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Abstract

In 2000 Alber et al. [SWAT 2000 ] obtained the first parameterized subexponential algorithm on
undirected planar graphs by showing that k-DOMINATING SET is solvable in time 2O(

√
k)nO(1),

where n is the input size. This result triggered an extensive study of parameterized problems on
planar and more general classes of sparse graphs and culminated in the creation of Bidimensionality
Theory by Demaine et al. [J. ACM 2005 ]. The theory utilizes deep theorems from Graph Minor The-
ory of Robertson and Seymour, and provides a simple criteria for checking whether a parameterized
problem is solvable in subexponential time on sparse graphs.

While bidimensionality theory is an algorithmic framework on undirected graphs, it remains
unclear how to apply it to problems on directed graphs. The main reason is that Graph Minor Theory
for directed graphs is still in a nascent stage and there are no suitable obstruction theorems so far.
Even the analogue of treewidth for directed graphs is not unique and several alternative definitions
have been proposed.

In this paper we make the first step beyond bidimensionality by obtaining subexponential time
algorithms for problems on directed graphs. We develop two different methods to achieve subex-
ponential time parameterized algorithms for problems on sparse directed graphs. We exemplify
our approaches with two well studied problems. For the first problem, k-LEAF OUT-BRANCHING,
which is to find an oriented spanning tree with at least k leaves, we obtain an algorithm solving the
problem in time 2O(

√
k log k)n + nO(1) on directed graphs whose underlying undirected graph ex-

cludes some fixed graph H as a minor. For the special case when the input directed graph is planar,
the running time can be improved to 2O(

√
k)n + nO(1). The second example is a generalization of

the DIRECTED HAMILTONIAN PATH problem, namely k-INTERNAL OUT-BRANCHING, which is
to find an oriented spanning tree with at least k internal vertices. We obtain an algorithm solving the
problem in time 2O(

√
k log k)+nO(1) on directed graphs whose underlying undirected graph excludes

some fixed apex graph H as a minor. Finally, we observe that for any ε > 0, the k-DIRECTED PATH
problem is solvable in time O((1 + ε)knf(ε)), where f is some function of ε.

Our methods are based on non-trivial combinations of obstruction theorems for undirected graphs,
kernelization, problem specific combinatorial structures and a layering technique similar to the one
employed by Baker to obtain PTAS for planar graphs.

1 Introduction

Parameterized complexity theory is a framework for a refined analysis of hard (NP-hard) problems.
Here, every input instance I of a problem Π is accompanied with an integer parameter k and Π is said to
be fixed parameter tractable (FPT) if there is an algorithm running in time f(k) · nO(1), where n = |I|
and f is a computable function. A central problem in parameterized algorithms is to obtain algorithms
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with running time f(k) · nO(1) such that f is as slow growing function as possible. This has led to
the development of various graph algorithms with running time 2O(k)nO(1)— notable ones include k-
FEEDBACK VERTEX SET [7], k-LEAF SPANNING TREE [28], k-ODD CYCLE TRANSVERSAL [31],
k-PATH [4], and k-VERTEX COVER [8] in undirected graphs. A natural question was whether we can
get subexponential time algorithms for these problems, that is, can we have algorithms with running time
2o(k)nO(1). It is now possible to show that these problems do not admit algorithms with running time
2o(k)nO(1) unless Exponential Time Hypothesis (ETH) [22, 27] fails. Finding algorithms with subexpo-
nential running time on general undirected graphs is a trait uncommon to parameterized algorithms.

However, the situation changes completely when we consider problems on topological graph classes
like planar graphs or graphs of bounded genus. In 2000, Alber et al. [1] obtained the first parameterized
subexponential algorithm on undirected planar graphs by showing that k-DOMINATING SET is solvable
in time 2O(

√
k)nO(1). This result triggered an extensive study of parameterized problems on planar

and more general classes of sparse graphs like graphs of bounded genus, apex minor-free graphs and
H-minor free graphs. All this work led to subexponential time algorithms for several fundamental
problems like k-FEEDBACK VERTEX SET, k-EDGE DOMINATING SET, k-LEAF SPANNING TREE,
k-PATH, k-r-DOMINATING SET, k-VERTEX COVER to name a few on planar graphs [1, 12, 25], and
more generally, on H-minor-free graphs [13, 15, 16]. These algorithms are obtained by showing a
combinatorial relation between the parameter and the structure of the input graph and proofs require
strong graph theoretic arguments. This graph-theoretic and combinatorial component in the design of
subexponential time parameterized algorithms makes it of an independent interest.

Demaine et al. [13] abstracted out the “common theme” among the parameterized subexponential
time algorithms on sparse graphs and created the meta-algorithmic theory of Bidimensionality. The
bidimensionality theory unifies and improves almost all known previous subexponential algorithms on
spare graphs. The theory is based on algorithmic and combinatorial extensions to various parts of Graph
Minors Theory of Robertson and Seymour [32] and provides a simple criteria for checking whether a
parameterized problem is solvable in subexponential time on sparse graphs. The theory applies to graph
problems that are bidimensional in the sense that the value of the solution for the problem in question
on k× k grid or “grid like graph” is at least Ω(k2) and the value of solution decreases while contracting
or sometime deleting the edges. Problems that are bidimensional include k-FEEDBACK VERTEX SET,
k-EDGE DOMINATING SET, k-LEAF SPANNING TREE, k-PATH, k-r-DOMINATING SET, k-VERTEX

COVER and many others. In most cases we obtain subexponential time algorithms for a problem using
bidimensionality theory in following steps. Given an instance (G, k) to a bidimensional problem Π,
in polynomial time we either decide that it is an yes instance to Π or the treewidth of G is O(

√
k).

In the second case, using known constant factor approximation algorithm for the treewidth, we find a
tree decomposition of width O(

√
k) for G and then solve the problem by doing dynamic programming

over the obtained tree decomposition. This approach combined with Catalan structure based dynamic
programming over graphs of bounded treewidth has led to 2O(

√
k)nO(1) time algorithm for k-FEEDBACK

VERTEX SET, k-EDGE DOMINATING SET, k-LEAF SPANNING TREE, k-PATH, k-r-DOMINATING

SET, k-VERTEX COVER and many others on planar graphs [12, 13, 20] and in some cases like k-
DOMINATING SET and k-PATH on H-minor free graphs [13, 18]. We refer to surveys by Demaine
and Hajiaghayi [15] and Dorn et al. [19] for further details on bidimensionality and subexponential
parameterized algorithms.

While bidimensionality theory is a powerful algorithmic framework on undirected graphs, it remains
unclear how to apply it to problems on directed graphs (or digraphs). The main reason is that Graph
Minor Theory for digraphs is still in a nascent stage and there are no suitable obstruction theorems so
far. For an example, even the first step of the framework does not work easily on digraphs, as there is
no unique notion of directed k × k grid. Given a k × k undirected grid we can make 2O(k2) distinct
directed grids by choosing orientations for the edges. Hence, unless we can guarantee a lower bound of
Ω(k2) on the size of solution of a problem for any directed k × k grid, the bidimensionality theory does
not look applicable for problems on digraphs. Even the analogue of treewidth for digraphs is not unique
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and several alternative definitions have been proposed. Only recently the first non-trivial subexponential
parameterized algorithms on digraphs was obtained. Alon et al. [3] introduced the method of chromatic
coding, a variant of color coding [4], and combined it with divide and conquer to obtain 2O(

√
k log k)nO(1)

for k-FEEDBACK ARC SET in tournaments.

Our contribution. In this paper we make the first step beyond bidimensionality by obtaining subexpo-
nential time algorithms for problems on sparse digraphs. We develop two different methods to achieve
subexponential time parameterized algorithms for digraph problems when the input graph can be em-
bedded on some surface or the underlying undirected graph excludes some fixed graph H as a minor.
Quasi-bidimensionality. Our first technique can be thought of as “bidimensionality in disguise”. We
observe that given a digraph D, whose underlying undirected graph UG(D) excludes some fixed graph
H as a minor, if we can remove o(k2) vertices from the given digraph to obtain a digraph whose un-
derlying undirected graph has a constant treewidth, then the treewidth of UG(D) is o(k). So given an
instance (D, k) to a problem Π, in polynomial time we either decide that it is an yes instance to Π or
the treewidth of UG(D) is o(k). In the second case, as in the framework based on bidimensionality,
we solve the problem by doing dynamic programming over the tree decomposition of UG(D). The
dynamic programming part of the framework is problem-specific and runs in time 2o(k) + nO(1). We
exemplify this technique on a well studied problem of k-LEAF OUT-BRANCHING.

We say that a subdigraph T on vertex set V (T ) of a digraph D on vertex set V (D) is an out-tree
if T is an oriented tree with only one vertex r of in-degree zero (called the root). The vertices of T of
out-degree zero are called leaves and every other vertex is called an internal vertex. If T is a spanning
out-tree, that is, V (T ) = V (D), then T is called an out-branching of D. Now we are in position to
define the problem formally.

k-LEAF OUT-BRANCHING (k-LOB): Given a digraph D with the vertex set V (D) and the
arc set A(D) and a positive integer k, check whether there exists an out-branching with at
least k leaves.

The study of k-LEAF OUT-BRANCHING has been at forefront of research in parameterized algo-
rithms in the last few years. Alon et al. [2] showed that the problem is fixed parameter tractable by
giving an algorithm that decides in time O(f(k)n) whether a strongly connected digraph has an out-
branching with at least k leaves. Bonsma and Dorn [6] extended this result to all digraphs, and improved
the running time of the algorithm. Recently, Kneis et al. [28] provided a parameterized algorithm solving
the problem in time 4knO(1). This result was further improved to 3.72knO(1) by Daligaut et al. [10].
Fernau et al. [21] showed that for the rooted version of the problem, where apart from the input instance
we are also given a root r and one asks for a k-leaf out-branching rooted at r, admits a O(k3) kernel.
Furthermore they also show that k-LOB does not admit polynomial kernel unless polynomial hierarchy
collapses to third level. Finally, Daligault and Thomassé [11] obtained a O(k2) kernel for the rooted
version of the k-LOB problem and gave a constant factor approximation algorithm for k-LOB.

Using our new technique in combination with kernelization result of [21], we get an algorithm for
k-LOB that runs in time 2O(

√
k log k)n + nO(1) for digraphs whose underlying undirected graph is H-

minor-free. For planar digraphs our algorithm runs in 2O(
√
k)n+ nO(1) time.

Kernelization and Divide & Conquer. Our second technique is a combination of divide and conquer,
kernelization and dynamic programming over graphs of bounded treewidth. Here, using a combina-
tion of kernelization and a Baker style layering technique for obtaining polynomial time approximation
schemes [5], we reduce the instance of a given problem to 2o(k)nO(1) many new instances of the same
problem. These new instances have the following properties: (a) the treewidth of the underlying undi-
rected graph of these instances is bounded by o(k); and (b) the original input is an yes instance if and
only if at least one of the newly generated instance is. We exhibit this technique on the k-INTERNAL

OUT-BRANCHING problem, a parameterized version of a generalization of DIRECTED HAMILTONIAN

PATH.
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k-INTERNAL OUT-BRANCHING (k-IOB): Given a digraph D with the vertex set V (D)
and the arc set A(D) and a positive integer k, check whether there exists an out-branching
with at least k internal vertices.

Prieto and Sloper [30] studied the undirected version of this problem and gave an algorithm with running
time 24k log knO(1) and obtained a kernel of size O(k2). Recently, Fomin et al. [23] obtained a vertex
kernel of size 3k and gave an algorithm for the undirected version of k-IOB running in time 8knO(1).
Gutin et al. [26] obtained an algorithm of running time 2O(k log k)nO(1) for k-IOB and gave a kernel
of size of O(k2) using the well known method of crown-decomposition. Cohen et al. [9] improved the
algorithm for k-IOB and gave an algorithm with running time 49.4knO(1). Here, we obtain a subexpo-
nential time algorithm for k-IOB with running time 2O(

√
k log k) + nO(1) on directed planar graphs and

digraphs whose underlying undirected graphs are apex minor-free.
Finally, we also observe that for any ε > 0, there is an algorithm finding in time O((1 + ε)knf(ε))

a directed path of length at least k (the k-DIRECTED PATH problem) in a digraph which underlying
undirected graph excludes a fixed apex graph as a minor. The existence of subexponential parameterized
algorithm for this problem remains open.

2 Preliminaries

Let D be a digraph. By V (D) and A(D) we represent the vertex set and arc set of D, respectively.
Given a subset V ′ ⊆ V (D) of a digraph D, let D[V ′] denote the digraph induced by V ′. The underlying
graph UG(D) of D is obtained from D by omitting all orientations of arcs and by deleting one edge
from each resulting pair of parallel edges. A vertex u of D is an in-neighbor (out-neighbor) of a vertex
v if uv ∈ A(D) (vu ∈ A(D), respectively). The in-degree d−(v) (out-degree d+(v)) of a vertex v is the
number of its in-neighbors (out-neighbors). We say that a subdigraph T of a digraph D is an out-tree
if T is an oriented tree with only one vertex r of in-degree zero (called the root). The vertices of T of
out-degree zero are called leaves and every other vertex is called an internal vertex. If T is a spanning
out-tree, that is, V (T ) = V (D), then T is called an out-branching ofD. An out-branching (respectively.
out-tree) rooted at r is called r-out-branching (respectively. r-out-tree). We define the operation of a
contraction of a directed arc as follows. An arc uv is contracted as follows: add a new vertex u′, and for
each arc wv or wu add the arc wu′ and for an arc vw or uw add the arc u′w, remove all arcs incident
to u and v and the vertices u and v. We call a loopless digraph D rooted, if there exists a pre-specified
vertex r of in-degree 0 as a root r and d+(r) ≥ 2. The rooted digraph D is called connected if every
vertex in V (D) is reachable from r by a directed path.

Let G be an undirected graph with the vertex set V (G) and the edge set E(G). For a subset V ′ ⊆
V (G), by G[V ′] we mean the subgraph of G induced by V ′. By N(u) we denote (open) neighborhood
of u that is the set of all vertices adjacent to u and by N [u] = N(u) ∪ {u}. Similarly, for a subset
D ⊆ V , we define N [D] = ∪v∈DN [v]. The diameter of a graph G, denoted by diam(G), is defined to
be the maximum length of a shortest path between any pair of vertices of V (G).

Given an edge e = uv of a graph G, the graph G/e is obtained by contracting the edge uv; that is,
we get G/e by identifying the vertices u and v and removing all the loops and duplicate edges. A minor
of a graph G is a graph H that can be obtained from a subgraph of G by contracting edges. A graph
class C is minor closed if any minor of any graph in C is also an element of C. A minor closed graph
class C is H-minor-free or simply H-free if H /∈ C. A graph H is called an apex graph if the removal of
one vertex makes it a planar graph.

A tree decomposition of a (undirected) graph G is a pair (X,T ) where T is a tree whose vertices
we will call nodes and X = ({Xi | i ∈ V (T )}) is a collection of subsets of V (G) such that (a)⋃
i∈V (T )Xi = V (G), (b) for each edge vw ∈ E(G), there is an i ∈ V (T ) such that v, w ∈ Xi, and (c)

for each v ∈ V (G) the set of nodes {i | v ∈ Xi} forms a subtree of T . The width of a tree decomposition
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({Xi | i ∈ V (T )}, T ) equals maxi∈V (T ){|Xi| − 1}. The treewidth of a graph G is the minimum width
over all tree decompositions of G. We use notation tw(G) to denote the treewidth of a graph G.

A parameterized problem is said to admit a polynomial kernel if there is a polynomial time algorithm
(where the degree of the polynomial is independent of k), called a kernelization algorithm, that reduces
the input instance down to an instance with size bounded by a polynomial p(k) in k, while preserving
the answer. This reduced instance is called a p(k) kernel for the problem. See [29] for an introduction
to kernelization.

3 Method I – Quasi Bidimensionality

In this section we present our first approach. In general, a subexponential time algorithm using bidimen-
sionality is obtained by showing that the solution for a problem in question is at least Ω(k2) on k × k
(contraction) grid minor. Using this we reduce the problem to a question on graph with treewidth o(k).
We start with a lemma which enables us to use the framework of bidimensionality for digraph problems,
though not as directly as for undirected graph problems.

Lemma 1. Let D be a digraph such that UG(D) excludes a fixed graph H as a minor. For any constant
c ≥ 1, if there exists a subset S ⊆ V (D) with |S| = s such that tw(UG(D[V (D) \ S])) ≤ c, then
tw(UG(D)) = O(

√
s).

Proof. By [15], for anyH-minor-free graphGwith treewidth more than r, there is a constant δ > 1 only
dependent on H such that G has a r

δ ×
r
δ grid minor. Suppose tw(UG(D)) > δ(c+ 1)

√
s then UG(D)

contains a (c + 1)
√
s× (c + 1)

√
s grid as a minor. Notice that this grid minor can not be destroyed by

any vertex set S of size at most s. That is, if we delete any vertex set S with |S| = s from this grid, it
will still contain a (c + 1) × (c + 1) subgrid. Thus, UG(D[V (D) \ S]) contains a (c + 1) × (c + 1)
grid minor and hence by [22, Exercise 11.6] we have that tw(UG(D[V (D) \ S])) > c. This shows
that we need to delete more than s vertices from UG(D) to obtain a graph with treewidth at most c, a
contradiction.

Using Lemma 1, we show that k-LEAF-OUT-BRANCHING problem has a subexponential time al-
gorithm on digraphs D such that UG(D) exclude a fixed graph H as a minor. For our purpose a rooted
version of k-LOB will also be useful which we define now. In the ROOTED k-LEAF-OUT-BRANCHING

(R-k-LOB) problem apart from D and k the root r of the tree searched for is also a part of the input and
the objective is to check whether there exists an r-out-branching with at least k leaves. We now state our
main combinatorial lemma and postpone its proof for a while.

Lemma 2. Let D be a digraph such that UG(D) excludes a fixed graph H as a minor, k be a positive
integer and r ∈ V (D) be the root. Then in polynomial time either we can construct an r-out-branching
with at least k leaves in D or find a digraph D′ such that following holds.

• UG(D′) excludes the fixed graph H as a minor;
• D has an r-out-branching with at least k leaves if and only if D′ has an r-out-branching with at

least k leaves;
• there exists a subset S ⊆ V (D′) such that |S| = O(k) and tw(U(D′[V (D′) \ S]) ≤ c, c a

constant.

Combining Lemmata 1 and 2 we obtain the following result.

Lemma 3. Let D be a digraph such that UG(D) excludes a fixed graph H as a minor, k be a positive
integer and r ∈ V (D) be a root. Then in polynomial time either we can construct an r-out-branching
with at least k leaves inD or find a digraphD′ such thatD has an r-out-branching with at least k leaves
if and only if D′ has an r-out-branching with at least k leaves. Furthermore tw(UG(D′)) = O(

√
k).
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When a tree decomposition of UG(D) is given, dynamic programming methods can be used to
decide whether D has an out-branching with at least k leaves, see [26]. The time complexity of such a
procedure is 2O(w logw)n, where n = |V (D)| and w is the width of the tree decomposition. Now we are
ready to prove the main theorem of this section assuming the combinatorial Lemma 2.

Theorem 1. The k-LOB problem can be solved in time 2O(
√
k log k)n+nO(1) on digraphs with n vertices

such that the underlying undirected graph excludes a fixed graph H as a minor.

Proof. Let D be a digraph where UG(D) excludes a fixed graph H as a minor. We guess a vertex
r ∈ V (D) as a root. This only adds a factor of n to our algorithm. By Lemma 3, we can either compute,
in polynomial time, an r-out-branching with at least k leaves in D or find a digraph D′ with UG(D′)
excluding a fixed graph H as a minor and tw(UG(D′)) = O(

√
k). In the later case, using the constant

factor approximation algorithm of Demaine et al. [17] for computing the treewidth of a H-minor free
graph, we find a tree decomposition of width O(

√
k) for UG(D′) in time nO(1). With the previous

observation that we can find an r-out-branching with at least k leaves, if exists one, in time 2O(
√
k log k)n

using dynamic programming over graphs of bounded treewidth, we have that we can solve R-k-LOB in
time 2O(

√
k log k)nO(1). Hence, we need 2O(

√
k log k)nO(1) to solve the k-LOB problem.

To obtain the claimed running time bound we use the known kernelization algorithm after we have
guessed the root r. Fernau et al. [21] gave an O(k3) kernel for R-k-LOB which preserves the graph
class. That is, given an instance (D, k) of R-k-LOB, in polynomial time they output an equivalent
instance (D′′, k) of R-k-LOB such that (a) if UG(D) is H-minor free then so is UG(D′′); and (b)
|V (D′′)| = O(k3). We will use this kernel for our algorithm rather than the O(k2) kernel for R-k-
LOB obtained by Daligault and Thomassé [11], as they do not preserve the graph class. So after we
have guessed the root r, we obtain an equivalent instance (D′′, k) for R-k-LOB using the kernelization
procedure described in [21]. Then using the algorithm described in the previous paragraph we can solve
R-k-LOB in time 2O(

√
k log k) + nO(1). Hence, we need 2O(

√
k log k)n+ nO(1) to solve k-LOB.

Given a tree decomposition of width w of UG(D) for a planar digraph D, we can solve k-LOB
using dynamic programming methods in time 2O(w)n. This brings us to the following theorem.

Theorem 2. [?]1 The k-LOB problem can be solved in time 2O(
√
k)n+nO(1) on digraphs with n vertices

when the underlying undirected graph is planar.

3.1 Proof of Lemma 2

To prove the combinatorial lemma we need a few recent results from the literature on out-branching
problems. We start with some definitions given in [11]. A cut of D is a subset S such that there exists a
vertex z ∈ V (D) \ S such that z is not reachable from r in D[V (D) \ S]. We say that D is 2-connected
if there exists no cut of size one in D or equivalently there are at least two vertex disjoint paths from r
to every vertex in D.

Lemma 4 ([11]). Let D be a rooted 2-connected digraph with r being its root. Let α be the number of
vertices inD with in-degree at least 3. ThenD has an out-branching rooted at r with at least α/6 leaves
and such an out-branching can be found in polynomial time.

A vertex v ∈ V (D) is called a nice vertex if v has an in-neighbor which is not its out-neighbor. The
following lemma is proved in [11].

Lemma 5 ([11]). Let D be a rooted 2-connected digraph rooted at a vertex r. Let β be the number
of nice vertices in D. Then D has an out-branching rooted at r with at least β/24 leaves and such an
out-branching can be found in polynomial time.

1The proofs marked with [?] have been moved to the appendix due to space restrictions.
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Proof of Lemma 2. To prove the combinatorial lemma, we consider two cases based on whether or not
D is 2-connected.
Case 1) D is a rooted 2-connected digraph.

We prove this case in the following claim.

Claim 1. LetD be a rooted 2-connected digraph with root r and a positive integer k. Then in polynomial
time, we can find an out-branching rooted at r with at least k leaves or find a set S of at most 30k vertices
whose removal results in a digraph whose underlying undirected graph has treewidth one.

Proof. If α ≥ 6k, then we are done by Lemma 4. Similarly if β ≥ 24k, then we are done by Lemma 5.
Hence we assume that α < 6k and β < 24k. Let S be the set of nice vertices and vertices of in-degree
at least 3 in G. Then |S| < α + β ≤ 30k. Observe that D[V (D) \ S] is simply a collection of directed
paths where every edge of the path is a directed 2-cycle. This is because D[V (D) \ S] contains only
those vertices which are not nice (that is, those vertices whose in-neighbors are also out-neighbors) and
are of in-degree at most two. Hence, if there is an arc xy in D[V (D) \ S], then the arc yx also exists in
D[V (D)\S]. Next we note thatD[V (D)\S] does not contain a directed cycle of length more than two.
We prove the last assertion as follows. Let C be a directed cycle inD[V (D)\S] of length at least 3. Since
D is a rooted 2-connected digraph, we have a vertex v on the cycle C such that there is a path from r to
v without using any other vertex from the cycle C. This implies that the in-degree of v is at least 3 in D
and hence v ∈ S, contrary to our assumption that v /∈ S. This proves that D[V (D)\S] does not contain
a directed cycle of length more than two. Hence the underlying undirected graph UG(D[V (D) \ S]) is
just a collection of paths and hence tw(UG(D[V (D) \ S])) is one.

Case 2) D is not 2-connected.
SinceD is not 2-connected, it has cut vertices, those vertices that separate r from some other vertices.

We deal with the cut vertices in three cases. Let x be a cut vertex of D. The three cases we consider are
following.
Case 2a) There exists an arc xy that disconnects at least two vertices from r.

In this case, we contract the arc xy. After repeatedly applying Case 2a), we obtain a digraph D′

such that any arc out of a cut vertex x of D′ disconnects at most 1 vertex. The resulting digraph D′ is
the one mentioned in the Lemma. Since we have only contracted some arcs iteratively to obtain D′, it
is clear that UG(D′) also excludes H as a minor. The proof that such contraction does not decrease the
number of leaves follows from a reduction rule given in [21]. We provide a proof for completion.

Claim 2. [?] Let D be a rooted connected digraph with root r, let xy be an arc that disconnects at
least two vertices from r and D′ be the digraph obtained after contracting the arc xy. Then D has an
r-out-branching with at least k leaves if and only if D′ has an r-out-branching with at least k leaves.

Now we handle the remaining cut-vertices of D′ as follows. Let S be the set of cut vertices in D′.
For every vertex x ∈ S , we associate a cut-neighborhood C(x), which is the set of out-neighbors of
x such that there is no path from r to any vertex in C(x) in D′[V (D′) \ {x}]. By C[x] we denote
C(x) ∪ {x}. The following observation is used to handle other cases.

Claim 3. Let S be the set of cut vertices in D′. Then for every pair of vertices x, y ∈ S and x 6= y, we
have that C[x] ∩ C[y] = ∅.

Proof. To the contrary let us assume that C[x] ∩ C[y] 6= ∅. We note that C[x] ∩ C[y] can only have
a vertex v ∈ {x, y}. To prove this, assume to the contrary that we have a vertex v ∈ C[x] ∩ C[y] and
v /∈ {x, y}. But then it contradicts the fact that v ∈ C[x], as x doesn’t separate v from r due to the path
between r and v through y. Thus, either x ∈ C(y) or y ∈ C(x). Without loss of generality let y ∈ C(x).
This implies that we have an arc xy and there exists a vertex z ∈ C(y) such that z /∈ C(x). But then
the arc xy disconnects at least two vertices y and z from r and hence Case 2a would have applied. This
proves the claim.
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Now we distinguish cases based on cut vertices having cut-neighborhood of size at least 2 or 1.
Let S≥2 and S=1 be the subset of cut-vertices of D′ having at least two cut-neighbors and exactly one
neighbor respectively.
Case 2b) S≥2 6= ∅.

We first bound |S≥2|. Let Ac = {xy | x ∈ S≥2, y ∈ C(x)} be the set of out-arcs emanating from
the cut vertices in S≥2 to its cut neighbors. We now prove the following structural claim which is useful
for bounding the size of S≥2.

Claim 4. [?] If D′ has an r-out-branching T ′ with at least k leaves then D′ has an r-out-branching
T with at least k leaves and containing all the arcs of Ac, that is, Ac ⊆ A(T ). Furthermore such an
out-branching can be found in polynomial time.

We know that in any out-tree, the number of internal vertices of out-degree at least 2 is bounded by
the number of leaves. Hence if |S≥2| ≥ k then we obtain an r-out-branching T of D′ with at least k
leaves using Claim 4 and we are done. So from now onwards we assume that |S≥2| = ` ≤ k − 1.

We now do a transformation to the given digraph D′. For every vertex x ∈ S≥2, we introduce an
imaginary vertex xi and add an arc uxi if there is an arc ux ∈ A(D′) and add an arc xiv if there is an
arc xv ∈ A(D′). Basically we duplicate the vertices in S≥2. Let the transformed graph be called Ddup.
We have the following two properties about Ddup. First, no vertex in S≥2∪{xi|x ∈ S≥2} is a cut vertex
in Ddup. We sum up the second property in the following claim.

Claim 5. The digraph D′ has an r-out-branching T with at least k leaves if and only if Ddup has an
r-out-branching T ′ with at least k + ` leaves.

Proof. Given an r-out-branching T of D′ with at least k leaves, we obtain an out-branching T ′ of Ddup

with at least k + ` leaves by adding an arc xxi to T for every x ∈ S≥2. Since every vertex of S≥2 is an
internal vertex in T , this process only adds {xi | x ∈ S≥2} as leaves and hence we have at least k + `
leaves in T ′.

For the converse, assume that Ddup has an r-out-branching T ′ with at least k + ` leaves. First, we
modify the out-branching so that not both of x and xi are internal vertices and we do not loose any leaf.
This can be done easily by making all out arcs in the out-branching from x and making xi a leaf. That
is, if N+

T ′(x
i) is the set of out-neighbors of xi in T ′ then we delete the arcs xiz, z ∈ N+

T ′(x
i) and add

xz for all z ∈ N+
T ′(x

i). This process can not decrease the number of leaves. Furthermore we can always
assume that if exactly one of x and xi is an internal vertex, then x is the internal vertex in T ′. Now delete
all the vertices of {xi | x ∈ S≥2} from T ′ and obtain T . Since the vertices in the set {xi | x ∈ S≥2}
are leaves of T ′, we have that T is an r-out-branching in D′. Since in the whole process we have only
deleted ` vertices we have that T has at least k leaves.

Now we move on to the last case.
Case 2c) S=1 6= ∅.

Consider the arc set Ap = {xy | x ∈ S=1, y ∈ C(x)}. Observe that Ap ⊆ A(D′) ⊆ A(Ddup)
and Ap forms a matching in Ddup because of Claim 3. Let Ddup

c be the digraph obtained from Ddup by
contracting the arcs ofAp. That is, for every arc uv ∈ Ap, the contracted graph is obtained by identifying
the vertices u and v as uv and removing all the loops and duplicate arcs.

Claim 6. Let Ddup
c be the digraph obtained by contracting the arcs of Ap in Ddup. Then the following

holds.

1. The digraph Ddup
c is 2-connected;

2. If Ddup
c has an r-out-branching T with at least k + ` leaves then Ddup has an r-out-branching

with at least k + ` leaves.
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Proof. The digraph Ddup
c is 2-connected by the construction as we have iteratively removed all cut-

vertices. IfDdup
c has an r-out-branching T with at least k+` leaves then we can obtain a r-out-branching

with at least k + ` leaves for Ddup by expanding each of the contracted vertices to arcs in Ap.

We are now ready to combine the above claims to complete the proof of the lemma. We first apply
Claim 1 on Ddup

c with k + `. Either we get an r-out-branching T ′ with at least k + ` leaves or a
set S′ of size at most 30(k + `) such that tw(UG(Ddup

c [V (Ddup
c ) \ S])) is one. In the first case, by

Claims 5 and 6 we get an r-out-branching T with at least k leaves in D′. In the second case we know
that there is a vertex set S′ of size at most 30(k+ `) such that tw(UG(Ddup

c [V (Ddup
c )\S′])) is one. Let

S∗ = {u | uv ∈ S′, vu ∈ S′, u ∈ S′} be the set of vertices obtained from S′ by expanding the contracted
vertices in S′. Clearly the size of |S∗| ≤ 2|S′| ≤ 60(k + `) ≤ 120k = O(k). We now show that the
treewidth of the underlying undirected graph of Ddup[V (Ddup) \ S∗] is at most 3. This follows from
the observation that tw(UG(Ddup

c [V (Ddup
c ) \ S′])) is one. Hence given a tree-decomposition of width

one for UG(Ddup
c [V (Ddup

c ) \ S′]) we can obtain a tree-decomposition for UG(Ddup[V (Ddup) \ S∗])
by expanding the contracted vertices. This can only double the bag size and hence the treewidth of
UG(Ddup[V (Ddup) \ S∗]) is at most 3, as the bag size can at most be 4. Now we take S = S∗ ∩ V (D′)
and since V (D′) ⊆ V (Ddup), we have that tw(UG(D[V (D) \ S])) ≤ 3. This concludes the proof of
the lemma.

4 Method II - Kernelization and Divide & Conquer

In this section we exhibit our second method of designing subexponential time algorithms for digraph
problems through the k-INTERNAL OUT-BRANCHING problem. In this method we utilize the known
polynomial kernel for the problem and obtain a collection of 2o(k) instances such that the input instance
is an “yes” instance if and only if one of the instances in our collection is. The property of the instances
in the collection which we make use of is that the treewidth of the underlying undirected graph of these
instances is o(k). The last property brings dynamic programming on graphs of bounded treewidth into
picture as the final step of the algorithm.

Here, we will solve a rooted version of the k-IOB problem, called ROOTED k-INTERNAL OUT-
BRANCHING (R-k-IOB), where apart from D and k we are also given a root r ∈ V (D), and the
objective is to find an r-out-branching, if exists one, with at least k internal vertices. The k-IOB problem
can be reduced to R-k-IOB by guessing the root r at the additional cost of |V (D)| in the running time
of the R-k-IOB problem. Henceforth, we will only consider R-k-IOB. We call an r-out-tree T with k
internal vertices minimal if deleting any leaf results in an r-out-tree with at most k− 1 internal vertices.
A well known result relating minimal r-out-tree T with k internal vertices with a solution to R-k-IOB
is as follows.

Lemma 6 ([9]). Let D be a rooted connected digraph with root r. Then D has an r-out-branching T ′

with at least k internal vertices if and only if D has a minimal r-out-tree T with k internal vertices with
|V (T )| ≤ 2k − 1. Furthermore, given a minimal r-out-tree T , we can find an r-out-branching T ′ with
at least k internal vertices in polynomial time.

We also need another known result about kernelization for k-IOB.

Lemma 7 ([26]). k-INTERNAL OUT-BRANCHING admits a polynomial kernel of size 8k2 + 6k.

In fact, the kernelization algorithm presented in [26] works for all digraphs and has a unique re-
duction rule which only deletes vertices. This implies that if we start with a graph G ∈ G where G
excludes a fixed graph H as a minor, then the graph G′ obtained after applying kernelization algorithm
still belongs to G .

Our algorithm tries to find a minimal r-out-tree T with k internal vertices with |V (T )| ≤ 2k − 1
recursively. As the first step of the algorithm we obtain a set of 2o(k) digraphs such that the underlying
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undirected graphs have treewidth O(
√
k), and the original problem is a “yes” instance if and only at

least one of the 2o(k) instances is a “yes” instance. More formally, we prove the following lemma.

Lemma 8. Let H be a fixed apex graph and G be a minor closed graph class excluding H as a minor.
Let (D, k) be an instance to k-INTERNAL OUT-BRANCHING such that UG(D) ∈ G . Then there exists
a collection

C =
{

(Di, k
′, r) | Di is a subgraph of D, k′ ≤ k, r ∈ V (D), 1 ≤ i ≤

(
8k2 + 6k√

k

)}
,

of instances such that tw(UG(Di)) = O(
√
k) for all i and (D, k) has an out-branching with at least k

internal vertices if and only if there exists an i, r and k′ ≤ k such that (Di, k
′, r) has an r-out-branching

with at least k′ internal vertices.

Proof. The idea of the proof is to do Baker style layering technique [5] combined with kernelization. In
the first step we apply the kernelization algorithm given by Lemma 7 on (D, k) and obtain an equivalent
instance (D′, k′) where |D′| ≤ 8k2 + 6k and k′ ≤ k for k-IOB. From now onwards we will confine
ourselves to (D′, k′). Observe that since the kernelization algorithm only deletes vertices to obtain the
reduced instance from the input digraph, we have that UG(D′) ∈ G .

Now we reduce the k-IOB problem to the R-k-IOB problem by guessing a vertex r ∈ V (D′) as a
root. Furthermore we try to find a minimal r-out-tree T with k′ internal vertices with |V (T )| ≤ 2k′− 1.
This suffices for our purpose if we know that every vertex in V (D′) is reachable from the root r, as in
this case Lemma 6 is applicable.

We start with a BFS starting at the vertex r in UG(D′). Let the layers created by doing BFS on
r be Lr0, L

r
1, . . . , L

r
t . If t ≤ d

√
ke, then the collection Cr consists of (D′, k′, r). From now onwards

we assume that t > d
√
ke. Now we partition the vertex set into (d

√
ke) + 1 parts where the q-th part

contains all vertices which are at a distance of q + i(d
√
ke) from r for various values of i. That is, let

V (D′) = ∪qPq, q ∈ {0, . . . , d
√
ke}. We define Pq =

⋃
Lr
q+i(d

√
ke+1)

, i ∈
{

0, . . . ,
⌊

t−
√
k

d
√
ke+1

⌋}
. It is

clear from the definition of Pq that it partitions the vertex set V (D′). If the input is an “yes” instance

then there exists a partition Pa such that it contains at most
⌈

2k′−1
d
√
ke

⌉
≤ 2
√
k vertices of the minimal

r-out-tree T we are seeking for. We guess the partition Pa and obtain the collection

Cr(Pa) =
{

(D′[V (D′) \ Pa ∪ Z], k′, r)
∣∣∣ Z ⊆ Pa, |Z| ≤ 2

√
k
}
.

We now claim that for every Z ⊆ Pa, |Z| ≤ 2
√
k, tw(UG(D′[V (D′) \ Pa ∪ Z])) = O(

√
k). Let

V ′ = V (D′) \ Pa be the set of vertices after removal of Pa from the vertex set of D′. Let the resultant
underlying undirected graph be G′ = UG(D′[V ′]) with connected components C1, . . . , C`. We show
that each connected component Ci of G′ has O(

√
k) treewidth. More precisely, every connected com-

ponent Ci of G′ is a subset of at most d
√
ke + 1 consecutive layers of the BFS starting at r. If we start

with UG(D′), and delete all BFS layers after these layers and contract all BFS layers before these layers
into a single vertex v, we obtain a minor M of UG(D′). This minor M has diameter at most d

√
ke+ 2

and contains Ci as an induced subgraph. Since UG(D′) ∈ G ′, we have that M ∈ G . Furthermore,
Demaine and Hajiaghayi [14] have shown that for any fixed apex graph H , every H-minor-free graph
of diameter d has treewidth O(d). This implies that the tw(Ci) ≤ tw(M) ≤ O(

√
k). Notice that

since every connected component of G′ has treewidth O(
√
k), G′ itself has O(

√
k) treewidth. Given

a tree-decomposition of width O(
√
k) for G′, we can obtain a tree-decomposition of width O(

√
k) for

UG(D′[V (D′)\Pa∪Z]) by adding Z to every bag. The collection Cr is given by ∪d
√
ke

a=0 Cr(Pa). Finally
the collection C = ∪r∈V (D′)Cr.

By the pigeon hole principle we know that if (D′, k′) is an yes instance then there exists a Pa
containing at most 2

√
k vertices of the minimal tree T we are looking for. Since we have run through all

r ∈ V (D′) as a potential root as well as all subsets of size at most 2
√
k as the possible intersection of
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V (T ) with Pa, we know that (D′, k′) has an out-branching with at least k internal vertices if and only
if there exists an i, r and k′ ≤ k such that (Di, k

′, r) ∈ C has a r-out-branching with at least k′ internal
vertices. This concludes the proof of the lemma.

Given a tree decomposition of width w for UG(D), one can solve R-k-IOB in time 2O(w logw)n
using a dynamic programming over graphs of bounded treewidth as described in [26]. This brings us to
the main theorem of this section.

Theorem 3. The k-IOB problem can be solved in time 2O(
√
k log k) + nO(1) on digraphs with n vertices

such that the underlying undirected graph excludes a fixed apex graph H as a minor.

Proof. As the first step of the algorithm we apply Lemma 8 and obtain collection C such that for every
(D, k, r) ∈ C, tw(UG(D)) ∈ O(

√
k). Then using the constant factor approximation algorithm of

Demaine et al. [17] for computing the treewidth of a H-minor free graph, we find a tree decomposition
of width O(

√
k) for UG(D) in time kO(1). Finally, we apply dynamic programming algorithm running

in time (
√
k)O(

√
k) = 2O(

√
k log k) on each instance in C. If for any of them we get an yes answer we

return “yes”, else we return “no”. The running time of the algorithm is bounded by

|C| · 2O(
√
k log k) + nO(1) = 2O(

√
k log k) · 2O(

√
k log k) + nO(1) = 2O(

√
k log k) + nO(1).

We have an additive term of nO(1) as we apply the algorithm only on the O(k2) size kernel. This
completes the proof.

5 Conclusion and Discussions

We have given the first subexponential parameterized algorithms on planar digraphs and on the class of
digraphs whose underlying undirected graph excludes a fixed graph H or an apex graph as a minor. We
have outlined two general techniques, and have illustrated them on two well studied problems concerning
oriented spanning trees (out branching)— one that maximizes the number of leaves and the other that
maximizes the number of internal vertices. One of our techniques uses the grid theorem on H-minor
graphs, albeit in a different way than how it is used on undirected graphs. The other uses Baker type
layering technique combined with kernelization and solves the problem on a subexponential number of
problems whose instances have sublinear treewidth.

We believe that our techniques will be widely applicable and it would be interesting to find other
problems where such subexponential algorithms are possible. Two famous open problems in this context
are whether the k-DIRECTED PATH problem (does a digraph contains a directed path of length at least
k) and the k-DIRECTED FEEDBACK VERTEX SET problem (does a digraph can be turned into acyclic
digraph by removing at most k vertices) have subexponential algorithms (at least) on planar digraphs.
However, for the k-DIRECTED PATH problem, we can reach “almost” subexponential running time.
More precisely, we have the following theorem.

Theorem 4. [?] For any ε > 0, there is δ such that the k-DIRECTED PATH problem is solvable in time
O((1 + ε)k · nδ) on digraphs with n vertices such that the underlying undirected graph excludes a fixed
apex graph H as a minor.

Let use remark that similar O((1 + ε)knf(ε)) results can also be obtained for many other problems
including PLANAR STEINER TREE.
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6 Appendix

6.1 Proof of Theorem 2

Proof. We only give an outline of dynamic programming algorithm for planar digraphs that given a
tree-decomposition of width w decides whether D has an out-branching with at least k leaves in time
2O(w)n. The rest of the proof is same as Theorem 1.

Tree collections. Let G be an undirected graph with edge set E(G) and let E′ ⊆ E(G). Let
S ⊆ V (G) be a vertex set separating E′ from E(G) \ E′, that is, S contains all vertices incident to at
least one edge of E and at least one edge of E(G) \ E′. We consider a forest F with disjoint trees on
edges of E′ and each intersecting at least one vertex of S. Let us denote the collection of all such forests
F by forestsE′(S).

We define an equivalence relation ∼ on forestsE′(S) as: for two forests F1,F2 ∈ F , F1 ∼ F2 if
there is a bijection µ : F1 → F2 such that for every tree T ∈ F we have that T ∩ S = µ(T ) ∩ S.
Let q-forests(S) denote the cardinality of both, the quotient set of forestsE′(S) plus the quotient set
of forestsE′\E(G)(S) by relation ∼. In general, q-forests(S) ≤ |S|!. In [20], the authors show for a
planar graph G of treewidth w how to decompose G by separators of size O(w), such that for each such
separator S, q-forests(S) is bounded by 2O(w). These branch decompositions are very closely related
to tree decompositions with width parameters bounding each other by constants. Thus, we can simply
talk about tree decompositions with some additional structure.

In this case we use standard dynamic programming on such tree decompositions (X,T ) (see e.g.
[25]) At every step of dynamic programming for each node of T , we keep track of all the ways the
required out-branching can cross the separator S represented by X . In other words, we count all the
ways parts of the out-branching can be routed through E. In the underlying undirected graph, this is
proportional to q-forests(S). Since an out-branching is rooted, every subtree is rooted, too. Thus, the
only overhead in the directed case compared to the undirected is that we have to guess for each tree
TF in F if its root is in S. In this case, we guess which of the vertices of TF ∩ S is the root. The
number of guesses is bounded by 2O(w) and hence the dynamic programming algorithm runs in time
O(2O(w)n).

6.2 Proof of Claim 2

Proof. Let the arc xy disconnect at least two vertices y and w from r and let D′ be the digraph obtained
from D by contracting the arc xy. Let T be an r-out-branching of D with at least k leaves. Since every
path from r to w contains the arc xy, T contains xy as well and neither x nor y is a leaf of T . Let T ′ be
the tree obtained from T by contracting xy. T ′ is an r-out-branching of D′ with at least k leaves.

For the converse, let T ′ be an r-out-branching of D′ with at least k leaves. Let x′ be the vertex in D′

obtained by contracting the arc xy, and let u be the parent of x′ in T ′. Notice that the arc ux′ in T ′ was
initially the arc ux before the contraction of xy, since there is no path from r to y avoiding x in D. We
obtain an r-out-branching T of D from T ′, by replacing the vertex x′ by the vertices x and y and adding
the arcs ux, xy and arc sets {yz : x′z ∈ A(T ′) ∧ yz ∈ A(D)} and {xz : x′z ∈ A(T ′) ∧ yz /∈ A(D)}.
All these arcs belong to A(D) because all the out-neighbors of x′ in D′ are out-neighbors either of x or
of y in D. Finally, x′ must be an internal vertex of T ′ since x′ disconnects w from r. Hence T has at
least as many leaves as T ′.

6.3 Proof of Claim 4

Proof. Let T ∗ be an r-out-branching of D′ with at least k leaves and containing the maximum number
of arcs from the set Ac. If Ac ⊆ A(T ∗), then we are through. So let us assume that there is an arc
e = xy ∈ Ac such that e /∈ A(T ∗). Notice that since the vertices of S≥2 are cut vertices, they are always
internal vertices in any out-branching rooted at r in D. In particular, the vertices of S≥2 are internal
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vertices in T ∗. Furthermore by Claim 3 we know that y is an end-point of exactly one arc in Ac. Let z
be the parent of y in T ∗. Now obtain T ∗e = T ∗ \ {zy}∪{xy}. Observe that T ∗e contains at least k leaves
and has more arcs from Ac than T ∗. This is contrary to our assumption that T ∗ is an r-out-branching of
D′ with at least k leaves and containing the maximum number of arcs from the set Ac. This proves that
D′ has an r-out-branching T with at least k leaves and containing all the arcs of Ac.

Observe that starting from any r-out-branching T ′ of D′ we can obtain the desired T in polynomial
time by simple arc exchange operations described in the previous paragraph.

6.4 Proof of Theorem 4

Proof. Let P be a path of length k in a digraph D. The vertex set of P can be covered by at most b
balls of radius k/b in the metric of UG(D). Let F be a subgraph of UG(D) induced by the vertices
contained in b balls of radius k/b. We claim that there is a constant c (depending only on the size of
the apex graph H), such that tw(F ) ≤ c · k/

√
b. Indeed, because F is apex minor-free, it contains a

partially triangulated (d · tw(F ) × d · tw(F ))-grid as a contraction for some d > 0 [24]. One needs
Ω((tw(F )b/k)2) balls of radius k/b to cover such a grid, and hence to cover F [12]. But on the other
hand, F is covered by at most b balls of radius k/b, and the claim follows. By an easy adaptation of the
algorithm from [18] for undirectedH-minor-free graphs, it is possible to find in time 2O(tw(F ) ·nO(1), if
the subdigraph of D with the underlying undirected graph F contains a directed path of length k. Thus
these computations can be done in time 2cH ·k/

√
b · nO(1) for some constant cH > 0 depending only on

the size of H .
Putting things together, to check if D contains a path of length k (and if yes, to construct such a

path), we try all possible sets of b vertices B and for each such set we construct a graph F induced
by vertices at distance at most k/b from vertices of B. If D contain a k-path, then this path should be
covered by at least one such set of b balls. For each such graph, we check, if the corresponding directed
subgraph contains a k-path. The total running time of the algorithm is

O(
(
n

b

)
2c·k/

√
b · nc) = O( 2c·k/

√
b · nb+c)

for some constant c. By putting b = (c/(log(1 + ε))2 and δ = b + c, we complete the proof of the
theorem.
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