caleulation vields,

N, —iRiN = mt, (2.14)

where

M= —(g+ih) t-*.xp[.éf T ds'], (2.15)

5 5
fy = ] Ty A8 — 7y =] rh ds’. {2.16)

Here, the second compatibility condition Eq. (2.7), has been used in writing the
last equality. We also have, on using

l & ; &
n = (N exp[—i / T ds'| + N* E'XPE?/ 7 ds']) (2.17)
and r ,,
—1
b= ?[Nnxp[—éj T ds'] — N* rfxp[?'.f T ds']), (2.18)
in the first equation of the set (2.5), along with 77 and R, from Eqs. (2.15) and
(2.16),
l - ¥
o=~ (NN + 3 N°). (219)
We use the subseript "1 here, to denote formulation(1), Tt may be noted that al-

t

though equations with the same structure (and notation) as Eqs. (2.14) and (2.19)
were written down by Lamb, the dependence of v, and R 1 on the curve parameters

. h, 7o, 18 and 7 could not be unraveled since Eq. (2.5) was nat explicitly introduced
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by him. We shall see subsequently that the explicit introduction of these curve
parameters in Eq. (2.5), proves to be very useful in identifying the eurve geometry
associated with a given integrable equation such as the NLS.

From Egs. (2.12) and (2.14), setting N,, = N,. and equating the coefficients of
t and N, respectively, we get

Py + s — iR =0 (2.20)
and -
Ry = %{’h'{i" — 1), (2.21)
Note that the condition t,, = t,, gives the same equations, (2.20) and (2.21) as
expected, due to the orthogonality conditions. On combining Eqs. (2.20) and (2.21),
we obtain, e
Wy + ¥is + g[ (" — i) ds’ = 0. (2.22)
Using BEgs. (2.1) and (2.15), it is easily verified that Eq. (2.21) is consistent with
Eq. (2.16).

Interestingly, as noted hy Lamb [32], the structure of Egs. (2.20) and (2.21) which
arose from compatibility conditions on curve evolution, suggests a possible relation-
ship with soliton-bearing equations, via the Ablowitz-Kanp-Newell-Segur AKNS)
formalism [41, 42] . This is seen as follows : It is well known that for a class of
soliton-bearing equations, with a function qls, 1) as the dependent variable, the Lax
pair L and M in the AKNS formalism are given by ;

i% —udf
L y= y=4% ¥ (2.23)
—iqx  —if:
Als,w, ) B(s,u,()
y=M y (2.24)
d“ (s,u, ) —Als,u,()
Here, the eigenfunction y is the column vector (1 wo)" and ¢ is the eigenvalue

parameter. Requiring ye, = yue, Egs. (2.23) and (2.24) lead to the following AKNS
compatibility conditions [1}:

g, =249+ B, + 2i¢B (2.25)

A, = (Bqg" — B'q) (2.26)

Equations (2.25) and (2.26) are identical in form to Eqgs. (2.20) and (2.21) provided
we make the following identifications :

q=¥/2; A=iRyf2; B=—%/2, (=0 (2.27)
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Thus the curve evolution Eqs. (2.2) and (2.5) imply AKNS equations, but with
¢ =10.

Now, let us return to 4, and R; given in Eqs. (2.15) and (2.16) respectively. It
was shown by Lamb [32] that for appropriate choices of v as a function of ¢ and
its derivatives, ) can be found from Eq. (2.21) and substituted in Eq. (2.20) to
yield evolution equations for #. In case the choice of v is such that the function Ry,
in Eq. (2.21) could be integrated in a closed form, one obtains a nonlinear partial
differential equation (NLPDE) for 1. On the other hand if, with a certain choice
of 71, an exact integration of the function R, is not possible, then the evolution
equation for i is a nonlinear integro-differential equation instead of an NLPDE. [n
the subsequent chapters we shall consider one example of each of these categories
to illustrate this.

Going back to the Lax pair connection, we note another alternative. Once the
quantities 7, and R, are identified so that Egs. (2.20) to (2.21) take on the form
of an integrable evolution equations for ¢, it is possible to find the corresponding
Lax pair, by working directly with equations (2.12) and (2.13) for N, and t., along
with equations (2.14) and (2.19) for Ny, and t,: This is done [32] by considering the
constraint {; + nj + bf = 1, where the subscript { = 1,2,3 is used to represent the

three components of the vectors concerned. One then defines a complex function
I = (4 i)/ =) = (1 + ) g — iy). (2.28)

along with its two other counterparts frm and f,[a“ﬁ, obtained by eyclically changing
fr, ng and by in Bq. (2.28). 1t can then be shown that all the three functions J,-E.:n]1
a = 1,2, 3 satisly appropriate Riccati equations [48, 49]. The corresponding Lax
pair in each case can then be obtained by setting () = y{* f4e) g identifying
the corresponding eigenfunction to be the column vector (1™ N7, A short
caleulation shows that only one of the Lax pairs thus obtained has the AKNS form
of Eqs. (2.23) and (2.24), with the identifications (2.27).

In the next section, we show that in addition to the Hasimoto function i, there
exist two other complex functions @ and y which can also satisfy integrable equa-
tions. However, this happens for some other choices of v and R, (Hence the use of
subscript 1 on these quantities in this section). These will be seen to correspond to
two other classes of curve motion, different from that obtained using . Thus we
shall see that there is not just one, but three distinct curve evolutions that all can
be associated with the same integrable equation.

12



2.4 Two new connections: Formulations (IT) and
(IIT) using ¢ and y

As seen in the last section, in Lamb's formulation or formulation (1), one proceeds
by first combining the second and third equations of the FS set, Eqs. (2.2), to yield
Eq. (2.9). This procedure subsequently leads to the appearance of the Hasimoto
function ¢ in Eq. (2.12), which can satisfy integrable equations for certain choices
of curve evolutions. In this section, we consider two other possibilities: Formulation
(IT), that combines the first and second equations of the set (2.2), and formulation
(TIT) that combines its first and third equations. As we shall see, these formulations
lead to the appearance of two other complex functions & and X respectively.
Formulation (IT)

In the FS equations (2.2), combining first and second, we get
(n—it), +in(n — it) = rh. (2.29)
This suggests the definition of a second complex vector
M = (n —it) exp[s [:‘. re ds']. (2.30)
Differentiating Eq. (2.30) with respect to s and using Eq. (2.29), we get
M, =7 exp[i fﬂ % ds']b. (2.31)

Thus a corresponding second complex function

P(s,u) =rexp[i /6 K ds'], (2.32)

appears in a natural fashion in this case, just as ¢ did in Lamb’s formulation. In
| this formulation, we expand all vectors in terms of the linearly independent vectors,
b, M and M*, which satisfy bM = b.M* = M.M = 0. M.M* = 2. Then, nsing
the definitions of M and @ given in Eqs. (2.30) and (2.32) with the basic equations
(2.2) and (2.5), we obtain, after some algebra, the following counterparts of Eqs.
(2.12) to (2.16):

M, = b, (2.33)

b, = _%[qu + M), (2.34)

M, — iR;M = —5b (2.35)
13




and

1
by = 5 (KM +71M"), (2.36)
where =
Yo = —(m — 1h) ﬂxp[?f/ t ds'] (2.37)
and . .
Ry =f Ky ds' —g'= —/ Th ds'. (2.38)

Here, we have usged the first equation of the compatibility conditions, Eq. (2.6), to
write the last equality. The subscript 2 is used on v and R to indicate that these
correspond to formulation (I1). From Eqs. (2.33) and (2.33), setting M,, = M.,
and equating the coefficients of b and M, respectively, we et

Py + s — 1Ry P =10 (2.39)
and )
I' L]
Fas = S (7®" — 1), (2.40)
{I‘ > - r
Py + Yo + 5 / (22" =93 ®B) ds" = 0. (2.41)

The structure of Eqs. (2.39) and (2.40) is the same as that obtained in Lamb's
formulation (see Eqs. (2.20) and (2.21)). Thus, these can also be cast in the form
of AKKNS compatibility conditions Eqs. (2.25) and (2.26), with the following new
identifications:

This shows that, just as one does in Lamb’s formalism, here also we could take
choices of 7, as an appropriate function of ® and its derivatives, find Ry from Eq.
(2.40), and substitute these expressions in Eq. (2.39) to obtain some of the well
known integrable equations.

Formulation (TIT)

Here, we combine the first and third of the FS equations, ( 2.2), to get
(t —ib); = (s +i7)n, (2.43)
This suggests the definition Dfla third complex vector
P = (t —ib). (2.44)
Differentiating Eq. (2.44) with respect to s and using Eq. (2.43), we get
P,=(k+ir)n. (2.45)
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Thus a corresponding third complex function

x(s,u) = (& +17). (2.46)
appears in this case. As is clear, here we express all vectors in terms of n, P and P,
which satisfy nP=nP'=P.P =0 and P.P* =9, Using the definitions of P and
X given in Eqs. (2.44) and (2.46) in the basic equations (2.2) and (2.5), we proceed

the same way as in the previous two formulations, to obtain, after some algebra,

P, = xn, (2.47)
n, = —%(X'P +%P), (2.48)
By = ;REF' = —y3n (2.49)

and "
n, = ={13P +7P"), (2.50)

where )
T3 = —(g + in) (2.51)

and

Hy=—~h=- f "(H,—ﬂ - Tg)ds’. (2.52)

Here, we have used the last of the compatibility conditions, Eq. (2.8), to write the
last equality, and the subscéript 3 is used to denote formulation (TIT). From Egs.

(247) and (2.49), setting P,, = P,., and equating the coeflicients of n and P,
respectively, we got

Xut Jas—tly x=10 (2.53)
and _
L - EY FE
R:h = SEH.I"S A —y ):JI! [‘.2‘:"4.]

which can be shown to be consistent with Eq. (2.52). Combining the above two
equations, we have

Xa, T Yas+ ;/ (va x" =3 x) ds' =0. (2.55)

Once again, Fqs. (2.53) and (2.54) have the same form as Lamb's result (Eqgs. (2.20)
and (2.21)), as well as the AKNS compatibility conditions (2.25) and (2.26). Here,
the identifications are

g=x/2, A=iR3/2; B=-—y/2 (=0 (2.56)

' Thus using the same reasoning as before, for suitable choices of 73 as functions of y

‘and its derivatives, Eq. (2.53) for y can take the form of known integrable equations.
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2.5 Summary and discussion

Starting with the general description of a moving curve, we have presented a uni-
fied formalism comprising three formulations, to show that three distinet moving
space curves can he identified with (a solution of) a given integrable equation: It
is clearly seen from Eq. (2.15), (2.37) and (2.51), the parameters v, n = 1,2.3,
that arise in three formulations, correspond to three complex functions involving
different combinations of the curve evolution parameters g, h and To. Further, the
corresponding complex functions 1, ¢ and x that appear in the formulations are also
different functions of x and 7 (see Eqs. (2.1), (2.32) and (2.46) respectively). Thus
it is clear that the three formulations describe three distinet enrve motions.

[t wonld be instructive to apply our results to find the three associated geometric
structures explicitly for some integrable examples. We shall consider these in the
next two chapters,

Given the curvature x and torsion T of a curve, though the existence of the curve
is guaranteed in principle [46], obtaining the explicit expressions for these curves
i5, in general, a nontrivial task. Primarily, this requires solving the three coupled

vector I'S equations, (2.2), or the nine scalar equations

fis = KT, (2.57a)
ny=—kti+7b, 1=1,2,3 (2.57h)
bie = —Thy, (2.57¢c)

where (£, n;, b)) are the components of the unit vectors (t,n,b). These components
can be easily seen to satisfy the conditions,

] +ni+ 0 =1 (2.58)

It can be shown that [49] the complex functions,

bty

11,
T

(2.59)
obey certain Riceati equations directly due to the FS equations (2.57). satisfied b
the components and the conditions in Eq. (2.58). Thus the components (t;, n;, b)
are obtained through the solutions of these Riccati equations. However, this still
remains a complicated process for obtaining the explicit expression for the tangent
vector t and hence r. We find that a simple procedure can be given for finding r, if

the equations satisfied by o, © and y can be mapped to a dynamical equation for a
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unit vector, Such a procedure will be adapted in Chapters 3 and 4, in applying the
results obtained in this chapter.

In Chapter 3, we obtain the three moving curves (and the associated surfaces
swept out by them) in the case of the NLS and show that they are indeed different
from each other explicitly. Some other ramifications of the new peometries will
also be presented there. A nonlinear integro-differential equation, equivalent to the

Belavin-Polyakov equation and mappable to the elliptic Liouville equation, will be
considered in Chapter 4.



Chapter 3

Application to the NLS:

Emergence of two new geometric

realizations

3.1 Introduction

In the last chapter, we presented a unified formalism to show how an integrahle
evolution equation gets associated with three moving space curves, OFf these three,
the first is obtainable from Lamb’s well known formulation [32, 33]. As we have
shown, the other two curves are new geometrical realizations that the integrable
equation concerned is endowed with.

It is of interest to apply our extended formalism to specific examples of integrable
equations. In this chapter, the application to the NLS cquation

. l . .a ;
Ty +qa'.s+§|Q'|_rir=”1 {‘jl]

will be discussed, as an illustrative example and all the three INOVINE CUrVes associ-
ated with it will be obtained explicitly.

The complete integrability of NLS was shown by Zakharov and Shabat [30],
three decades ago. They constructed its Lax pair and obtained striet soliton SO
lutions using the inverse scattering transform(IST) method developed by Gardner,
Greene, Kruskal and Miura [4]. Further. they also showed analytically, the stabil-

ity of these solitons in a pairwise collision process and the existence of an infinite
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number of integrals of motion for the system. A Hamiltonian approach to the NLS.
and the pairwise involution of the integrals of motion are well known {5]. Integra-
bility through the IST can be regarded as the infinite dimensional counterpart of
the well known Liouville-Arnold definition of integrable Hamiltonian systems with
hinite number of degrees of freedom, via the construetion of action angle variables.
The IST method can also be seen as the nonlinear analog of the Fourier transform
method for solving a linear partial differential equation [41].

The choice of the NLS is appropriate, not only because it was one of the first
integrable equations to appear in the context of curve motion [14], but also because
it has applications in various other fields such as vortex filament motion, optical
fibers [9, 10], magnetic chain dynamies [22, 50], ete.

To find the moving curves associated with the NLS, we return to Sections (2.3)

and (2.4) of the last chapter. Tt can be easily verified that the respective choices

-

1= _il{ﬂﬁ v TR _';{l}:'-‘ P _3-:{51 {3 J}}

when used in Egs. (2.22), (2.41) and (2.55) lead to the NLS given in Eq. (3.1}, with
g =, ® and x, respectively. The complex functions ~;,i = 1,2, 3 depend on some
of the curve evolution parameters g, h and 7, (see Eqs. (2:15), (2.37) and (2.51)
respectively), whereas i, @ and y depend on s and 7 (see Eqgs. (2.1), (2.32) and
(2.46) respectively). Thus Eq. (3.2) essentially determines how the parameters g, b
and 7, must depend on s, 7 and their derivatives, in order to be associated with
the NLS. Besides, x and 7 in each case can be determined from any given solution
of the NLS, by using Eqs. (2.1), (2.32) and (2.46) respectivelv. Thus three sets of

parameters (&, 7, ¢, h, 7o) appearing in Eqgs. (2.2) and (2.5) can be found for a given

solution.

3.2 Curvature, torsion and time evolution param-

eters of the three moving curves

Let us consider a known general solution g of the NLS, Eq. (3.1). Let it be written
in the form
g = pis,u) explic(s, u)), (3.3)

where p and o are real (known) functions. By identifying ¢ riven in Eq. (3.3), with
the complex functions ¢, @ and y. defined in Eqs. (2.1), (2.32) and (2.46) in the
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three formulations (I) to (ITT) respectively, the eurvature and torsion of the three
corresponding moving space curves are seen to be

(I) q=v= Hlem[if nods|; Kk =pon=a (3.4)
(II) g=¢=m a?xp{f.if kp ds] } K=y, m=p (3.5)
(III) q=x =Ky +im3; K3 =pcoso, 73 =psina (3.6)

Here we have used the subscripts 1,2 and 3 corresponding to formulations (I}, (I1)
and (II1). These are clearly three distinct space curves, each with a different curva-
ture and torsion, for any known solution of the NLS. For the complete description
of the moving curve, we also need to find the ‘temporal parameters’ g, h and T,
that appear in Eqs. (2.5), in the three formulations. We find them as follows. The
expression for 71,7, and 73 for a general moving curve are given in Eggs. (2.15),
(2.37) and (2.51). For convenience, we rewrite them below, with the appropriate
subscripts for the three formulations affixed:

11 = —(g1 +ihy) expli / 7ids] (8.7
Yo = —(r — ihy) expli f hiads] (38)
Ya = —(g3 + i7.3) vt

The three moving curves that correspond to the NLS are found by using Eq. (3.2),
as follows.

(I) From Egs. (3.2) and (3.4)
-'“ — —,!‘:'i,'!,!llx — |::-—'H:H'.]5 + ﬁ[Tl:] Pxp[l[ Tlﬂrﬁ'] {3}.[]}
Equating Eq. (3.10) and Eq. (3.7), we get

o= —HK17 5 h] = Kig-. (311]

gubstituting Eq. {3.11) in Eq. (2.8), we get

Tot = (Kyss/k1) — 75 (3.12)

(I1) From Eqs. (3.2) and (3.5)

5
= —‘!‘.‘IJ_‘ - {—‘1‘:723 + H.',QT'g:I L"X.p[i«/ sz-‘r’] {:313J
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Comparing Eq. (3.13) with Eq. (3.8), we get

Tot = —KaTp i hp = —Ty,. (3.14)

Substituting these in Eq. (2.8),

G2 = Taes /T2 — Ki. (3.15)

(III)  Similarly, from Eqs. (3.2) and (3.6)

Ty = —'f:')(_.z — ‘—'EIH-:{.E + T34 (316}

Comparing Eq. (3.16) with Eq. (3.9) gives

93 =—Tae i Ty = Ky (3:17)
Again, substituting these in Eq. (2.8) gives,

T 3. .5
hy = (K5 + 73). (3.18)

It is interesting to note that of the three compatibility conditions Eqgs. (2.6) to (2.8)
which should be satisfied by any moving curve, the last one plays a special role in
that it is the only one that connects all the five curve parameters, £, 7, g, h and 7.
In every formulation, Eq. (2.8) has been repeatedly used in obtaining one or the
other of the three time evolution parameters g, h and 1, appearing in Eqs. (2.5), in
terms of the basic curvature and torsion functions # and = appearing in Egs. (2.2).

To demonstrate explicitly that the three formulations lead to three distinet space
curve evolutions, each with a different set «, 7, ¢, h and .. we consider the si mple
example of a one-soliton solution g of the NLS equation:

g= ﬂgﬁﬁﬂh{%f} exp(iVi(s — Viu)/2). (3.19)

Here 1, and V, denote, respectively, the envelope velocity and carrier velocity of the
soliton. The amplitude ag = [V,(V, —2V,)]7 and € = (s— Viulo Also, Vi(V,—21,) >
0. Note that any two of the three parameters ay. V. and V. can be taken to be
independent. the most convenient being 1, and V..

In Appendix A, we present a derivation of this solution Eq. (3.19), and the
condition of inequality invelving 1, and V. mentioned above, using the method
of quadratures, for ready reference. This solution (and the N-soliton solutions of
the NLS) can also be obtained using the inverse scatterin g technique [30], but the
derivation given in the appendix suffices for our purpose.
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We have taken the case V. = 0 for illustration, and obtained the expressions for
k and 7 for this solution in the three formulations, by using ¢, ® and ¥ defined in
Egs. (2.1). (2.32) and (2.46) respectively, These have been entered in Table 3.1,
Using these, the corresponding time-evolution parameters g,, b; and 7, for the three

formulations are computed from Eqs. (3.11) and (3.12), (3.14) and (3.15), (3.17)
and (3.18) respectively. These are given in Table 3.2,

Formulation || Solution of NLS K T
I ".’;Eechl—._}f V./2
11 o0 Ve/2 Visech €
[11 ¥ Vesech 1—}& cos Vs | V.sech %Jj sin Ves |

Table 3.1: Example: The curvature x and torsion 7 for the speeial soliton solution

(Eq. (3.19)) of the NLS for 1, ® and y in the respective formulations (1), (1I) and

(). This soliton has a vanishing carrier velocity (Vi = 0) and a non-vanishing

envelope velocity V..

Formulation q

T h
1 (—V2/2)sechizg (—V2/2)sech?X=g (=2 /2)sechieex
tanh €
11 (=VZ/2)sech®iz¢ (=VZ/2)soch e (Ve /2)sechiae
tanh =&
I11 (V2 /2)sechtegx (=12 /2)sech teg

(tanh =£sin Vs — 2cos Vs
2

(tanh € cos Vis +2sin Us) | (1V2/2)sech?Leg

Table 3.2: The corresponding time evolution parameters g, 7 and A in the three

formulations for the example considered in Table 3.1.

According to the fundamental theorem of curves [46], smooth functions #(>
0) and 7, define a curve r{s,u) unicquely, modulo orientation in space at every

tant of time u. Now. from the expressions for x and + given in Tahble 3.1, we
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see that formulation (I} vields a moving space curve with econstant torsion 7 but
& Space-time varying curvature £. On the other hand, the moving curve obtained
using formulation (II) has a constant s but varving 7. In formulation (III}, hoth
£ and 7 are space-time dependent. Since the three moving curves have different
|#,7) parameters, our results explicitly illustrate that they are indeed geometrical fiy
distinet. Further, since they all arise from the NLS. they correspond to integrable
curve evolution,

However, as mentioned in Chapter 1, finding the position vector of the moving
curve r(s, u) explicitly by ntegrating the FS equations {2.2), given its curvature x
and torsion T, is a nontrivial task in general. (In addition, here we have to find
three curves)., We get around this difficulty by using the relationship of the NLS to
a certain unit vector evolution equation, namely, the Landau-Lifshitz (LL) equation
(Eq. (1.6)), and present a procedure to find the three curves for the NLS in terms

of any exact solution § of the LL equation. This will be discussed in detail in the
next section.

3.3 Construction of three moving curves for the

NLS using the Landau-Lifshity equation

In the last section we showed how. given a solution g of the NLS. all the paramieters
Kiy Tis G, e and 74, (i = 1,2, 3), for the three curves can be explicitly found (see the
example in Tables (3.1) and (3.2)). However, as we explained in Section (2.3), even if
these are known explicitly. to obtain the tangent vector, t(s, u) of the corresponding
moving curve, in order to construct its position vector, ry(s,u) = 7ty ds' that
describes the ( moving) curve at the instant u. is non-trivial in general. In the
present context, we shall show that a certain connection of the underlving eurve

evolutions of the NLS with the following Landau-Lifshitz equation [51]

Su=8%38,; 8§¥=1, (3.20)

via three distinct mappin £8, suggests a slightly easier procedure to canstrict these

curves explicitly. First we show how these mappings arise in the three formulations
as follows:

(L) Here g = o = x, expli [ nds'] satisfies the NLS (see Eq. (3.4)). Substituting

]
L]




R

| the parameters g; and hy from Eq. (3.11) in the equation for tiy, Eq. (2.5), we et

b = gimy + by = —k17n; + 51,y (3.21)

On the other hand, from the FS equations (2.2), we find

(ty % b1g5) =ty % (kymy), = =k1Tny 4 Kby, (3.22)

Thus from Eqs. (3.21) and (3.22)

b = (£1 X tyy), (3.23)

which is just the LL equation (3.20) for t,.

(IT) Here, ¢ = ® =y expli [ kyds'] satisfies the NLS. Tn this case, let us consider
the equation for ha, given in Eq. (2.5). This involves hy and 7. whose expressions
are given in Eq. (3.14). Thus Egs. (2.5) becomes.

baw = —haty — 70m5 = KoTemy + Tagts. {3.24)
Next, from the FS equations ( 2.2), we compute
(bz % ba,,} = ba x (—TaNa)s = KaTaly + Ty, ta, {3.25)
Thus Eq. (3.24) and (3.25) vield
by, = (by x by, ). (3.26)

Thus, in the second formulation, by satisfies the LL equation (3.20),

(IIT) Here ¢ = v = k3 +1i73. On substituting for the parameters g3 and 7,4 from Eq.
(3.17) into the equation for ny, in (2.5), we get

My = —g3ts + Teaby = ka,by + T, ts. (3.27)

On the other hand, from the FS equations (2.2), we get

(03 X n3e,) =13 % (—Kats + 13b3)s = ks by + Tasby: (3.28)
Hence,
N3, = (13 % ng,,), (3.29)

which is just the LL equation (3.20) for my, the normal to the curve in the third

ormulation. We remark that this equation for n. with its correspondence to the
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NLS, has been used in a different context [52] to show that Eq. (3.1) (with g replaced
by x) and Eq. (3.29), both reduce to the same bilinear form.

Collecting our results, Eqs. (3.23), (3.26) and (3.29) show that the LL equation
(3.20) is satisfied by the tangent t; of the moving space curve in the first formulation,
by the binormal by of the curve in the second. and the normal n; to the curve in the
third formulation [53]. Of the above, the first may be regarded as the converse of
Lakshmanan's mapping [50], where, starfing with the LL equation, and identifying S
with the tangent to a moving curve, one obtained the DB equations, (1.3}, and from
them, the NLS for ¢, As we shall show in Section (3.5), our other two formulations
will yield two analogs of the DB equations, and will clearly correspond to new
geometries connected with the NLS.

Before we proceed further, it is instructive to recall briefly how the LL equation
arises in the context of magnetism. It describes the spin evolution of the classical
Heisenberg ferromagnetic chain given by the Hamiltonian

H=-1Y 88 ; =1, J>0, (3.30)

(in the continuum limit. Adjacent spins tend to be parallel to each other for low
energies, and hence nearby spins differ only by a small angle, Eq. ({3.20) is casily
seent to be the continuum limit of the dynamical equation

i
ES,‘ = JSJ = |:S,'+] +S,'_1}. {331:]

Eq. (3.31) can be derived from the Hamiltonian, Eq. (3.30), by using the equation

d

where the Poisson bracket {, }. is computed using the relation {S¢, St} = €anaS50i;.
Taking the continuum limit of Eq. (3.31), by setting S;(t) — S(z,t), Siai(t) —
S(z & a,t), where a is the nearest neighbor distance, and using Tavlor expansion,
leads to the LL equation (3.20), on appropriately rescaling time and space variables.
As stated in Chapter 1, the LL equation has been shown to be completely inte-
grable through the IST [38] and is gauge equivalent to the NLS [50, 54]. Its exact
solutions can be found [22, 38, 39]. A derivation of its one-soliton solution is given
in Appendix B, since we will be using this solution in our applications.
At this stage. let us pause and state the problem we intend to address. Qur
objective is to find ry(s,u), ra(s, 1) and ra(s, ), which are the position vectors gen-
| erating the three moving curves associated with the NLS, given the unit vectors

b
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t1, by and ny respectively, of the above three curves. Further, as we have shown
t1,b2 and ny vectors are given by S(s, u}, a known solution of the LL equation, Eq.

(3.20). We now proceed to find r;, 1= 1,2, 3, for any solution S(s,u) as follows:

(I) Let t; be the tangent to a certain moving curve created by a position vector
ri{s,u). Thus we set t; = r|, = S. a salution of the LL equation. Now, the
corresponding triad (€, ny, by) of this curve satisfies the FS equations (2.2) with

curvature k; and torsion 7. In terms of t, (and hence S), these are given by the
usual expressions

K1 = [tis| = |S4] (3.33)
and
t'l.-{t'ls * t!ss]' . S{Sz x S.'i‘nj (3 '%:I}
td, S o
Then the underlying moving curve ry(s,u). in this formulation, is simply given in
terms of the solution S directly by,

T =

ry(s,u) = [ ty de:= / S(s,u) ds' (3.35)

The above expression for r) is indeed the surface that one obtains using the Svim's
method of soliton surfaces [55],

(IT) Let the binormal of some moving curve ry(s, u) be denoted by by, For this
case, since by satisfies the LL equation, by, = S, a known quantity. Here, the
tangent ty = ry,. The triad (ty, my, by} satisfies Eq. (2.2) with curvature xy and

torsion 7. We wish to find all relevant quantities ty, &y and = in terms of by and
its derivatives. It can be verified that the curvature

Ky = h'z-lrbzx bs h!.'zsl]ﬂhzﬂlz = SI:S.; * S.ss}f';[S.irE = Tl [3351

on using Eq. (3.34). The torsion is given by

72 = |bs,| = |8, = &4, (3.37)
where Eq. (3.33) has been used. Next, t» can be expressed in terms of by and its
derivatives as

tg = Ilp x bg = b-z = bgaf|b25| =5 Sﬁ;‘r|55| {338}
Iu the second equality above, ng = —by,/|by| (arising from F$ equations (2.2))

]ms been used. From Eq. (3.38), the position vector rafs, u) generating the second
moving curve is found to be

i = S
ra(s, u) :/ ta ds’ =f S x |—S°—| ds'. (3.39)
L)
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(IIT) Finally, let the normal of yet another moving curve rs(s, u) be denoted by ns.
So we have ny = 8, the solution to the LL equation. The tangent of this curve is
ty = rss, and the triad (ts.na, bs) satisfies Eq. (2.2) with curvature sy and torsion
7y, Here, clearly, we need the expressions for ts, wy and 7, in terms of n; and its
derivatives,

From Eq. (2.2) for this case,

g, = —H.ata + T;;b;;. {340]
Hence
Ilg % g, = }E,‘:;b::, + T3t |[3=”_JI
Multiplying Eq. (3.41) by 75 and Eq. (3.40) by sy and subtracting the latter from
the former, we get
{i‘ig - TL;_JJTIE = ?'3[:113 X 1'135} — fialls,. (3-12]

Thus ( }
T3l My X Nys ) — Ky,
Ly = — - , J.43
’ (w5 +7§) (343
Next, we find 3 and 73 in terms of ny. From Eq. (3.40) above, (g )° = (K3 + 7).

But from Eq. (3.33), |n3,| = |S,| = #,. Hence,

(n3,)? = (8% +72) = w2, (3.44)
From Eq. (3.41), it can be verified that
(Mzey X m3) = (ngy x n3); = —k3,ba — 7y,t5. (3.45)

Hence on taking the scalar product of Eq. (3.40) with Eq. (3.45),

Ny, (M., X D) _ HaTas — KasTa 5

= TR i B, 3.4
In, |2 (5% +73) Ba. {ng (3.46)

But since ny = 8, the left hand side is just 7y (see Eq. (3.34)), ie.,

3 ']. T"-|, .
= —tan “(—]. 3.4
k C}S l:f‘f.:l} ( ?]
lu Eq. (3.44), on parameterizing
Kg = K| COSQ; T3 = Kpsina, (3_43'}.

and substituting these in Eq. (3.47) gives n, = 8a/@s. Thus o is determined as
= f T ods' + Oy (u). (3.49)
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Here, € (u) is an arbitrary function of time u at this stage, which can be determined
in terms of &, and 7 using the appropriate compatibility conditions Eqs. (2.6} and
(2.7) for k3, and 7y,. These details will be given in Appendix C.

Substituting for ks and 74 in terms of &, and & from Eq. (3.48) and setting

n; = 3 in Eq. (343), the position vector ry(s, u) ereating the third moving space
curve can be found to be

vils, ) = [ﬂ teids = [ﬁ [(S x 8,)sina — S, cosal) ds'. (3.50)

K1

where a is given in Eq. (3.49). Note that the expressions for r;, i = 1,28
obtained in this section are valid for any general exact solution of the LL equation
(3.20) and equivalently, correspond to any solution g of the NLS, In the next section

we specialize to soliton solutions. All figures pertaining to this chapter will be given
at the end of this chapter.

3.4 Swept out surfaces associated with a station-

ary envelope NLS soliton

The one-soliton solution of the LL equation (3.20) is given in Cartesian coordinates

by

S(s,u)= {psech{uf]{p tanh(v&) cosn + Asinn),

psech(vE) (v tanh(p€) sing — Acosp), 1 — pwscch?(y{j}, (3.51)
where
E=(s—=2xu), (3.52a)
n=(As+ (v* = A%u), (3.52b)
w=2uf(? + 22, (3.52¢)

;In the above, v and A are arbitrary constant parameters (the solution (3.51) has been
'-_EI_'_elrived in Appendix B). Using Eq. (3.51) and our results of the previous section,

ihe three moving curves that correspond to the soliton solution of the NLS

q= pexpia = 2usech(v€) expin (3.53)

oy

the NLS (Eq. (3.1)) will be found by substituting Eq. (3.51) in Eqs. (3.35),
3.39) and (3.50), respectively, It is instructive to compare Eq. (3.53) with the NLS
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soliton given in Eq. (3.19). We see that the relation between the parameters are
A=V 2 and v = L(V.(V, — 21,))42

For the sake of illustration, let us first consider the special case A = 0, which
corresponds to V. = 0, a vanishing envelape velocity of the NLS soliton. We obtain
the following three surfaces swept out by the three moving curves as follows:

In every case, let us express the position vector of the moving curve in Cartesian
coordinate in parametric form as

ri = {z(s,u), wlsu), z(su)} ; 1=1,2,3. (3.54)
setting A = 0 in Eq. (3.51), we get the expression [or S as

S(s,u. A =0) = {(1 — 2sech’vs , 2sechis tanh vs cos *u, 2sechvs tanh pssin p2y ).
1 ) 1

(3.55)
From Eq. (3.55), we find
S. = 2wsechrs{ 2sechws tanh vs,
(2sech®vs — 1) cos v?u, (2sech®vs — 1) sin vu} (3.56)
and
S x 8, = 2usechws{ 0, sin®vu, — cos? pu}, (3.57

Equations (3.56) and (3.57) will be used in (II) and (III) below. Let us find the
three curves as follows:

(I) Heret; =S. This expression can be explicitly integrated to vield the expression
for the position vector as Ty = [*8 ds', Thus

ris,u) = {5 — (2/v) tanhws, (—2/v)sechvs cosviu, (—2/v)sechrs sinv?u}(3.58)

Substituting Eq. (3.55) in Eqs. (3.33) and (3.34), we find x, = 2wsech(rs) and
7 = 0. It is easily seen that the Cartesian components obey the relation,

vl +2i = (4/1%)sech?vs. (3.59)

The y and z components thus form a circle, whose radius has & maximum at § = 0

d vanishes asymptotically for s —+ oo, Besides, from Eq. (3.58), r; — (5.0,0) as
8§ 0o, This behavior is clearly seen in the surface given in Fig.(3.1). This figure
§a plot of the analytic expression (3.58) using Mathematica [56).

I} Substituting Eq. (3.57) in Eq. (3.38) immediately vields

to={ 0, sinv’u, —cosviu }. (3.60)
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Integrating Eq. (3.60), we got

ra(s,u) =s { 0, sinePu, —cospu ). (3.61)

Here, k3 = 0 and 7, = 2usech(vs), since iy = 7, and 7 = tiy. Evidently, the compo-

nents satisfy the condition y2 4 22 = &2, for all times. For the sake of completeness,

we display this planar surface in F ig.(3.2)

(III) Here ny = S. Upon substituting Eqs. (3.56) and (3.57) in Eq. (3.43) and
using #a = 2wsechys cos vy and T3 = Zwsechys sin vy, we zet

: : 2 P
b = {—2sechvs tanhwscos v®u, 1 — Zsech®vs cos? vhu, —2sech?ys cos ¥ sin 12
3 ;

(3.62)
(3.49) gives @ = v?u = Cy(u) (see Appendix C
). Eq. (3.62) can be easily integrated to vield

where, since 7, = 0 when A = 0, Eq.
for determination of C\ (u)

r3(s,u) = {(2/v)sechvs cosviu, (s— {2/r) tanh vs cos® v2u),
~ (2/v) tank vs cos vy sin vul. (3.63)

An expression relating the Cartesian components for this case, however. is more

complicated than the previous cases, However, from Eq. (3.63),

we see that x,
and z3 are bounded functions for all s and o

As 5 = Too, y4 — *oo, Ty — 0
and z; — F(1/v)sin20%. This depicts an oscillation

of the z component, with
& finite amplitude (1/v). As

— U, ¥3 and 23 vanish and z; — (2/1) cos 12w,
This describes oscillation of the » component with a finite amplitude (2/v). These
limiting behaviors can be seen clearly in

q

1

the swept-out surface described by Eq.
(3.63) which has been plotted using Mathematica in Fig. (3.3).

For the case X £ 0, the envelope of the NLS soliton moves. Geometrically, this

motion can be shown to correspond to the “twisting out” of the surface in Fig.(3.1)

around its symmetry axis, and “stacking up” of more such surfaces in a helical

fashion along this axis. This will lead to corresponding changes in Figs.(3.2) and
3.3) as well. This case will be discussed in Section (3.6)
Before we conelude this section, we

NI.S can also be studied by working w

mention that the geometry underlying the
ith the compler conjugates of the complex

P vectors and functions that we used in the three formulations. These can be shown

0 lead to a mapping to the LL equation for —t, —n and —b
je verified that these merely vield swept out surfaces which
ggative of the position vectors rj,i = 1.2,3, which we found

respectivelv. It can
are created by the
in Section (3.3), so

at essentially no new surfaces result from these. We remark that while in the first
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formulation, it can be easily verified that the curve velocity ry, satisfies the loeal
induction equation [26] ry, = by, the velocities ryy, and s, appearing in the
other two formulations can be shown to satisfy more complicated equations [36].
This will be discussed in Section (3.7).

Next, we focus on the intrinsic geometries and kinematics of the three space
curves associated with general NLS evolution.

3.5 The NLS and two analogs of the Da Rios-

Betchov equations

As described in Chapter 1, the topic of possible connection between geometry of

curve motion and integrable equations started with the (coupled) DB equations,
Ky = —(KT)s — RyT, (3.64)
Tu = [(KsafK) = T°]5 + KKy, (3.65)
which could be combined to yield the NLS equation (3.1). with ¢ replaced by o =
sexpli [* vds]. Since the NLS is a completely integrable equation [1], it possesses
an infinite set of conserved quantities Iy, & = 1,2....00, which are in involution
pairwise. The first three of these invariants are given by [57]

- / lgl? ds, (3.66a)
L= (1/2i) / @8 — @) s, (3.66b)
I;;:f [lgs? — £|r;|']] 7 £ AN (3.66c)

(I] Setting ¢ = ¥ in Egs. (3.66) above, the invariants now appear as geometric
tonstraints [58] involving the curvature x and torsion 7,

f1=f % ds, (3.67a)
I, =/ 57 ds, (3.67b)
. 1
fazf [ks + k7% — 554] damiy (3.67¢c)

Thus the DB equations (3.64) and (3.65) are seen to be endowed with the above
eometric constraints. Further, Eq. (3.65) can be written as

Tu = [(mys/R) — 7% + .'_-15""2]31 (3.68)
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which is of the form of a continuity equation, showing that the total torsion Iy =
| ™ ds is also conserved. This additional geometric constraint obtained from the DB
‘equations, has no counterpart among the invariants obtained in terms of i, Eiven
in Eq. (3.66).

From formulations (II) and (III) in Chapter 2, we saw that the functions g=1%9
‘and ¢ = x, also arose in a natural fashion, by starting with general Mmoving curve
evolution equations. We consider these next,

(II) Here, we set g = @ in (3.1), to vield the coupled equations
By = [{T”J{T..:I - "":'2]5 + T {359:]

Te = —[KT)s — Take (3.70)

This is the first analog of the DB equations (3.64) and (3.65). As is obvious from
‘comparing v in Eq. (2.1) and @ in Eq. (2.32), this analog may be found by simply
interchanging « and 7 in Egs. (3.64) and (3.65). Thus the associated infinite number

of geometric constraints can also be found using this interchange in Eqgs. (3.67):

'l :/ T2 s, {3.?]&}
I, = / 2 s, (3.71b)
Iy = f [r2 4 72i? —T4] ds ;... (3.71c)

Here, as is obvious from Eq. (3.69), the total curvature Iy = [ & ds is alse conserved.
This has no counterpart among the conserved densities (3.66) of the NLS equation
) Finally, setting ¢ = y in (3.1) vields the following second analog of the DB
quations:

o ;
Ky = —Tss — ‘E'{H.'.' + 7y, (3.72)

| —
Tu = Kis + §I:I_F{" + )k, (3.73)
jgain, setting ¢ = y in Eq.

(3.66), we get the third set of infinite geometrie
onstraints:

I = f (k% 4+ 7%) ds, (3.74a)
fa = ['I:.H'.,'T — K7y) ds, (3.74b)
I = f P i{:«:ﬂ o e (3.74¢)
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It is interesting to note that multiplving Eq. (3.72) by & and Eq. (3.73) by 7
and adding, we get

%(HE + 72y — (ke — 873) = 0. (3.75)

-

From this continuity equation, we see that [*(k? 4+ 72) ds' is conserved. This is the
fust integral [y in the set Eq. (3.74) and not an additional constraint unlike the
earlier two cases.

The results obtained in this section are general and applicable to all solutions of
the NLS. We end this section with the remark that the total length of the curve,

L = [ ds is also conserved in all three formulations, since the curves are non-
stretching.,

| 3.6 Stroboscopic plots of space curve evolutions

associated with a moving envelope NLS soli-

ton

In Section (3.3), the general expressions for ry, s and rs, in the three formulations
were determined for any solution of the NLS, using the corresponding solution of the
LL equation. In Section ( 3.4) their expressions corresponding to stationary envelope
soliton solution, Eq. (3.53), of the NLS with A = 1, = 0, was considered. The three
wept out surfaces were also plotted in Figs. (3.1) to (3.3). In this section we
consider the moving envelope case, A # (.

A remark is in order here. As mentioned at the end of Section (3.4), for A £ 0,
- -__e surface that is swept out by the moving curve gets twisted out due to the motion
(of the soliton along the curve and hence gets more complicated to visualize. For this
reason, in this section we display the stroboscopic plots for the three moving curves,
gather than the surfaces swept out. Besides, it is interesting to ask whether such
4 solitonic propagation along a vortex filament can be experimentally observed in
areal fluid. In such an experiment one could observe the filament at regular time
antervals [31] and look for ‘compact’ distortion or a ‘soliton’ propagating along the
?nment, Thus stroboscopic plots are more useful in this context. From the one-
soliton solution Eq. (3.51), for the LL equation (which corresponds to the one-solitan
solution Eq. {3.53) of the NLS), we derive.

Sy = psechy€ { 2u*sechv€ tanh vE,
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—2 v tanh v€ sinn + 2v%sech®v€ cos fp + (A* — 1*) cosm,

2Aw tanh v€ cos 7 + 2vsech® v € sing + (A — v%) sin ?3}. (3.76)
After some algebra, we obtain from Eqs. (3.51) and (3.76),

SR8, = jLﬁEChIJcE{EIf)nHﬂEhFJE,
—2Ap tanh p§ cos p — (A* — ?) siny,

—2Ap tanh v€singy + (A — 1) cos 13}, (3.77)

‘where 1) and £ are defined in Eqgs. (3.52) (Eqs. (3.76) and (3.77) will be used in
formulations (II) and (I11) discussed below). Now we find the explicit expression
for the moving curve in the three formulations, corresponding to the one-soliton
solution Eq. (3.53) of the NLS, using the general results of Section (3.3).

(I] Here t; = S. Substituting Eq. (3.51) in Egs. (3.33) and (3.34), a short
ralculation yields

k1 = 2osech(vE) ; = A (3.78)

Eq. (3.51) can be integrated ezactly to give the explicit expression for the position
vector ry of the moving curve,

L= {.s — wtanh(vf), —psech(v€) cosny, —psech(v ]5111?;} (3.79)

This is seen to agree with the result obtained in (59] using Sym's [55] procedure.
In Fig.(3.4), we have presented a stroboscopie plot of the moving curve, (3.79), at
_erent instants of time. This describes the propagation of the well known Hasimoto
loop” soliton along the curve. In the intermediate periods, the loop changes its size
and also rotates about the axial direction. In this figure, these intermediate times
ligve been omitted for the sake of clarity.

infervals, as seen from the figure.

' In this formulation, the binormal by, = S. Here, we get

The loop regains its form at regular

Ka=A; T2 = 2wsech(vE), {3.80)

since, as shown in Eqs. (3.36) and (3.37), 2 = 7 and 7 = &, Substituting Eqs.
(3.76) and (3.77) in Eq. (3.39), the moving curve ry is found to be

2= I -
Iy = j [Asech(v€)T — (pA tanh(v€) Cos 7 -+ M sin )]
2
—{ 1A tanh(p€) sing — E—E;—_'_—E cos k] ds' (3.81)
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In this case, sinee the curvature &, is constant and the torsion 7» vanishes as s — +o0o
for all finite times, the curve is bounded by two planar circles at both ends. Since
&= (s—2Au), maximum torsion 73, i.e., maximum non-planarity of the curve oceurs
ats = 2Au. A stroboscopic plot of Eq. (3.81) (using Mathematica) given in Fig.(3.5),
This curve is clearly seen to rotate and propagate as time progresses, and regains
lt.s shape after some time, as seen in Fig (3.5),

(IIT) In this case ny = S. We find on using Eq. (3.78) in Eq. (3.48)
Ky = 2wsech(v€)cosae 1 5 = 2wsech(vE€) sin a. (3.82)

- (3.49) and (3.78), & = As + Cy(u). But from Appendix C, Eq. (C.18),
Ci(u) = (v* — X*)u. Hence

=1, (3.83)
‘where 7) is given in the second equation of the set Eqs. (3.52). Next, Eqs. (3.76)

‘and (3.77) are substituted in Eq. (3.50), with & = 5. A long but straightforward
‘ealculation yields

Iy = [ [#539}1“”{{}“ sinn — i tanh(v€) cos T,I}E
('{Edyzj in? e B S
T g2y 51 0+ (1 — o tandi™(vE)) eos* )

Y »
F[(H — (1 = pw tanh"![u{;'}]l) singpeos ) — ph tanh{v&}k]] ds'  (3.84)

A stroboscopic plot of the moving curve ry (Eq. (3.84)) at different instants of time

B given in Fig. (3.6). This depicts the propagation of a *loop” soliton distinet from

| periodically, after which it starts looping again.

' Such intermediate plots have not been presented in any of the three figures (3.4)
10 (3.6), since our stress here is in noting the property of shape preservation of the
distinct curves in all the three formulations (I} to (III). For the same reason. the

walues of the parameters (v and A) are also appropriately chosen in order to see the
Joops’ clearly in these plots.



3.7 Three curve velocities associated with NLS
evolution

Returning to our general results of Section (3.3), the three position vectors r, ¢ = 1,
2 and 3, which are associated with the NLS evolution, can be found from Eqs.
(3.35), (3.39) and (3.50) respectively, using an exact solution S (Eq. (3.51)) of
the LL equation. The corresponding curve velocities V; = Iy, at each point s, can
therefore be found from these equations by direct differentiation with respect to
time, u. However, to compare and contrast the intrinsic geometries of the three
space curves, 1t i8 instructive to express these velocities in terms of the vectors of
the corresponding Frenet triads and the curve parameters as follows,

Since all the three curves are non-stretehing, we have Wi =Ty = Pae=ta0 D
the other hand, from the first equation of Eqs. (2.3), we have, t;, = gin; + hib;.
Here, the quantities ¢ and h; for the three curves of the NLS are siven in Eqgs.
(3.11), (3.14) and (3.17). respectively. Using these in v,(s, u) = "ty d¢, we get

(I]l Vi = [ (_F‘-‘fl-’-lnl o H‘-]_.;-'bl} ﬁr.Sr = f b]_. {38:‘!}
&

(I1) v, = f [(Faa /72— K3)002 — gub] d5' (3.86)
5 1 7

W) va= [ [rooms+ L+ )ba] s (3.87)

Not surprisingly, v, coincides with the vortex filament velocity Eq. (1.2) derived by
Da Rios in fluid mechanics, This derivation of vy, in the local induction approxima-
tion (for Formulation (I) of the NLS) is given in Appendix D for ready reference. Tt
é_s*a local expression in the curve variables: The velocity vy at a point s depends on
the curvature and binormal at that point only. In contrast, vy and vy are seen to be
nonlocal in the curve variables: If we partially integrate the right hand sides of Egs.
(3:86) and (3.87), and use the FS equations (Eqgs. (2.2)) repeatedly in the resulting
expressions, both these velocities take on the form v, = i ti+ Bini+ C) by,
i = 2.3, where the components A, B; and C,¢ = 2.3 can be written in terms af
an infinite sum of integrals of certain functions involving the curvature, the torsion,
f_ﬂ;&ir higher derivatives and their various products. Tt is indeed interesting that in
spite of such a complicated behavior of these velocities, their corresponding curve
volutions are also endowed with an infinite number of constants of motion. This

tially stems from their connection with the NLS. Mare specifically, this is be-
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cause; as we have shown in Section(3.3), the binormal b. of the second curve and
the normal ny of the third, satisfy the integrable LL equation,

3.8 Summary and discussion

In this chapter, we have discussed the application of the three formulations presented
in Chapter 2 to the NLS. This has been done exploiting the connection between
the NLS and the LL equations for the tangent, normal and binormal vectors. In
particular we have obtained the expression for the position vectors rils,u), =123
of the three non-stretehing moving space curves in terms of the unit vectors, ty,
b; and ny, which satisfy the LL equations in the three cases. As an example,
we considered the peometries associated with the one soliton solution of the NLS
(Appendix A), and [ound the three moving curves explicitly. The swept out surfaces
corresponding to a soliton with vanishing envelope velocity have been displayed in
Figs. (3.1) to (3.3). For the general case of the moving envelope soliton, stroboscopic
plots of the moving curve in the three cases, are shown in Figs. (3.4) to (3.6).

We conclude with the following remarks on the possibility of applyin g our results
to vortex filament motion in fuids, by regarding a moving vortex flament to be a
non-stretching, moving space curve. In a fluid, as is well known, the induced veloeity
vat a point is determined as a volume integral involving the vorticity w, by using the
Biot-Savart formula (see Appendix D). Firstly, it is to be noted that in this formula.
(ifone expresses w in terms of the veetors of the Frenet triad of the filament, then, in
any realistic model of a fluid, v is nonlocal in the curve variables. Tt becomes loeal
‘only under certain approximations, such as the local induction model (see Appendix
D for approximations used).
Secondly, it is worth noting that in an interesting experiment with a fluid in a
totating tank, Hopfinger and Browand [31] had ohserved compact distortions which
._t'wist and propagate along a vortex core like a soliton. In this experiment, the
turbulent motion of a fluid, in a container rotating about its vertical axis, is studied.
The fluid motion is made turbulent due to a horizontal grid at the bottom which
oscillates in the vertical direction. The random field is opposed by the rotation of
the container, which has an organizing influence on the fluid. It is noticed that in
t-l'le resulting complex motion there are, however, regions of concentrated vorticity.
‘ he resulting vortices are found to have soliton-like distortions which propagate
along the vortex core, in agreement with result obtained by Hasimoto [14], the only

theoretical model available at that time. The curve velocity is v, (see Eq. (3.85)).
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In fact, Fig. (3.4) depicts the helical Hasimoto soliton propagation as suapshots
at different instants of time. In Chapter 2, we have found two other formulations
pusmble for an integrable equation. We have shown that these imply new geometric
connections that link the curve velocities vy and vy (see Egs. (3-86) and (3.87))
‘with the NLS and its soliton solutions, These may turn out to be of some relevance
An actual fuids. In view of this, appropriate theoretical modeling of the vorticity,
to go beyond the local induction approximation, would be worthwhile. Our resnlts
also suggest that it would indeed be of interest to carry out more experimental
studies of the detailed geometric structure of moving vortex filaments. to look for

any similarities with Figs. (3.5) and (3.6) which also depict propagation of compact
distortions along the curve.,
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Figure 3.1: Surface swept-out by the moving space curve ry(s,u) Eq. (3.58), for
v=1lA=0and 0 <u < 63. The surface is generated by a curve with a planar

loop in the middle. rotating about the r-axis.
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Figure 3.2: Surface swept-out by the moving space curve ry(s.u) Eq. (3.61), for
v=05A=0and 0 < u < 25 The curve at any time is a straight line in the y — z

plane. The surface is generated by the rotation of this straight line about the 7 axis.
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Figure 3.3: Surface swept-out by the moving space curve (s, u) Eq. (3.63), for
y=0.5,A=0and 0 < u < 25. This surface is formed by an oscillating curve with
aloop in the middle. As can be seen from the figure the surface is bounded in the
‘rand 2 directions for all s and w. The wings in the +y directions extend further as
the length of the curve considered is increased. This matches the description given

below Eq. (3.63).
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re 3.4: A stroboscopic plot of the evolving space curve ri(s u) Eq. (3.79), for
=1and A = 0.1. The loop rotates as it moves along its axis with a regular period

=2r/(v* — A*). The various snapshots are shown separated for clarity.



"3'-"; re 3.5: A stroboscopic plot of the evolving space curve ry(s, u) Eq. (3.81). for
v=03and A = 0.1, As described in Section (3.6), the curve tends to a circle of
tadius 1/ on either side. (The circles formed by the two arms lie in two different
';_'.'1. parallel to each other. The distance between the planes remains constant.
The two circles are above each other (on different planes) at initial time u = 0

L

_!_Jtre}. As time progresses, they move apart as well as rotate, still lving on their
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:__jgura 3.6: A stroboscopic plot of the evolving space curve ry(s, u) Eq. (3.84), for
p=1and A =03. As opposed to Fig, (3.4), here there is also an oscillation of the
I:'__'n'p about its axis. Besides, the loop unwinds in the intermediate period, which are
ot shown however, since our interest here is only in noting the property of shape

reservation. Here again, the plots are shown separated for clarity,
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Chapter 4
Application to the Lamb equation

4.1 Introduction

In the last chapter, we had illustrated the three formulations developed in Chapter
2, using the NLS equation as an example, and explicitly constructed three MOVing
curves and their swept out surfaces corresponding to its one soliton solution. The
NLS is an example of an integrable NLPDE, that arose in the three formulations, by
thoosing the curve evolution parameters 4,1 = 1,2, 3, defined in Egs, (2.15), {2.37)
and (2,51), as in Eq. (3.2). As was pointed out below Eq. (2.27), for certain other
specific choices of v,'s, in terms of ¢, ® and y respectively, it is possible to obtain
not only integrable NLPDE, but also integrable integro-differential equations.

In this chapter, we consider one such example of the latter, namely the Lamb
equation,

&
'équv:“qy—i-qf lg|* ds’ = 0. {4.1)

As mentioned in Chapter 1, this equation first appeared in [32] in connection to
‘moving curves. We shall use the three [ormmlations developed in Chapter 2, to asso-
tiate three moving curves with a given solution of this equation. We parenthetically

remark that by defining [ |¢” ds' = Q. Eq. (4.1) takes the form of the following
eoupled NLPDE:

i + 4.+ Qg =0, (4.2a)
Q= lgl* =0. (4.2b)

Interestingly Eq. (4.1), is known to be related to the elliptic Liouville equation
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Jun + fos = _Ez'f.- (4.3)
where f(s.u) will be shown to be a real function of the curvature x. Though this
telation of a complex function g(s, u) (and hence for two real functions) to a single
real function f(s,u) is surprising on first inspection, this indeed happens since f

determines both |q] and arg(q). Indeed, writing g = pexplia), it ean be shown that

P=M=E@I;u=WMﬂ=—fflﬁi (4.4]
;Thus given any exact solution f, the corresponding exact solution 7 can be written
using Eq. (4.4) as
&
g=explf ~i [ f ] (4.5)

The elliptic Liouville equation, (4.3), is of interest due to two reasons:

1) Although nonlinear, its general solution can be written in the form [60],

1 A'(2*)B'(z
f(s,u)=31n ( e B[zjj]‘é)’ (4.6)

where z = s+iu, 4'(2°) = dA/dz* and B'(z) = dB/dz, while 4 and B are arbitrary
__'gnr:tirms_

) The equation holds importance in classical surface theory [24], and has been
recognized by geometers for well over a century. Suppose R(s,u} is the position
tctor describing a surface in 3-D and let X = (R, x R,)/|R; x R,| be the unit
normal to the surface. Then the first and second fundamental forms are given hy

dR? = E ds* + 2F dsdu + Gdu?, (4.7)

—dR.dX = Lds* + 20 dsdu + Ndu®, (4.8)

he Gaussian curvature of such a surface is

K = (LN - M*/(EG - F?), (4.9)
or the specific choice £ = G, and F = (), as is well known, K is given by
;X . h E,
K=l h+(F), (4.10)

tpon using the Gauss-Codazzi-Mainardi compatibility conditions, R,,, = R,,, and
Riwu = Ruus. When K is a constant, defining £ = E JK, Eq. (4.10) becomes

| fns T A P8 (4.11)



= —%Hlngﬁ}w + (log E),). (4.12)

Thus for constant K it is seen that the elliptic Liouville equation, (4.3), is satisfied
by f=1Llog E. Henee, solutions of the elliptic Liouville equation, all correspond to
surfaces of constant Gaussian curvature.

As demonstrated in the last chapter, the cannection between the NLS and the LL
equation proved very useful in obtaining the position vectors for the three moving
curves associated with the NLS. In this chapter, a similar relationship of Eq. (4.1)
to the Belavin-Polyakov(BP) equation

m, =mxm,: m-=1, (4.13)

will be exploited in obtaining the explicit expressions for the position veetors for the
%_th:ee moving curves associated with the Lamb equation {4.1). The corresponding
surfaces will be displayed pictorially, for some interesting solutions. All the figures
pertaining to this chapter are given at the end of this chapter.

In the next section, we discuss the mapping of Eq. (4.1) to Egs. (4.3) and (4.13)
‘and show how they arise in the three formulations, We also find the corresponding
time evolution parameters (see Eq. (2.5) gi, by and 7, (i = 1,2, 3) for the three
‘moving curves associated with Eq, (4.1),

4.2 Mapping of Lamb equation to the Belavin-

Polyakov equation and the elliptic Liouville
equation

o establish the equivalence of the Lamb equation (4.1) to the BP equation {4.13),
we return to sections (2.3) and (2.4) of Chapter 2. 1t can be easily verified that with
the choices

Y= e = =il = =iy, (4.14)

ituted into Eqgs. (2.22), (2.41) and (2.55) immediately lead to Eq. (4.1}, with
¥, ® and x replacing . (Recall that ¢, ® and y are defined in Egs. (2.1), (2.32)
ind (2.46), respectively).

Next, we list out the time evolution parameters &, hi and 7, in terms of &; and

:-i- 1.2,3, in the three cases.




{I] With the choice v, = —i in Eq. (2.22), we have the Lamb equation:
v :
ity + 1l + 1!,..] [ ds' = 0. (4.15)
Setting v = 7 in Eq. (2.15), we get

gi=03 hi=r (4.16)

[suhsuript 1 has been used to indicate formulation (I)). Using these in the third
tompatibility condition Eq. (2.8), we find

Tol = Kyg/ K- H-IT]

However, the same relation for the time evolution parameters gy, hy, and 7, in

terms of ) and 7, as in Eqs. (4.16) and (4.17), is obtained when t, satisfies the
BP equation (4.13). This is seen as follows:

Ll =11 Xty [415}
oo+ hby = 'k':lhl- [:4.19}

This directly gives Eq. (4.16), while 7y in Eq. (4.17) is obtained from Eq. (2.8).
Hence Eq. (4.15) is seen to be associated with a moving curve whose tangent t

W

sufisfies the BP equation (4.13).

Next we show how the elliptic Liouville equation appears: Writing the real and
imaginary parts of Eq. (4.15) separately, using the definition of th given in Eq. (2.1)
'-ei. = ryexpli [T 7 ds') for formulation (1)), we have

ki + 8T =10 [42[’:}

—r::f Tiw d8' + Ky + “"’j Ky ds' = 0. (4.21)
e

Dividing Eq. {4.21) by %; and differentiating with respect to s, we have

L -
—H F (;‘i) +47=0. (4.22)
1 8

On the other hand from Eq. (4.20), we have

71 = —(K1a/K1). (4.23)
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\Using Eq. (4.23) in Eq. (4.22), we get

(), (2, st s

fils,u) = log ky, (4.25)

Eq. (4.24) yields the following elliptic Liouville equation for fi(s, u),

fivu + frss = —€*D (4.26)

....

7y = —(log R}y = —flu- (4.28)

ence arg ¥ = [y ds' = — [* fi, ds'. Tt must be noted that the function fils,u)
in Blq. (4.25) is real and is a function of x; only,

The equivalence of the Lamb equation to the BP equations satisfied by the
normal vector, bs and the normal veetor. ny, in the other two formulations, (I11)
(ITI), is established as given below:

I) The choice 72 = —i®, in Eq. (2.41), gives the Lamb equation:
; ;
B, + T, + B f B[2 d¢' = 0. (4.90)

g the definition of v in Eq. (2.37) and writing ® in Eq. (2.32), as ® =
i [* ks ds'] (where the subseript 2 stands for formulation (IT)) the choice v =
implies

T =03 hy=—m2. (4.30)
substituting Fq. (4.30) in Eq. (2.8), we get
g2 = Tay [ Ta. (4.31)

We now show that the same relations (Egs. (4.30) and (4.31)) are obtained when
P equation s satisfied by the binormal vector ba. This is because

hﬁu = h?. x h‘ls [432]
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implies, from Egs. (2.2) and (2.5),

—h-gtg — Tpella = T'gt-:g. [:433:]

Eq, (4.30) is directly read off from Eq. (4.33), while Eq. (4.31) follows from Eq.
(2.8), thus giving the equivalence of Eq. (4.20) and (4.32),

| Writing Eq. (4.29) in terms of its real and imaginary parts, using the definition
of & in Eq. (2.32), we obtain

Tay + ta2 = (0, (4.34)

—Tgf gy dﬁk + Tas + Tgf Tg s = 0. [:-135)

A similar procedure as in (I}, leads to the elliptic Liouville equation satisfied Ty
fals,u) defined as

fals, u) = log 7, (4.36)
Foun + fass = =2, (4.37)
"'m Eq. (4.36)
o = exp fa (4.38)
Ky = —{log 7))y = — fa,. (4.39)

(III) Here, choosing v5 = —iy in Eq. (2.55) leads to the Lamb equation:

ixu—+ Xs + X [ x|* ds’ = 0. (4.40)

With this choice, from the definitions of 73 and x, Eqs. (2.37) and (2.46) respectively

and writing y = 3 + 173, with the subscript 3 indicating formulation (II1), we get
§8=—Ta; Tal = K3 (4.41)
Substitution of Eq. (4.41) in Eq. (2.8) yields,

= f (2 +2) d, (4.42)

Next, we show that these relations are equivalent to the BP equation satisfied by

the normal vector ng: 1t is seen that on using Eqgs. (2.2) and (2.5), the equation

N3, = N3 X Ny, (4.43)

=93t + Tuaba = Kaby + T3ta. {4.44)
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This is just Eq. (4.41), while Eq. (4.42) follows on using Eq. (2.8). Using vy =
K3+ ity and writing the real and imaginary parts of Eq. (4.40) separately, we get
he coupled equations

Kay + T35+ Tﬂ.f l:h?; + Trf] ds’' =0, (4.45)
s ¥
—Tay + Kas + K3 [ (53 +73) ds’ = 0. (4.46)
From these two equations we can show that

Kakay + TaTau 8 g
— = tan = 4.47
ki + TH s [H';]] 4:47)

Kikis + T.'i.’l'".'h - By /

= (K3 +73). (4.49)

(ﬁa?ﬂau g TSTzu) " (Ha-“ih i T:—:Ta_q) e
K+ T8 u KE+T8 /s

_.;ﬁhe ahove {tan‘lﬂﬂ]]m = {t'an‘l{ﬁ}}u, has been used. Defining

fals,u) = ll{r !ﬁ + 'r3j (4.50)

we find that Eq. (4.49) becomes the elliptic Liouville equation for fy:

P+ o= —e*h, {4‘51:]

Thus the Lamb equation Eq. (4.1), with ¢ = ¢, & and y respectively, can be
mapped to the BP equation (4.13) satisfied by t,. bs and ny respectively, as well as
the elliptic Liouville equation for f;,7 = 1,2,3 (Eqgs. (4.26), (4.37) and (4.51)),
Note that any real solution [ presented in Eq. (4.6), will vield the general
J_i;t_inn of the Lamb equation (4.1) on using Eq. (4.5). Thus, by setting g =
r@"_aud X given in Eqs. (2.1), (2.32) and (2.46) respectively, we obtain the curve
parameters for the three curves to be

(I:l Ky =ef ; T ==
() ma=—fu: m=¢,

(M) ks=elcos [*fuds'; 75=—ef sin [ fu ds'.
The corresponding time ev ulut lon parameters g;, My, 7, 1= 1,2.3, can be found in

of f from Eqs. (4.16), (4.17); (4.30), (4.31); and (4.41), (4.42). We obtain
[I] a=0; =e; 4=/,



) g=fi: ha=—ef; 70=0,

() gy =el sin [*f, ds'; hy= [Te* dst s 7 =ef cos [ fu ds',
Thus we clearly see that the three moving space curves of the Lamb equation are
Uindeed distinct.

In the next section we shall discuss some phvsical contexts in which the BP
“aquation (4.13) arises.

4.3 Appearance of the BP equation in Low di-

mensional Heisenberg ferromagnets and anti-

ferromagnets

H=-J]Y 8.8;, J>0; §=g (4.52)

S 1

eing the spin vector at site ¢ and < 4, j > denoting nearest neighbors. The time
ution of these spin vectors is found by using essentially the same procedure as
gutlined for the 170 case in Section (3.3) (see discussion below Eq. (3.30)) to be,

Siu = J8; % (Sin +Siy), (4.53)

wibere now, the index [ runs over the nearest neighbors. Taking the continuum limit

o Eq. (4.53) as employed in Section (3.3}, we get the equation for the Heisenberg
femromagnet in two dimensions in the continuum limit as

Sy =8 % (8;;+8,,); §=1. (4.54)



:Emnmagn&t are thus given by
Sx(S; +8,)=0; 82 =1. (4.55)
tis seen that, solutions of the first order cquation
S:r=8x 8§, (4.56)

are particular solutions for the static configuration as given by the second order

‘equation (4.535), while the converse is not true [44]. This can be verified as follows:
Firstly, Eq. (4.56) implies

5, =8, x5, {4.57)

since S is a unit vector. From Egs. (4.56) and (4.57), we find
Sy + S =128, %8, (4.58)

Taking vector product with S, we get Eq. (4.55)

S X (8yy +8:) =28 % (8: xS,) =0, (4.59)
Since, 35 = S,Sy =h

Now, Eq. (4.56) resembles the BP equation Eq. (4.13), except that both pa-
fameters x and y are now spatial in nature. Thus the solutions of the BT equation

directly vield a subelass of static configurations for the two dimensional Heisenberg

One-dimensional antiferromagnets
Hamiltonian for the one dimensional Heisenberg antiferromagnet is given by

H=-J)"8;8u;, J<0; S?=g2 (4.60)

es more convenient in this case, to describe the spin evolution by dividing the
einto ‘odd’ and ‘even’ sublattices, depending on whether 7 is odd or even on
ain. For low energies, this allows us to go to the continuum limit. since the
teighboring spins in a sublettice differ only by a small angle,

From the above Hamiltonian, the equation of motion for the spin vector S, at
. 1s found to be

Srtl'.t = an x {S‘n-i—i + Sn—lj: {461}
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where, as earlier, the subscript u represents differentiation with respect to time.

The spins interact only with their nearest neighbors. The dynamical equation can

s

be written separately for spins at odd and even ‘sublattices’ as

B0 = JE (80 8 (4.62)

n-tu = IS5y % (85 + 85 _,), (4.63)

where extra superscripts o and e have been added to indicate spins at the odd and

even sublattices. As noted earlier, the nearest-neighbor spin vectors within the same

B ch sublattice. Thus we write [45],

56, + 85 — 28%(z — a) + za%sa (4.64)
a [F] 3 i
S5+ 84y = 25°(x) - 2u5-S". (4.65)

ere, a is the lattice spacing between two adjacent spins and =, as is clear, is the
inuous} spatial parameter. Using Eqs. (4.64) and (4.65) in Eqgs. (4.62) and
4,63) respectively, the evolution equations for spin vectors in the odd and even
sublattice. become

S7(x) = 2J5%(x) x (Sﬂ{m —a) + n%sqm = a)) (4.66)
S5z — ) = 2J8"(z — a) x (S°(2) - ﬂi%sﬂ{x)). (1.67)

Define two new unit vectors 1 and m as
l{z) = (8%z) + 8%(x — a))/(25¢), (4.68)

m(zx) = (8°(z) — 8%z — a))/25v1 — €. (4.69)

3 is the magnitude of the spin vector and €2 = L(14+5°.8%/58?). The dynamics
e spin vector in the continuum limit can equally well be described in terms of
two vectors. Combining the continuum equations, Eqs. (4.66), and (4.67)

opriately, the equations of motion far the two new vectors m and 1 are given

L= 27a8YT =2 (m x 1), (4.70)
dr
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i e i
m, = 4J5(m = 1) + EJ:ISM (l * E;l)

—2JaSv1 — ¢ (m X a—aum) (4.71)

&

The advantage in using the new vectors is seen by noting that for low energies,
since adjacent spins remain almost antiparallel, [1| =~ 0 and € < 1. Therefore the
dynamics is entirely dominated by m, and Eq. (4.71) vields,

m, = HEJGS(m % %m) (4.72)

Un absorbing an appropriate normalization constant into time and space variables,
this equation is seen to be of the form of the BP equation (4.13).

"'The O(3) nonlinear & model

The BP equation (4.13), first arose in the study of the static [2+1)-dimensional O(3)
tonlinear sigma model field theory [L1, 12]. The following results are well known in
field theory. We briefly summarize some of the results for the sake of completeness.
i_ﬂ:he energy associated with the unit vector field m{x, y) is given by

1 _
H= 5/[(m§+m§j drdy ; m®=1 (4.73)

‘and the local energy minima found using §H = 0 are configurations that can be
“shown to satisfy the static field equation:

mg, +m,, — [m.(m;, +my,)lm= 0. (4.74)

m x (m,, +m,,) =0, (4.75)

m,; +m,, = cm, (4.76)

where ¢ is a scalar. Using the constraint m* = 1, to replace ¢ in Eq. (4.76), we
ubtain Eq. (4.74). Thus, here again the BP equation for m arises, whose solutions
form a subclass of the solutions of equation (4.74).

Consider the identity [44]

f_/ (dim £ ;m x d;m).(dm + sm x dum) drdy > 0, (4.77)
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with 4, j, &, running over x,y and summation over repeated indices assumed. This
is an identity since, the integrand is just the scalar product of a vector with itself.

Expanding the integrand and using the constraint m? = 1. it can be shown that

ff(ﬂ,m.ﬂ;m} drdy = // fym.(dm x d;m) drdy. (4.78)

By comparing Eq. (4.78) and Eq. (4.77), it can be seen that the equality in Eq.
[4.78) is satisfied when m satisfies the BP equation (4.13), Now, for field config-
urations with boundary conditions such that m takes on the same value at the
boundary, it can be shown that the quantity on the right hand side of Eq. (4.78) is

1
-E'Ff /.Eijm.{rﬂlm x ('}}m} ﬂr.'l"dy = B?I._Q, {-I?ﬂ:l

where ( is an integer, the topological charge [11]. @ labels a topological sector,
Since m lives on a unit sphere Sémj, and for the special boundary conditions, the
coordinate space (z, ) can be compactified into a sphere Ss, } gives the number of
times Sy™ is covered, as we span the coordinate space. Thus, using Eq. (4.79) in
Eq. (4.78) and recognizing that the left hand side of Eq. (4.78) is just H given in
Bq. (4.73), we get

H Z247Q, @ = integer. (4.80)

Eq. (4.80) is the Bogomol'nyi inequality [61]. We see that for the special hound-
ary conditions, the configurations that satisfv BP equation correspond to the lower
bound 470 of the energy.

In the next section we consider two tvpes of solutions nately the instanton and
twist solutions of the BP equation (The former has integer charge but not the latter,
due to the boundary conditions). In particular we concentrate on the solutions g
of the Lamb equation corresponding to the one-instanton and twist solutions and

determine the three moving curves obtained in the three formulations, witl each of
these solutions.
44 Construction of the three moving curves for

the Lamb equation

this section we shall discuss the construction of the three MOVING curves associated
vith a general solution ¢ of the Lamb equation.
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In Section (4.2) we showed how the Lamb equation could be mapped to the BP
-equation. Note that we also have the converse of this result. That is, starting with

the BP equation (4.13), we can obtain the Lamb equation as follows: Using the F§
equations, we have

tin=1%] Xti, =1t % K = #1by. [481}

Sinee tyy, = ging +7b (from Eq. (2.5)), we read off from Eq. (4.81), g1 =0,hy = xy.
From the compatibility condition Eq. (2.8). 7, = #5/%;. Thus, from Eq. (2.37)

A

|
= —{gy +ihy) exp [zf T1ds’] = —ik,exp [z[ 1168 = =ty (4.82)
Substituting Eq. (4.82) in Eq. (2.21), we get
R, = f [ys|? ds". (4.83)

Thus using Eq. (4.83) in Eq. (2.22), we see that the BP equation for the tangent
t leads to the Lamb equation for the Hasimoto function .

) ol e
R / |[w|* ds' = 0. (4.84)
;fl‘he equation for the curve is obtained by integrating t; = m.

ri(s,u) = / ty n‘!s’:/ m s’ (4.85)

z_likewise, in the other two formulations, starting with the BP equation for by and
1y respectively, the time evolution parameters are seen to be

G2="To/T2} Tz=0: hy=-—m (4.86)

and ;
_g:; =—T91 Tgg = L ha = / {h% + 72}, (-1(3?}
wspectively. These lead to g, = —i® and vy = —iy, which when substituted into

Egs. (2.40) and (2.54) respectively, vield Ry = [7|®* ds' and By = ["|y[* ds'.
Substituting these in Eqs. (2.39) and (2.53) respectively, the Lamb equation (4.1)
for @ and y are obtained.

Proceeding like one did for the NLS in Section (3.3), we have the analogs of Eq.
(3.39) and (3.50), ie.,

ra(s, u) =f ts ds' =[ m x EEJ| ds', (4.88)
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and

4 8 3 . —
rafs, u) =[ ts ds :f en 2 ) g — m, 093] ds', (4.89)

£
where & = [ 7 ds'+Cy(u) and Ca(u) an arbitrary function of time u. The function
Oy(u) will be determined in Appendix C. The results in this section are valid for
any general solution m, and hence for any general solution ¢ of the Lamb equation.

Below, we discuss the surfaces for the three different cases, by taking certain typical
solutions for m.

4.5 Instantons, Twists and associated geometries

of the Lamb equation

On first inspection, a couple of observations can be made about the kind of solutions
supported by the BP equation Eq. (4.13). Since m is a unit vector, it follows from
Eq. (4.13) that

m,=myXxm, m° =1 (4.90)

1) From Eqs. (4.13) and (4.90), it is easily seen that the above equation cannot
Support any nontrivial solution that is either purely static or purely time dependent.
] The solution cannot be a pure traveling wave, since assuming m = m(g), £ =
vy, implies, from Eq. (4.13), —vmg = m¢ x m, which is inconsistent.

i this section, we shall first obtain the twist and one-instanton solutions of the

BP equation. Parameterizing m(s, u) in spherical polar coordinates as

m(s.u) = (sinf cos g, sin#sin ¢, cos ), (4.91)

L (4.13) can be written as
ty = —¢h,sin 6, (4.92)
iy Sinfl = —6,. (4.93)

{a) Twist solutions
From Eqs. (4.92) and (4.93), the compatibility condition f, = f,, gives,

Pu + Pss = 0. (4.04)
This is the Laplace equation, for which the simplest nontrivial solution [45] is

¢ = (ka8 + wou), (4.95)
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where w, and k, are arbitrary constants. Substituting this in Egs. (4.92) and (4.93)
gives

B = —k,sin 6, (4.96)
0. = w,sin Y. (4.97)
Upon integration, this gives (on using [ (d@/sin @) = log(tan(8/2)))

cos f = — tanh(w,s — k,u) (4.98)
and
sinfl = sech(w,s — kou). (4.90)
Using Eqs. (4.98), (4.99) and (4.95), we get

m = sech(w,s—kyu) (ms(k,,.g—:-mﬁu) T-sin (ks +osou) j) —tanh(w,s—k,u) k. (4.100)

This is the twist solution for the BP equation. From Eq. (4.100), it is clear that
the  component m, — F1 as s — 4oc. This is like a domain wall, In the
interim region, the spin precesses, Since ¢ = (kys 4 wou), the precession velocity
;isuqﬁ = —we/ky (see Eq. (4.95)). On the other hand, the domain wall moves with
velocity vg = ko fw, = —1/vy (see Eq. (4.98)). This behavior is clearly in agreement
with (i} and (i) stated in the beginning of this section. From its definition Eq.
(4.69), m. = 1 corresponds to Z component of spins in the 'odd' sublattice heing

ip and spins in the "even’ sub lattice being down, at s — —co. This situation is
eversed for m, =

—1, at s — oco. The twist depicts a "spin wave’ within a domain
all,

Starting [rom the twist solution for the BP equation given in Eq. (4.100), we
et

m, = sechij|(—~w, tanh fjcos € — k, sin i

+ (—w, tanh fjsin € + k, cos £)j — wsechijk] (4.101)
m x m, = sechyj|(k, tanh 7j cos £ — w, sin €)1

+ (ko tanh 7 sin € + w, cos £)] + kpsechik], (4.102)

N=wss—=ku; £=kKk;g+wu. (4.103)



Clearly, the corresponding solution for the Lamb equation (4,1) is

A
¢ = |m,| expli f A X Mus) gy, (4.104)
lmar'
yielding L
g9 = /(w2 + kF)sechi exp[z’f log sechijl. (4.105)
()

The envelope of this solution is soliton-like. It is a localized function and is a
traveling wave. We shall therefore refer to this solution given in Eq. (4.105), as an
‘envelope-soliton’ solution ¢!*) of the Lamb equation. We proceed to find the three
‘moving curves corresponding to this solution, using the results of Section(4.4).

(I) Here t; = m, given in Eq. (4.100). Analogous to Egs. (3.33) and (3.34), we
find the curvature and torsion here as

i =m? = (Wl + k2)sech®; o= e XM b anhig (4.106)

Ky

The corresponding solution of the elliptic Liouville equation (4.26) is given by

J1 = log{v/ (w2 + k2) sechq), (4.107)

By substituting the twist solution Eq. (4.100) in Eq. (4.85), an exact closed form
expression for the curve ry can be found for two particular cases, k, = 0,w, £ 0 and
£ # 0,w, = 0. We discuss these cases before going to the more ceneral case.

1_] Taking &, = 0 in Eq. (4.106), we have

—

k1 = wesech(k,s) ; =0 (4.108)

This is evidently a planar curve. The expression for the position vector of the curve
ry is found by substituting Eq. (4.100) in Eq. (4.85) to be

18, 1) = f mik, =0)d ——‘3' tan~ {Exp{u.rus}}(cus{wﬂu]?—i—sin[wnu}j)

. log(cosh(w,s))k (4.109)

u"‘ﬂ
L stroboscopic plot of the moving curve Eq. {4.100), as well as the swept-out surface

e is shown in Fig. (4.1). The curve is an inverted 'U" at any time and rotating
bout the = axis.

}1} Taking w, = 0 in Eq. (4.100), we get

(s, 1) f m(w, =0) ds' = isechlfk iy (sm{.& )i — Lub{k,,sh) +ks tanh(ku),
(4.110)
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and from Eq. (4.106)

K1 = ko sech(kou) ; ™ =k, tanh(k,u). (4.111)

At u =0, Eq. (4.110) 3§ a cirele in the 2 — y plane. As time progresses, the two
:',s_grms of the curve about the point s = 0, stretch out to become a straight line along
the z axis, as u — oo, Fig. (4.2) shows a plot of the swept-out surface generated
due to Eq. (4.110), along with a stroboscopic plot.

The swept ont surface for a more general case, with parameter values k, = 0.5
and w, = 1 is shown in Fig. (4.3). This is found from

& &
T1(s, 1) =f t) c.fs’zf m ds’, (4.112)
where m is given in Eq. (4.100).

(IT) The BP equation is now obeyed by the unit binormal ba, ie., bz, = by x by,.
Thus by = m. The unit tangent vector in this case is given by

b ngbgd IIL > 11
a = =

" |h25| B |m3|

s (4.113)

where m is given in Eq. (4.100). Thus using Eqs. (4.102) and (4.106) in Eq. (4.113),

1 —— —_ — e -
= — {wg{cos £j — sin £1) + &, tanh fj{cos €1 + sin &) + kkﬂsechﬁ} {4.114)
Vwi+ k2

=t
=t
|

This yields

ra(s, u) =/ ty ds'. {4.115)

The curvature and torsion are given by

Ky = —kgtanhs ; 7 = /(w2 + k2) sechd. {4.116)

Here again, we consider first the special case k, = 0. This implies a vanishin g
urvature, i.e., a straight line. This is a trivial case. For the other special case
4= 0, BEq. (4.114) can be integrated exactly giving, We get

1 . = & o
ra(s,u) = — . tanh(kou) (sin(k,5)i + cos(k,s)j) + s sech(k,u)k (4.117)
i
Ihis is a helix rotating about its own axis generating a eylinder. For this case, the
ature and torsion are functions of time only, and are given by

-

r

ko= kotanhkout ; 7 = kysechk,u. === (4.118)
) T HEMATIDSSS
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A plot of the surface generated for a more general case with k, = 0.5,0, = 1, is
ohtained by numerically integrating Eq. (4.114) using Mathematica. This is shown
Fig. (4.4), which is indeed distinct from the surface in F ig. (4.3).

{IIT) Here ng, = ny x ng. Thus ny = m. The corresponding tangent vector is
;given by (see Eq. (4.89) in Section (4.4))

Talg X 1z, — K3y, M X M, sino — m, cos
ty =23 % 70 : . (4.119)
Iy K1
where .
g j T ds' + Cafu) (4.120)

and Cy(u), an arbitrary function of time. Substituting for 7, from Eq. (4.1 06) and
‘ntegrating we get

k
= —w—”logmsh i1 + Calu). {4.121)
¥
y Appendix C, we use the moving curve compatibility conditions to show that Cy(u)

s a constant which can be taken to be zero. The unit tangent vector is found by
substitution of m from Eq. (4.100) in Eq. (4.119), to vield

ty = —ML—TE[(M“ cosa + k,sin ﬂ) tanh &, + (wﬂ sina — k, cos cr) &
- [ku $in o + wy cos a') sechﬁrfc] , (4:122)
:bere, &, = (cos£i+ sin£j) and &, = (—sin i + cos £j). The curvature and torsion
are given by
K3 = /Wl + k2 sechijcosa ; 7 = Vw2 + k2 sechijsin a. (4.123)

for k, = 0, Eq. (4.122), reduces to

»

ty = tanh(w,s) (cos(w,u)i + sin(w,u)j) + sech (w,s)k. (d.124)

This can be exactly integrated to give the following moving curve:

1 . X
(s, u) = w—(lugl[cnsh[wﬂs}}I[cﬂs(wg-u}i—l—sm{wﬂ'er.]l_]]+2 tan'l{exp{uns}]k). (4.125)
Tor k, = 0, note that

K3 = W, sechw,s ; 5 =10. (4.126)
corresponds to a planar curve with curvature asymptotically vanishing as s —
£, The surface for this special case (Eq. (4.125)) is shown in Fig. (4.5). Note
it for the special case w, = 0, @ — oo and hence not considered unlike in (I)

nd (I1). The surface for a more general case found by integrating Eq. (4.122) is
lépicted in Fig, (4.6).



(b) Instanton solutions

From the spherical polar decompaosition for m given in Eq. (4.91), consider the stere-

ographic projection onto the complex plane defined through the complex function
M by 1

M(s,u) = cot EHESTHJ expit(s, u) (4.127)

= M, + M. (4.128)

Equations (4.92) and (4.93) (which arise from the BP equation), lead to the following
Cauchy-Riemann conditions for the real and imaginary parts M, and M, of M,

ﬂﬂi{l _ 61’1{2' ﬂ‘ﬂ.r‘fg aﬂ'.'!rg
5 gy A _:I:'_Er‘s ' (4.129)

On reparametrizing to complex coordinates z = s + iu and 2* = s — i, the above
candition implies analyticity with respect to z or z°, depending on the sign chosen.
Thus the simplest solution for A/ (and hence the BP equation), is given by

z— zZ,\"
M= ( . ) . (4.130)
i ere, 11 is an integer and A an arbitrary parameter, while z, 18 a arbitrary complex

constant. For n = 1, from Eq. (4.127) and (4.129), we have the one-instanton
splution given by,

{:Dt{%‘ﬂ':}l exXpio = 2 12“. (4.131)
This vields
21‘\.2 B il
cosfl =1 — TEAE yeL ¢ = tan™! :S‘f (4.132)

(m{s = 5ol 4 20(u —)f + (s~ 5,)? + (u — )2 —~ A%)E)

g ((8 — 8002 + (u — u,y)? + A2) ' (4133)

As can be seen from Eq, (4.133), m — k in the limit lsl, Jul = oo, At
$= s, u = U, m — —k, Thus the unit vector m starts in the —k direction at
If u,) and goes to k as we approach the boundary. The size of the instanton can
this be considered to be a radius A of a circle in the (s,u) plane, centered around
{8, 1to). This is because when (s — s,)% + (1 — 1u,)? = A2, the k component of m in
1;5_ (4.133) goes to zero.



From the instanton solution Eq. (4.133), we calculate

2A ) )
m; = I:(S == SGJ? K [:'U. . un}g == -'"'LE]E (({:?J- — u,,}" == {S e 30}2 e ‘,12]1

—2(5—8,) {1 = 1)} + 2A (s - .qﬁjic) (4.134)

2A ;
({5~ 80)2 + (1 — w2 + A2)2 (2{3 ~ So) (4 = )i

(1 = up)® — (5 = 5,)° — A%)] — 2A{u — ua]E). {4,135)

o B 4o

he curvature and torsion corresponding to the instanton solution Eq. (4.133) are

] = - = 4.136a)
SR (CEr A i ey R (4.136a

m.my X My 2{u — u,) B
W a “.’5‘ — 50}2 =+ [u e IID:IE 2 J"ir‘!]l = T1. [:413'513}

. 2A —2i{u — u,) i ( (8 — 8] )]
({5 — 50 )% + (10— 1o)? + ﬁ:} \/{u — 1) + A2 Vi —u, )24 A2/
(4.137)

Note that this is not a traveling wave. The envelope of g is localized in both space

u = u, and vanishes as |s| — oo or [u] = oo. For (s — 8,)% + (u —u,)? = A? (a
tircle of radius A), ¢ = (1/A). Thus the size of the instanton is A. as expected.
fext, we obtain the three surfaces, swept-out by the moving curves, corresponding

ri(s.u) = /E ty(s' u)ds', {4.138)

— o[58 =80)* + (u— up)® + A%,
s, u}—E_ﬁlﬂﬁ\X (i A2 i
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2A(u — u,) .3 (5 —5,) 5
S+ St
s R 24 g (3-s0) - ;
+ (s =) N e iy e = m)k' (4.139)

The swept-out surface described by ry(s, ) given in Eq. (4.139) for A= 1,5, = u, =
0, along with a stroboscopic plot is shown in Fig. (4.7). At w = 0, the curve is a
planar loop in the z—z plane. From Eq. (4.139) we find, as u — oo, the i component
tends to 0 while the j and k components obey the relation 2, ~ u tan(y; /2A). Thus,
the two arms of the curve about s = 0 spread out, with the point s = 0 fixed and
asymptotically in time become a curve described by a tangent function in the y — z
plane.

(IT) The unit binormal vector obeys the BP equation and the tangent vector is
given, as before, by .
: by % by, m x I,
bty = = . 4,14
S H)

Substituting Eq. (4.135) in Eq. (4.140), we get

2(s — 5,0 (u—1u,) 2
(s —8a) =+ (u— u,)? T Az
(e =)t = (u—u,) + A% " 20 (2 — u,)
s — )Pt (a2 + AP T (5= 5,2+ (u—wug)? & A2

tzZ—

k. (4.141)
The curvature and torsion for this moving curve are
Ky = 2{u—1o) [ ({s—8 P+ (u—1, ) 4A%) = 2A/((s—50) 2 (u—1, )2 +A2). {4.142)

‘Upon integration of Eq. (4.141) the expression rs for the moving curve can be found
exactly to be

8 §— 5,00+ (u—u T A2
2(u —u,)? ! (8 — 5,) B
\/{u — Uy)% + A2 M — u,)? + A2

2A(u — u,) . (& — a,) .
= tan 3
V(= )% + A? (1t — up )+ A?

The swept out surface due to ra(s, u), is plotted in Fig. (4.8). At u = u, = 0, the
curve is a straight line along the ¥ axis, since the % and % components of r, vanish,
As time evolves, the surface formed is a shell-like structure: Omne arm of the straight

'.. {at u = 0) corresponding to 5 > 0 bends and sweeps about s = 0 to form the

+ ({58 — 8,) =

(4.143)




upper surface of the shell, while the other arm (s < 0) sweeps about s = 0 in the
opposite direction to form the lower surface. Both for u — 0 and u — oo, #y — 0

and the curve is a straight line. Fig. (4.9) depicts how the upper and lower surfaces
are formed in the process of evolution.

(ITII) The tangent vector in this case is given by

st —HaNys + TEI:T-B X Mgy o “Hallly + Tﬁfﬂ ~ m&jl [414_1}
|n3!‘| Im.\=|"
Again we write k3 = &, cosa and 73 = Ky sine to find
B / e, u)ds' + O (u). (4.145)
Thus the curvature and torsion are
A
'y = '. d.146
Ka TEPy e v v COs @, (4.146)
2A . B
Ty = (ZPS Ea e -y e sin e, (4.147)
2 — u, . —
= AU H (s — &) 3 (4.148)
W — 1) 4+ A2 Vo — u,)? 4+ A2

In Appendix C, we have shown that Cy(u) = 0, by using the moving curve compat-
ibility conditions Eqs. (2.6) to (2.8). Substituting Eqgs. (4.146) and (4.147) in Eq,
(4.144), we get

1
= ((5 = 50)% + (u — u,)* + A?)

( — cos o [l[u —u4,)? = (58— s,)% + A%

— 2(s — su)(u — )] + 2A(s — sn}ﬁ]

£y

+ sina [‘2{.&: — ) — u)i

+ (1= up)® — (5= 5,)* — AY)j - 20 (u— uﬂ:]fc]), (4.149)

where v is defined in Eq. (4.148), Unlike in (I) and (IT), a closed form expression
for the surface

s
ry = f ts rl'.fSI, {4150]

eannot be obtained in this case. A plot of this surface, for A =1, (s, = 0, u, = 0),
"l;ained by carrying out the integration using Mathematica, is shown in Fig. {4.10).
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4.6 Summary and discussion

ln this chapter, we have applied the three formulations deseribed in Chapter 2 to
(obtain the three moving curves associated with the Lamb equation (4.1), by using

its equivalence with the BP equation (4.13). The physical contexts in which the

‘correspond to an “envelope-soliton” solution ¢'S! Eq. (4.105) and an “envelope-
:_:'_tantun” solution ¢'" Eq. (4.137), of the Lamb equation (4.1). The three moving

iptic Liouville equation, whose general solution Eq. (4.6), is known,

We conclude by writing down the solutions of the elliptic Liouville equation (4.3)
1 the form given in Eq. (4.6), corresponding to the soliton and instanton solutions
Hgs. (4.105) and (4.137) of the Lamb equation for completeness, although this form
not been used in our calenlations.

(a) Twist

From Egs. (4.4) and (4.105)

f = log(y/(w? + k2) sechs). (4.151)

InEq. (4.6), this corresponds to the choice

1 T
Az, 2") = Bo = e} (4.152)

where, as can be verified from Eq. (4.103),
e | oo B .
iz, 2") = Ewu[z—kz ]+§kﬂ[;:—z J. (4.153)

(b) Instanton
. From Egs. (4.4) and (4.137)

2A
= log : 4.15¢
e ({Es — 5,2+ (1 — wug)? £ :13]) (4.154)
Pa icularly, comparing with the general solution in Eq. (4.6), this solution corre-
sponds to the choice

B(z) = A[l o= A=ty (4,155

A



Figure 4.1: A twist surface ry (s, u), Eq. (4.109): (a) A stroboscopic plot of the curve
evolution and (b) the complete surface swept out in a period (0 < u < 27 /w,) for
ko =0 and w, = 1. The curve at any instant of time is planar with curvature quuen
by k) = wysech(w,ys). This is the first moving curve associated with the corresponding
envelope soliton solution ¢'5) (Eq. (4.105)) of the Lamb equation, for k, = 0 and

i, = 1.

it}




Figure 4.2: A twist surface r,(s, u), Eq. (4.110): (a) A stroboscopic plot of the

curve evolution and (b) the corvesponding complete surface plot swept out over a
_t'ma imtervel 0 < u <1, forw, =0 and ky = 1, At u =0, the curve forms u circle,
_.s'ﬁmf: progresses, the two arms about 5 = 0 strefeh out in timme, above and belour
e plane of the circle, to become a (vertical) straight line ws w — oc. This is the
t moving curve associated with the corresponding ‘envelope-soliton’ solution ')

Eq (4.103)) of the Lamb equation, for k, = 1 and w, = 0.
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Bigure 4.3: A twist surface ri(s,u), Eq. (4.112): The surface swept out over the
~ e interval 0 < w < 10, for k, = 0.5 and w, = 1. The evolution is similar to Fig.
r: 1 ), except for a translatory motion in the direction of the vertical axis, along with
d rotation about this azis, leading to a twisting-out of the surface in Fig. (4.1 J. The
turve at any instant, however, is not planar in this case. This is the first moving

2 assoctated with the corresponding ‘envelope-soliton’ solution ') (Eq. (4.105))

ifthe Lamb equation, for k, = 0.5 and W, = 1.
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b= 0.5 andw, = 1. As mentioned in Section (4.5) (see above Eq. (4.117)), fork, =

rsion assume nonzero values, as seen. This is the second moving curve associated
h the corresponding ‘envelope-soliton’ solution ¢l (Eq. (4.105)) of the Lamb

gquation, for s, = 0.5 and w, =




Figure 4.5: A twist surface ry(s, u), Eq. (4.125): For k, = ) and wy = 1, the curve
is planar at any point in time as shown in the snapshot at w = 0 (b). The surface
(a) is generated by the curve over an interval 0 < u < 6, through a rotation about
the vertical azis. This is the third moving curve assoctated with the aomspondin_g
‘envelope-soliton” solution ¢ (Eq. (4.105)) of the Lamb equation, for s, = 0 and

Wy = 1.
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Figure 4.6: A twist surface r3(s.u), Eq.(4.115): As k, deviates from zero, however,
the eurve is no more planar (compare Fig. (4.5)) at any instant in time. The above
surface dis for k, = 0.3 and w, = 1 over the same period. This is the third moving
curve associated with the corresponding ‘envelope-soliton’ solution (Eg. (4.105)) of

the Lamb equation for k, = 0.3 and wy = 1.



are 4.7: An instanton surface ri(s,u), Eq. (4.139) with A = 1, s, = u, = 0
du =0, the curve 1s planar with an intersection in the middle, as seen in the
stroboscopic plot (a). As lime progresses, the two arms of the curve move on either
des to first become non planar. But asymptotically it approaches o tangent function
e discussion below Eq. (4.199)). The point 5 = () is however fived. The snapshots
e at unit intervals of time u. The surface formed (b) is over an interval () < u < 5.
"-';‘_.l: 15 the first moving eurve associated with the corresponding ‘envelope-instanton’

dlution ¢\") (Ey. (4.137)) of the Lamb equation
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Figure 4.8: An instanton surface ra(s, u), Eq.(4.143) with A =1, s, = u, = 0: At

=10, the curve is a straight line. With time, the two arms form the upper and
lower covers of the shell like surface. The point s = 0 remains fized at the center.
This is the second moving curve associated with the ‘envelope-instanton’ solution o'/

Eq. (4.137)) of the Lamb eguation.



/-

igure 4.9: Segments of the upper and lower surfaces that form the shell in Fig.

L.8). Surfaces swept out over different time-intervals are plotted. The sSEqMents are

separated and from a different view point, for clarity .




Figure 4.10: An instanton surface ry(s u), Eq. (4.150) with A = 1,5, = u, = (: The
surface swept-out by the moving eurve over an interval 0 < u < 1 is given., At
u =10, the curve is planar. with an intersection, with the point at s = 0 fired. As
time progresses, the curve becomes nonplanar. Asymptotically in time, the eurve
again becomes planar but in the plane perpendicular to the one it was on at w = 0.

\This is the third moving curve associated with the ‘envelope-instanton’ solfution gl
i) yL i

(Eq. (4.137}) of the Lamb equation.




Chapter 5

Summary of results and future

directions

In a seminal paper in the late seventies, Lamb [32] presented a procedure to associate
i fairly large class of completely integrable nonlinear evolution equations in (1 + 1)
dimensions with the evolution equation of a moving curve in three dimensional
space. Thus a certain ‘geometry” that gets associated with (an exaet solution of) the
integrable equation could be identified using his formulation. Nonlinear evolution
equations such as the NLS, sine-Gordon equation, etc,, were considered by him as
examples.

In this thesis we have shown that while Lamb’s formulation associates one spe-
cific moving curve to a solution of the nonlinear evolution equation, there are two
other analogous formulations possible which lead to the association of two additional
distinct moving curves with that same solution. Thus there are three moving curves
(le., three ‘geometries’) that correspond to an integrable evolution equation. In
other words, our new results unravel a much richer geometrie structure of a given
evolution equation. In order to understand this further, we have applied it to two
examples: The first is the NLS Eq. (1.5), which is an S-integrable equation. The
second, the Lamb equation (1.7), is a C-integrable equation. (The definitions of
C-integrability and S-integrability are given in Chapter 1.) We have provided a
method to obtain explicit analytic expressions for the three moving curves essen-

ially by exploiting the mapping of the former to LL equation and the latter to the
BP equation.

1In Chapter 2, after presenting a basic description of a moving curve in terms
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of the Frenet triad (t,n,b) on a curve (see Eqs. (2.2) and (2.5) in Section (2.2)),
we briefly reviewed Lamb's formulation (Formulation (1), Section (2.3)). We then
extended it to present our two new formulations (Formulations (IT) and (III), Sec-
tion (2.4)). Association of a given integrable equation to three distinet curves was
achieved by showing that the same evolution equation for a complex function g can
be satisfied by the Hasimoto function ¥ = xexp[[*r ds] in the Lamb's formula-
i;luﬂ as well as by & = rexp(["x ds'] and x = & + i7 in Formulations (II) and
(I1T) respectively. Thus given a solution ¢ of the nonlinear evolution equation, of
the form q(s, u) = p(s, u) exp(ia(s, u)), comparing with ¢, Lamb's formulation as-
sociates with it a moving curve with curvature x = o and torsion T = a,. On the
other hand, equating ¢ to ® and ¥ lead to the other two moving curves with the sots
Fa=p,m = @) and (k3 = peosa, T3 = psin a) associated with them respectively.

' Further, the temporal evolution parameters o g, h and 7, can be identified using the
¢ compatibility conditions Eqs. (2.6) to (2.8). These are clearly three distinct
.'Wing curves associated with the same solution of the nonlinear evolution equation

concerned, ‘The analysis in this chapter was general without reference to any specific
molution equation.

In Ghapter 3, we applied the methods develnped in Dhapter 2 to the particu] ar

bserve the following symmetry: The geometric parameters of formulation (II)

in be obtained from those of formulation (1) by simply making the interchanges
Ri——+T | gé=—Ty ; he— —h, (5.1)

This symmetry can be understood as arising due to the fact that the basic curve evo-

'fi! ion Equatinns [Eqa (2.2) and (2, }} are invariant under the above interchanges,
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the third.) However, we remark that the presence of the above symmetry between
Formulations (I) and (II) was not helpful in any way in the actual construction of
the moving eurves, This is not surprising because, as is clear, interchanging of curve
parameters, e.g., & — 7, ete., generically changes the very nature of the curve,
We remark that even if & and 7 are known (see Chapter 2) and hence the ex-
ence of the curve is gunaranteed in principle due to the fundamental theorem of
gurves [46], finding these curves explicitly by integrating the FS equations (2.2) is a
ﬁé;pntrivial task. To achieve this end, we exploited in an effective way, the relation-
:.ip of the NLS to the LL equation (3.20), a dynamic equation for a unit vector,
Jin Section (3.3). The LL equation is well known in the context of one dimensional
Heisenherg ferromagnets in the continuum limit. It was shown that for the first
girve, the tangent satisfies the LL equation, whereas for the second and third mov-

ing curves, the same equation is satisfied by the binormal and normal respectively.

he procedure for determining the above three moving curves r;, i = 1,2, 3, is pre-
sented in Section (3.3). While in Formulation (I}, given the tangent tq, a curve ry
i given by r; = [“t; ds', in (II) and (IIT) we have a situation where, given the
normal by and the normal iy, we mmst find 2 and ry respectively. To our knowl-
? ee, this is the first time that such a situation has arisen in the literature. We have
given & method and carried it out to explicitly find the corresponding geometries
igf the NLS. This section presents general results valid for any solution S of the LL
pquation and hence a corresponding solution g of the NLS. Next, we obtain the
plicit expression for the three moving curves, associated with the special case of a
.a—snﬁton of vanishing envelope velocity in Section (3.4). The corresponding three
surfaces swept out by the respective moving curves are presented in Figs. (3.1) to
3)

The interesting connection of moving space curves and integrable evolution equa-
tions started with the work of Hasimoto [14], who showed that the local induction
uation (see Appendix D) for the motion of a thin vortex filament in a fluid, is re-
lated to the NLS equation. It turns out that it leads to coupled equations for & and
r, namely the DB equations, (3.64) and (3.65). For the two new formulations (II)
.:.-:ru-a we have found two analogs of the DB equations in Section (3.5). A strobo-
stopic plot of the three moving curves associated with the one-soliton solution with
oving envelope was presented in Section (3.6), along with the explicit expressions
or the corresponding position vectors, The local induction equation vy = b is a
lical expression of the velocity vy (s, u) of a vortex filament in a fuid. However, the

wmalogous velocities associated with the two new curves obtained were found to be
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nonlocal in nature (see Eqs. (3.86) and (3.87)). The meaning and interpretation
of this feature was discussed in Section (3.7). In the end, we also discussed some
possible applications of the two new connections to actual fluids, where nonlocal
velocities are of relevance.

In Chapter 4, we considered the Lamb equation (4.1), as a second example to
illustrate the methods developed in Chapter 2. This equation is of interest, for it
can be shown to be equivalent to the BP equation (4.13) (Section (4.2)), It can also
be mapped to the elliptic Liouville equation, This in turn is of interest in surface
theory since it describes surfaces of constant Gaussian curvature (see Section (4.1)).
Further, though nonlinear, its general solution can be written down (Eq. (4.6)).
Thus the Lamb equation {4.1) is C-integrable [43]. In addition, the BP equation
(4.13) itself arises in a number of physical contexts, including static two dimensional
Heisenberg ferromagnets, one dimensional Heisenberg antiferromagnets and the non-
linear sigma model. The BP equation supports twist and instanton solutions. These
were briefly discussed in Section (4.3). In Section (4.4), we exploited the connection
between the Lamb equation and the BP equation, to associate three moving curves
with a given solution of the former. In particular, in Section (4.5) we considered
solutions g of Lamb equation which correspond to the twist and instanton solutions
of the BP equation. These were shown to have the form of an ‘envelope-soliton’
solution ¢'*) BEq. (4.105) and an ‘envelope-instanton’ solution ¢! Eq. (4.137), re-
spectively, of the Lamb equation. We then obtained the explicit expression for the
position vectors of the three moving curves that can be associated with each of these
solutions. The swept out surfaces corresponding to each of these cases were derived
and graphically illustrated using Mathematicn.

We conclude with a discussion on future directions in which the methods devel-
oped here can be extended. As mentioned in the beginning, a number of integrable
equations can be associated with moving eurves. This include, apart from the NLS
Eq. (3.1) and the Lamb equation (4.1), the mKdV, the sine-Gordon equation, ete,.
These equations are well known and also arise in various contexts in physics as did
the NL5 and (as we have shown) the Lamb equation. Note that the moving curve
formulation led to the association of distinct dynamical NLPDE for a unit vector
for these two equations. Henee it would be of interest to find such connections to
dynamical unit vector equations for other integrable equations as well, Once that is
done, the connection can be exploited effectively in obtaining the explicit expression
for the corresponding moving curves, as we have done in Chapters 3 and 4.

Let us see how this can be achieved, by considering an example [32]:
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Compler mKdV equation: Consider the choice v = t.+1 ,J’2|ul'|2-ul' (and similar
choices for 7, and 5 in terms of & and y respectively). Upon substitution in Eqgs.
(2.22), (2.32) and (2.46), we get the complex mKdV equation

3 -
Qu + Guss + S lal%qs = 0, (5.3)

with g = 1, @ and x respectively. A short calculation shows that the corresponding

curve velocity r, will be given by the following equation in formulation (I):
ri= —EH.Et — #yn — k7h, (5.4)

By writing down the equation for t, from Eq. (5.4) and by finding its exact solution,
the explicit expressions for the three curves corresponding to the soliton solution of
the emKdV can be found using the method we gave in Section (3.3) for the NLS.
Since the emKdV equation is well studied in literature with known solutions and
given their interests in various physical contexts [7, 8], it may be worthwhile finding
these curves explicitly. This is an open problem.

It should be noted that while the moving curve [ormulation associates a number
of integrable equations to specific evolutions of curves, the dynamic equation for
the curve itself need not always an NLPDE. For instance, the equation of motion of
the position vector of the first curve r; corresponding to the NLS, is the one given
by the local induction equation, (1.2), which can also be written as the following
NLPDE for ry:

M = T1s % Lgs- {5'5}

As discussed in Section (3.7), the velocities in the other two formulations however
were nonlocal in nature. So while such an NLPDE cannot be written down for rs
and 3 in these formulations, nothing is lost since these can indeed be found exactly,
by using the exact solution of by or ny. since these unit vectors satisfy the integrable
| evolution equations as well. In the case of the Lamb equation, nene of the three
position vectors vyt = 1, 2,3 satisfied an NLPDE, but still they could all be found
exactly from t;, by and ny, as we showed in Chapter 4. This is an important point
to be stressed.

We remark that the NLS equation, and the other equations in the hierarchy
such as the complex modified Korteweg-de Vries(emKdV) equation, ete.. can also
be obtained through the constrained motion of a non-stretching curve on the surface
of a sphere, % in 4-D [62]. It was further shown that the inverse of the radius of the
sphere, is indeed the spectral parameter, while the curvature x and torsion 7, play

the role of the potential for the corresponding linear scattering problem. This leads

|




to the direct construction of the corresponding Lax pair for the nonlinear equation
coneerned, for nontrivial vahies of the spectral parameter. Besides, the real mEd4Y
equation, sine-Gordon equation, ete., were shown to result from similar constrained
motion of non-stretching curves on a sphere S° in 3-D. The corresponding linear
problem in the case of 5% is indeed the ZS-AKNS spectral problem considered in
[41]. It would be of interest to see if the other two formulations (IT) and (III) can
be applied here. This is another open problem.

Finally, extension of these formulations developed here to study connections
between integrable evolution equations in (24+1) dimensions and moving surfaces, is
another possible subject of interest.
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Appendix A

One-soliton solution for the

nonlinear Schrodinger equation

Here we derive the one soliton, Eq. (3.19), of the NLS

Sl it
Tty 4 g, 2|¢J| =0, (A.1)

Let ¢ = pexp(ia). Substituting this in Eq. (A.1), the real equations for the
amplitude(p) and phase{e) can be shown to be

Py + 2p0 + pag, =0, (A.2)

1. 9
— Py + EPJ + pgs — pag = 0. (A.3)
We look for travelling wave solutions of the type
pls,u) = pls = Veu) ; als u) = als — Veu), (Ad)

where clearly, V. and 1, denote the velocities of the respective travelling waves.
Henee,
puls,u) = =Veps(s,u): (s u) = =V (s, u). (A.5)

Consequently, Eq. (A2} becomes

—Veps + 2p505 + pargs = 0. (A.6)

Upon integration, after multiplving with r, we get




ChGDSillg C,=0. we have,

Ve :
[ — -E* HS,‘I
This yields
Ve .
= —23{5 — V), (A.9)

since a is a function of (5 — Viu) as in Eq. (A4). Substituting Eq. (A.9) in Eq,
(A.3) gives

Vo: W% 1
3{1} — G+ Eﬂﬁ + pse = 0. (A.10)
Multiplving by p, and integratin g, we get
; i Va o
g F)
A=rglz-va-5) b, (A1)

This has, in general, elliptic functions as solutions. Choosing the constant of inte-
gration [, = () leads to the one-soliton solution. Also note that i order for the lefs
hand side to be positive, the quantity in parenthesis in Eq. (A.11) on the right hand
side must be positive. This in turn imposes a bound on the amplitude p. Besides,
from Eq. (A.11), the first term in paranthesis itsolf mist be positive, i.e.,

Va(Ve = 2V) > 0. (A.12)

'

Upon integrating Eq. (A.11) we obtain
P = VelVe = 2Ve)sech(y/Vo(V, — 2V, ) (s — V,u — o)), (A.13)

where (g is the constant of integration. From Eq. (A.13) and (A.9), setting ¢, = 0
for convenience, we get the one soliton solution

qg= ansech(-ﬂz—ﬂf} exp(iVe(s — Vou)/2), (A.14)

which is Eq. (3.19).

Setting /V.(V. — 2V) = 2p, V. =2\ and § = 8—2\u, Eq. (A.14) can be
rewritten as

v = 2wsechvd exp(in), (A.15)
where
n=As+ (v* = A, (A.16)

Eq. {A.13) is the one-soliton solution given in Eq. (5.53) in terms of parameters v
and A
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Appendix B

One-soliton solution of the

Landau-Lifshitz equation

The LL equation is given in Eq. (3.20)

S.=Sx8, : =1

(B.1)

In what follows, we obtain the solution given in Eq. (3.51) of Chapter 3. Parame-

terizing the unit vector 8 in terms of the polar angle @ and azimuthal angle ¢,

S(s,u) = {sind cos ¢, sin @ sin ¢, cos#}.
Substituting Eq.(B.2) in Eq.(B.1) yields the coupled equations
By = —gysinf — 20,0, casf,

sinflg, = f; — &7 sinf cos 1,

Looking for particular solutions for Eqs.(B.3) and (B.4) of the form
0(s,u) = 8(&);  (s,u) = B(E) + O,
where £ = (s — vu), we get,
—ul = —eesinf — 28,0 cos ),

—vdesind + Qsinf = fee — & sin Bl cos 6.

Multiplying Eq.(B.6) by sin f and integrating w.r.t £, gives
veosf = —gesin® 0 + ¢,
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where ¢, is an arbitrary constant, The condition at @ = 0 in the above equation
gives ¢, = v. Henece .,

1—cosé
v
" 1+cosd (B-10)
From Eq.(B.7)
fec = b sin {—v + ¢ cos#) + Qsin b, (B.11)
From Eq.(B.G)
Be(—v + G cas ) = — (e sin B);. (B.12)

Substituting Eq. (B.12) in Eq.(B.11), multiplving by 8¢ and integrating, we get,
0 = - sin* 0 — 20 cos 6 + d,. (B.13)

Imposing the condition of smoothness that as |s| — o0, # — 0, and e — 0, we
obtain d, =200, Using this and Eq.(B.10), Eq. (B.13) can be written in the form,

A1 —cos@\ (1+cosf  o?
2 __ =
%= 4“(1 +mse) ( 2 m)‘ (B34)

Defining 3 = /2, we get,

B2 cos® 5 = Qsin® ﬁ(cmsgﬁ - }i) (B.15)
£ e : 40/ b |

Setting €2 = sin 3, the above equation becomes
2
Q=0"QVF -7 #=1- (). (B.16)
Note that in defining b we have implied the condition Q > v2/4. Upon integration,
Eq. (B.16) gives
() = sin % = b sech(bVTHE — &), (B.17)

Where £, is a integration constant. Hence

| =

cosfl =1 — 2sin®

= 1—2bsech?(bWQ(E — &)). (B.18)

b i - |

Using the above result in Eq.(B.10) and integrating, we get (with & = 0},

_ = n ¥
§5—¢a=§€+tﬂn 1(

1 Ezbﬁ tanh(bv’ﬁ&]). (B.19)
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Taking the constant @, as —7/2 and using ¢ = ¢ + Qu (see Eq. (B.5)), a short
calculation using Eq. (B.19) yields

sin @ = (—\,fl—inz’{:{ml:z }+qu n) tanh(bv/0E) )
\/1 — b2sech? (h/2E)
and
cos ¢ = l (y’l - !J:’siniz }—I—b{m }tanh{bvrf ), (B.21)
\/1 — bsech” (by/DE)
where 50
T=s8—(v——)u. (B.22
i

Summing up, we have the solution to the LL equation given by Eq. (B.2), where

sinflcos g = 2.’1(\;’1 —Fsin[gr}] - bcns{%q;} ta,nh{bv”_‘f])se{:h{bvﬁf] (B.23)

sinfsin ¢ = 'Eb( —v1-p2 ms{z n)+b mn( r;} tanh{bv"_ﬁ:l)sech (bv0E)  (B.24)
and
cos f = 1 — 2b%sech®(bv/26). (B.25)

In the above, note that S = cos# — 1 as s — +00, Further  (see Eq. (B.5)
must be finite to support a solution of the LL equation,

An inspection of Eq. (B.3) shows that Eq. (B.25) implies that the soliton
has a finite intrinsic precession or angular momentum © about the # axis. In other
words, physically a magnetic field in the z direction to the ferromagnetic Hamiltonian
automatically results in a precession of frequency Q needed to support a soliton [63].

Denoting by/(? as v and v as 2, we get 0 = p?+ )% and #? = v+ A, With

the parameters » and A, the unit vector S given by Egs. (B.23) to (B.25) becomes

sinf cos ¢ = ,rr.()u siny + v cosn tanh{exfj)ﬁmuhfu.f], (B.26)
sinffsin ¢ = ,u( — Acosn 4+ v sin r;tanh(uﬁ})sech{vfj (B.27)

and
cosfl = 1 — pwsech? (), (B.28)

where yo = 2v/(2* + 2%), 5= A s(t? — A*)u and € = (5 — 2)u). The solution given
in Egs. (B.26) to (B.28) is just the soliton solution for the LL equation given in Eq.
{3.51), Chapter 3.
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Appendix C

Determination of functions C(u)

and Cs(u)

As noted in Chapters 3 and 4, in formulation (I11), the unit normal vector n, satisfied
the LL and BP equations respectively (see Ilqs. (3.29) and (4.43)).

In general, the expression for the position vector of a enrve r{s,u) in terms of
the unit normal vector is given by Eq. (3.50);

¥ —Kalgs + T303 X na, | _
r; = / sl sl oo L N ] (C.1)
|m, [ '
However, as noted in Egs. (3.44) and (3.47),
. : d T:

¥ 2 2 -1 4 4

Ki+Ta =K]; —tan =)= 7. C.2
3 =N He 1 {HH} 1 ( )

where #, is the curvature obtained in formulation (I). Without loss of generality, we
choose the parameterization

K3 = K1 0080 ; Ty = Kqysine. (C.3)
Substituting this in the second equation in Eq. (C.2) vields
= Ty (CA4)

Thus ;
0= / 71 ds+ Clu), (C.5)

where C'{u) is an arbitrary function of time at this stage.

89



To find C(u) we proceed as follows: First, from Eq. (C.3) & = tan™! 2. Hence,

RaTan — KggTy
by = ——/—

(C.6)

(k5 +7%)
From the compatibility conditions (Eqs. (2.6) and (2.7) with the appropriate sub-

script 3), gy — g3; = —7ahy and Ty — Toas = Kahy. Combining these two, we obtain
K3Tau — K373 = [Eé N Taz}h.'s + K3Tuds — 3573 {C-?J
Hence, from Egs. {C.6) and (C.7),

F3Tau — Nau7s K3Tois — HasTa
Oy = —F—F—— =fg + ———"= 8
W+ 7 g+ =
But from Eq. (C.5),

< il
Qi = a[ T ds' + E’;C' (C.9)
Hence from Eqs. (C.8) and (C.9),
d — d ‘ — [E - d b g HgToss — H3sT3
O =~ / s +ay = [ rds' by + BT 0N

ki + 7

Below, by using Eq. (C.10),we first find the constant of integration C(u) in Eq.
(C.5), for a general solution of the LL equation and the BP equation respectively.
We then specialize to the one-soliton solution considered in Chapter 3 and the twist
and instanton solutions obtained in Chapter 4. Note that Eq. (C.10) is the general
expression for C'(u) in terms of the time evolution parameters K3, Ts, g3 and 7o, If
ny satisfies an NLPDE, we will see that all these can be expressed in terms of &,
and 7. Thus dC/du is determined in terms of x; and 71 which are known functions
for unit vector equations like LL and BP equations and hence can be found. We
now show how this happens for the LL and BP equations respectively.

The LL equation (Ch. 3, Sec. (3.3)): C(u) = C,(u)
Here, the normal vector ny satisfies the LL equation

Mgy = Mz X Tlgge. {CJ.].]

From the second equation of the set (2.5), ng, = — G3ts 4+ mo3bs. From the second

equation of the set (2.2), we find ny x ny,, = 7.ty + x3,bs. Thus Eq. (C.11) yields,
for the LL equation

1 r L
3= —Tas : Tea = His 1]13 = E(Hé +'T3'a:] {GIEJ
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(see also Egs. (3.17) and (3.18).) Substituting (C.12) in Eq. (C.10) and setting
Clu) = Cy(u) for the LL case, we get

d d : ! 1 2 bl Kalges + T ‘333‘3 e
a']__.l_-il = _E..I"u [ | i e E{H-ET 13:] -+ le_l_ ,q : {(:]_JJ

Upon using Eqs. (C.3) and (C.4), a short calenlation vields

a.n

Hi1Rgss T T3s5T3 = KiK1ss — R7T] - {C,]ﬁl}

Using Egs. (C.14) and (C.2) in (C.13),
ﬂr 5 3 1 : Kilgs 0 "
EC;—“EL/. I3 'I':Ir’§+} T TI—Tl. [Cla}

Note that Eq. (C.15) yields C\(u) for any solution S of the LL equation, with
= |ng,| =|S,] and s =8 x 8, % S,,/K3.
Ezample: Specializing to the one soliton solution Eq. (3.51), we have from Eq.
(3.78),

k= 2wsech(v€) ;. 7 = A (C.16)
Using Eq. (C.16), after some algebra we can show that (353 + BigefR1) = 2
Substituting this in Eq. (C.15) vields

icl = (v* = \%). (C.1T)
du

Henee
Cila) = (7 = M) (C.18)

Thus from Eq. (C.5), &= [" 7 ds'+C)(u) = (As+ (12— A)u) = 7 (see Bq. (3.52)).
This expression has been used in our analysis (see Eq, (3.83)).

It is clear that Cy(u) will depend on the form of the solution of the NLS (and
henee the corresponding solution of the LL equation).

The BP equation (Ch. 4, Sec. (4.5)): C(u) = Cy(u)

Here, the normal vector ny satisfies the BP equation

Ny = Ny ¥ Ty, I:Clﬂ:l

Using the second equation in the set (2.2) and the second equation of the sel, (2.3),

Eq. (C.18) implies 133 + rabs = —gata+ 7,3bs. Hence (as also noted in Eqs. (4.41)
and (4.42)) we have

3= —Ta}, Tea=kz: Hhs =[ (k3 +75) ds'. (C.20)
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Substituting Eq. (C.20) in Eq. (C.10) and setting C(u) = €y (u) for the BP case,
,2_-—] 'n u_fsTf{n +72) d¢' +’”’”FT”*”‘ (C.21)

Using Eqgs. (C.3) and (C4), sykss + mam3, = K1k1s. buhstltuting this in Eq. (C.21),

—EI--C;; a [ 7 dg’ +[ Ky ds' -|-h.Eli [CEE}
du

Ky

Note that Eq. (C.22) is a gnneral expression for Cy(u) valid for any solution m of
the BP equation, with x; = |n3,| = |m.| and 7 = n3.n., x Dis/ |03, = m.m, %

m,,/im,|*. We now specialize to the twist and an instanton as examples,

(a) Twist

For this case, using the twist solution m of the BP equation given in Eq. (4.100),
we obtain Eq. (4.106),

k1 = v/ (w2 + k2)sechs} ; 7 = —k,tanh7, (C.23)

where 7 = w,8—Kqu. Substituting Eq. (C.23) in Eq. (C.22), we see that all integrals
can be exactly evaluated and after some algebra we get

d 3 1
EG‘““} =0 (C.24)

for the twist. Thus C5 is a constant which can be set to zero without loss of
generality.

(b) Instanton

Here, nsing the instanton solution m for the BP equation given in Eqg. (4.133), we
get Eq. (4.136),

k=20 ((s—so)* +(u—u)* + A% ; = =2(u—u,)/((s— + (u—uz)2 + A?).
(C.25)
Substituting Eq. (C.25) in Eq. (C.22), we see again that all integrations can be
carried out exactly and a short caleulation yields
i{?-:{u} =0 (C.26)
du °
for the instanton. Therefore, €y is a constant which ean be chosen to be zero.
Thus from Eq. (C.5), @ = [*n ds' for both the twist as well as the instanton
solution, where 7, is given in Eq. (C.23) and (C.25) respectively.
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Appendix D

The local induction approximation

The interesting connection between curve motion and solitons started with Hasi-
moto’s work on fluid mechanies [14]. We briefly describe here the 'local induction
approximation’ for a thin vortex filament [27] and end with the mapping to NLS
due to Hasimoto.
Consider a thin vortex filament moving in an incompressible, in-viscid fuid, Tts
vorticity is given by
w(r) = v x V(r), (D.1)
where V(r) is the fluid velocity at a point with position vector r. The fluid being

incompressible (7. V = 0}, the velocity V is given from (Eq. (D.1)), by the Biot-
Savart integral:

Vir) = j i e ) (D.2)

je—
This expression gives the velocity at any point in a fluid, in terms of the vorticity
w. For a thin filament the vorticity is concentrated entirely on the filament core.
Consequently the volume integral in Eq. (D.2) becomes a line integral over the
filament. Besides, if we assume the vorticity to be entirely in the tangential direction
to the axis of the filament, then the velocity of the flament itsell, induced by its
own vorticity, is given by the line integral

Viir)~ fﬁ:t[r'} X (r—r)/|r =1 d¢, (D.3)

where now the integral runs over the filament whose position vector is given by
r(s,u) and k is the magnitude of vorticity. Local contributions dominates the Biot-

Savart integral, as seen from the integrand in Eq. (10.3). Expanding r' in a Taylor
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series around r(s, u), we have,

r'(s',u) =r(s,u) + (s — s)r, + %{SJ —8)ry + O —5)°, (D.4)

Since vy =t and r,, = t, = xn from Eq. (2.2), substituting Eq. (D.4) in Eq. (D.3)
vields, after rescaling,

Vi ~ k(t x 1) = xb. (D.5)

Eq. (D.5) gives the velocity of a vortex filament, i.e.,

r, = Vy, (D.6)

obtained with the various approximations mentioned above. As a result of these
approximations, it is to be noted that the expression for Vi(s,u) is local, that
is, the velocity depends only on the eurvature & and is along the direction of the
binormal b at the point § and at time u.

It must be noted that Eq. (D.5) has no tangential and normal components
but only a component along the binormal. This is indeed an indication of the non
stretching nature of the filament to the order of approximation considered. Now,
differentiating Eq. (D.5) with respect to time, we have,

t, =x,b— kTN, (D.7)

where Eqs. (2.2) has been used, Comparing with Eqs, (2.5), the corresponding

equations for the curve parameters £ and 7 are found using Eq. (2.6) and (2.7) as,

Ku = —(KT)s — KsTs (D.8)
Ty = [LH'.-:J,-"I"E} -~ Tglﬁ o Rls. (DQJ

Which are indeed the DB equations (3.65) and (3.64). These two can be combined
into a single equation for the complex Hasimoto function v, Eq. (2.1), to vield the
the nonlinear Schridinger equation, Eq. (3.1), with ¢ replaced by 1. For a given
soliton solution, the curvature and torsion of the filament can be read off using Eq.
(2.1}, Thus, the local induction expression for the velocity is seen to lead to a shape-
and velocity-preserving motion of a vortex filament in the fluid,
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