ON TRACE ZERO MATRICES

by

V.S. Sunder

In this note, we shall try to present an elementary proof of a couple of closely related results which have both proved quite useful, and also indicate possible generalisations. The results we have in mind are the following facts:
(a) A complex $n \times n$ matrix A has trace 0 if and only if it is expressible in the form $A=P Q-Q P$ for some P, Q.
(b) The numerical range of a bounded linear operator T on a complex Hilbert space \mathcal{H}, which is defined by

$$
W(T)=\{\langle T x, x\rangle: x \in \mathcal{H},\|x\|=1\}
$$

is a convex set in $\mathbb{C} .{ }^{1}$
We shall attempt to make the treatment easy-paced and selfcontained. (In particular, all the terms in 'facts (a) and (b)' above will be described in detail.) So we shall begin with an introductory section pertaining to matrices and inner product spaces. This introductory section may be safely skipped by those readers who may be already acquainted with these topics; it is intended for those readers who have been denied the pleasure of these acquaintances.

1 Matrices and inner-product spaces

The collection $M_{m \times n}(\mathbb{C})$ of complex $m \times n$ matrices has a natural structure of a complex vector space in the sense that if $A=$ $\left(\left(a_{i j}\right)\right), B=\left(\left(b_{i j}\right)\right) \in M_{m \times n}(\mathbb{C})$ and $\lambda \in \mathbb{C}$, we may define the linear combination $\lambda A+B \in M_{m \times n}(\mathbb{C})$ to be the matrix with (i, j)-th entry given by $\lambda a_{i j}+b_{i j}$. (The 'zero' of this vector space

[^0]is the $m \times n$ matrix all of whose entries are 0 ; this 'zero matrix' will be denoted simply by 0 .)

Given two matrices whose 'sizes are suitably compatible', they may be multiplied. The product $A B$ of two matrices A and B is defined only if there are integers m, n, p such that $A=$ $\left(\left(a_{i k}\right)\right) \in M_{m \times n}, B=\left(\left(b_{k j}\right)\right) \in M_{n \times p}$; in that case $A B \in M_{m \times p}$ is defined as the matrix $\left(\left(c_{i j}\right)\right)$ given by

$$
\begin{equation*}
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j} \tag{1.1}
\end{equation*}
$$

Unlike the case of usual numbers, matrix-multiplication is not 'commutative'. For instance, if we set

$$
A=\left(\begin{array}{cc}
0 & -1 \tag{1.2}\\
1 & 0
\end{array}\right), B=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

then it may be seen that $A B \neq B A$.
The way to think about matrices and understand matrixmultiplication is geometrically. When viewed properly, the reason for the validity of the example of the previous paragraph is this: if T_{A} denotes the operation of 'counterclockwise rotation of the plane by 90° ', and if T_{B} denotes 'projection onto the x-axis', then $T_{A} \circ T_{B}$, the result of doing T_{B} first and then T_{A}, is not the same as $T_{B} \circ T_{A}$, the result of doing T_{A} first and then T_{B}. (For instance, if $x=(1,0)$, then $T_{B}(x)=x, T_{A}(x)=T_{A} \circ T_{B}(x)=(0,1)$ while $\left.T_{B} \circ T_{A}(x)=(0,0).\right)$

Let us see how this 'algebra-geometry' nexus goes. The correspondence

$$
\mathbf{z}=\left(z_{1}, z_{2}, \cdots, z_{n}\right) \leftrightarrow\left(\begin{array}{c}
z_{1} \tag{1.3}\\
z_{2} \\
\vdots \\
z_{n}
\end{array}\right)=\hat{\mathbf{z}}
$$

sets up an identification between \mathbb{C}^{n} and $M_{n \times 1}(\mathbb{C})$, which is an 'isomorphism of complex vector spaces' - in the sense that

$$
\widehat{\lambda \mathbf{z}+\mathbf{z}^{\prime}}=\lambda \hat{\mathbf{z}}+\hat{\mathbf{z}^{\prime}}
$$

Now, if $A \in M_{m \times n}(\mathbb{C})$, consider the mapping $T_{A}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ which is defined by the requirement that if $\mathbf{z} \in \mathbb{C}^{n}$, then

$$
\begin{equation*}
\widehat{T_{A}(z)}=A \hat{\mathbf{z}} \tag{1.4}
\end{equation*}
$$

where $A \hat{\mathbf{z}}$ denotes the matrix product of the $m \times n$ matrix A and the $n \times 1$ matrix $\hat{\mathbf{z}}$. It is then not hard to see that T_{A} is a linear transformation from \mathbb{C}^{n} to \mathbb{C}^{m} : i.e., T_{A} satisfies the algebraic requirement ${ }^{2}$ that

$$
T_{A}(\lambda x+y)=\lambda T_{A}(x)+T_{A}(y) \text { for all } x, y \in \mathbb{C}^{n}
$$

The importance of matrices stems from the fact that the converse statement is true; i.e., if T is a linear transformation from \mathbb{C}^{n} to \mathbb{C}^{m}, then there is a unique matrix $A \in M_{m \times n}(\mathbb{C})$ such that $T=T_{A}$. This is an easy exercise and, we indeed have a bijective correspondence between $M_{m \times n}(\mathbb{C})$ and the collection $\mathcal{L}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right)$ of linear transformations from \mathbb{C}^{n} to \mathbb{C}^{m}. Note that the matrix corresponding to the linear transformation T is obtained by taking the j-th column as the (matrix of coefficients of the) image under T of the j-th standard basis vector. Thus, the transformation of \mathbb{C}^{2} corresponding to 'counter-clockwise rotation by 90° is seen to map $e_{1}^{(2)}$ to $e_{2}^{(2)}$, and $e_{2}^{(2)}$ to $-e_{1}^{(2)}$, and the

[^1]associated matrix is the matrix A of eqn. (1.2). (The reader is urged to check similarly that the matrix B of eqn. (1.2) does indeed correspond to 'perpendicular projection onto the x-axis'.)

Finally, if $A=\left(\left(a_{i k}\right)\right) \in M_{m \times n}(\mathbb{C})$ and $B=\left(\left(b_{k j}\right)\right) \in$ $M_{n \times p}(\mathbb{C})$, then we have $T_{A}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ and $T_{B}: \mathbb{C}^{p} \rightarrow \mathbb{C}^{n}$, and consequently 'composition' yields the map $T_{A} \circ T_{B}: \mathbb{C}^{p} \rightarrow \mathbb{C}^{m}$. A moment's reflection on the prescription (contained in the second sentence of the previous paragraph) for obtaining the matrix corresponding to the composite map $T_{A} \circ T_{B}$ shows the following: multiplication of matrices is defined the way it is, precisely because we have:

$$
T_{A B}=T_{A} \circ T_{B}
$$

(This justifies our remarks in the paragraph following eqn. (1.2).)
In addition to being a complex vector space, the space \mathbb{C}^{n} has another structure, namely that given by its 'inner product'. The inner product of two vectors in \mathbb{C}^{n} is the complex number defined by

$$
\begin{equation*}
\left\langle\left(\xi_{1}, \cdots, \xi_{n}\right),\left(\eta_{1}, \cdots, \eta_{n}\right)\right\rangle=\sum_{i=1}^{n} \xi_{i} \overline{\eta_{i}} . \tag{1.5}
\end{equation*}
$$

The rationale for consideration of this 'inner product' stems from the observation - which relies on basic facts from trigonometry - that if $x=\left(\xi_{1}, \xi_{2}\right), y=\left(\eta_{1}, \eta_{2}\right) \in \mathbb{R}^{2}$, and if one writes O, X and Y for the points in the plane with Cartesian co-ordinates $(0,0),\left(\xi_{1}, \xi_{2}\right)$ and $\left(\eta_{1}, \eta_{2}\right)$ respectively, then one has the identity

$$
\langle x, y\rangle=|O X||O Y| \cos (\text { angle } X O Y),
$$

The point is that the inner product allows us to 'algebraically' describe distances and angles.

If $x \in \mathbb{C}^{n}$, it is customary to define

$$
\begin{equation*}
\|x\|=(\langle x, x\rangle)^{\frac{1}{2}} \tag{1.6}
\end{equation*}
$$

and to refer to $\|x\|$ as the norm of x. (In the notation of the previous example, we have $\|x\|=|O X|$.)

One finds more generally (see $[\mathrm{H}]$, for instance) that the following relations hold for all $x, y \in \mathbb{C}^{n}$ and $\lambda \in \mathbb{C}$:

- $\|x\| \geq 0$, and $\|x\|=0 \Leftrightarrow x=0$
- $\|\lambda x\|=|\lambda|\|x\|$
- (Cauchy-Schwarz inequality)

$$
|\langle x, y\rangle| \leq\|x\|\|y\|
$$

- (triangle inequality) $\|x+y\| \leq\|x\|+\|y\|$

More abstractly, one has the following definition:
Definition 1.1 A complex inner product space is a complex vector space, say V, which is equipped with an 'inner product'; i.e., for any two vectors $x, y \in V$, there is assigned a complex number - denoted by $\langle x, y\rangle$ and called the inner product of x and y; and this inner product is required to satisfy the following requirements, for all $x, y, x_{1}, x_{2}, y_{1}, y_{2} \in V$ and $\lambda_{1}, \lambda_{2}, \mu_{1}, \mu_{2} \in \mathbb{C}$:
(a) (sesquilinearity) $\left\langle\sum_{i=1}^{2} \lambda_{i} x_{i}, \sum_{j=1}^{2} \mu_{j} y_{j}\right\rangle=\sum_{i, j=1}^{2} \lambda_{i} \overline{\mu_{j}}\left\langle x_{i}, y_{j}\right\rangle$
(b) (Hermitian symmetry) $\langle x, y\rangle=\overline{\langle y, x\rangle}$
(c) (Positive definiteness) $\langle x, y\rangle \geq 0$, and $\langle x, x\rangle=0 \Leftrightarrow x=0$.

The statement ' \mathbb{C}^{n} is the prototypical n-dimensional complex inner product space' is a crisper, albeit less precise version of the following fact (which may be found in basic texts such as $[\mathrm{H}]$, for instance):

Proposition 1.2 If V_{1} and V_{2} are n-dimensional vector spaces equipped with an inner product denoted by $\langle\cdot, \cdot\rangle_{V_{1}}$ and $\langle\cdot, \cdot\rangle_{V_{2}}$, then there exists a mapping $U: V_{1} \rightarrow V_{2}$ satisfying:
(a) U is a linear map (i.e., $U(\lambda x+y)=\lambda U x+U y$ for all $x, y \in$ V_{1}); and
(b) $\langle U x, U y\rangle_{V_{2}}=\langle x, y\rangle_{V_{1}}$ for all $\quad x, y \in V_{1}$.

Moreover, a such a mapping U is necessarily a 1-1 map of V_{1} onto V_{2}, and the inverse mapping U^{-1} is necessarily also an inner product preserving linear mapping. A mapping such as U above is called a unitary operator from V_{1} to V_{2}.

In particular, we may apply the above proposition with $V_{1}=$ \mathbb{C}^{n} and any n-dimensional inner product space $V=V_{2}$. The following lemma and definition are fundamental. (We omit the proof which is not difficult and may be found in $[\mathrm{H}]$, for instance. The reader is urged to try and write down the proof of the implications $(i) \Leftrightarrow(i i)$.)

Lemma 1.3 Let V be an n-dimensional inner product space. The following conditions on a set $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ of vectors in V are equivalent:
(i) there exists a unitary operator $U: \mathbb{C}^{n} \rightarrow V$ such that $v_{i}=U e_{i}^{(n)}$ for all i.
(ii) $\left\langle v_{i}, v_{j}\right\rangle=\delta_{i j}=\left\{\begin{array}{ll}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{array}\right.$.

The set $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ is said to be an orthonormal basis for V if it satisfies the above conditions.

If V is as above, and if $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ is any orthonormal basis for V, then it is easy to see that
(i) $v=\sum_{i=1}^{n}\left\langle v, v_{i}\right\rangle v_{i}$ for all $v \in V$; and
(ii) $\langle v, w\rangle=\sum_{i=1}^{n}\left\langle v, v_{i}\right\rangle\left\langle v_{i}, w\right\rangle$ for all $v, w \in V$.

Now if $T: V \rightarrow V$ is a linear transformation on V, the action of T may be encoded, with respect to the basis $\left\{v_{i}\right\}$, by the matrix $A \in M_{n \times n}(\mathbb{C})$ defined by

$$
a_{i j}=\left\langle T v_{j}, v_{i}\right\rangle .
$$

We shall call A the matrix representing T in the basis $\left\{v_{1}, \cdots, v_{n}\right\}$.
It is natural to call an $n \times n$ matrix unitary if it represents a unitary operator $U: V \rightarrow V$ in some orthonormal basis; and it is not too difficult to show that a matrix is unitary if and only if its columns form an orthonormal basis for C^{n}.

More or less by definition, we see that if $A, B \in M_{n \times n}(\mathbb{C})$, the following conditions are equivalent:
(a) there exists a linear transformation $T: V \rightarrow V$ such that A and B represent T with repect to two orthonormal bases;
(b) there exists a unitary matrix U such that $B=U A U^{-1}$. In (b) above, the U^{-1} denotes the unique matrix which serves as the multiplicative inverse of the matrix U. (Recall that the
multiplicative identity is given by the matrix I_{n} whose $(i j)$-th entry is $\delta_{i j}$ (defined in Lemma 1.3(ii) above); and that the matrix representing an operator is invertible if and only if that operator is invertible.)
Finally recall that the trace of a matrix $A \in M_{n}(\mathbb{C})$ is defined by ${ }^{3}$

$$
\operatorname{Tr}_{n} A=\operatorname{Tr} A=\sum_{i=1}^{n} a_{i i}
$$

and recall the following basic property of the trace:
Proposition 1.4 Suppose $A \in M_{m \times n}(\mathbb{C}), B \in M_{n \times m}(\mathbb{C})$. Then,

$$
\operatorname{Tr}_{m} A B=\operatorname{Tr}_{n} B A
$$

In particular, if $C, S \in M_{n}(\mathbb{C})$ and if S is invertible, then

$$
\operatorname{Tr} S C S^{-1}=\operatorname{Tr} C
$$

Proof: For the first identity, note that

$$
\operatorname{Tr}_{m} A B=\sum_{i=1}^{m}\left(\sum_{k=1}^{n} a_{i k} b_{k i}\right)=\sum_{k=1}^{n}\left(\sum_{i=1}^{m} b_{k i} a_{i k}\right)=\operatorname{Tr}_{n} B A .
$$

The second identity follows from the first, since

$$
\operatorname{Tr} S C S^{-1}=\operatorname{Tr} C S^{-1} S=\operatorname{Tr} C I_{n}=\operatorname{Tr} C
$$

2 On commutators, numerical ranges and zero diagonals

We wish to discuss elementary proofs of the following three wellknown results:
(A) A square complex matrix A has trace zero if and only if it is a commutator - i.e., $A=B C-C B$, for some B, C.

[^2](B) If T is a linear operator on an inner product space V, then its numerical range $W(T)=\{\langle T x, x\rangle: x \in V,\|x\|=1\}$ is a convex set.
(C) A matrix $A \in M_{n}(\mathbb{C})$ has trace zero if and only if there exists a unitary matrix $U \in M_{n}(\mathbb{C})$ such that $U A U^{-1}$ has all entries on its 'main diagonal' equal to zero.

As for the arrangement of the proof, we shall show that (C) follows from (B), which in turn is a consequence of the case $n=2$ of (C). So as to be logically consistent, we shall first prove (C) when $n=2$, then derive (B), then deduce (C) for general n, and finally deduce (A) from (C). Further, since the 'if' parts of both (A) and (C) are immediate (given the truth of Proposition 1.4), we shall only be concerned with the 'only if' parts of these statements.

Our proofs will not be totally self-contained; we will need one 'standard fact' from linear algebra. Thus, in the proof of Lemma 2.1 below, we shall need the fact that - at least in two-dimensions - every complex matrix has an 'upper triangular form'.

In the following proofs, we shall interchangeably think about elements of $M_{n}(\mathbb{C})$ as linear operators on \mathbb{C}^{n} (or equivalently, on some n-dimensional complex inner product space with a distinguished orthonormal basis).

Lemma 2.1 If $A \in M_{2}(\mathbb{C})$ and $\operatorname{Tr} A=0$, then there exists a unitary matrix $U \in M_{2}(\mathbb{C})$ such that

$$
U A U^{-1}=\left(\begin{array}{cc}
0 & * \\
* & 0
\end{array}\right)
$$

Proof: To start with, we appeal to the fact - see [H], for instance - that every complex square matrix has an 'upper triangular form' with respect to a suitable orthonormal basis; in other words, there exists a unitary matrix $U_{1} \in M_{2}(\mathbb{C})$ such that

$$
U_{1} A U_{1}^{-1}=\left(\begin{array}{cc}
a & b \tag{2.7}\\
0 & c
\end{array}\right)
$$

Note - by Proposition 1.4 - that

$$
a+c=\operatorname{Tr} U_{1} A U_{1}^{-1}=\operatorname{Tr} A=0
$$

and so $c=-a$. In case $a=0$, we may take $U=U_{1}$ and the proof will be complete.

So suppose $a \neq 0$. This hypothesis guarantees that the ma$\operatorname{trix} A$ has the distinct 'eigenvalues' a and $-a$; i.e., we can find vectors x, y of norm 1 such that $U_{1} A U_{1}^{-1} x=a x$ and $U_{1} A U_{1}^{-1} y=$ -ay. (In fact, $x=e_{1}^{(2)}$ and $y=p e_{1}^{(2)}+q e_{2}^{(2)}$ for suitable p and q with $q \neq 0$ (since $a \neq 0$). Thus x and y are lineary independent. Now, if $\alpha, \beta \in \mathbb{C}$, we have:

$$
\begin{aligned}
\left\langle U_{1} A U_{1}^{-1}(\alpha x+\beta y),(\alpha x+\beta y)\right\rangle & =a\langle(\alpha x-\beta y),(\alpha x+\beta y)\rangle \\
& =a\left(|\alpha|^{2}-|\beta|^{2}+2 i \operatorname{Im} \alpha \bar{\beta}\langle x, y\rangle\right) .
\end{aligned}
$$

Now pick α, β to satisfy $|\alpha|=|\beta|=1$ and $\operatorname{Im} \alpha \bar{\beta}\langle x, y\rangle=0$ - which is clearly possible. Independence of x and y and the fact that $\alpha, \beta \neq 0$ guarantee that $w=\alpha x+\beta y \neq 0$. Then, $\left\langle U_{1} A U_{1}^{-1} w, w\right\rangle=0$.

Let $u_{1}=\frac{w}{\|w\|}$, and let u_{2} be a unit vector orthogonal to u_{1}. Let U_{2} be the unitary operator on \mathbb{C}^{2} such that $U_{2}^{-1} e_{j}^{(2)}=u_{j}$ for $j=1,2$. It is then seen that if $U=U_{2} U_{1}$ and $B=U A U^{-1}$, then

$$
\begin{aligned}
\left\langle B e_{1}^{(2)}, e_{1}^{(2)}\right\rangle & =\left\langle U_{2}\left(U_{1} A U_{1}^{-1}\right) U_{2}^{-1} e_{1}^{(2)}, e_{1}^{(2)}\right\rangle \\
& =\left\langle\left(U_{1} A U_{1}^{-1}\right) U_{2}^{-1} e_{1}^{(2)}, U_{2}^{-1} e_{1}^{(2)}\right\rangle \\
& =\left\langle\left(U_{1} A U_{1}^{-1}\right) u_{1}, u_{1}\right\rangle \\
& =0
\end{aligned}
$$

Since $\operatorname{Tr} B=\operatorname{Tr} A=0$, we conclude that the (2,2)-entry of B must also be zero; in other words, this U does the trick for us.

Proof of (B): It suffices to prove the result in the special case when V is two-dimensional. (Reason: Indeed, if x and y are unit vectors in V, and if V_{0} is the subspace spanned by x and y, let T_{0} denote the operator on V_{0} induced by the matrix

$$
\left(\begin{array}{ll}
\left\langle T u_{1}, u_{1}\right\rangle & \left\langle T u_{2}, u_{1}\right\rangle \\
\left\langle T u_{1}, u_{2}\right\rangle & \left\langle T u_{2}, u_{2}\right\rangle
\end{array}\right),
$$

where $\left\{u_{1}, u_{2}\right\}$ is an orthonomal basis for V_{0}. The point is that T_{0} is what is called a 'compression' of T and we have

$$
\left\langle T_{0} x_{0}, y_{0}\right\rangle=\left\langle T x_{0}, y_{0}\right\rangle \text { whenever } x_{0}, y_{0} \in V_{0}
$$

In particular, if we knew that $W\left(T_{0}\right)$ was convex, then the line joining $\langle T x, x\rangle$ and $\langle T y, y\rangle$ would be contained in the convex set $W\left(T_{0}\right)$ which in turn is contained in $W(T)$ (by the displayed inclusion above).)

Thus we may assume $V=\mathbb{C}^{2}$. Also, since $W\left(T-\lambda I_{2}\right)=$ $W(T)-\lambda$ - as is readily checked - we may assume, without loss of generality that $\operatorname{Tr} T=0$. Then, by Lemma 2.1, the operator T is represented, with respect to a suitable orthonormal basis, by the matrix

$$
\left(\begin{array}{ll}
0 & a \\
b & 0
\end{array}\right)
$$

An easy computation then shows that

$$
W(T)=\left\{a y \bar{x}+b x \bar{y}: x, y \in \mathbb{C},|x|^{2}+|y|^{2}=1\right\}
$$

Since $\left\{y \bar{x}: x, y \in \mathbb{C},|x|^{2}+|y|^{2}=1\right\}=\left\{z \in \mathbb{C}:|z| \leq \frac{1}{2}\right\}$, we thus find that

$$
W(T)=\left\{a z+b \bar{z}: z \in \mathbb{C},|z| \leq \frac{1}{2}\right\}
$$

and we may deduce the convexity of $W(T)$ from that of the disc $\left\{z \in \mathbb{C}:|z| \leq \frac{1}{2}\right\}$.

Proof of (C): We prove this by induction, the case $n=2$ being covered by Lemma 2.1.

So assume the result for $n-1$, and suppose $A \in M_{n}(\mathbb{C})$. Then notice, by the now established (B), that

$$
0=\frac{1}{n} \sum_{i=1}^{n}\left\langle A e_{i}^{(n)}, e_{i}^{(n)}\right\rangle \in W(A)
$$

Consequently, there exists a unit vector u_{1} in \mathbb{C}^{n} such that $\left\langle A u_{1}, u_{1}\right\rangle=0$. Choose u_{2}, \cdots, u_{n} be so that $\left\{u_{1}, \cdots, u_{n}\right\}$ is an orthonormal basis for \mathbb{C}^{n}, and let U be the unitary operator on \mathbb{C}^{n} such that $U_{1}^{-1} e_{i}^{(n)}=u_{i}$ for $1 \leq i \leq n$. Then it is not hard to see that if $A_{1}=U_{1} A U_{1}^{-1}$, then

- $\left\langle A_{1} e_{1}^{(n)}, e_{1}^{(n)}\right\rangle=0$; and
- if B denotes the submatrix of A_{1} determined by deleting its first row and first column, then, $T r_{n-1} B=T r_{n} A_{1}=$ $\operatorname{Tr}_{n} A=0$; and hence by our induction hypothesis, we can choose an orthonormal basis $\left\{v_{2}, \cdots, v_{n}\right\}$ for the subspace spanned by $\left\{e_{2}^{(n)}, \cdots, e_{n}^{(n)}\right\}$ such that $\left\langle B v_{j}, v_{j}\right\rangle=0$ for all $2 \leq j \leq n$.

We then find that $\left\{u_{1}^{\prime}=u_{1}, u_{2}^{\prime}=U^{-1} v_{2}, \cdots, u_{n}^{\prime}=U^{-1} v_{n}\right\}$ is an orthonormal basis for \mathbb{C}^{n} such that $\left\langle A u_{i}^{\prime}, u_{i}^{\prime}\right\rangle=0$ for $1 \leq i \leq n$. Finally, if we let U be a unitary matrix so that $U^{-1} e_{i}^{(n)}=u_{i}^{\prime}$ for each i, then $U A U^{-1}$ is seen to satisfy

$$
\left\langle U A U^{-1} e_{i}^{(n)}, e_{i}^{(n)}\right\rangle=0 \text { for all } i
$$

Proof of (A): By replacing A by $U A U^{-1}$ for a suitable unitary matrix U, we may, by (C), assume that $a_{i i}=0$ for all i. Let $b_{1}, b_{2}, \cdots, b_{n}$ be any set of n distinct complex numbers, and define

$$
b_{i j}=\delta_{i j} b_{j}, c_{i j}=\left\{\begin{array}{ll}
0 & \text { if } i=j \\
\frac{a_{i j}}{b_{i}-b_{j}} & \text { if } i \neq j
\end{array} .\right.
$$

It is then seen that indeed $A=B C-C B$.

3 Extensions

It is natural to ask if complex numbers have anything to do with the result that we have called (A). The reference [AM] extends the result to more general fields.

In another direction, one can seek 'good infinite-dimensional analogues' of (A); one possible such line of generalisation is pursued in [BP], where it is shown that 'a bounded operator on Hilbert space is a commutator (of such operators) if and only if it is not a compact perturbation of a non-zero scalar'.

References:

[AM] Albert, A.A., and Muckenhoupt, B., On matrices of trace zero, Michigan Math. J., 4, (1957), 1-3.
[BP] Brown, A., and Pearcy, C., Structure of Commutators of operators, Ann. of Math., 82, (1965), 112-127.
[H] Halmos, P.R., Finite-dimensional vector spaces, Van Nostrand, London, 1958.

Address for correspondence:
The Institute of Mathematical Sciences
Chennai.

[^0]: ${ }^{1}$ This result is known - see $[\mathrm{H}]$ - as the Toeplitz-Hausdorff theorem; in the statement of the theorem, we use standard set-theoretical notation, where by $x \in S$ means that x is an element of the set S.

[^1]: ${ }^{2}$ This algebraic requirement is equivalent, under mild additional conditions, to the geometric requirement that the mapping preserves 'collinearity': i.e., if x, y, z are three points in \mathbb{C}^{n} which lie on a straight line, then the points $T x, T y, T z$ also lie on a straight line.

[^2]: ${ }^{3}$ Here and in the sequel, we shall write M_{n} instead of $M_{n \times n}$.

