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The main theorem

Theorem

Let P be a subfactor planar algebra of finite depth k. Then,
• P has a finite presentation
• with a single generator
• which may be chosen in Pk+1 (but not necessarily in Pk).

Plan of the talk

• WHAT is a planar algebra ?
• WHICH planar algebras are subfactor planar algebras ?
• WHEN is a planar algebra said to be of finite depth ?
• WHY presentations/skein theories for planar algebras ?
• HOW is the main theorem proved ?
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The first tangle, say T , is a 3-tangle with internal boxes of colour
4,2,3 and 0. The second, say S, is a 2-tangle with no internal boxes.
Tangles may be composed. The third tangle is denoted T ◦D2

S.
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What is a planar algebra ? II Definition and proposition

Planar algebra

A planar algebra P is a collection of vector spaces {Pn}n=0,1,2,···

together with maps ZT for every planar tangle T satisfying
compatibility with composition.

Vijay Kodiyalam (IMSc) Skein theory for planar algebras Chennai, August 2010 4 / 16



What is a planar algebra ? II Definition and proposition

Planar algebra

A planar algebra P is a collection of vector spaces {Pn}n=0,1,2,···

together with maps ZT for every planar tangle T satisfying
compatibility with composition.

For our example T , the map ZT : P4 ⊗ P2 ⊗ P3 ⊗ P0 → P3.

Vijay Kodiyalam (IMSc) Skein theory for planar algebras Chennai, August 2010 4 / 16



What is a planar algebra ? II Definition and proposition

Planar algebra

A planar algebra P is a collection of vector spaces {Pn}n=0,1,2,···

together with maps ZT for every planar tangle T satisfying
compatibility with composition.

For our example T , the map ZT : P4 ⊗ P2 ⊗ P3 ⊗ P0 → P3.

Proposition

For a planar algebra P and each k, the vector space Pk acquires an

associative algebra structure for the action of the tangle Mk with a

unit given by the tangle 1k and algebra homomorphism Pk → Pk+1

given by Ik+1.
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What is a planar algebra ? III Elementary tangles
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The letters adjacent to the strings represent the number of times the
string is cabled.
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Which planar algebras are subfactor planar algebras ?

Some properties of subfactor planar algebras

• Each Pk is a finite-dimensional space.
• Each Pk is a C∗-algebra.

Jones’ theorem (1999)

Every finite index extremal II1-subfactor yields a subfactor planar
algebra in a natural way. All subfactor planar algebras arise in this
manner.
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Define En ∈ Pn by En = ZEn(1). The En are scaled Jones
projections.

Finite depth

A planar algebra P is said to be of finite depth if there is a k ∈ N

such that 1k+1 ∈ PkEk+1Pk. The least such k is said to be the
depth.
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The following tangles are the Jones projection tangles (for n ≥ 2).

=
*

En
n − 2

Define En ∈ Pn by En = ZEn(1). The En are scaled Jones
projections.

Finite depth

A planar algebra P is said to be of finite depth if there is a k ∈ N

such that 1k+1 ∈ PkEk+1Pk. The least such k is said to be the
depth.

For a subfactor planar algebra, finite depth is equivalent to finiteness
of the principal graphs of the subfactor.
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Why presentations/skein theories ? I Definitions

Given a label set L =
∐

k Lk the universal planar algebra on L,
denoted P (L), is the planar algebra with P (L)k being the vector
space with basis all L-labelled k-tangles. There is an obvious planar
algebra structure.
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Why presentations/skein theories ? I Definitions

Given a label set L =
∐

k Lk the universal planar algebra on L,
denoted P (L), is the planar algebra with P (L)k being the vector
space with basis all L-labelled k-tangles. There is an obvious planar
algebra structure.

In any planar algebra P there is a notion of a planar ideal. For a
subset R ⊆ P (L), if the planar ideal that it generates is I(R), the
quotient planar algebra P (L)/I(R) is denoted P (L,R) and (L,R) is
said to present the quotient. Such a presentation is also known as a
skein theory for the planar algebra.
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Why presentations/skein thories ? II Examples

• Lnd 2002 : Group planar algebra
• KdyLndSnd 2003 : Kac algebra planar algebra
• MrrPtrSny 2008 : D2n planar algebra
• Ptr 2009 : Haagerup planar algebra
• BglMrrPtrSny 2009 : Extended Haagerup planar algebra
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• BglMrrPtrSny 2009 : Extended Haagerup planar algebra

Each of the last 3 papers explicitly describes a skein theory with a
single generator. All the planar algebras involved are of finite depth.

Theorem

Let P be a subfactor planar algebra of finite depth k. Then,
• P has a finite presentation
• with a single generator
• which may be chosen in Pk+1 (but not necessarily in Pk).
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Step I : Description of generators and relations I

Given a planar algebra P of finite depth k, let B be a basis of Pk and
set L = Lk = B. These will be the generators of our presentation.

Templates

A template is an ordered pair S ⇒ T of tangles of the same colour.

Here are two examples of templates.

k−1

*

*

k+1 =

*

*

*

k

k

k

k

= k−1

k−1

We call these the multiplication and depth templates.
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Vijay Kodiyalam (IMSc) Skein theory for planar algebras Chennai, August 2010 11 / 16



Step I : Description of generators and relations II

Template holding for (P, B)

If S ⇒ T is a template, P is a planar algebra, and B ⊆ P , the
template is said to hold for (P,B) if the span of ZS with inputs from
B is contained in the span of ZT with inputs from B.
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template is said to hold for (P,B) if the span of ZS with inputs from
B is contained in the span of ZT with inputs from B.

If a template holds for (P,B) it gives relations in P (B).

To complete Step I, we specify an explicit set of 6 templates that
hold for any (P,B) where P is a subfactor planar algebra of finite
depth k and B is a basis of Pk. The relations determined by these
templates specify a finite subset R ⊆ P (L) where L = Lk = B.
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Step I : Description of generators and relations II

Template holding for (P, B)

If S ⇒ T is a template, P is a planar algebra, and B ⊆ P , the
template is said to hold for (P,B) if the span of ZS with inputs from
B is contained in the span of ZT with inputs from B.

If a template holds for (P,B) it gives relations in P (B).

To complete Step I, we specify an explicit set of 6 templates that
hold for any (P,B) where P is a subfactor planar algebra of finite
depth k and B is a basis of Pk. The relations determined by these
templates specify a finite subset R ⊆ P (L) where L = Lk = B.

We then show that P (L,R) ∼= P .
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Step II : Sketch of injectivity proof

That there is a map of P (L,R) onto P is clear by choice of the
relations. For injectivity we first define a family of tangles T n as in
the figure below.

k−n
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*
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n−k+1

*

n

n
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Next, define T = {T n0

n1,··· ,nb
: T ◦ (T n1 , · · · , T nb) ⇒ T n0 for (P,B)}.
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That there is a map of P (L,R) onto P is clear by choice of the
relations. For injectivity we first define a family of tangles T n as in
the figure below.

k−n

*

*

*

v

1

2

k−1

k−1

k−1

n−k+1

*

n
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Next, define T = {T n0

n1,··· ,nb
: T ◦ (T n1 , · · · , T nb) ⇒ T n0 for (P,B)}.

Injectivity at level k ⇔ T = all tangles.
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Step III : Consequences of templates

Consequences

Given a set of templates, consider the smallest set containing them
and closed under transitivity and composition on the outside. Each
element of this set is said to be a consequence of those of the original
set.
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and closed under transitivity and composition on the outside. Each
element of this set is said to be a consequence of those of the original
set.

If a set of templates holds for (P,B), so do all their consequences.

To show that T contains all tangles, it suffices to see that it is closed
under composition (which is obvious by definition) and that it
contains a basic set of generating tangles.
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Step III : Consequences of templates

Consequences

Given a set of templates, consider the smallest set containing them
and closed under transitivity and composition on the outside. Each
element of this set is said to be a consequence of those of the original
set.

If a set of templates holds for (P,B), so do all their consequences.

To show that T contains all tangles, it suffices to see that it is closed
under composition (which is obvious by definition) and that it
contains a basic set of generating tangles.

Proposition

T contains a set of generating tangles.
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Step IV : Finish of injectivity proof

Having injectivity at level k, one more ingredient is needed to finish
the proof of injectivity at all levels.
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Step IV : Finish of injectivity proof

Having injectivity at level k, one more ingredient is needed to finish
the proof of injectivity at all levels.

Proposition

Let P be a planar algebra for which 1k+1 ∈ PkEk+1Pk for some k.

Then for any m,n ≥ k there is a natural isomorphism of

Pk−1 − Pk−1-bimodules

Pm ⊗Pk−1
Pn → Pm+n−(k−1).
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Step V : Single generation

Suppose that P is a subfactor planar algebra of depth k. Certainly, it
is generated as a planar algebra by Pk. Since Pk is a
finite-dimensional C∗-algebra it is singly generated by say, x, which
we may assume has a non-zero trace.
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Step V : Single generation

Suppose that P is a subfactor planar algebra of depth k. Certainly, it
is generated as a planar algebra by Pk. Since Pk is a
finite-dimensional C∗-algebra it is singly generated by say, x, which
we may assume has a non-zero trace.

The element z ∈ P2k defined by

*

*

*
k

k

k

k

x x∗

is easily seen to generate P since both x and x∗ are in the generated
planar algebra.
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Step VI : Can we improve the 2k ?

Proposition

Let A be a finite dimensional complex semisimple algebra and S an

involutive anti-automorphism of A. Then there is an a ∈ A such that

a and Sa generate A.
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Step VI : Can we improve the 2k ?

Proposition

Let A be a finite dimensional complex semisimple algebra and S an

involutive anti-automorphism of A. Then there is an a ∈ A such that

a and Sa generate A.

Corollary

If P is a subfactor planar algebra of depth k and 2t is the even

number in {k, k + 1}, then P is generated by a 2t box.
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