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Abstract

We show that for any fixed j ≥ i ≥ 1, the k-DOMINATING SET problem
restricted to graphs that do not have Ki, j (the complete bipartite graph on

(i + j) vertices, where the two parts have i and j vertices, respectively)

as a subgraph is fixed parameter tractable (FPT) and has a polynomial
kernel. We describe a polynomial-time algorithm that, given a Ki, j-free

graph G and a nonnegative integer k, constructs a graph H (the “kernel”)
and an integer k′ such that (1) G has a dominating set of size at most

k if and only if H has a dominating set of size at most k′, (2) H has

O(( j+ 1)2(i+1)k2i2

) vertices, and (3) k′ = O(( j+ 1)i+1ki2

).

Since d-degenerate graphs do not have Kd+1,d+1 as a subgraph, this

immediately yields a polynomial kernel on O((d + 2)2(d+2)k2(d+1)2 ) ver-

tices for the k-DOMINATING SET problem on d-degenerate graphs, solving
an open problem posed by Alon and Gutner [3].

The most general class of graphs for which a polynomial kernel was
previously known for k-DOMINATING SET is the class of Kh-topological-

minor-free graphs [21]. Graphs of bounded degeneracy are the most
general class of graphs for which an FPT algorithm was previously known

for this problem. Kh-topological-minor-free graphs are Kh,h-free (but not

vice versa), and so our results show that k-DOMINATING SET has both FPT
algorithms and polynomial kernels in more general classes of graphs.

Using the same techniques, we also obtain an O
�

jki
�

vertex-kernel
for the k-INDEPENDENT DOMINATING SET problem on Ki, j-free graphs.

∗A preliminary version of this paper appeared in the proceedings of ESA 2009 [25].
†Work done while the author was at the Institute of Mathematical Sciences, Chennai, India.
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1 Introduction

A dominating set of a graph G = (V, E) is a set S ⊆ V of vertices of G such

that every vertex in V \ S is adjacent to some vertex in S. The DOMINATING SET

problem is defined as follows:

DOMINATING SET

Input: A graph G = (V, E) and a non-negative integer k.

Question: Does G have a dominating set with at most k vertices?

The DOMINATING SET problem is NP-hard, even in very restricted graph

classes such as the class of planar graphs with maximum degree 3 [18]. Hence,

unless P=NP, there is no polynomial-time algorithm that solves the problem

even in such restricted graph classes.

Parameterized algorithms [11, 14, 24] constitute one approach towards

solving NP-hard problems in “feasible” time. Each parameterized problem

comes with an associated parameter, which is usually a non-negative integer,

and the goal is to find algorithms that solve the problem in polynomial time

when the parameter is fixed, where the degree of the polynomial is independent

of the parameter. More precisely, if k is the parameter and n the size of the

input, then the goal is to obtain an algorithm that solves the problem in time

f (k) · nc where f is some computable function and c is a constant independent

of k. Such an algorithm is called a fixed-parameter-tractable (FPT) algorithm,

and the class of all parameterized problems that have FPT algorithms is called

FPT; a parameterized problem that has a fixed-parameter-tractable algorithm

is said to be (in) FPT.

Together with this revised notion of tractability, parameterized complexity

theory offers a corresponding notion of intractability as well, captured by the

concept of W-hardness. In brief, the theory defines a hierarchy of complexity

classes FPT ⊂ W[1] ⊂ W[2] · · · ⊂ XP, where each inclusion is believed to be

strict — on the basis of evidence similar in spirit to the evidence for believing

that P 6=NP — and XP is the class of all parameterized problems that can be

solved in O(n f (k)) time where n is the input size, k the parameter, and f is

some computable function [11, 24].

One natural parameter for the DOMINATING SET problem is k, the size of the

solution being sought. A natural parameterized version of the DOMINATING SET

problem is thus the k-DOMINATING SET problem, defined as follows:

k-DOMINATING SET

Input: A graph G = (V, E), and a non-negative integer k.

Parameter: k

Question: Does G have a dominating set with at most k vertices?
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It turns out that the DOMINATING SET problem, with this parameterization, is

still hard to solve. More precisely, k-DOMINATING SET is the canonical W[2]-hard

problem [11], and the problem remains W[2]-hard even in many restricted

classes of graphs — for example, it is W[2]-hard in classes of graphs with

bounded average degree [19]. Thus there is no FPT algorithm that solves the

problem, even when restricted to graphs of bounded average degree, unless

FPT=W[2], which is considered unlikely.

The problem does have FPT algorithms in certain restricted families of

graphs, such as in planar graphs [16], graphs of bounded genus [13], nowhere-

dense classes of graphs[7], Kh-topological-minor-free graphs, and graphs of

bounded degeneracy [2]. To the best of our knowledge, graphs of bounded

degeneracy are the most general graph class previously known to have an FPT

algorithm for this problem. In this paper we show that the problem has an FPT

algorithm in a class of graphs that encompasses, and is strictly larger than, all

these classes — namely, the class of Ki, j-free graphs.

Closely related to the notion of an FPT algorithm is the concept of a ker-

nel for a parameterized problem. We say that two instances of a decision

problem are equivalent if and only if they are either both yes-instances or

both no-instances. A kernelization algorithm for a parameterized problem is a

polynomial-time algorithm that converts an instance (x , k) of the problem to an

equivalent instance (y, k′)whose size |y| and parameter k′ are both bounded by

functions of the original parameter k. The instance y output by the algorithm

is said to be a kernel for the problem. It is not difficult to see that if a prob-

lem has a kernelization algorithm, then the problem is FPT. Somewhat more

surprisingly, the converse is also true: A folklore theorem of parameterized

complexity states that a parameterized problem has a kernelization algorithm

if and only if it has an FPT algorithm [11].

For the k-DOMINATING SET problem, a kernelization algorithm is thus an

algorithm that takes (G, k) as input, runs in polynomial time, and outputs an

equivalent instance (H, k′), where k′ ≤ g(k) and H is a graph with at most

h(k) vertices for some computable functions g and h. H is the kernel output

by this algorithm. From the equivalence of FPT and kernelization mentioned

above it follows that, unless FPT=W[2], there is no kernelization algorithm

for k-DOMINATING SET on general graphs or on graphs with a bounded aver-

age degree. For the same reason, the problem admits kernelization algorithms

when the input is restricted to planar graphs, graphs of bounded genus, Kh-

topological-minor-free graphs, and graphs of bounded degeneracy. However,

the size of the kernel implied by the proof of the folklore theorem is equal to

the factor f (k) in the running time of the corresponding FPT algorithm, and

hence is exponential in k. The interesting problem is, therefore, to find if the

kernel size can be made smaller — in particular, whether it can be made poly-

nomial in k.

Proving polynomial bounds on the size of the kernel for different param-

eterized problems has been a significant practical aspect in the study of the
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parameterized complexity of NP-hard problems, and many positive results are

known; see the survey on kernelization results by Guo et al. [20].

For the k-DOMINATING SET problem, the first polynomial kernel result was

obtained by Alber et al. [1] in 2004: they showed that in planar graphs, the

problem has a linear kernel on at most 335k vertices. This bound for planar

graphs was later improved to 67k by Chen et al. [5]. Fomin and Thilikos [15]

showed in 2004 that the same reduction rules as used by Alber et al. give

a linear kernel (linear in k + g) for k-DOMINATING SET restricted to graphs of

genus g. The next advances in kernelizing this problem were made by Alon and

Gutner in 2008 [3, 21]. They showed that the problem has a linear kernel in

K3,h-topological-minor-free graph classes (which include, for example, planar

graphs), and a polynomial kernel in Kh-topological-minor-free graph classes.

Here Kh denotes the complete graph on h vertices, and K3,h is the complete

bipartite graph on h+ 3 vertices where one piece of the partition has 3 vertices

and the other has h. The degree of the polynomial bound on the kernel size for

Kh-topological-minor-free graphs depends on h, and these are the most general

class of graphs for which the problem has been previously shown to have a

polynomial kernel. In the meantime, the same authors had shown in 2007 that

the problem is FPT in (the strictly larger class of) graphs of bounded degener-

acy [2], but had left open the question whether the problem has a polynomial

kernel in such graph classes. In this paper, we answer this question in the af-

firmative, and show that, in fact, even larger classes of graphs — the Ki, j-free

graph classes — admit polynomial kernels for this problem. In Table 1 we sum-

marize some FPT and kernelization results for the k-DOMINATING SET problem

on various classes of graphs.

Our Results. Ki, j denotes the complete bipartite graph on i+ j vertices where

one piece of the partition has i vertices and the other part has j. A graph

is said to be Ki, j-free if it does not contain Ki, j as a (not necessarily induced)

subgraph. We show that for any fixed i, j ≥ 1, the k-DOMINATING SET problem

has a polynomial kernel on Ki, j-free graphs. For input graph G and parameter

k, the size of the kernel is bounded by kc where c is a constant that depends

only on i and j.

A graph G is said to be d-degenerate if every subgraph of G has a vertex

of degree at most d . Since a d-degenerate graph does not have Kd+1,d+1 as

a subgraph, it follows that the k-DOMINATING SET problem has a polynomial

kernel on graphs of bounded degeneracy. This settles a question posed by Alon

and Gutner [3].

A subset S of the vertex set of a graph is said to be independent if no two

vertices in S have an edge between them in the graph. The k-INDEPENDENT

DOMINATING SET problem asks whether the input graph G has an independent

DOMINATING SET of size at most k, with the parameter being k. We show that

the k-INDEPENDENT DOMINATING SET problem has a polynomial kernel in Ki, j-
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Graph Class FPT Algorithm Running Time Kernel Size

Planar O(k4+ 215.13
p

kk+ n3) [16] O(k) [1, 5]

Genus-g O((24g2+ 24g + 1)kn2) [13] O(k+ g) [15]

Kh-minor-free O(n3.5+ 2O(
p

k)) [21] O(kc) [21]

Kh-topological-minor-free (O(h))hk · n [2] O(kc) [21]

d-degenerate kO(dk)n [2] kO(dk) [2],

O(k2(d+1)2)†

Ki, j-free O(ni+O(1)+ 2O(k2i2))† O(k2i2)†

Table 1: Some FPT and kernelization results for k-DOMINATING SET. Results

obtained in this paper are marked with a †.

free graphs.

Note that except for d-degenerate and Ki, j-free graphs, all the other graph

classes in Table 1 are minor-closed (See e.g., [9], Chapter 12, for the definition

of a minor-closed graph class.). This seems to be indicative of the state of the

art — the only other previous FPT or kernelization result for the k-DOMINATING

SET problem on a non-minor-closed class of graphs that we are aware of is the

O(k3) kernel and the resulting FPT algorithm for graphs that exclude triangles

and 4-cycles [26]. In fact, this result can be modified to obtain similar bounds

on graphs with no 4-cycles (allowing triangles). Since a 4-cycle is a K2,2, this

result follows from the main result of this paper by setting i = j = 2.

Since, for a constant h, a Kh-topological-minor-free graph has bounded

degeneracy [3, Proposition 3.1], the class of Ki, j-free graphs is more general

than the class of Kh-topological-minor-free graphs. Thus we extend the class

of graphs for which the k-DOMINATING SET problem is known to have (1) FPT

algorithms and (2) polynomial kernels, to the class of Ki, j-free graphs.

Organization of the rest of the paper. In Section 2 we present our main

kernelization algorithm that, for fixed j ≥ i ≥ 2, runs in O(ni+O(1)) time∗ and

constructs a kernel of size O(( j + 1)2(i+1)k2i2) for k-DOMINATING SET on Ki, j-

free graphs. As a corollary we obtain, in Section 3, a polynomial kernel for the

problem restricted to d-degenerate graphs, where the kernelization algorithm

runs in time O(nO(d)) and outputs a kernel of size O((d + 2)2(d+2)k2(d+1)2 ). In

∗Throughout this paragraph, n denotes the number of vertices in the input graph.
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Section 3.1 we describe an improvement to the above algorithm that applies

to d-degenerate input graphs, yields a kernel of the same size as above, and

runs in time O(2ddn2). In Section 4 we describe a modification of the algo-

rithm in Section 2 that constructs a polynomial kernel for the k-INDEPENDENT

DOMINATING SET problem on Ki, j-free graphs. This kernel has O( jki) vertices,

and so implies a kernel of size O((d+1)kd+1) for this problem on d-degenerate

graphs. In Section 5 we state our conclusions and list some open problems.

Notation. All the graphs in this paper are finite, undirected and simple. In

general we follow the graph terminology of [9]. We let V (G) and E(G) denote,

respectively, the vertex and edge sets of a graph G. The open-neighborhood of a

vertex v in a graph G, denoted N(v), is the set of all vertices that are adjacent

to v in G. A k-DOMINATING SET of graph G is a vertex-subset S of size at most

k such that for each u ∈ V (G) \ S there exists v ∈ S such that {u, v} ∈ E(G).

Given a graph G and A, B ⊆ V (G), we say that A dominates B if every vertex in

B \ A is adjacent in G to some vertex in A.

Let H be a graph obtained from a copy of a graph G by applying some

changes, and let S be a vertex subset of G whose copy survives in H. For ease

of presentation, we sometimes abuse notation and use S to denote the copy of

S in H as well.

2 A Polynomial Kernel for Ki, j-free Graphs

In this section we consider the k-DOMINATING SET problem on graphs that do

not have Ki, j as a subgraph, for fixed j ≥ i ≥ 1. If k = 1, then the problem can

be solved in linear time by checking if there is any one vertex which is adjacent

to all other vertices in the graph. For i = 1, j ≥ i, a graph that does not have

Ki, j as a subgraph has degree at most j−1. Any set of k vertices in such a graph

G can dominate at most ( j − 1)k other vertices, and so G is a YES instance of

k-DOMINATING SET only if G contains at most jk vertices. Thus the problem is

(1) polynomial-time solvable when k = 1, and (2) has a linear vertex kernel

when i = 1, j ≥ i, and so in the rest of the paper we restrict our attention to

the cases k > 1, j ≥ i ≥ 2.

We derive a polynomial kernel for a slightly more general, colored version

of the k-DOMINATING SET problem. We define an rwb-graph (a red-white-blue

graph) to be a graph whose vertices are (arbitrarily) colored with the three

colors red, white, and blue. More precisely, an rwb-graph is a graph G = (V, E)

where V is partitioned into RG,WG, and BG (colored red, white, and blue, re-

spectively). An rwb-dominating set of an rwb-graph G is a vertex subset S ⊆ V

of G such that RG ⊆ S and S dominates BG . The k-RWB-DOMINATING SET prob-

lem is defined as follows:
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k-RWB-DOMINATING SET

Input: An rwb-graph G = (V, E) and a non-negative integer k.

Parameter: k

Question: Does G have an rwb-dominating set with at most k vertices?

The following simple claim shows that it is sufficient to consider this colored

version of the problem.

Claim 1. Let G be a graph and H the rwb-graph obtained from G by coloring all

the vertices blue. Then G has a dominating set of size at most k if and only if H

has an rwb-dominating set of size at most k.

Proof. Note that H is a copy of G with colored vertices. Let S be a dominating

set of G of size at most k. Since the set RH of red vertices of H is empty, RH ⊆ S.

Since H is isomorphic to G as a graph, S dominates all vertices in H. Hence S

is an rwb-dominating set of H of size at most k.

Conversely, if S is an rwb-dominating set of H of size at most k, then since

all vertices in H are blue, S dominates all vertices in H. S is thus a dominating

set of G of size at most k.

In our kernelization algorithm for k-DOMINATING SET, we first color all the

vertices of the input graph G blue to obtain an rwb-graph H. Then we apply

certain reduction rules to H. Roughly speaking, the reduction rules try to iden-

tify (1) vertices that must necessarily be in any rwb-dominating set of H of size

at most k, and (2) vertices whose deletion from H does not affect the size of a

minimal rwb-dominating set of H of size at most k.

The reduction rules also color various vertices red or white. Intuitively, the

vertices colored red are those that will be picked up by the reduction rules in

the rwb-dominating set D of size at most k that we are trying to construct. In

particular, if there is a k-dominating set in the graph, the rules ensure that there

will be one that contains all the red vertices. Vertices which are known to have

been already dominated by D are colored white. Clearly all neighbors of red

vertices are white, but our reduction rules color some vertices white even if they

have no red neighbors (at that point). These are vertices that will be dominated

by one of some constant number of vertices identified by the reduction rules†.

The vertices that remain blue are those that are yet to be dominated.

We first describe an algorithm that takes as input an rwb-graph G on n

vertices and a positive number k, and runs in O(ni+O(1)) time. The algorithm

either finds that G does not have any rwb-dominating set of size at most k, or

it constructs an instance (H, k) on O(( j+ 1)i+1ki2) vertices such that G has an

rwb-dominating set of size at most k if and only if H has an rwb-dominating set

of size at most k. To complete the kernelization procedure, we show that this

instance (H, k) of k-RWB-DOMINATING SET can be converted into an equivalent

†See reduction rule 2 for more details.
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instance of k-DOMINATING SET with a polynomially bounded increase in both

the number of vertices and the parameter value.

The algorithm applies a sequence of reduction rules in a specified order.

The input and output of each reduction rule are rwb-graphs.

Definition 1. A graph G is said to be reduced with respect to a reduction rule

if an application of the rule to G does not change G.

The correctness of the kernelization algorithm depends on the fact that

each reduction rule satisfies the following correctness condition and preserves

the invariants stated below:

Definition 2. (Correctness) A reduction rule R is said to be correct if the fol-

lowing condition holds: Let (G, k) be an instance of k-RWB-DOMINATING SET,

and let (H, k′) be the instance of k-RWB-DOMINATING SET obtained from (G, k)

by one application of rule R. Then H has an rwb-dominating set D′ of size at

most k′ if and only if G has an rwb-dominating set D of size at most k.‡

Invariants:

1. None of the reduction rules introduces a Ki, j into a graph.

2. In the rwb-graphs constructed by the algorithm, no red vertex has a blue

neighbor.

3. Let R1 and R2 be two reduction rules such that R1 precedes R2 in the

order in which the rules are presented below. Suppose (G1, k1) is reduced

with respect to R1 and (G2, k2) is obtained by an application of rule R2 to

(G1, k1). Then (G2, k2) is reduced with respect to R1.

2.1 The reduction rules and the kernelization algorithm

The kernelization algorithm assumes that the input graph is an rwb-graph. It

applies the following rules exhaustively in the given order. Each rule is repeat-

edly applied till it causes no changes to the graph and then the next rule is

applied.

We use some notational conventions in this section. For each rule below,

(G, k) denotes the instance on which the rule is applied, and (H, k′) the instance

that is obtained when the rule is applied to (G, k). Further, D, D′, k and k′ are

as in Definition 2: D is an rwb-dominating set of size k of G, and D′ an rwb-

dominating set of H of size k′.

Rule 1. Color all isolated blue vertices of G red. Set k′ := k.

Lemma 1. Rule 1 is correct and preserves the invariants.

‡Note, however, that none of our reduction rules changes the value of k, and so k′ = k for

every one of these rules.
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Figure 1: Rule 2

Proof. Let (G, k) be the instance on which the rule is applied, and (H, k) the

resulting instance. Let I be the set of isolated blue vertices in G.

Let D be an rwb-dominating set of G of size at most k. From the definition of

an rwb-dominating set, RG ⊆ D. Since an isolated vertex can only be dominated

by itself, I ⊆ D. Since the only thing that the rule does is to color isolated blue

vertices of G red, RH = RG ∪ I , and so RH ⊆ D. Set D′ = D in H. Then

D′ dominates every vertex in H, RH ⊆ D′, and |D′| ≤ k. Thus D′ is an rwb-

dominating set of H of size at most k.

Conversely, let D′ be an rwb-dominating set of H of size at most k. Set

D = D′ in G. Since the only thing that the rule does is to color isolated blue

vertices of G red, RG ⊆ RH ⊆ D′ = D, and so D is an rwb-dominating set of G

of size at most k. Thus Rule 1 is correct.

The rule trivially preserves the first two invariants, and vacuously preserves

the third.

Rule 2. For p = 1,2, . . . , i − 2, in this order, apply Rule 2.p repeatedly till it no

longer causes any changes in the graph.

Rule 2.p. Let b = jk if p = 1, and b = jkp + kp−1 + kp−2 · · ·+ k if 2 ≤ p ≤
i−2. If a set U = {u1,u2, . . . ,ui−p} of (i−p) vertices in G, none of which is red,

has more than b common blue neighbors, then let B be this set of neighbors.

1. Add (i− p) new (gadget) vertices X = {x1, x2, . . . , x i−p} and all the edges

{u, x}; u ∈ U , x ∈ X to G, as in Figure 1.

2. Color all the vertices in B white.

3. Color all the vertices in X blue.

4. Set k′ := k.

Claim 2. Consider an instance of applying Rule 2.p, 1 ≤ p ≤ i−2. If U is a set of

vertices of G that satisfies the condition in Rule 2.p, then at least one vertex in U

must be in any subset of V (G) of size at most k that dominates B.
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Proof. Let p = 1. Suppose there is a vertex set S ⊆ V (G) of size at most k

such that (1) S dominates B, and (2) S does not contain any vertex of U . Since

|B| > jk, there is a vertex v in S that dominates at least j+ 1 vertices in B. Let

T = N(v)∩B. Then |T | ≥ j, and the vertex sets {U ∪{v}, T} form the two parts

of a Ki, j in G. This contradicts the Ki, j-free property of the input graph or the

first invariant.

Now let 2 ≤ p ≤ (i − 2). Let S ⊆ V (G) be a set of size at most k that

dominates B and does not contain any vertex of U . Since |B| > b, there is a

vertex v ∈ S that dominates at least (b/k) + 1 vertices in B. Because of the

second invariant, v is not red. Let T = N(v)∩ B. Then |T | ≥ (b/k), and T is in

the common neighborhood of (U ∪{v}). Thus (U ∪{v}) is a set of (i− (p− 1))

vertices in G, none of which is red, that has b/k > jkp−1+kp−2+· · ·+k common

blue neighbors. This contradicts the fact that G is reduced with respect to

Rule 2.(p− 1).

Proposition 1. Rule 2.p is correct for 1≤ p ≤ (i − 2).

Proof. Let D be an rwb-dominating set of G of size at most k, and let U be as in

the statement of Rule 2.p. Set D′ := D. Since D is an rwb-dominating set of G,

RG ⊆ D. Since the rule does not add any new red vertices in H, RH ⊆ D′. Since

(1) D dominates all blue vertices of G, and (2) the rule removes no edges from

G, D′ = D dominates all blue vertices in H that are copies of blue vertices in

G. By Claim 2, D ∩ U 6= ;, and so D′ ∩ U 6= ;. Since all the new blue vertices

added to H — namely, those which constitute the set X — are adjacent to every

vertex in U by construction, D′ dominates all blue vertices in H. Thus D′ is an

rwb-dominating set of H of size at most k.

Conversely, let D′ be an rwb-dominating set of H of size at most k. We

consider three cases:

D′ ∩ U = ;. In this case, since D′ dominates X and X is an independent set,

X ⊆ D′. Set D := (D′ \ X ) ∪ U . Since X and U are disjoint sets of equal

cardinality, |D| ≤ |D′| ≤ k. Since D′ is an rwb-dominating set of H,

RH ⊆ D′. Since all vertices in X are blue and since the reduction rule

does not delete any red vertex from G to obtain H, RG ⊆ D. Since all

the blue vertices dominated by X in H are contained in U and U ⊆ D, D

dominates all blue vertices in G. Thus D is an rwb-dominating set of G

of size at most k.

D′ ∩ X = ;. In this case, since D′ dominates X , it follows that D′ ∩ U 6= ;. Set

D := D′. Then |D| = |D′| ≤ k. For the same reason as above, RG ⊆ D.

Since D′ dominates all blue vertices in H, and since G can be obtained

from H by deleting a set (namely, X ) of blue vertices, D = D′ dominates

all blue vertices in G. Thus D is an rwb-dominating set of G of size at

most k.
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D′ ∩ U 6= ;, D′ ∩ X 6= ;. In this case, pick an arbitrary vertex v ∈ B and set D :=

(D′ \ X ) ∪ {v}. Since D′ ∩ X 6= ;, it follows that |D| ≤ |D′| ≤ k. For the

same reason as above, RG ⊆ D. Since D′ dominates all blue vertices in

H, D′ \ X dominates all blue vertices in H \ X , except possibly for some

blue vertices in U whose only neighbors in D′ belong to X . But the vertex

v dominates all vertices in U , and so D is an rwb-dominating set of G of

size at most k.

These three cases are exhaustive, and so it follows that for 1 ≤ p ≤ (i − 2),

Rule 2.p is correct.

Proposition 2. For 1≤ p ≤ (i − 2), Rule 2.p preserves all the three invariants.

Proof. Since we have shown that Rule 1 preserves all the invariants, we can

assume inductively that all the rules that are applied before Rule 2.p preserve

all the three invariants. We now consider the behaviour of Rule 2.p for each of

the invariants:

Invariant 1. From the inductive assumption, and from the fact that the input

graph is Ki, j-free, it follows that the graph G on which Rule 2.p is applied

is Ki, j-free. Suppose the graph H resulting from the application of the

rule contains a Ki, j, say K , that is introduced by the rule. Then K must

necessarily contain at least one of the newly added vertices in X , or else

G = H \ X would also contain K . Since each vertex in X has degree

exactly (i − p) < i in H, no vertex in X can be part of a Ki, j in H, and it

follows that there is no Ki, j in H.

Invariant 2. From the inductive assumption, the invariant holds for the graph

G on which Rule 2.p is applied. The rule does not introduce new red

vertices or color existing non-red vertices red. Further, it does not add

new vertices as neighbors to any existing red vertex — observe that all

vertices in U are non-red. Hence it follows that the rule preserves this

invariant.

Invariant 3. Rule 2.1 preserves the invariant since it does not introduce iso-

lated blue vertices into the graph. Assume inductively that for 2≤ p ≤ i−
2, Rules 2.1, . . . , 2.(p−1) preserve the invariant. So the graph G on which

Rule 2.p is applied is reduced with respect to Rules 1,2.1, . . . , 2.(p − 1).

Let H be the graph that results when Rule 2.p is applied to G. Then H is

reduced with respect to Rule 1, since Rule 2.p does not introduce isolated

blue vertices in H. Suppose H is not reduced with respect to Rule 2.q for

some 1 ≤ q ≤ (p − 1). Then H contains a set U = {u1,u2, . . . ,ui−q} of

(i−q) non-red vertices such that U has more than b common blue neigh-

bors B, where b = jk if q = 1 and b = jkq+kq−1+kq−2 · · ·+k otherwise.

Either U or B (or both) must necessarily contain at least one of the newly

added vertices in X , or else G = H \ X would also be not reduced with
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respect to Rule 2.q. Note that each vertex in X has degree exactly (i− p)

in H. Any vertex in U has degree at least b, and any vertex in B has

degree at least (i− q). Since p > q, we have (i− p)< (i− q). Since i ≤ j

and k ≥ 1, it follows that (i − p) < b. Thus no vertex in X can be part

of either U or B in H, and it follows that H is reduced with respect to

Rule 2.q, and so Rule 2.p preserves this invariant.

Thus the rule preserves all the three invariants.

Putting together Propositions 1 and 2 we get

Lemma 2. For 1 ≤ p ≤ (i − 2), Rule 2.p is correct and preserves all the three

invariants.

Rule 3. If a blue or white vertex u has more than h= jki−1+ki−2+ · · ·+k2+k

blue neighbors, then let B be the set of blue neighbors of u.

1. Color u red.

2. Color all vertices in B white.

3. Set k′ := k.

Claim 3. Consider an instance of applying Rule 3. If u is a vertex of G that

satisfies the condition in the rule, then u must be in any subset of V (G) of size at

most k that dominates B.

Proof. Let S ⊆ V (G) be a set of size at most k that dominates B. If S does not

contain u, then there is a v ∈ S that dominates at least (h/k)+ 1 of the vertices

in B. The vertex v is not red (because of the second invariant), and u, v have

h/k > jki−2+ ki−3+ · · ·+1 common blue neighbors, a contradiction to the fact

that G is reduced with respect to Rule 2.(i − 2).

Lemma 3. Rule 3 is correct and preserves all the three invariants.

Proof. Let D be an rwb-dominating set of G of size at most k, and let u be as

in the statement of Rule 3. Set D′ := D. Since D is an rwb-dominating set

of G, RG ⊆ D. From Claim 3, u ∈ D. The rule does not add any new vertex

to G to get H. Since u is the only vertex that is red in H and not red in G,

RH = (RG ∪ {u}) ⊆ D′. Since (1) D dominates all blue vertices of G, (2) the

rule does not add new blue vertices or make non-blue vertices blue, and (3) the

rule removes no edges from the graph, D′ = D dominates all blue vertices in

H. Thus D′ is an rwb-dominating set of H of size at most k.

Conversely, let D′ be an rwb-dominating set of H of size at most k. Then

from Claim 3, u ∈ D′. Set D := D′. Since D′ is an rwb-dominating set of H,

RH ⊆ D′.Since RG = RH \ {u}, RG ⊆ D. Since (1) D′ dominates all blue vertices

in H, (2) the only blue vertices in G that are not blue in H are in B ∪ {u}, and

12



(3) u ∈ D dominates B ∪ {u}, D = D′ dominates all blue vertices in G. Thus D

is an rwb-dominating set of G of size at most k.

As for the invariants, Rule 3 does not change the structure of the graph.

Further, it gives the color white to all blue neighbors of the only vertex —

namely, u — whose color it changes to red. It follows that Rule 3 preserves all

the three invariants.

Rule 4. If a white vertex u is adjacent to at most one blue vertex in G, then

1. Delete u from G,

2. Set k′ := k, and

3. Apply Rule 1.

Lemma 4. Rule 4 is correct and preserves all the three invariants.

Proof. Since we have already proved that Rule 1 is correct and preserves the

three invariants, it suffices to show that the first two steps of Rule 4 have the

stated properties§. We now proceed to do this; in the following, whenever we

refer to Rule 4, we mean the first two steps of this rule.

Let D be an rwb-dominating set of G of size at most k, and let u be as in the

statement of Rule 4. We consider two cases:

u /∈ D. In this case, set D′ := D. Since D is an rwb-dominating set of G, and

since the rule only deletes a white vertex u /∈ D to obtain H, it follows

that D′ is an rwb-dominating set of H of size at most k.

u ∈ D. In this case, let A= (N(u)∩ BG) be the set of blue neighbors of u in G.

Note that |A| ≤ 1. Set D′ := (D \ {u}) ∪ A. Since |A| ≤ 1, |D′| ≤ |D| ≤ k.

Since D is an rwb-dominating set of G, RG ⊆ D. Since the rule only

deletes a white vertex u to obtain H, it follows that RH = RG ⊆ D′. Since

(1) D dominates all blue vertices of G, (2) D′ contains A, the set of all blue

vertices of dominated by the vertex u that the rule deletes, and (3) the

rule removes no edges from the graph other than those adjacent to the

removed white vertex u, D′ = D dominates all blue vertices in H. Thus

D′ is an rwb-dominating set of H of size at most k.

Conversely, let D′ be an rwb-dominating set of H of size at most k. Set

D := D′. Since D′ is an rwb-dominating set of H, and since G can be obtained

from H by adding a white vertex u and some edges incident on u to H, D = D′

is an rwb-dominating set of G of size at most k.

As for the invariants, since Rule 4 only deletes a vertex, its application

cannot introduce any of the subgraphs that make it possible to apply Rules 2

or 3 to H. It is possible that new isolated blue vertices may be introduced in

§Except for arguing that the rule preserves the invariants: see below.
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H, but then the application of Rule 1 ensures that such vertices do not survive

once Rule 4 is completely applied. It follows that Rule 4 preserves all the three

invariants.

Rule 5. If there is a white vertex u and a white or blue vertex v in G such that

N(u)∩ BG ⊆ N(v)∩ BG (that is, the blue neighborhood of u is contained in the

blue neighborhood of v), then

1. Delete u from G,

2. Set k′ := k, and

3. Apply Rule 1.

Lemma 5. Rule 5 is correct and preserves all the three invariants.

Proof. As in the proof of Lemma 4, it suffices to show that the first two steps of

Rule 5 have the stated properties, except when arguing that the rule preserves

the invariants. In the following, whenever we refer to Rule 5, we mean the first

two steps of this rule. Let D be an rwb-dominating set of G of size at most k,

and let u, v be as in the statement of Rule 5. We consider two cases:

u /∈ D. In this case, set D′ := D. Since D is an rwb-dominating set of G, and

since the rule only deletes a white vertex u /∈ D to obtain H, it follows

that D′ is an rwb-dominating set of H of size at most k.

u ∈ D. In this case, set D′ := (D \ {u}) ∪ {v}. Then |D′| = |D| ≤ k. Since D

is an rwb-dominating set of G, RG ⊆ D. Since the rule only deletes a

white vertex u to obtain H, it follows that RH = RG ⊆ D′. Since (1) D

dominates all blue vertices of G, (2) D′ contains a vertex — namely, v —

that dominates all blue vertices dominated by the vertex u that the rule

deletes, and (3) the rule removes no edges from the graph other than

those adjacent to the removed white vertex u, D′ = D dominates all blue

vertices in H. Thus D′ is an rwb-dominating set of H of size at most k.

Conversely, let D′ be an rwb-dominating set of H of size at most k. Set

D := D′. Since D′ is an rwb-dominating set of H, and since G can be obtained

from H by adding a white vertex u and some edges incident on u to H, D = D′

is an rwb-dominating set of G of size at most k.

Since Rule 5 only deletes a vertex, its application cannot introduce any of

the subgraphs that make it possible to apply Rules 2, 3, or 4 to H. It is possible

that new isolated blue vertices may be introduced in H, but then the application

of Rule 1 ensures that such vertices do not survive once Rule 5 is completely

applied. It follows that Rule 5 preserves all the three invariants.

Rule 6. If the graph G contains more than k red vertices or more than jki +

ki−1 + ki−2 + · · ·+ k2 blue vertices, then set (H, k′) to be a trivial NO-instance

of the problem; for instance, make H the independent set on two vertices and

set k′ = 1. If neither of these conditions hold, set H := G, k′ := k.
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Lemma 6. Rule 6 is correct and preserves all the three invariants.

Proof. Note that if the instance (G, k) satisfies neither of the two conditions,

then the rule returns the instance unchanged. Therefore, to show that the rule

is correct, it is sufficient to show that an instance (G, k) that satisfies either of

the two conditions is a NO-instance.

If |RG| > k, then since any rwb-dominating set of G must contain all of RG,

G has no rwb-dominating set of size at most k.

From the second invariant, no blue vertex of G has a red neighbor. Since

G is reduced with respect to Rules 1 to 5, no white or blue vertex in G has

more than jki−1 + ki−2 + · · · + k blue neighbors, or else Rule 3 would have

applied, contradicting the third invariant. So k white or blue vertices in G can

dominate at most jki + ki−1 + ki−2 + · · ·+ k2 blue vertices. Hence if |BG | >
jki + ki−1 + ki−2 + · · ·+ k2, then no set of k vertices in G can dominate all of

BG, and so in this case G has no rwb-dominating set of size at most k.

The reduction rule either returns the instance unchanged or returns a sim-

ple NO-instance. In both cases, it trivially satisfies all the three invariants.

2.2 Algorithm correctness, running time, and kernel size

Recall that the input to the kernelization algorithm is a pair (G, k) where G is

an rwb-graph and k is a non-negative integer. The algorithm applies reduction

rules 1 to 6, in this order, to (G, k), exhaustively applying each rule before

applying the next. From the correctness of rules 1 to 6 — see Lemma 1 to

Lemma 6 — we get

Lemma 7. The kernelization algorithm is correct: Let (G, k) be the input to the

algorithm. If the algorithm says NO, then G does not have an rwb-dominating

set of size at most k. Otherwise, let H be the rwb-graph output by the algorithm.

Then G has an rwb-dominating set of size at most k if and only if H has an

rwb-dominating set of size at most k.

We now show that the kernelization algorithm runs in polynomial time. To

do so, we first show that the algorithm does not add too many gadget vertices

to the input graph.

Claim 4. Let (G, k) be the input to the kernelization algorithm, where G is a

Ki, j-free rwb-graph on n vertices. The total number of gadget vertices that the

algorithm adds to the graph, over all applications of rules 2.1 to 2.(i − 2), is less

than n.

Proof. We reuse the notation used to describe rules 2.1 to 2.(i − 2). Rule 2.1

colors all vertices in B white, and adds the new all-blue gadget vertex set X to

the graph. The set B contains at least ( jk+ 1) blue vertices, and the set X has

exactly (i−1) blue vertices. Thus one application of Rule 2.1 reduces the count

of blue vertices in the graph by at least ( jk− i+ 2). By a similar argument, we
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can see that for 2≤ p ≤ i−2, each application of Rule 2.p reduces the count of

blue vertices by at least ( jkp+ kp−1+ · · ·+ k− i+ p+1). Since, by assumption,

j ≥ i ≥ 2 and k ≥ 2, it follows that ( jk− i+2)≤ ( jkp+kp−1+ · · ·+k− i+p+1)

for 2 ≤ p ≤ i − 2. Thus any one application of one of the rules 2.1 to 2.(i − 2)

reduces the total number of blue vertices in the graph by at least ( jk− i + 2).

Also, observe that the number of gadget vertices added to the graph in any one

application of one of the rules 2.1 to 2.(i − 2) is at most (i − 1), where this

maximum is attained for Rule 2.1.

Since the rwb-graph given as input to the kernelization algorithm has ex-

actly n blue vertices, rules 2.1 to 2.(i−2) can be applied at most n/( jk− i+2)

times in total, over the full course of the algorithm. So the total number of

gadget vertices added to the graph over all applications of rules 2.1 to 2.(i−2)

is n(i − 1)/( jk+ 2− i), and this number is less than n since we assume that k

is at least 2.

This bound on the number of gadget vertices helps in showing that the

algorithm runs in polynomial time.

Lemma 8. The kernelization algorithm can be implemented in such a way as to

run in O
�

max(n4, i2ni)
�

time when the input instance is a Ki, j-free rwb-graph G

on n vertices.

Proof. We assume that the input graph is given as an adjacency list, with a pro-

vision for coloring each vertex red, white, or blue. Observe that from Claim 4

it follows that the total number of vertices in the graph at any point during the

execution of the algorithm does not exceed 2n.

Rule 1, Rule 3 Each application of one of these two rules colors at least one

blue vertex red. No reduction rule changes the color of a red vertex. From

the bound on the total number of vertices in the graph, it follows that

Rule 1 and Rule 3 can each be applied at most 2n times. One application

of each of these two rules can be done in O(n) time by a constant number

of scans of the vertex list in the input graph, and so both these rule can

be applied exhaustively in O(n2) time.

Rule 2 Consider an application of Rule 2.p for some 1 ≤ p ≤ i − 2. A blue or

white vertex can be part of a set U as mentioned in the rule only if it has

at least jkp + kp−1 + kp−2 + · · ·+ k blue neighbors. Since the maximum

number of blue neighbors that a gadget vertex can have is i−1, it follows

that no gadget vertex need ever be considered for inclusion in the set U

in any application of Rule 2.p.

For applying Rule 2.p for a fixed 1 ≤ p ≤ i − 2, therefore, the algorithm

iterates over all (i − p)-subsets of the set of all original (not gadget) ver-

tices which are blue or white (at this point). This can be done in O(
� n

i−p

�

)
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Algorithm 1 Rule 2.p: Finding the set of common blue neighbors of a vertex subset S.

1: A← A binary array with indices ranging from 1 to |V (G)|, initialized to all 0s.

2: x ← A vertex in S.

3: for Each vertex y in the adjacency list of x do

4: if y is blue then

5: A[y]← 1

6: end if

7: end for

8: for Each vertex z ∈ S \ {x} do

9: for Each vertex y in the adjacency list of z do

10: if y is not blue then

11: A[y]← 0

12: end if

13: end for

14: end for

15: return {v ∈ V (G); A[v] = 1}

time, as was first shown by Ehrlich [12]. For each such subset S, the al-

gorithm finds the set of common blue neighbors of S as in Algorithm 1.

Since the total number of possible blue vertices — including gadget ver-

tices — is at most 2n (see Claim 4), this can be done in time O((i− p)n).

A straightforward implementation of the remaining part of Rule 2.p runs

in O(n + (i − p)2) time, and so Rule 2.p can be exhaustively applied

in
� n

i−p

�

· O((i − p)n + n + (i − p)2) = O(ini−p+1) time. All the rules

2.p; 1≤ p ≤ i− 2 can therefore be exhaustively applied in O(i2ni) time.

Rule 4 Each application of this rule deletes at least one white vertex. From

the bound on the total number of vertices in the graph, it follows that

the rule can be applied at most 2n times. One application of the rule can

be done in O(n2) time, since it essentially consists of the deletion of one

vertex from the graph. So the rule can be applied exhaustively in O(n3)

time.

Rule 5 For one pair {u, v} of vertices as in the statement of the rule, we can

check in O(n) time whether N(u) ∩ BG ⊆ N(v)∩ BG , as shown in Algo-

rithm 2. Since the number of possible choices for the pair {u, v} is O(n2),

one application of this rule can be done in O(n3) time. Since each appli-

cation of the rule deletes one vertex, and the total number of vertices is

bounded by 2n, the rule can exhaustively be applied in O
�

n4
�

time.

Putting all these together, the kernelization algorithm can be implemented to

run in O
�

max(n4, i2ni)
�

time.

Now we prove a polynomial bound on the size of the reduced instance.

Lemma 9. Let (G, k) be the input to the kernelization algorithm. If the algorithm

outputs the instance (H, k), then |V (H)| = O(( j+ 1)i+1ki2).
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Algorithm 2 An O(n)-time implementation of the check in Rule 5.

1: A← A binary array with indices ranging from 1 to |V (G)|, initialized to all 0s.

2: for Each vertex x in the adjacency list of v do

3: if x is blue then

4: A[x]← 1

5: end if

6: end for

7: for Each vertex x in the adjacency list of u do

8: if x is blue then

9: if A[x] 6= 1 then

10: return FALSE

11: end if

12: end if

13: end for

14: return TRUE

Proof. From Rule 6, we get |RH | ≤ k and b = |BH | ≤ jki + ki−1 + · · · + k ≤
( j + 1)ki. Now we bound |WH |. Note that no two white vertices in H can

have identical blue neighborhoods, or else Rule 5 would have applied. Also,

each white vertex has at least two blue neighbors, or else Rule 4 would have

applied. Hence the number of white vertices in H that have less than i blue

neighbors is at most
�b

2

�

+
�b

3

�

+ · · ·+
� b

i−1

�

≤ 2bi−1. No set of i blue vertices

in H has more than ( j− 1) common white neighbors, or else these form a Ki, j.

Hence the number of white vertices that have i or more blue neighbors in H is

at most
�b

i

�

( j− 1)≤ ( j− 1)bi. So the total number of white vertices in H,

|WH | ≤ 2bi−1+ ( j− 1)bi

= (2+ ( j− 1)b)bi−1

≤ ( j+ 1)bi

≤ ( j+ 1)(( j+ 1)ki)i

= ( j+ 1)i+1ki2

The bound in the lemma follows.

From lemmas 8 and 9 we get

Corollary 1. For any fixed j ≥ i ≥ 1, the k-RWB-DOMINATING SET problem on

Ki, j-free graphs has a polynomial kernel with O(( j+ 1)i+1ki2) vertices.

2.3 Removing the colors

By Claim 1, the k-RWB-DOMINATING SET problem is a more general version of

the k-DOMINATING SET problem. By Corollary 1, k-RWB-DOMINATING SET has

a polynomial kernel in Ki, j-free graphs, and therefore, intuitively, so should

k-DOMINATING SET. This intuition is in fact justified, because the notion of k-

RWB-DOMINATING SET being “more general” than k-DOMINATING SET captures
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the fact that there is a “nice” polynomial-time many-to-one reduction from k-

DOMINATING SET to k-RWB-DOMINATING SET. To be more precise:

• By Claim 1, k-DOMINATING SET polynomial-time reduces to k-RWB-DOMINATING

SET, and the reduction preserves the parameter – k goes to k.

• k-RWB-DOMINATING SET is in NP — a solution by itself is a certificate which

is verifiable in polynomial time.

• k-DOMINATING SET is NP-hard in Ki, j-free graphs, since it is NP-hard in

planar graphs[18] and planar graphs are K3,3-free.

Therefore, to obtain a polynomial kernel for k-DOMINATING SET in Ki, j-free

graphs, one can do the following:

• Use Claim 1 to reduce k-DOMINATING SET to k-RWB-DOMINATING SET in

polynomial time, preserving the parameter.

• Use Corollary 1 to obtain a polynomial kernel for the k-RWB-DOMINATING

SET instance obtained in the previous step.

• Apply the polynomial-time many-to-one reduction from k-RWB-DOMINATING

SET to k-DOMINATING SET in Ki, j-free graphs, to the k-RWB-DOMINATING

SET kernel obtained in the above step.

Since the k-RWB-DOMINATING SET kernel is of polynomial size in the original

parameter k, and the last reduction runs in polynomial time, the resulting

k-DOMINATING SET instance has size, and hence parameter, polynomial in k.

This argument shows that k-DOMINATING SET has a polynomial kernel when re-

stricted to Ki, j-free graphs, but does not give an explicit bound on the kernel

size. We now describe a specific polynomial-time many-to-one reduction from

k-RWB-DOMINATING SET to k-DOMINATING SET in Ki, j-free graphs and derive a

concrete upper bound on the size of the kernel.

Let (G, k) be an instance of the k-DOMINATING SET problem on Ki, j-free

graphs. To obtain a polynomial kernel for this instance, we first color all the ver-

tices of G blue to get an equivalent instance of the k-RWB-DOMINATING SET prob-

lem. Then we apply Corollary 1 on this k-RWB-DOMINATING SET instance to ob-

tain a reduced instance (G′, k) of the problem, where |V (G′)| = O(( j+1)i+1ki2).

We then apply the steps in Algorithm 3 to transform the reduced colored in-

stance (G′, k) to an instance (H, k−|RG′ |+ |WG′|) of (uncolored) k-DOMINATING

SET.

We delete all the red vertices since they have no blue neighbors. We use the

extra vertices to capture the fact that the white vertices need not be dominated.

More precisely, suppose G′ has an rwb-dominating set of size at most k. Then,

since no red vertex dominates a blue vertex in G′, there is a set S of at most

(k − |RG′|) white/blue vertices that dominate all the blue vertices in G′. Let

T be the set of new vertices in H that are adjacent to the white vertices of G′
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Algorithm 3 Reduction from k-RWB-DOMINATING SET to k-DOMINATING SET.

1: Delete all red vertices in G′.
2: for Each white vertex x in G′ do

3: Add a new vertex vx .

4: Add an edge from x to vx .

5: Add k− |RG′ |+ |WG′ |+ 1 new vertices of degree exactly 1, each adjacent to vx .

6: end for

— that is, T is the set of all vertices added in line 3 of Algorithm 3. Then

T dominates in H all the vertices that are white in G′, and also all the new

vertices added by the construction. Thus S∪ T is a dominating set of H, of size

at most k− |RG′ |+ |WG′|.
Conversely, suppose H has a dominating set X of size at most k − |RG′|+

|WG′ |. As above, let T be the set of new vertices in H that are adjacent to the

white vertices of G′. Let x ∈ T , and let Fx be the set of all “new” neighbors

of x — that is, Fx is the set of all neighbors of x vertices added in line 5 of

Algorithm 3. Each vertex in Fx is dominated only by itself and by x , and so

if x /∈ X , then Fx ⊆ X . But this latter containment cannot happen because

|Fx | = (k − |RG′| + |WG′ | + 1) > |X |, and so T ⊆ X . Since |T | = |WG′ | and T

dominates WG′ in H, this means that there exists a set Y of at most k − |RG′|
vertices in H that (1) are white or blue in G′, and (2) dominate all vertices that

are blue in G′. Y ∪ RG′ is thus an rwb-dominating set of G′ of size at most k.

Thus the above reduction from k-RWB-DOMINATING SET to k-DOMINATING SET

is sound, and so from Corollary 1 we have

Theorem 1. For any fixed j ≥ i ≥ 1, the k-DOMINATING SET problem on Ki, j-free

graphs has a polynomial kernel with O(( j+ 1)2(i+1)k2i2) vertices.

3 A Polynomial Kernel for d-degenerate Graphs

A d-degenerate graph does not contain Kd+1,d+1 as a subgraph, and so the ker-

nelization algorithm of the previous section can be applied to a d-degenerate

graph, setting i = j = d+1. The algorithm runs in time O((d+1)2nd+O(1)) and

constructs a kernel with O((d+2)2(d+2)·k2(d+1)2) vertices. Since a d-degenerate

graph on v vertices has at most dv edges, we have:

Corollary 2. The k-DOMINATING SET problem on d-degenerate graphs has a kernel

on O((d + 2)2(d+2) · k2(d+1)2) vertices and edges.

Corollary 2 settles an open problem posed by Alon and Gutner [3].

3.1 Improving the running time

We describe a modification to our algorithm that reduces the running time to

O(2d · dn2) when the input is restricted to d-degenerate graphs; the bound on
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Algorithm 4 A faster implementation of Rule 2.p in d-degenerate graphs.

1: for l← 1 to n do

2: if vl is blue and its degree in G[vl+1, . . . , vn] is at least d − p+ 1 then

3: Find the neighborhood N of vl in G[vl+1, . . . , vn]

4: for each (d − p+ 1)-subset S of N do

5: if S has more than (d + 1)kp + kp−1+ · · ·+ k common blue neighbors in G then

6: Apply the three steps of Rule 2.p, taking S as U

7: end if

8: end for

9: end if

10: end for

the kernel size remains the same. The modified algorithm makes use of the

following well-known property of d-degenerate graphs:

Fact 1. [17, Theorem 2.10] Let G be a d-degenerate graph on n vertices. Then

one can compute, in O(dn) time, an ordering v1, v2, . . . , vn of the vertices of G

such that for 1 ≤ i ≤ n, vi has at most d neighbors in the subgraph of G induced

on {vi+1, . . . , vn}.

The modification to the algorithm pertains to the way rules 2.1 to 2.(d−1)

are implemented: the rest of the algorithm remains the same.

In implementing Rule 2.p, 1 ≤ p ≤ (d − 1), instead of checking each (d −
p + 1)-subset of vertices in the graph to see if it satisfies the condition in the

rule, we make use of Fact 1 to quickly find such a set of vertices, if it exists.

Let G be the graph instance on n vertices on which Rule 2.p is to be applied.

First we delete, temporarily, all the red vertices in G. We then find an ordering

v1, v2, . . . , vn of the kind described in Fact 1, of all the remaining vertices in G.

Let U and B be as defined in the rule. Since each vertex in U has degree greater

than d , the first vertex vl in U ∪ B that appears in the ordering has to be from

B. The vertex vl will then have a neighborhood of size d− p+1 that in turn has

B as its common neighborhood. We use this fact to look for such a pair (U , B)

and exhaustively apply Rule 2.p to G; see Algorithm 4. We then add back the

red vertices that we deleted prior to this step, along with all their edges to the

rest of the graph.

As |N | ≤ d , the inner for loop is executed at most
� d

p−1

�

times for each

iteration of the outer loop. Each of the individual steps in the algorithm can

be done in O(dn) time, and so Rule 2.p can be applied in O(dn
∑n

l=1

� d

p−1

�

)

time. All the rules 2.p can therefore be applied in O(dn
∑n

l=1

∑d−1
p=1

� d

p−1

�

) =

O(2d · dn2) time. Thus we have:

Theorem 2. For any fixed d ≥ 1, the k-DOMINATING SET problem on d-degenerate

graphs has a kernel on O((d + 2)2(d+2) · k(2(d+1))2 ) vertices and edges, and this

kernel can be found in O(2d · dn2) time for an input graph on n vertices.
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4 Independent Dominating Set in Ki, j-free graphs

The k-INDEPENDENT DOMINATING SET problem asks, for a graph G and a positive

integer k given as inputs, whether G has a dominating set S of size at most k

such that S is an independent set in G(that is, no two vertices in S are adjacent

in G). This problem is known to be NP-hard for general graphs [18], and

the problem parameterized by k is W[2]-complete [11]. Using a modified

version of the set of reduction rules in Section 2 we show that k-INDEPENDENT

DOMINATING SET has a polynomial kernel in Ki, j-free graphs for j ≥ i ≥ 1. For

i = 1, j ≥ 1 we can easily obtain trivial kernels as before, and for i = 2, j ≥ 2 a

simplified version of the following algorithm gives a kernel of size O( j3k4).

4.1 The reduction rules

Rule 1 is the same as for the k-DOMINATING SET kernel for Ki, j-free graphs (Sec-

tion 2.1). Rules 2.1 to 2.(i − 2) and Rule 3 are modified to make use of the

fact that we are looking for a dominating set that is independent. A vertex

u that is made white will never be part of the independent dominating set D

that is sought to be constructed by the algorithm, since u is adjacent to some

vertex v ∈ D. So a vertex can be deleted as soon as it is made white. Also,

rules 1,2.1 . . . 2.(i−2) and 3 are the only rules. Rules 4 and 5 from that section

do not apply, because of the same reason as above. The modified rules ensure

that no vertex is colored white, and so they work on rb-graphs: graphs whose

vertex set is partitioned into red and blue vertices. Using these modified rules,

the bounds of |RH | and |BH | in the proof of Lemma 9, and the fact that there

are no white vertices, we have

Theorem 3. For any fixed j ≥ i ≥ 1, the k-INDEPENDENT DOMINATING SET prob-

lem on Ki, j-free graphs has a polynomial kernel with O( jki) vertices.

For d-degenerate graphs, we have i = j = d + 1, and therefore we have:

Corollary 3. For any fixed d ≥ 1, the k-INDEPENDENT DOMINATING SET problem

on d-degenerate graphs has a polynomial kernel with O((d+1)kd+1) vertices and

edges.

5 Conclusion

We derive a polynomial kernel for the k-DOMINATING SET problem on graphs

that do not have Ki, j as a subgraph, for any fixed j ≥ i ≥ 1. We use this result

to show that the k-DOMINATING SET problem has a polynomial kernel of size

O((d + 2)2(d+2) · k2(d+1)2 ) on graphs of degeneracy at most d , thereby settling

an open problem posed by Alon and Gutner [3]. A modified version of our

kernelization algorithm for k-DOMINATING SET yields a (smaller) kernel for the

k-INDEPENDENT DOMINATING SET problem on Ki, j-free and d-degenerate graphs,
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as well. All our kernelization algorithms are based on simple reduction rules

that look at the common neighborhoods of sets of vertices.

By extending the kernel lower-bound techniques of Bodlaender et al. [4],

Dom et al. [10] have shown that the k-DOMINATING SET problem on d-degenerate

graphs does not have a kernel of size polynomial in both d and k unless the Poly-

nomial Hierarchy collapses to the third level. This shows that it is unlikely that

the kernel size that we have obtained for this class of graphs can be significantly

improved.

Many interesting classes of graphs are of bounded degeneracy. These in-

clude all nontrivial minor-closed families of graphs such as planar graphs,

graphs of bounded genus, graphs of bounded treewidth, and graphs excluding

a fixed minor, and some non-minor-closed families such as graphs of bounded

degree. Graphs of degeneracy d are Kd+1,d+1-free. Since any Ki, j; j ≥ i ≥ 2

contains a 4-cycle, every graph of girth 5 is Ki, j-free. Sachs [27, Theorem

1] showed that there exist graphs of girth 5 and arbitrarily large degeneracy.

Therefore, Ki, j-free graphs are strictly more general than graphs of bounded

degeneracy. To the best of our knowledge, Ki, j-free graphs form the largest

class of graphs for which FPT algorithms and polynomial kernels are known for

the dominating set problem variants discussed in this paper.

One interesting direction of future work is to try to demonstrate (no) ker-

nels of size f (d)·kc for the k-DOMINATING SET problem on d-degenerate graphs,

where c is independent of d . Note that the result of Dom et al. mentioned above

does not suggest that such kernels are unlikely. A graph property Π is a set of

graphs. The vertex deletion problem for Π asks, given a graph G and a non-

negative integer k as inputs, whether there exist at most k vertices in G whose

deletion from G results in a graph that belongs to Π. A graph property Π is said

to be (1) nontrivial if neither Π nor its complement is finite, and (2) hereditary

if (G ∈ Π, H is a subgraph of G) =⇒ H ∈ Π. Dell and van Melkebeek [8] have

recently developed a lower-bound technique which allows them to show, inter

alia, that the vertex deletion problem for any nontrivial hereditary graph class

has no kernel of size O(k2−ε) for any ε > 0. It will be interesting to see if this

new machinery can be used to show that the k-DOMINATING SET problem does

not have kernels of size f (d) · kc on d-degenerate graphs.

Another challenge is to improve the running times of the kernelization al-

gorithms: to remove the exponential dependence on d of the running time

for d-degenerate graphs, and to get a running time of the form O(nc) for Ki, j-

free graphs where c is independent of i and j. It would also be interesting

to see if other NP-hard variants of k-DOMINATING SET — of which there are

many[23, 22] — have FPT algorithms and polynomial kernels Ki, j-free graphs

and graphs of bounded degeneracy. Very recently, Cygan et al.[6] showed that

k-CONNECTED DOMINATING SET, where one asks for a dominating set of size at

most k that induces a connected subgraph of the input graph, has no polyno-

mial kernels in graphs of degeneracy d ≥ 2 unless the Polynomial Hierarchy

collapses to the third level. Note that our kernelization procedure breaks down
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(as it should) when we insist that the solution be connected, since rules 4 and 5

can no longer be applied: white vertices which are useless in dominating blue

vertices may still be useful in providing connectivity for the dominating set that

is being constructed.
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