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I . TNTZODUCTION : EIGEN  STATE
 

THERMALIZATION
.

Take an isolated classical system ( " micncanomcal
"

;
 microstates [ Ton,Tn })

.

Fundamental Assumption of Stat . Mech : all microstates are  eqnipobable
-

( as long as they are  consistent  w/ conservation laws )

- Implicitly assumes ergodic dynamics -  no
"

memory
"

of inked conditions

( Can derive  in some  cares e.g. kinetic theory of gases
-

-  Newtonian dynamics + statistics ÷

' ' molecular chaos
" )

• - '

am'
. NELIS Interactions ( even

"

ideal
"

gas is not really free ! )£#.

Exceptions  rare -

"

niezabk sakyj.wnlexugm.ee#of

what  about isolated quantumsystem?#.,( microstates I many - body eigenstates

)
Consider some  initial state (e.g. ,

built from states in  window  ~ D around energy

E.)
:

^

4 > = E only > ( attn )

E§
€¥¥°

H
in

Q . How does this evolve in Ene ? ( e.g. ki - e

' K '%%
)

.
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Schrodinger : EH
.
> = Eu

:  itnt

HAD
= [ one It >

n

For stat .
neck

.
 - convenient to we density matrix

formulating
Ct ) = 14 Ct ) > ( tlt )) ( note : pyre state ! )

i ( Em - En )t

= E cm*cn e Itn >4n1
m ,n

Consider making a measurement "

averaged
' '

over time T large compared to

all En . En ( assume no degenerates ~

"

generic
'

' system) : this comes ponds to

performing averages using the appropriately Time - averaged density matrix

.L+T
-

Fi =
. ÷

,
fatsa 's = I lent ltxtnl

+
t

U
off .  diag . pieces T

oscillate ¢ cancel THE
 "

DIAGONAL iLN5LM3LE
"

,

Time .  averaged density matrix
' '

knows
"

the probability that  system  was

initially in state n !

How do we define engodicity for  isolated quantum systems ?

- Quantum evolution  is unitary ⇒ can't lose
any quantum  information

- Information  must be ' hidden
"

somehow ( DECOHERENCE )

Consider a local observable : Hermihian operator 6 ( acts only inside a

Subugim ,
a )

( 5h >
=

tr jets 0
= I lent kl5k7
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We  can relax  our demand for ergodiity and simply ash that no

loyal measurement can remember the initial conditions

i.e.  we  can  ask that ( OH ) ) = O ( E.) + small corrections

⇒ In lent ( ml Olm > = OCED

Suppose ( ml Olm > = 0 C Eu ) " small crotons ( Occur ) ~ smooth fn
. )

Then
,

In 14124104 = Eu lcmp OCEU ) + small corrections

E sharply peaked annd [
o

~ OCEO )
-

(Obvious generalizations to other conserved quantities , e.g.
iv

, I ,
. . .
)

This is the idea of
"

typicality
"

: states that
are

"

chore
"

interns

of conserved qualities have similar values of localobservables
.

AN ENTANGLEMENT PERS > ECIIVE
.

We can formalize Its notion by taking the above ideas to lte

logical amehnsion : consider a single eigenstate ltd
.

How do we

recover stat
.

 mean . ?

( m )

f = 11=>4-1 ( pure  state )

let's consider a
local observable

,

made inside some region A

and take the thermodynamic limit while keeping A fixed : i.e. we

odd degrees of freedom only to B = t
,

and hence grow the
"

environment
"

as

of A :
e

. . .  - - . - - . . . -

,

=.  - . . . . .  -
.

IuI .

! !€÷ !
! '

-
. . . . . . . . . . . .

'

:
(

-  - . .
. . . . . .  

-=
>
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It's convenient to write

( 5 >
=

To

,, §
'm 'd

= T%{ (

Trsf
"

) -0 } ( since 5 lives  within A)

:
.

Trl'

no
}

A

SA
where A

"

=
Tu

,
§ '

is the reduced density matrix of
Ain

state m.
a -  -  -

Can define  even for  non .  eigustatef

So
,

as L •
, fun ,

is changing .

This reflects the feet that as we  add

degrees of freedom to B
, key can get entangled with Hose  in A

.

Note that

even though Itn > is a time state -  even an eigenstate ! - fun ,
the

reduced density matrix of a sulregior ,
on look like a  mixed - stale dimity

matrix - reflecting the fact that entanglement of degrees of freedom inside A

with those outside of it can generate C entanglement ] entropy .
[ & . what would

m
were a pure - state density matrix ? ]it mean if it

,

we now regime that this entanglement generates thermal equilibrium
behavior within A .

 i.e.
,

that B acts as an

"

environment
"

for A
.

To

qualify when Ana is
" thermal

"

,
we recall that thermal equilibrium

erpectahon values of local observables are given by
- Ht

M. , eq

co >a =
"

au , to = in.{ to .ez÷ a ] -= %{

jaho
}

T ) T )

. HIT - HIT
where ZCT )

.

. Tre and feat ( T ) E Try ÷
- ( T )

is the thermal equilibrium deity matrix of A
.
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We are  now ready to state the Eigen state Thevmalijaton tlypokesis ( ETH ) :

( Deutsch
.

Srednicki )

A system satisfies ETH if in the thermodynamic limit where we hold the
_

size of a swbreejon ,
A

,
fixed

,

i ) given eigenstate ltd ( ii ltd. EMHID
,5a

"

=feat
C Tn ) where In is

the temperature at which the thermal equilibrium energy is Em ;  in other

words
,

Tin is implicitly defied by En =
Tv If ,T( In ) .

A

ii ) matrix elements ( ml d In> vanish
"

fat  enough
"

in the th
.

limit that

temporal fluctuations of the pact ) vanish
.

[ various modifications of this are possible
,

won't discuss there much
. . . ]

ETH formalizes what it means fm  a systems to " act as its own heat bath ?

Are there systems that don't satisfy ETH !

•• One example is furnished by quantum integnable systems - due to the

extensive number of conserved quantities , they lternalige to an equilibrium-
density matrix with an  extensive number of Lagrange multipliers - ltus is

called the Generalized Gibbs Ensemble ( acne ) .
However

,
there are very fragile

- generic perturbations destroy integnability & restore engodicity .
So

, they
don't provide a  route to an ETH - violating phage .

• A  more interesting class of ETH .  violating systems is the set of
Anderson - localized systems .

These are also non - generic : they are

non - interacting .

However
,

seminal work by Basho
,

Aleines
,

Altshuler ( 2006 )

( notable prior work by Fleischman & Anderson (
'

80
)

,
Altshuler - Lefen . Kamenev - Leith ( ' 99 :D

and Gormj ,
Molin

,
& Polyakov ( 2005 ) ) showed that Anderson localization

is putwbalvly stable against interactions  - so we terms these more generic

localized systems
"

many - body localized ? We will examine

theirphenomenology and new physics afforded by Item in the remainder
.
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I. ENTANGLEMENT
,

LOCAL . ZA
- lion & EIH VIOLATION

...
To see why localized systems violate ETH

,
let's go back to the

statement of Eitl
.

Tin says that the reduced density matrix of a state

is equivalent ( in the thermodynamic limit ) to the thermal density
matrix as a temperature corresponding to the energy of the state

.

Consider the entanglement entropy snlregion A in state N :

-  -  -
of

since ) =
- Trgahshjh "

Now
,

consider a  state at finite energy density ,
comes pending to high temperature .

If ETH holds
,

then 5,4 .

- f ,Pt( Tm ) ;  in that care
,

the entanglement

entropy must coincide with Lte thermal entropy . Crucially ,

thermal

entropy is extensive . Therefore ,
we have

Seek 'CA ) =  
. Trgaertnihjaeuctm )

=
SKCA

, 'm )

= Stu ) x wlftl )

Now
,

consider an Anderson - kocalized system .

Since it's a free - fermions

problem , every many - body state is a
Slater determinant of

single - particle states
,

each of which is exponentially localized
,

.
with some

finite localization length , 5 .

Then
,

we can compute the entanglement entropy by noting that

degrees of freedom located D } from the boundary of A don't contribute

to the entanglement of A with the rest of the system .

¥a±y⇐±::III±:TIIIt¥
/ the reduced density matrix

. Hint : you can usesf
"

sestets trim
.

" ]
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In other  words
,

ETA  ⇒ S (A) - ul (A) ; but this is net time in the
lit

Anderson . localized phase ⇒ EIH :S violated
.

This is stable to adding interactions ⇒ M3L systems violate :L '

H  and

are
"

generic
' '

•

.

[

Decking
: Pal & Huse

,
Bauer & Nayak +  may others

. . .

Putative Proof  of MBL : JZ . Imbnie ,
a- Xiv 2014 - so far  unpublished . . . ]

Il . P÷  ENOMENOLOGY OF  THE  MZL PEASE
.

We  now discuss the known phenomenology of the MBL phase .

Much of this has been  inferred from  nunneries on modest  system - sizes ;

( Nandhishore & lluse have the appropriate references
;

the pioneering nunneries

were done by Arjeet Pal and David Huse c .

2008 - 10
.)

It is useful to set  up  our discussion by first discussing He non .  interacting
( "

Anderson
" ) localized phase .

his will be brief - the other lecturers have  already
done a  wonderful job of detailing the intricacies of Anderson localization .

For simplicity ,
henceforth T will focus on d- 1

.

Anderson Localization
mums  ms

Lets the a simple light  - binding model
,

Ho =
- J ? ii ci+ ,

+ CI
, , co  + ? hi  CIC ,

where hi e unit
.
[ w ,W]

.

As originally shown by Anderson ( 1958 ) for "

sufficiently strong
"

disorder

( as parametrized by lee magnitude of Y ] ) in
o=y diension

, all single -

police eigestales of Ho are localized o.ee .
have the form

-  o

-

IT - Bally
4

,
CT ) =e( any Y= > 1  is

"

sufficiently strong
"

for de 2 )
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A simple change of basis allows us to recast 11
.

in the localized single
particle

eigmbasi
= § ex Csc

,

In d- 1
,

we can map
the fernrion problem using a Jordan - Wigner

transformation into a spin model

' ' random  - field
H

. =
J ? #tI,

+ III
,

) + ? hi It .
xx chains '

Adding Tnleradions
Mumm

We can add interactions to the Anderson  insulator : this takes the form

of four - fermions terms :

tl = Ho + Hint ; tline . ? Jz ri
;  vii. ,

( ti .  ctiq. )

• In the eigenbasis ,
Hit  . ÷g JJH dscjlcycg ,

with EH ~ Off ) .

• In the spin Language 71in.  = I ? of
't off, ( the XXZ  chain u/ random fields

.

With interactions
,

even in du 1
,

disorder needs to be
'

Erfficently strong
"

to induce

localisation  ⇒ there is a  many
- body localization phase transition driven by

either disorder or by interactions
.

( more or this in Lecture 3
, hopefully )

wb

:M3#to ETH÷
Anderson localised • > ⇒
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"

Quench
"

Experiments
Mumm

So far
,

we have focused mainly on the similarities of the Anderson

and 143L insulators
.

However
,

there are key differences between the two
,

and

numerical studies of
"

quench
' '

dynamics are  very useful in  illuminating this
.

Two such experiments are

[ 1
.] Bardarson

,

Pollmann
,

Moore
, Phys .

Rev
.

Lett
. 119 ,

017202 ( 2012 )

[ 2 .] Vasseur
,

Parameswauan
,

Moore
, Phys .

Rev . B
. 91 ,

140202 ( 2015 )

Both study dynamics of the XXZ  chain
, focusing on the behavior as Jz is=

creased from 0 at strong disorder ;  in each case
,

the initial state is

the " Niel state
'

-

-
iht

14.7 = lttii . .tt ' ) ; HAD =
e Ho >

.

and time . evolution  is performed using Time Evolving Block Decimation 313 on

exact diagonaliyalion .

[ 1 ] studied the behavior  of entanglement entropy across a

" cut in the

middle of He system ; they showed that  in the AL phase ie entanglement

grew a little after the quench ,
and it saturates

.

In contra  in the MBL

phase ,
S grows logarithmically ,

on a time - sale set bz tie
.

interaction  strength ( %) ; while S saturates in finite s . y
,

the

saturation value increases with system Sje , showing that i entanglement

grows without bound . They also showed that pottle Mr fluctuations

across the cut did net exhibit Its growth . ( This no ed the

phenomenological model we will discuss shortly ; [ 2 ] served as consistency check )
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[ a ] examined the post - quench dynamics of a single spin ( for

convenience
,

one  with Jz - hi  =  o
,

but this is inessential )
,

and measured

the rate of
" revivals

"

- how often the spin returned to its initial value of +1

per unit time
.

For the AL phase ,
this rate saturated to a  constant value

.

For the MBL phases ,
the rate of revival decays on  a time scale st by J€ ,

Meanwhile
,

the too  expectation value of the " classical
"

component ( T.tt > of

throats
.

test spin remains nonzero in both AL
,

MBL phases lwl no finite - s :& soling
whereas in the ETH phase it goes to zero as Z  a ( as determined by
finite - size scaling )

.

Both results one consistent with a picture of the ALIMBL phase
that is as follows

i ) both are localized -  exhibiting no transport ,
and retain memory of

=initial conditions to late lines⇒ no dissipation

in ) the interactions  in the MBL phase induce

dephesing
, leading to

the growth of entanglement & the decay of revivals -  neither of
which

occurs  in the AL phase .

We  may now summarize the phenomenology of the ETH / AL / MBL phases .
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PROPERTY BRGODIC SYSTEMS ANDERSON  - LOCALIZED MBL

eg.
Memory a-  in . .NL

"

hidden
"

from local Some  memory of initial conditions

conoli - ONS probes as t   oo preserved at long tires
, locally

Ettl The False

p can be 1=0 vanishes

D:
AL SPECTRUM Continuous discrete

EIAENSTATE Volume . law area . law

ENTANGLE  YEV '

I
G

ENIANGLEMEN 's §( t ) ~ t£ §Lt) ga const
. §( t ) ga h(Jzt)

t a
GROWTH

DE . HAS .ua Yes No ties

9

DISSIPATION Yes
.

NO

9 TF § -

Phenomenological Model
murmur

We now construct a phenomenological model for the MBL

phase ,
valid at strong disorder when all ( wpto set of measure 0 )

eigenstdes are localized ( note that the existence of a  many - body
mobility edge is still rather controversial ) .

It  is useful to recast

the AL problem in the spin language .

Recall that we could rewrite

the AL Hamiltonian by changing basis to that of localized stats

tl
= § Eads

,
where c 's = ,?xs*⇐; )g?

Note that his clearly identifies an  extensive set of conserved qualities ,

amespmding to the occupancies of the modes : [ A
, etc ,

]=o En xel
,

. . . ,L



× .

Since the AL problem maps to the XX chain
,

it follows that we

Can perform  a  unitary transformation  on the bare spins on

"

physical bits
"

of
,

to a set of localized bits or
"

l . bits
' '

ZF .

For the AL H written in
)

terms of the l - bits only includes the TP ( of . only having its above )
.

so
,

we have I

=
Efg rjr we f,T~ e-

"" 5¥

AL

and H = Hyf =
ant  t.IE ,

 tit ( phenomenological conjecture )

Note that we label the Ti  s  with the same site index -  in
any localized

these we can find a 1.1  correspondence behteen the "
bone

' '

sites & He centers
of

the localized states
.

we do see clearly that the l . bit Hamiltonian has

exactly enough states to capture the full spectrum of 2
'

many
- body states . yet ,

it

only has L independent energies -  one reason why free systems are special .

Note also that [ H
, et ] - o => we have L conserved "

integrals of motion
' '

.

What happens if we add interactions ?

First
, T.cn will depend on higher - body combinations f Ins ; yet it

all the weights will still decay exponentially away from some central site

and ke @> , 2)- body terms will be suppressed by powers of Jz .

Second
,

as a natural corollary of the above
,

the effective Hamiltonian

now also has higher - body terms .

.

OCJZ )
a

MBL

Held = out .
 + ? Eiz ? + § Jijtittjtt ?x ,

KFYFZEF . . . tiny?

^ y\ vanish as 3z O

decay exponentially for li ' jl > > }

Crucially ,
Hect only contains Zut ⇒ [ H

, if } =o she .

So
, we retain the localized conserved integrals f. motion

,

but His much

more
' '

generic
"

-

e.g. ,
all 2

'

energy levels are independent .
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The l . lit Hamiltonian has no dissipation ( ZF is conserved ) and

retains memory of initial conditions ( e.g. ,
mm . > Tits  within some } - region ,

and then the zits are conserved ) -
However

,
the energy of a  state .  and

hence its dynamical phase ei Et
-  is affected by the random Hankel

energy shifts generated for Jz * o
, leading 5 deploring .

It  is a useful exercise to verify that

Ajit ,
HIM have the

right phenomenology as we detailed earlier
.

x  -  x


