
Trees

1 Introduction

Trees are very special kind of (undirected) graphs. Formally speaking, a tree is a connected graph that is
acyclic. 1 This definition has some drawbacks: given a graph it is not trivial to verify whether it is a tree or
not. We next give various characterizations, ending with a characterization due to Euler.

Theorem 1 (Tree Characterizations). The following definitions are all equivalent for a graph G = (V,E).

1. G is a tree.

2. (Path Uniqueness) For every pair of vertices v, w ∈ V there exists exactly one path from x to y.

3. (Minimally Connected) G is connected and deleting any of its edges gives rise to a disconnected graph.

4. (Minimally Cycle Free) G contains no cycles and any graph G′ obtained from G by adding an edge
from

(
V
2

)
\ E contains a cycle.

5. (Euler’s result) G is connected and the number of edges is one less than the number of vertices, i.e.,
|E| = |V | − 1.

Proof. (1) =⇒ (2): If not then let p, q be two paths between v and w. Consider the first vertex where
p and q differ, say v′ (there must be such a vertex). Let w′ be the first vertex where p and q again meet v′.

Then we have a cycle: v
p,q

v′
q

p

w′
p,q

w .

(2) =⇒ (3): Suppose deleteing an edge between two vertices v, w does not give us a disconnected graph.
Then that means there is another path connecting v and w. But this cannot be since there is a unique path
between any two vertices of a tree.

(3) =⇒ (4):
(1) =⇒ (5): We will prove it by induction on the number of vertices. We first claim that a tree with at

least two vertices always contains at least two leaves, i.e., vertices with degree one. If this is true then the
proof is straightforward: Delete a leaf and the corresponding edge and we are left with a tree with |V | − 1
vertices and |E| − 1 edges; by induction hypothesis, |E| − 1 = |V | − 1− 1, which implies (5). Now to show
our claim. Let v, w be two vertices in the tree that are connected by the longest path in the tree, i.e., they
are the furthest apart; these exists because our tree is finite. We claim that both of them are leaves. If not,
let’s say v′ be the neighbour of v not on the path connecting v and w. Then clearly v′, w are further apart
than v, w giving us a contradiction.

(5) =⇒ (1): This direction is similar to the one above. Again, if we can show that there is a leaf then
deleteing that leaf and the corresponding edge gives us a graph that satisfies Euler’s constraint, and hence
by induction is a tree. Thus adding the leaf back doesn’t destroy the tree property. To prove the claim, we
know that the sum of the degrees of all the vertices is 2|E| = 2|V | − 2. Thus, as the graph is connected,
the average degree of a vertex is strictly less than two, so there must be vertices with degree exactly one.

Q.E.D.

1Connectedness means that any pair of vertices is connected by a sequence of edges in the graph. Acyclic means that there
is a unique path between all pairs of vertices
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2 Isomorphism for Rooted Trees

The problem of detecting tree isomorphism is a special case of graph isomorphism. For the general problem,
we don’t know any polynomial time solutions. However, for the special case of tree isomorphism there are
polynomial time algorithms, the earliest being by Aho, Hopcroft, Ullman. Here we deal with the isomorphism
of rooted trees, (T, r) where T is a tree and r is a special vertex called the root. Such trees can be considered
in levels, where at the first level only the root is present, on the next all neighbours to the root, on the
next level all of their neighbours except the ones already see. In otherwords, level i contains all vertices at
distance i from the root. We can talk of a traversal of the tree using standard graph traversal algorithms
(BFS, DFS) and associate with each vertex v a subset of its neighbours called the descendants, which are
the vertices reachable from the root r on a path traversing through v.

Testing isomorphism requires us to develop isomorphism invariants, i.e., a property which is the same for
all graphs iff the graphs are isomorphic to each other. We start with guesses for a good invariant until we
have the right one.

First observe that an isomorphism preserves edge incidences, so if we start from the root then we would
expect to see the same number of levels and equal number of vertices at each level. Is this criterion isomor-
phism invariant? The answer is no, as Figure 1 illustrates.

•

• • •

• • •

•

• • •

• • •

Figure 1: Two non-isomorphich graphs with equal number of vertices at each level

The above failure emphasizes that we not only want the same number of vertices at each level but also
that each vertex at each level has the same “spectrum”, which is roughly the number of outgoing edges. More
precisely, the degree spectrum of a tree is a sequence of non-negative integers (di) where di is the number
of vertices with i outgoing edges when we traverse the tree from the root down. Is the degree spectrum at
each level of the tree is an isomorphism invariant? The answer is no, as Figure 2 illustrates. The problem
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Figure 2: Two non-isomorphic graphs with the same degree spectrum at each level

with our definitions of isomorphism invariants is that they are treating each level separately. What we need
is an invariant that for each vertex at every level captures the subtree rooted at the vertex completely, i.e.,
each vertex should carry the complete strctural information of the subtree rooted at that vertex. If we have
such an invariant then we can do a comparison level by level. One starting point is to associate a tuple
with every vertex in the tree: the leaves get the tuple (), and a vertex gets the tuple (L), where L is the
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concatenated list of the tuples corresponding to its children. A simple post-order traversal can yield us the
tuple corresponding to each vertex in the tree. However, we have still not accounted for the ordering in which
the children’s tuples are concatenated to form the parents tuple. To do that we replace each left-paren 1 and
each right paren with 0. Thus we have associated a binary number with each vertex, and we claim that this
gives us an invariant. When constructing the binary number corresponding to a vertex, we concatenate the
numbers corresponding to its children in descending order. Let the number so obtained be the canonical
number of the tree.

•((()(()())) ((()))) , 11101001001110000

•((()()) ()) , 1110100100 •((())) , 111000

•() , 10 •(()()) , 110100 •(()) , 1100

•
() , 10

•
() , 10

•
() , 10

Figure 3: The tuple and the binary number associated with the vertices of the tree

We claim the following:

Theorem 2. The canonical number of a rooted tree is an isomorphism invariant, i.e., (T1, r1) ≡ (T2, r2) iff
their canonical numbers are the same.

Proof. (⇒) The proof is by induction on the level number; the base case is obvious. Since any isomorphism
permutes the children of the root, the ordering of the canonical numbers of the children is unique up to
permutations that permute the children with the same canonical number. By the inductive hypothesis,
their canonical numbers are isomorphism invariant, thus the canonical number associated with the root is
isomorphism invariant as well.

(⇐) Again the proof is by induction on levels. If we look at the list of the canonical numbers of the two
roots r1 and r2, then up to permutations within same canonical numbers, the two lists are the same. By
induction hypothesis, we know that the sub-trees corresponding to the children of r1 and r2 are isomorphic.
Since the ordered list of canonical numbers is same for r1 and r2, and the subtrees of their childrens are
isomorphic, it follows that the trees T1 and T2 are isomorphic. Q.E.D.

The algorithm to construct the canonical number is straightforward. Do a post-traversal of the tree and
at each vertex v do the following:

1. sort the canonical numbers b1 ≥ b2 ≥ · · · ≥ bk of the children of v (here k := dv, the outdegree of v wrt,
say, a DFS traversal from the root),

2. assign the canonical number for v as 1b1b2 . . . bk0.

The traversal of the tree takes O(|V |) time. What’s the work done at each node? The work at each node
involves sorting a list of binary numbers. To sort binary numbers of lengths `1, . . . , `k we can do the following:
first pad the numbers with leading zeros so that all of them have the same length `; then put the numbers
them into two bins based upon their most significant bit, then refine these two bins wrt the second significant
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bit, and so until we have sorted the numbers. What is the complexity of sorting k numbers of lengths `?
Since we look at all the bits of the k numbers exactly once, the complexity of sorting binary numbers of
length ` is O(k`) = O(dv`). The worst-case length of canonical numbers is 2n (at every level we add a one
and zero, and in the worst case there are n levels). Thus the worst-case complexity at a vertex v is O(ndv).
Thus the overall complexity is O(n

∑
v dv) = O(n|E|) = O(n2).

Can we improve upon this? Do we have to carry the complete structure of the subtree rooted at a vertex
to its parent? Also, if the trees are not isomorphic, then can we detect it earlier than comparing the canonical
number of the roots? The answer to the last question is yes – if we compare the canonical numbers level by
level then we can detect non-isomorphism earlier. More precisely, we assign the canonical number to each
vertex in the tree, and corresponding to each tree T we form a list T (i) of the sorted canonical numbers of
the vertices at level i; all of this can be done in O(|V |2) time. After this, we proceed to compare the trees
level by level. If at the ith level the two lists T1(i) and T2(i) do not match then we declare that the trees
are not isomorphic. The overall complexity in the worst case still is quadratic; nevertheless, a failure can
be detected earlier. However, we can improve the worst case complexity as well. Since we are proceeding
level-by-level, if we have detected isomorphism till level (i + 1) then at level i we do not need to carry the
canonical numbers of level (i + 1). We only to have ensure that the isomorphic subtrees at level (i − 1) are
assigned the same numbers. Based upon this idea Aho, Hopcroft and Ullman gave the following procedure:

1. Assign 1 to all leaves of the trees T1 and T2.

2. Suppose inductively that we have assigned some integers to the vertices of T1 and T2 at level (i + 1).
Let L1 be the list of vertices at level (i + 1) of T1 sorted in increasing order according to the integers
assigned to them; similarly L2 for T2.

3. We next assign a tuple of integers to the vertices at level i as follows: scan the list L1 from left to right
and for each vertex v in the list look at its parent at level i; insert the integer corresponding to v in
the tuple corresponding to its parent. Thus for each vertex w at level i we have a tuple (j1, . . . , jk),
j1 ≤ j2 ≤ · · · ≤ jk. We sort these tuples in lexicographic order to get a list S1; since we might have
tuples with different sizes, we impose the criterion that tuples of smaller size are lexicographically
smaller than tuples of larger size. Similarly create a list S2 for T2. If S1 and S2 are not indentical then
the two trees are not isomorphic. Otherwise, we assign 1 to all vertices w at level i corresponding to
the first distinct tuple in S1, assign 2 to all vertices corresponding to the second distinct tuple in S1

and so on; similarly for T2. Update L1 to be the list of vertices of T1 at level i sorted according to the
numbers assigned to them; similarly update L2 for T2, and proceed inductively.

4. If eventually the tuple associated with the roots are the same then the two trees are isomorphic.

Complexity: Is O(|V |) since lexicographic sort of strings of lengths `1, . . . , `k with entries at most m takes

O(m +
∑k

i=1 `i) time. In our case, m = n and
∑

i `i =
∑

v∈V dv, where dv is the number of descendants of
a vertex v in the rooted tree. But we know that the latter sum is twice the number of edges of the tree and
hence is O(|V |).

See Aho-Hopcroft-Ullman p. 84 for more details.

3 Enumeration of Trees

Cayley’s first paper on trees (where he also introduced the notation) in 1857 is called “On the theory of the
analytic forms called trees” and arose as a study of differential operators (from a problem of Sylvester). His
concern in this paper was on counting the number, An, of rooted trees with n edges (branches according to
Cayley’s terminology). The idea is to construct a rooted tree T with n edges from trees with fewer edges.
How can we do that? The tree T can have one edge from the root, and then it has to connect to a rooted
tree with n− 1 edges; T can also have two edges from the root to two roots trees with p and q edges, where
p + q = n− 2; similarly, if there are three edges from the root then they connect to three rooted trees with
edges p, q, r such that p+ q + r = n− 3; so on, when all the n edges are connected from the root to n leaves.
Let ji be the number of trees with i edges; note that there are Ai ways of choosing each such tree. Then the
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total number of edges contributed to T by these ji trees is ji(i + 1), where ji · i comes from each of the tree
with i edges and ji comes from the edges connecting these trees to the root. Thus

n =

n∑
i=0

ji(i + 1).

Let A(x) :=
∑

n Anx
n. Then the equation above suggests that the coefficient of xn on the LHS comes from

combining the convolution of series of the form

(1 + xi+1 + x2(i+1) + · · ·+ xji(i+1) + · · · ) =
1

1− xi+1
.

This is what we had for partitions of n. However, the key difference here is that each of the Ai trees with i
edges can contribute such a term to T . Thus we have∑

n

Anx
n =

1

(1− x)

1

(1− x2)A1

1

(1− x3)A2

1

(1− x4)A3
. . . =

∏
i≥1

1

(1− xi+1)Ai
.

From this equation we can recursively compute each An from A1, . . . , An−1.

3.1 Labelled trees

The second result that Cayley claimed (but did not give a convincing proof) was that the number Tn of trees
that can be formed from n labels is nn−2. A standard proof by Prüfer shows that each labelled tree can be
bijectively mapped to sequences (a1, . . . , an−2), where ai ∈ [n]; clearly there are nn−2 such sequences which
gives the proof.

The bijection is as follows: Given a tree T , take the leaf b1 with the smallest label, let a1 be the unique
node connecting to b1; let T ′ be the tree obtained by deleting b1 from T ; then pick b2 the leaf with the
smallest label in T ′, let a2 be the unique node connecting to b2; recursively proceed in this manner to get
a3, a4 so on; in the end we are left with two nodes connected by an edge, assign them the empty string.

In the converse: Given (a1, . . . , an−2), find the smallest number in [n], say b1 that does not appear in the
sequence; connecting a1 and b1, and delete b1 from [n] and a1 from the sequence; proceed recursively until
we have exhausted the complete sequence.

Another combinatorial proof is due to Joyal (see PTB). Consider the tuple (T, a, b), where T is a labelled
tree with labels in the set [n], and a, b ∈ [n] are two nodes from the tree (think of them as the left-end and
right-end of the tree). Let T ′n be the number of such tuples. We have Tn choices for the tree T and n2

choices for a, b; thus T ′n = Tnn
2. Therefore, if we can show that T ′n = nn, then we have the desired formula

for Tn. This would follows if we can show a bijection between T ′n and functions from [n]→ [n].
Let f : [n] → [n] be a function. Corresponding to f , we can naturally associate a directed graph Gf

whose vertices are numbers in [n], and there is an edge from i to j if j = f(i). Note that Gf may not be
connected. However, each component of Gf must contain a cycle, since there are equal number of vertices
and edges in each component; moreover, there can only be one cycle in each component, because outdegree
of all vertices is one. Our aim is to remove all these cycles. The idea is to take all the vertices that are on
some cycle and put them on a path P in the tree that we want to construct (some suitable order has to be
choosen); the rest of the graph is acyclic, and that we can just attach to the path P that we constructed.
What do cycles mean in terms of the function? Let M be the union of all the vertices in Gf that are part of
a cycle. Then f restricted to M , denoted as f |M , forms a bijection from M to f(M). How do we construct a
triplet (T, a, b) corresponding to f? Let m1 < m2 < · · · < mk be the elements of M ordered naturally. Then
we form a path connecting f(mi) to f(mi+1), i = 1, . . . , k−1, in T , a := f(m1), the left end, and b := f(mk),
the right end. The remaining portion of T is obtained from Gf by attaching to f(mi) the subgraph, if any,
in Gf that is not part of the cycle on which f(mi) lies. This is illustrated in Figure 4(a) for the function:

f :=

(
1 2 3 4 5 6 7 8 9 10
4 2 5 5 1 8 9 9 10 8

)
;
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the set M = {1, 2, 4, 5, 8, 9, 10} and

f |M =

(
1 2 4 5 8 9 10
4 2 5 1 9 10 8

)
.

1 // 4

}}

4 2 5 1 9 10 8

3 // 5

``

3 7 6

6 // 8

��

(b)

7 // 9 // 10

``

2
��

(a)

Figure 4: (a) The directed graph Gf ; (b) The tree T , where 4 is the left end and 8 the right end.

For the converse, given (T, a, b), let P = (p1, . . . , pk) be the ordered tuple denoting the unique path from
a to b, therefore, p1 = a and pk = b. Let M = {m1, . . . ,mk} be the set of elements of P ordered in increasing
order, thus, m1 < m2 < · · · < mk. The bijection f |M , which is the restriction of the desired f to M , is
defined as f |M (mi) = pi. For the remaining i, f(i) is the first element on the path from f(i) to P . Suppose
the tree is as shown in Figure 5. Then P = (4, 5, 1, 9, 10, 8), M = {1, 4, 5, 8, 9, 10},

4 5 1 9 10 8

2 3 7 6

Figure 5: A tree T , where 4 is the left end and 8 the right end.

f |M =

(
1 4 5 8 9 10
4 5 1 9 10 8

)
and f(2) = 3, f(3) = 5, f(5) = 7 and f(6) = 8. It is clear that this procedure when applied to Figure 4(b)
yields the corresponding function f .
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