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a b s t r a c t

Let f be a univariate polynomial with real coefficients, f ∈ R[X].
Subdivision algorithms based on algebraic techniques (e.g., Sturm
or Descartesmethods) arewidely used for isolating the real roots of
f in a given interval. In this paper, we consider a simple subdivision
algorithm whose primitives are purely numerical (e.g., function
evaluation). The complexity of this algorithm is adaptive because
the algorithmmakes decisions based on local data. The complexity
analysis of adaptive algorithms (and this algorithm in particular) is
a new challenge for computer science. In this paper, we compute
the size of the subdivision tree for the SqFreeEVAL algorithm.

The SqFreeEVAL algorithm is an evaluation-based numerical
algorithm which is well-known in several communities. The algo-
rithm itself is simple, but prior attempts to compute its complexity
have proven to be quite technical and have yielded sub-optimal re-
sults. Ourmain result is a simpleO(d(L+ ln d)) bound on the size of
the subdivision tree for the SqFreeEVAL algorithm on the bench-
mark problemof isolating all real roots of an integer polynomial f of
degree d and whose coefficients can be written with at most L bits.

Our proof uses two amortization-based techniques: first,
we use the algebraic amortization technique of the standard
Mahler–Davenport root bounds to interpret the integral in terms
of d and L. Second, we use a continuous amortization technique
based on an integral to bound the size of the subdivision tree. This
paper is the first to use the novel analysis technique of continuous
amortization to derive state of the art complexity bounds.
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1. Introduction

In this paper, we show that the size of the subdivision tree for the simple, evaluation-based,
numerical algorithm SqFreeEVAL has size O(d(L + ln d)) for the benchmark problem of isolating all
of the real roots of an integer polynomial of degree dwhose coefficients can be represented by atmost
L bits. Under themild assumption that L ≥ ln d, this complexity simplifies to the optimal size ofO(dL),
see Eigenwillig et al. (2006, Section 3.3) for a proof of optimality. The optimality and simplicity of the
SqFreeEVAL algorithm imply that it may be a useful algorithm in practical settings. The bound on
the size of the subdivision tree is achieved via a straight-forward and elementary argument. The two
main techniqueswhich are used in the computation are algebraic amortization, in the formofMahler–
Davenport bounds, and continuous amortization, in the form of an integral technique as presented in
Burr et al. (2009).

1.1. EVAL-type algorithms

The SqFreeEVAL algorithm which we study in this paper is a specific example of what we
call an EVAL-type algorithm. These algorithms are so named because they are based on function
evaluation: EVAL-type algorithms take, as input, functions which allow some subset of the following
twopredicates: first, these functions and their derivatives canbe evaluated at a countable dense subset
of their domain. In this paper, the domain will be the real numbers and the countable dense subset
will be the dyadic integers. Second, these functions and their derivatives can be approximated on
intervals in such a way that the approximation converges as the input intervals converge to a point. In
this paper, the approximation is derived from interval arithmetic on a Taylor sequence. The simplest
and most well-known example of an EVAL-type algorithm is Lorensen and Cline’s marching cube
algorithm (Lorensen and Cline, 1987).

EVAL-type algorithms are typically studied because of their simplicity and generality. These
algorithms are fairly general because their inputs can be extended to more general analytic functions.
In particular, many analytic functions have interval arithmetic available to them, and, therefore,
it is possible to approximate these functions on intervals. In addition, with the limited predicates
available to EVAL-type algorithms, most of the techniques which are used in these algorithms
are analytically based (as opposed to algebraically based). These algorithms are simple because,
in many cases, EVAL-type algorithms are based on simple recursive bisection algorithms. Such
algorithms iteratively subdivide an initial domain until each set in the resulting partition of the initial
domain satisfies a (usually simple) terminal condition. Bisection algorithms are common in computer
graphics (Boier-Martin et al., 2005) as well as in computational science and engineering applications
(Domain Decomposition Methods, 2011). Bisection algorithms are of particular interest because they
are adaptive; they perform more bisections near difficult features and fewer bisections elsewhere.
However, this adaptivity makes the complexity analysis of such algorithmsmore difficult because the
subdivision tree may have a few deep paths while the remainder of the tree remains modest in size.

EVAL-type algorithms have been studied in the univariate case in Henrici (1970), Yakoubsohn
(2005), Yap and Sagraloff (2011), Burr et al. (in preparation) and Burr et al. (2009), in the bivariate and
trivariate cases in Lorensen and Cline (1987), Snyder (1992), Plantinga and Vegter (2004), Plantinga
(2006), Lin and Yap (2009) and Burr et al. (2012), and in the multivariate case in Galehouse (2009)
and Dedieu and Yakoubsohn (1992). All of these algorithms are devoted to approximating algebraic
(and in some cases analytic varieties) in the real or complex settings. The algorithms in Burr et al.
(in preparation) and Burr et al. (2009) are designed to find all real roots of a polynomial or analytic
function while the algorithms in Henrici (1970), Yakoubsohn (2005) and Yap and Sagraloff (2011) are
designed to find the complex roots of a polynomial or analytic function (note that Henrici (1970) is
only designed to find a single root of a polynomial). Each of these algorithms is very closely related to
the SqFreeEVAL algorithm considered in this paper; the main differences are in the setting, in the
type of subdivisions performed, and in various preprocessing steps. We give a more detailed account
of these algorithms in the next section. The two-dimensional EVAL-type algorithm (Plantinga and
Vegter, 2004; Plantinga, 2006)was presented for approximating smooth and bounded varieties. It was
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extended to singular and unbounded varieties in Burr et al. (2012); in addition, the tests performed
by the algorithm were improved in Lin and Yap (2009).

1.2. The SqFreeEVAL algorithm

There are many bisection algorithms for finding roots, see Section 1.5 for references, but among
such algorithms, the SqFreeEVAL algorithm is one of the simplest and most widely applicable, see
Burr et al. (in preparation). There are two distinct paths in the literature which arrive at algorithms
similar to the SqFreeEVAL algorithm: one path proceeds through the consideration of magnitudes
of derivatives and the other path proceeds via interval arithmetic.

We begin by discussing the history from the magnitudes of derivatives perspective. In Henrici
(1970), the author presents an algorithm for finding a single complex root of a polynomial. The test T3
from the paper is essentially used here. In Yakoubsohn (2005), the test is developed into a bisection
algorithmand to find all complex roots of entire functions, not just polynomials. In the paper, however,
the test fromHenrici (1970) is used only as a one-sided test; therefore, the algorithm can only exclude
regions from containing roots and does not confirm that roots exist in the final regions. There, the
algorithm was termed a bisection-exclusion algorithm to reflect this drawback. Finally, in Yap and
Sagraloff (2011), the algorithm from Yakoubsohn (2005) was adapted to polynomials in order to
confirm that roots exist in the final regions; there, the authors studied both an algorithm for finding
complex roots as well as one for finding real roots. The SqFreeEVAL algorithm is a natural restriction
of these complex root-finding algorithms to the real line.

On the other hand, from the interval arithmetic community, a bisection algorithm using interval
methods was suggested in Moore (1966), Mitchell (1990). In these papers, any interval function can
be used; if the standard centered form for polynomials is used, see Ratschek and Rokne (1984), then
the exclusion conditions are identical (when f and f ′ are square free) to those for the SqFreeEVAL
algorithm.

In this paper, we study the SqFreeEVAL algorithm on the standard benchmark problem of finding
all of the real roots of a polynomial. We show that, in this case, the subdivision tree has the favorable
size of O(d(L + ln d)) which simplifies to the optimal size of O(dL) under the mild assumption that
L ≥ ln d. Since this algorithm uses only local data to find roots, it is an adaptive algorithm and may
be more efficient than the standard exact algorithms in certain cases, see Burr et al. (in preparation).
In addition, the SqFreeEVAL algorithm can handle analytic varieties, see Burr et al. (in preparation),
which extends its reach beyond that of more standard exact algorithms which require sophisticated
algebraic primitives and are specialized to polynomials. These advantages of the SqFreeEVAL
algorithm imply that it may be more practical than other standard root isolation algorithms in
practice.

1.3. Previous complexity results

The computational complexity of EVAL-type algorithms has proven to be quite a challenging
problem because the algorithms are adaptive and the analytic primitives do not carry much
information about the global structure (unlike algebraic information). Here, we survey the methods
of complexity analysis of the precursors to the SqFreeEVAL algorithm. In most situations, the
complexity is computed in terms of the size of the subdivision tree of the specificEVAL-type algorithm
(this is almost equivalent to counting the number of tests performed by the algorithm). There
have been two main techniques to find the size of the subdivision tree: by finding the width of
the subdivision tree at various subdivision levels or by finding the local depth of the subdivision
tree.

In Henrici (1970), the author is searching for only a single root, and, therefore, retains a single disk
containing a root at each stage of the algorithm. Many tests are performed in the algorithm, however,
because at each stage of the algorithm, tests are performed on a covering of the previously retained
disk. The final stopping criterion for this algorithm is based on a precision ϵ > 0 which is chosen a
priori by the user.When theworst-case root separation bound for a polynomial is used, the complexity
of the subdivision tree becomes O(d3(L + ln d)).
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In Yakoubsohn (2005), the author is searching for all of the complex roots of an analytic function. In
the computation, a bound on the width of the tree is computed to bound the number of subdivisions
performed. Since this algorithm only excludes regions and lacks an inclusion test, it is possible that
the final output regions do not contain roots or do not separate roots. The final stopping criterion for
this algorithm is based on a precision ϵ > 0 which is chosen a priori by the user. When the worst-case
root separation bound for a polynomial is used, the complexity of the subdivision tree becomes either
O(d4(L + ln d)) or O(d3(L + ln3 d)) after ⌈ln d⌉ steps of the Graeffe iteration.

In Burr et al. (2009), we search for all of the real roots of a polynomial. Here, the computation is
based on the depth of the tree over each point of the initial interval. In the paper, we introduced the
idea of continuous amortization via an integral and showed how to use it to bound the size of the
subdivision tree. In particular, we proved a complexity bound of O(d3(L + ln d)) for the subdivision
tree.

In Yap and Sagraloff (2011), the authors present algorithms to find all of the real or all of the
complex roots of a polynomial. In the computation, a bound on the width of the subdivision tree is
used to compute the number of subdivisions performed. The authors show that the complexity of the
subdivision tree is O(d(L+ ln d)(ln L+ ln d)) in the real case and O((d ln d)2(L+ ln d)) in the complex
case. In addition, the authors show that the bit complexity of both of these algorithms isO(d4L2)where
theOmeans that logarithmic factors in d and L have been suppressed.

Each of the methods of analysis in Yakoubsohn (2005), Burr et al. (2009) and Yap and Sagraloff
(2011) are quite technical, complicated, and require several constants to be defined whose use
becomes justified only after the completion of the complexity analysis. In contrast, the computation
in this paper is quite simple and provides the better bound of O(d(L + ln d)). It should be noted
that although this is the best bound known, it does not directly replace the bounds presented in
these papers because some are in the different setting of the complex plane and others use different
preprocessing steps. In the case where the polynomial and its derivative are both square free and we
are searching for the real roots, all of these algorithms are identical and our bound on the subdivision
tree is the best.

1.4. Algebraic and continuous amortization

In this paper, we use amortization in two forms: algebraic and continuous. Algebraic amortization
originated with Davenport (1985) where the individual real root separation bounds are replaced
by a product of root separations. This bound was then studied in Johnson (1991), Du et al. (2007),
Eigenwillig et al. (2006), Mignotte (1995) and Emiris et al. (2008) where it was generalized to other
root separation products including complex roots. This technique has proven useful to compute the
complexity of the subdivision tree for many other root isolation techniques, see Section 1.5. We
introduced continuous amortization in Burr et al. (2009) to bound the size of the subdivision tree of an
EVAL-type algorithm. In this paper, we show that continuous amortization can be used to significantly
simplify complexity calculations.

In continuous amortization, we use a complexity charge φ whose domain is the input region, and,
for each x in the input region,φ(x) is a lower bound on the size of any leaf interval containing x.We call
such a function a stopping function for the algorithm. In this situation, 1/φ(x) is related to the depth
of the subdivision tree for an interval which contains x. Note that a stopping function φ is theoretical
and is nevermeant to be implemented: it is used only in the computation of the size of the subdivision
tree, and it is not used in the algorithm itself. Functions similar to stopping functions also appeared in
Henrici (1970) where they were called inner and outer convergence functions. In Yakoubsohn (2005)
such functionswere also termed exclusion functions. In both cases, these stopping functionswere used
to compute the complexity of the algorithm, but they were not used in a continuous amortization
computation.

Continuous amortization was first used in Burr et al. (2009), to compute the size of a subdivision
tree for an EVAL-type algorithm. In the paper, an upper bound on the integral resulting from
continuous amortization is computed by using algebraic amortization-based bounds. In Section 4,
we greatly simplify the computation to provide a complexity bound of O(d(L + ln d)) for the size of
the subdivision tree for the SqFreeEVAL algorithm.
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1.5. Other root isolation algorithms

There is an extensive amount of literature on the complexity of root isolation, see Pan (1997)
and Pan (1996) for surveys of the previous literature, which we will not attempt to cover here.
Most algorithms are compared by their performance on the benchmark problem of finding all
real roots of a polynomial of degree d and whose coefficients can be represented by at most L
bits. For this problem, the bit-complexity of O(d3(L + ln d)) for complex roots was first achieved
by Schönhage (1982). In many algorithms, the size of the subdivision tree is smaller than this
bound because, for each node in the subdivision tree, additional calculations must be performed.
Davenport (1985) proved that the subdivision tree for the Sturm method is O(d(L + ln d)), see
Reischert (1997), Lickteig and Roy (2001), Du et al. (2007), Emiris et al. (2008) and Johnson (1991).
More recently, it has been shown in Eigenwillig et al. (2006) and Emiris et al. (2008) that the
Descartes method also achieves this bound, see Collins and Akritas (1976), Eigenwillig et al. (2006),
Krandick and Mehlhorn (2006), Collins et al. (2002), Sagraloff (2011) and Johnson (1991). These
methods are optimal under the weak assumption that L ≥ ln d. In addition, related exact techniques
using continued fractions were shown to have a tree size of O(dL) when an ideal root bound is
used and O(d2L) when a more practical bound is used (Sharma, 2008); in the expected case, the
tree was also shown in Tsigaridas and Emiris (2008) to have an expected size of O(d2 + dL).
In the algebraic computing community, the Descartes method appears to be one of the more
practical algorithms, see Collins et al. (2002), Johnson (1998), Rouillier and Zimmermann (2004),
Mourrain et al. (2005) and Rouillier and Zimmermann (2004). For an empirical comparison of
these methods, see Hemmer et al. (2009). In this paper, we show that the subdivision tree for the
SqFreeEVAL algorithm also achieves this bound; therefore, the SqFreeEVAL algorithm should also
be considered on equal footingwith the othermorewell-known root finding algorithms via the Sturm
or Descartes methods. The SqFreeEVAL algorithmmay, in addition, be considered practical because
its computations are numerical and hence easy to implement and its subdivision tree has a favorable
size.

1.6. Organization of this paper

In Section 2, we introduce the SqFreeEVAL algorithm and discuss the main condition we will use
for an interval to be SqFreeEVAL terminal. In Section 3, we review the use of stopping functions
to bound the size of the subdivision from Burr et al. (2009) and create a stopping function for
the SqFreeEVAL algorithm. In Section 4, we compute the size of the SqFreeEVAL algorithm’s
subdivision tree using continuous amortization via the stopping function technique and achieve
the main result of this paper, the O(d(L + ln d)) bound on the size of the subdivision tree for the
SqFreeEVAL algorithm. Finally, we conclude in Section 5.

The authors would like to thank the following people for many useful discussions: Benjamin
Galehouse, Michael Sagraloff, and Chee Yap.

2. The SqFreeEVAL algorithm

Given an interval I = [a, b] with integer endpoints and a polynomial f with integer coefficients,
i.e., f ∈ Z[X], the SqFreeEVAL algorithm returns a collection of intervals which cover and isolate the
real roots of f in (a, b), i.e., every root appears in an output interval and each output interval contains
exactly one root (ignoringmultiplicities). In theSqFreeEVAL algorithm, if the interval [c, d] is output,
then (c, d) contains exactly one root of f and if [c, c] is output, then c is a root of f . The SqFreeEVAL
algorithm maintains a (finite) partition P of the interval I , i.e., a finite collection of intervals whose
interiors are disjoint andwhoseunion is I . TheSqFreeEVAL algorithm iteratively bisects the elements
of P until the intervals of the partition P are each small enough to pass the SqFreeEVAL termination
conditions (see Section 2.1). Of interest to us is the size #P of the partition, i.e., the number of intervals
in P .

We begin with some terminology: for an interval J = [c, d] the width of J is w(J) = d − c and
the midpoint of J is m(J) = (c + d)/2. Also, to bisect an element of the partition P means to replace
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the interval J = [c, d] ∈ P by the two subintervals [c,m(J)] and [m(J), d]. Note that each bisection
increases the number of intervals in the partition by exactly one; this implies that #P is onemore than
the number of bisections done by theSqFreeEVAL algorithm. The subdivision tree is a full binary tree,
and, therefore, has 2#P − 1 nodes. In fact, the internal nodes of the subdivision tree are in bijective
correspondence with the splits in the final partition. All of the calculations done by the SqFreeEVAL
algorithm will be performed on the dyadic integers Z[1/2] so that all of the standard operations are
exact. This prevents well-known implementation errors from arising in practice.

2.1. Statement of the SqFreeEVAL algorithm

In the SqFreeEVAL algorithm, we first replace f by its square free component, which we briefly
call g . Then, we replace f ′ by its square free and relatively prime to f component, i.e., we first take the
square free component of f ′ and then take the portion of this polynomial which is relatively prime to
f . We briefly call this h. Note that g|f and h|f ′, and, moreover, the roots of g are separated by roots
of h by Rolle’s theorem. In the case where f is square free, the zeros of h partition f into monotonic
regions; in the case where f is not square free, the zeros of h no longer have this property, but they
still partition the roots of f (and hence the roots of g). Throughout the remainder of this paper, except
for a brief note in Section 4.2, we use these square free substitutions for f and f ′ without mention. The
bounds on the subdivision tree, however, will be in terms of the data for original the f and not for any
replacements.

The SqFreeEVAL algorithm creates a partition of I and determineswhich intervals in the partition
contain roots. Initially, the partition of I is P = {I}, the trivial partition.

Algorithm 2.1: The SqFreeEVAL algorithm

Repeatedly subdivide each J ∈ P until one of the following conditions holds:

(C0) |f (m(J))| >

d−
i=1

|f (i)(m(J))|
i!


w(J)
2

i

or

(C1) |f ′(m(J))| >

d−1−
i=1

|f (i+1)(m(J))|
i!


w(J)
2

i

If, when subdividing, f (m(J)) = 0, then output [m(J),m(J)].

For each interval J = [c, d] ∈ P where C1 holds and f (c) · f (d) < 0, output J

The termination proof for the SqFreeEVAL algorithm is very similar to the corresponding
statement in Burr et al. (2009) and Yap and Sagraloff (2011). The correctness proof is slightly
different from the corresponding proofs for other EVAL-type algorithms. The correctness follows
from the Taylor polynomial centered at m(J): if one of the conditions holds, then it follows
that f (for condition C0) or f ′ (for condition C1) is never zero in J since the inequalities are
equivalent to a reverse triangle inequality on the Taylor polynomial. The first condition implies
that f has no zeros in J . The second condition implies that f has at most one zero in J since
roots of f ′ separate zeros of f (even though f might not be monotonic due to the replacements
above).

2.2. SqFreeEVAL terminal intervals

In this section, we provide a sufficient condition for the SqFreeEVAL algorithm to terminate
without subdividing on a given interval, i.e., for the interval to be SqFreeEVAL terminal.

Definition 2.1. For any polynomial g of degree d, define αg = {α1, . . . , αd} to be the multiset of the
roots of g . In addition, define the function Σg to be the sum of the reciprocals of the distances from
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its argument to the roots of g:

Σg(x) =

−
α∈αg

1
|x − α|

.

Note that this function can be represented in a simple form using the harmonic mean HM. Then, one
has

1
Σg(x)

=
HM(|x − αg |)

d

where |x − αg | is the set of distances from x to the roots of g .

Σf and Σf ′ will be our main objects of study. We begin with the following lemma which connects
Σf (x) and Σf ′(x) with conditions C0 and C1, respectively:

Lemma 2.1. The following inequality holds for i ≥ 0: f (n)(x)
f (x)

 ≤

Σf (x)

n
.

The proof is a straight-forward computation. See the proof of Burr et al. (2009, Lemma 6.2) for details.

We use this lemma to show that a simple upper bound on the width of an interval will ensure that
the conditions in the SqFreeEVAL algorithm hold. For example, in condition C0, divide both sides of
the inequality by |f (m(J))| and apply Lemma 2.1 to derive the following inequality:

d−
i=1

|f (i)(m(J))|
i!|f (m(J))|


w(J)
2

i

≤

d−
i=1

1
i!


Σf (m(J))w(J)

2

i

.

If w(J) ≤
1

Σf (m(J)) , then the sum on the RHS is bounded above by a geometric series with r = 1/2,
and, therefore, the sum is bounded by 1. This implies that condition C0 holds. We explicitly state the
conclusion of this argument in the following lemma:

Lemma 2.2. If w(J) ≤
1

Σf (m(J)) then C0 holds on J and J is SqFreeEVAL terminal. Similarly, if w(J) ≤

1
Σf ′ (m(J)) , then C1 holds on J and J is SqFreeEVAL terminal.

3. Stopping functions

In this section, we show how stopping functions can be used to compute the size of the subdivision
tree of the SqFreeEVAL algorithm. The construction in Section 3.1 was originally presented in Burr
et al. (2009), but we include it here for completeness and because the construction in Section 3.2
requires a detailed understanding of the method.

3.1. Basic properties

The use of stopping functions promises to be an important tool for bounding the complexity of
subdivision algorithms. Most of the numerical algorithms appearing in the introduction may benefit
from this type of analysis; more algorithms of this type are mentioned in the conclusion, Section 5.
We begin by formulating an abstract algorithm called the Bisection algorithm, which is intended
to be the prototype of these types of algorithms in one dimension. The notion of stopping functions
and the Bisection algorithm both easily generalize to higher dimensions.

Fix a predicate B (i.e., a Boolean function) on intervals with the following property: if K ⊆ J and
B(J) is true, then B(K) is also true. The Bisection algorithm is the following algorithm: given an
interval I , the algorithm maintains a partition P of I . Initially, let the partition be the trivial partition
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P = {I} and let PBisection(I) be the final partition.

Algorithm 3.1: The Bisection algorithm

Repeatedly subdivide each J ∈ P until the following condition holds:

B(J) is true

A stopping function for the Bisection algorithmwith predicate B is a real-valued function F with
the following property: if, for a given interval J , there exists a point p ∈ J such that w(J) ≤ F(p), then
B(J) is true. The following theorem, which also appears as Burr et al. (2009, Theorem 3.5), bounds the
number of subdivisions performed by the Bisection algorithm.

Theorem 3.1. (Burr et al., 2009, Theorem 3.5) Let F be a stopping function for the Bisection algorithm,
then

#PBisection(I) ≤ max

1,
∫
I

2dx
F(x)


.

If the Bisection algorithm does not terminate, then the integral is infinite.

Proof. If #PBisection = 1, then the bound is immediate. If #PBisection > 1, then an examination of
the Bisection algorithm shows that for J ∈ PBisection there is a lower bound on w(J) since the
Bisection did not terminate at the parent of J:

∀c ∈ J, w(J) ≥
1
2
F(c).

In addition,

I

2dx
F(x) =

∑
J∈PBisection


J

2dx
F(x) , and it, therefore, suffices to show that for every J ∈

PBisection,

J

2dx
F(x) ≥ 1. Let y ∈ J be such that F(y) is maximal in J . Then∫

J

2dx
F(x)

≥

∫
J

2dx
F(y)

=
2

F(y)
w(J) ≥

2
F(y)

·
F(y)
2

= 1.

In the case when the Bisection algorithm does not terminate, we can look at the partition P at any
moment in time. The above argument shows that #P is still bounded by the integral


I 2dx/F(x). Since

#P can be chosen to be arbitrarily large, this shows that the integral is unbounded. �

3.2. A stopping function for SqFreeEVAL

The next goal is to transform the inequality w(J) ≤
1

Σf (m(J)) into a stopping function. Currently, it
is not a stopping function because the function on the RHS is not for an arbitrary point of J , but for a
specific point, the midpoint. We begin to turn this into a stopping function via the following lemma.

Lemma 3.1. Let z = (z1, . . . , zd) with zi > 0 and y ∈ R such that y > 0 and zi > y for all i. Then

HM(z − y) ≥ HM(z) − d · y (1)
HM(z) ≤ d · zi ∀i. (2)

Proof. For Inequality (1), we expand each of the harmonic means and get the following equivalent
inequality:

d∑ 1
zi−y

≥
d∑ 1

zi

− d · y.
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Noting that all of the denominators are positive, clearing fractions gives that this inequality is
equivalent to the following inequality:

y
− 1

zi − y

− 1
zi


≥

− 1
zi − y

−

− 1
zi

.

This inequality is easily justified by combining similar terms on the RHS to obtain a sumwith general
term

1
zi − y

−
1
zi

=
y

zi(zi − y)
,

which is a term that appears on the LHS. Since the remaining terms on the LHS are positive, this proves
the first inequality.

For Inequality (2), we expand the harmonic mean to get the following equivalent inequality:

d∑ 1
zj

≤ d · zi.

Once again, the denominator is positive, so by clearing fractions we have that this inequality is
equivalent to the following inequality:

1
zi

≤

− 1
zj

.

Since all of the terms on the RHS are positive and include the term on the LHS, this proves the second
inequality. �

Let G0(x) =
2

3Σf (x)
, then G0 is a stopping function for EVAL: let J be an interval such that J contains x

and letm be the midpoint of J; then, |x−m| ≤
w(J)
2 . Assume now that w(J) ≤

2
3Σf (x)

. Then, inequality

(2) in Lemma 3.1 implies that |x − α| ≥
1

Σf (x)
>

w(J)
2 for all α ∈ αf . This setup implies the following

inequalities:

w(J) ≤
1

Σf (x)
−

w(J)
2

≤
HM(|x − αf | −

w(J)
2 )

d
≤

HM(|x − αf | − |x − m|)

d
≤

1
Σf (m)

.

The second inequality follows from Lemma 3.1 and the fact that the terms of the harmonic mean
HM(|x − αf | − |x − m|) are all positive (because of the bound on w(J) above). The remaining
inequalities follow from the monotonicity of the harmonic mean. The last inequality also uses that
|x − αj| − |x − m| ≤ |m − αj| by the triangle inequality. When combined with Lemma 2.2, this
implies that J is SqFreeEVAL terminal. Similarly, let G1(x) =

2
3Σf ′ (x)

where Σf ′ is the corresponding

function for f ′, then G1 is also a stopping function for the SqFreeEVAL algorithm. Finally, let
G(x) = max{G0(x),G1(x)}; then G is an everywhere positive stopping function for the SqFreeEVAL
algorithm.

4. Size of the subdivision tree of the SqFreeEVAL algorithm for the benchmark problem

In this section, we prove that the size of the subdivision tree of the SqFreeEVAL algorithm
is O(d(L + ln d)) where L is the number of bits needed to write the coefficients of f (hence the
absolute value of the coefficients is strictly less than 2L). In this case, the absolute value of all the
roots is bounded by 2L (Yap, 2000) (this bound comes from the original f , not from the square free
substitution). Hence, we can assumewlog that b = −a = 2L. By Theorem 3.1, the number of intervals
in the final partition of I from theSqFreeEVAL algorithm is bounded by


I

2
G(x)dx. The crossover points

of G are difficult to determine, so we replace this integral by a slightly larger one which is easier to
evaluate: for any x ∈ I , let Rx be the set of roots in αff ′ which are closest to x. Similarly, for α ∈ αff ′ ,
let Iα be the set of x ∈ I such that no other root in αff ′ is closer to x than α. Note that x ∈ Iα iff α ∈ Rx
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and that two of the Iα ’s are either disjoint (except for endpoints) or coincide (in the case of complex
conjugates). Therefore, these Iα ’s determine a partition of I . Also, let S be the set of endpoints of the
Iα ’s; then, for all points x ∈ I \ S, one has Rx ⊆ αf or Rx ⊆ αf ′ because f and f ′ do not share roots. We
define another function F(x):

F(x) =


G1(x) x ∉ S and Rx ⊆ αf

G0(x) x ∉ S and Rx ⊆ αf ′

G(x) x ∈ S.

For some intuition in this definition, note that when Rx ⊆ αf ′ , x is far from roots of f . Hence, G0
(which is related to C0 by the discussion in Section 3.2) should be applied in this case. A corresponding
statement holds for G1. Note that although S might not correspond to the crossover points of G,
pointwise, F(x) ≤ G(x) since G is a maximum of the terms which can occur in F . This inequality
implies the following inequalities:∫

I

2
G(x)

dx ≤

∫
I

2
F(x)

dx ≤

∫
I

−
α∈αff ′ \Rx

3dx
|x − α|

=

−
α∈αff ′

∫
I\Iα

3dx
|x − α|

. (3)

For the second inequality let x ∉ S; then x is either closest to a root of f or a root of f ′. If x is closest to a
root of f , then Rx ⊆ αf and 2

F(x) = 3Σf ′(x). In this case, the sum to the right of the inequality includes
all of the roots in αf ′ as well as some roots in αf . Thus, at least all of the terms of Σf ′(x) appear on the
RHS of the inequality. The case where x is closest to a root of f ′ is similar. This implies the inequality
because the set of points for which this inequality may fail is a measure zero subset of S.

4.1. Evaluating the integrals

Consider the shape of each of the regions where we integrate: since all of the integrals are of the
form

 s
r

3dx
|x−α|

, we evaluate a general integral of this form where r and s lie on the same side of Re(α).

• In the case where α is real:

if s > r > α if r < s < α∫ s

r

3dx
|x − α|

=

∫ s

r

3dx
x − α

∫ s

r

3dx
|x − α|

=

∫ s

r

3dx
α − x

= 3 ln(|s − α|) − 3 ln(|r − α|) = 3 ln(|r − α|) − 3 ln(|s − α|)

These logarithms will be bounded in the next section.
• In the case where α is not real:∫ s

r

3
|x − α|

dx =

∫ s

r

3
(x − Re(α))2 + Im(α)2

dx

=

∫ (s−Re(α))/|Im(α)|

(r−Re(α))/|Im(α)|

3
y2 + 1

dy

= 3arcsinh

s − Re(α)

|Im(α)|


− 3arcsinh


r − Re(α)

|Im(α)|


This is now bounded via the relationship between Re(α) and r, s. If s > r > Re(α), then

3arcsinh

s − Re(α)

|Im(α)|


− 3arcsinh


r − Re(α)

|Im(α)|



= 3 ln

 s − Re(α)

|Im(α)|
+


s − Re(α)

|Im(α)|

2

+ 1
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−3 ln

 r − Re(α)

|Im(α)|
+


r − Re(α)

|Im(α)|

2

+ 1


= 3 ln(s − Re(α) +


(s − Re(α))2 + Im(α)2)

−3 ln(r − Re(α) +


(r − Re(α))2 + Im(α)2)

≤ 3 ln(2|s − α|) − 3 ln(|r − α|).

If r < s < Re(α), then the computation is similar, and the integral is bounded above by
3 ln(2|r − α|) − 3 ln(|s − α|). These logarithms will also be bounded in the next section.

4.2. Finishing the bound on the SqFreeEVAL algorithm

In this section, we use the computation from the previous section to prove the main result of this
paper. To do this, we consider the roots α ∈ αff ′ with two different cases depending on if α is real or
not.

• If α is real; then α ∈ Iα and let Iα = [c, d]. Then, the term corresponding to α in the RHS of
Inequality (3) consists of


I\Iα

3dx
|x−α|

=
 c
−2L

3dx
|x−α|

+
 2L

d
3dx

|x−α|
. Note that integrals may be zero which

happens when c = −2L or d = 2L. Then, using the bounds derived in the preceding section on
these integrals, it follows that they are bounded by

3 ln(| − 2L
− α|) − 3 ln(|c − α|) + 3 ln(|2L

− α|) − 3 ln(|d − α|).

The positive terms are bounded by O(L) (the leading term is 6 ln(2)L) and for the negative terms,
note that c and d are pointswhich are equidistant fromα and another root of ff ′, e.g., c is equidistant
fromα andβ ∈ αff ′ where Iβ is the interval immediately to the left of Iα . Then, ln(|c−α|) is bounded
below by the logarithm of half the distance from α to β .

• If α is not real, then the term corresponding α in the RHS of Inequality (3) consists of

I\Iα

3dx
|x−α|

which is bounded above by

I

3dx
|x−α|

. By splitting this integral at Re(α), the integral is equal to Re(α)

−2L
3dx

|x−α|
+
 2L

Re(α)
3dx

|x−α|
. Using the bounds derived in the preceding section on these integrals,

it follows that these integrals are bounded by

3 ln(2| − 2L
− α|) − 3 ln(|Re(α) − α|) + 3 ln(2|2L

− α|) − 3 ln(|Re(α) − α|).

The positive terms are bounded by O(L) (the leading term is 6 ln(2)L) and for the negative terms,
note that |Re(α) − α| = |Im(α)|, which is the logarithm of half the distance between α and α.

Combining all of the O(L)’s which appear in the integrals results in a bound of O(dL) (the leading term
is 6(ln 2(2d− 1))L). The sum of the logarithmic distances between roots are bounded simultaneously
via the standard Mahler–Davenport lower bound on distances between roots, see Davenport (1985),
Mignotte (1995), Du et al. (2007) and Eigenwillig et al. (2006). To do this, we construct a directed
graph whose nodes are the roots in αff ′ and whose edges represent the logarithms which must be
calculated. In this graph, the edges satisfy the conditions of the Mahler–Davenport bound and are
chosen so that the in-degree of any node is at most 2. For each pair of complex roots, (α, α), connect
them with two directed edges, one from α to α, the other in the opposite direction. On the other
hand, if α is real, then let β be a root where Iβ lies immediately to the right of Iα and γ be a root
where Iγ lies immediately to the left of Iα (provided Iα is not the rightmost or leftmost interval in the
partition, respectively). Those of β or γ which are real are connected to α so that the arrow points in
the direction of decreasing absolute value. If β is not real, then connect α to either β or β , whichever
has positive imaginary component. On the other hand, if γ is not real, then connect α to either γ or γ ,
whichever has negative imaginary component. Again, these edges are directed so that the arrowpoints
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in the direction of decreasing absolute value. By inspection, we find that the maximum in-degree of
this directed graph is 2. The Mahler–Davenport bound can then be applied twice to find the result.
The bound implies that the sum of the negative logarithmic distances between the roots appearing in
this construction is bounded above by

12 · ln


1

√
|Disc(ff ′)|

M(ff ′)2d−2

2d − 1

√
3

2d−1

(2d − 1)d


.

The discriminant will be an integer and therefore the discriminant term is bounded above by 1. The
Mahler measure of ff ′ is bounded in terms of the 2-norms of the coefficients of the original f and
f ′: M(ff ′) = M(f )M(f ′) ≤ ‖f ‖2‖f ′

‖2 ≤ (2L
√
d + 1)(d2L

√
d). Therefore, this portion is bounded

by O(dL + d ln d) (the leading term is bounded 24 ln(2)dL + 42d ln d)). Thus, the complexity of the
SqFreeEVAL algorithm is O(d(L + ln d)) (the leading term is bounded 36 ln(2)dL + 42d ln d ≤

25dL + 42d ln d).
If f or f ′ was replaced by a square free version, we used the original f and f ′ because the square free

versions of f and f ′ divide the original functions, and, therefore, the Mahler measure of the product
of the square free versions is bounded above by M(ff ′). In fact, the 2-norms of the coefficients of the
original functions are often smaller than the 2-norms of the square free versions: naïvely using the
divisibility relationship, the coefficients of the square-free versions may be larger by a factor of 2cd,
where c is a constant, see Yap (2000).

5. Conclusion

In this paper, we provided a complexity analysis of the SqFreeEVAL algorithm and showed it to
be optimal under the weak assumption that L ≥ ln d. To accomplish this, we used the novel technique
of continuous amortization through stopping functions. The simplicity of this argument exhibits the
utility of this technique: the proof of the next closest complexity bound for an EVAL-type algorithm
in Yap and Sagraloff (2011) is significantly more complex.

The SqFreeEVAL algorithm is very easy to implement (Moore, 1966; Mitchell, 1990; Plantinga
and Vegter, 2004; Plantinga, 2006; Kamath, 2010) and it now joins the Sturm and Descartes methods
by having a subdivision tree which grows at the rate O(d(L + ln d)). It, therefore, may become
more prevalent in practical situations because it has several desirable properties. This also answers a
question raised in Henrici (1970) concerning the good behavior of this technique.

In addition, the continuous amortization technique can be used to bound the number of
subdivisions over any interval, and, therefore, may find many more applications for different types
of questions about subdivision algorithms. For example, in many practical applications, the question
is to find the roots in a given domain, not just for the benchmark domain; continuous amortization
may provide a comparison of different algorithms in these situations.

We close with some continuing research and questions:

• The algorithm for finding complex roots appearing in Yap and Sagraloff (2011) is very similar to
the SqFreeEVAL algorithm. We are currently preparing a simplification of their work using the
results from this paper.

• There are many bisection algorithms where continuous amortization may be useful, see, for
example, Henrici (1970), Yakoubsohn (2005), Yap and Sagraloff (2011), Plantinga and Vegter
(2004), Plantinga (2006), Snyder (1992), Galehouse (2009), Burr et al. (2012), Eigenwillig et al.
(2006), Sagraloff (2011), Du et al. (2007) and Lin and Yap (2009). We plan on extending our
techniques to these cases. In particular, stopping functions which are appropriate for the two
dimensional cases treated in Plantinga and Vegter (2004), Plantinga (2006) and Galehouse (2009)
would be very useful because current techniques have not been fruitful in establishing complexity
bounds of these algorithms.

• If f ′ was not square free, then the test for condition (C1) in algorithm 2.1 is based on the square
free part of f ′, not the original function. The SqFreeEVAL algorithm, however, will continue to
terminate and be correct even when this substitution does not occur, i.e., when the original f ′
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is used. For this reason, it is likely that the above substitution is extraneous. For example, in the
simplest cases where f ′ is not square free and the integral in Inequality (3) can be calculated by
hand, the result is O(d(L + ln d)).
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