
ON TRACE ZERO MATRICES

by

V.S. Sunder

In this note, we shall try to present an elementary proof of

a ouple of losely related results whih have both proved quite

useful, and also indiate possible generalisations. The results we

have in mind are the following fats:

(a) A omplex n � n matrix A has trae 0 if and only if it is

expressible in the form A = PQ�QP for some P;Q.

(b) The numerial range of a bounded linear operator T on a

omplex Hilbert spae H, whih is de�ned by

W (T ) = fhTx; xi : x 2 H; jjxjj = 1g ;

is a onvex set in C .

1

We shall attempt to make the treatment easy-paed and self-

ontained. (In partiular, all the terms in `fats (a) and (b)'

above will be desribed in detail.) So we shall begin with an

introdutory setion pertaining to matries and inner produt

spaes. This introdutory setion may be safely skipped by those

readers who may be already aquainted with these topis; it is

intended for those readers who have been denied the pleasure of

these aquaintanes.

1 Matries and inner-produt spaes

The olletionM

m�n

(C ) of omplexm�nmatries has a natural

struture of a omplex vetor spae in the sense that if A =

((a

ij

)); B = ((b

ij

)) 2 M

m�n

(C ) and � 2 C , we may de�ne the

linear ombination �A + B 2 M

m�n

(C ) to be the matrix with

(i; j)-th entry given by �a

ij

+b

ij

. (The `zero' of this vetor spae

1

This result is known - see [H℄ - as the Toeplitz-Hausdor� theorem; in

the statement of the theorem, we use standard set-theoretial notation,

where by x 2 S means that x is an element of the set S.
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is the m� n matrix all of whose entries are 0; this `zero matrix'

will be denoted simply by 0.)

Given two matries whose `sizes are suitably ompatible',

they may be multiplied. The produt AB of two matries A

and B is de�ned only if there are integers m;n; p suh that A =

((a

ik

)) 2 M

m�n

, B = ((b

kj

)) 2 M

n�p

; in that ase AB 2 M

m�p

is de�ned as the matrix ((

ij

)) given by



ij

=

n

X

k=1

a

ik

b

kj

: (1.1)

Unlike the ase of usual numbers, matrix-multipliation is

not `ommutative'. For instane, if we set

A =

�

0 �1

1 0

�

; B =

�

1 0

0 0

�

; (1.2)

then it may be seen that AB 6= BA.

The way to think about matries and understand matrix-

multipliation is geometrially. When viewed properly, the rea-

son for the validity of the example of the previous paragraph is

this: if T

A

denotes the operation of `ounterlokwise rotation of

the plane by 90

o

', and if T

B

denotes `projetion onto the x-axis',

then T

A

ÆT

B

, the result of doing T

B

�rst and then T

A

, is not the

same as T

B

ÆT

A

, the result of doing T

A

�rst and then T

B

. (For in-

stane, if x = (1; 0), then T

B

(x) = x; T

A

(x) = T

A

ÆT

B

(x) = (0; 1)

while T

B

Æ T

A

(x) = (0; 0).)

TA (x) = T o TBA (x)

T
B

o T
A

) B (x)x = Tx(
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Let us see how this `algebra-geometry' nexus goes. The or-

respondene

z = (z

1

; z

2

; � � � ; z

n

)$

0

B

B

B

�

z

1

z

2

.

.

.

z

n

1

C

C

C

A

= ẑ (1.3)

sets up an identi�ation between C

n

and M

n�1

(C ), whih is an

`isomorphism of omplex vetor spaes' - in the sense that

\

�z+ z

0

= �ẑ+

^

z

0

Now, if A 2M

m�n

(C ), onsider the mapping T

A

: C

n

! C

m

whih is de�ned by the requirement that if z 2 C

n

,then

\

T

A

(z) = Aẑ (1.4)

where Aẑ denotes the matrix produt of the m�n matrix A and

the n� 1 matrix ẑ. It is then not hard to see that T

A

is a linear

transformation from C

n

to C

m

: i.e., T

A

satis�es the algebrai

requirement

2

that

T

A

(�x+ y) = �T

A

(x) + T

A

(y) for all x; y 2 C

n

:

The importane of matries stems from the fat that the

onverse statement is true; i.e., if T is a linear transformation

from C

n

to C

m

, then there is a unique matrix A 2 M

m�n

(C )

suh that T = T

A

. This is an easy exerise and, we indeed have

a bijetive orrespondene between M

m�n

(C ) and the olletion

L(C

n

; C

m

) of linear transformations from C

n

to C

m

. Note that

the matrix orresponding to the linear transformation T is ob-

tained by taking the j-th olumn as the (matrix of oeÆients of

the) image under T of the j-th standard basis vetor. Thus, the

transformation of C

2

orresponding to `ounter-lokwise rota-

tion by 90

o

' is seen to map e

(2)

1

to e

(2)

2

, and e

(2)

2

to �e

(2)

1

, and the

2

This algebrai requirement is equivalent, under mild additional ondi-

tions, to the geometri requirement that the mapping preserves `ollinear-

ity': i.e., if x; y; z are three points in C

n

whih lie on a straight line, then

the points Tx; Ty; T z also lie on a straight line.
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assoiated matrix is the matrix A of eqn. (1.2). (The reader is

urged to hek similarly that the matrix B of eqn. (1.2) does

indeed orrespond to `perpendiular projetion onto the x-axis'.)

Finally, if A = ((a

ik

)) 2 M

m�n

(C ) and B = ((b

kj

)) 2

M

n�p

(C ), then we have T

A

: C

n

! C

m

and T

B

: C

p

! C

n

, and

onsequently `omposition' yields the map T

A

Æ T

B

: C

p

! C

m

.

A moment's reetion on the presription (ontained in the se-

ond sentene of the previous paragraph) for obtaining the matrix

orresponding to the omposite map T

A

Æ T

B

shows the follow-

ing: multipliation of matries is de�ned the way it is, preisely

beause we have:

T

AB

= T

A

Æ T

B

:

(This justi�es our remarks in the paragraph following eqn. (1.2).)

In addition to being a omplex vetor spae, the spae C

n

has another struture, namely that given by its `inner produt'.

The inner produt of two vetors in C

n

is the omplex number

de�ned by

h(�

1

; � � � ; �

n

); (�

1

; � � � ; �

n

)i =

n

X

i=1

�

i

�

i

: (1.5)

The rationale for onsideration of this `inner produt' stems from

the observation - whih relies on basi fats from trigonometry

- that if x = (�

1

; �

2

); y = (�

1

; �

2

) 2 R

2

, and if one writes O;X

and Y for the points in the plane with Cartesian o-ordinates

(0; 0); (�

1

; �

2

) and (�

1

; �

2

) respetively, then one has the identity

hx; yi = jOXj jOY j os (angle XOY ) ;

The point is that the inner produt allows us to `algebraially'

desribe distanes and angles.

If x 2 C

n

, it is ustomary to de�ne

jjxjj = (hx; xi)

1

2

(1.6)

and to refer to jjxjj as the norm of x. (In the notation of the

previous example, we have jjxjj = jOXj.)

One �nds more generally (see [H℄, for instane) that the fol-

lowing relations hold for all x; y 2 C

n

and � 2 C :
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� jjxjj � 0, and jjxjj = 0, x = 0

� jj�xjj = j�j jjxjj

� (Cauhy-Shwarz inequality)

jhx; yij � jjxjj jjyjj

� (triangle inequality) jjx+ yjj � jjxjj+ jjyjj

More abstratly, one has the following de�nition:

Definition 1.1 A omplex inner produt spae is a om-

plex vetor spae, say V , whih is equipped with an `inner prod-

ut'; i.e., for any two vetors x; y 2 V , there is assigned a

omplex number - denoted by hx; yi and alled the inner prod-

ut of x and y; and this inner produt is required to satisfy

the following requirements, for all x; y; x

1

; x

2

; y

1

; y

2

2 V and

�

1

; �

2

; �

1

; �

2

2 C :

(a) (sesquilinearity) h

P

2

i=1

�

i

x

i

;

P

2

j=1

�

j

y

j

i =

P

2

i;j=1

�

i

�

j

hx

i

; y

j

i

(b) (Hermitian symmetry) hx; yi = hy; xi

() (Positive de�niteness) hx; yi � 0, and hx; xi = 0, x = 0.

The statement `C

n

is the prototypial n-dimensional omplex

inner produt spae' is a risper, albeit less preise version of the

following fat (whih may be found in basi texts suh as [H℄,

for instane):

Proposition 1.2 If V

1

and V

2

are n-dimensional vetor spaes

equipped with an inner produt denoted by h�; �i

V

1

and h�; �i

V

2

,

then there exists a mapping U : V

1

! V

2

satisfying:

(a) U is a linear map (i.e., U(�x+y) = �Ux+Uy for all x; y 2

V

1

); and

(b) hUx; Uyi

V

2

= hx; yi

V

1

for all x; y 2 V

1

.

Moreover, a suh a mapping U is neessarily a 1-1 map of V

1

onto V

2

, and the inverse mapping U

�1

is neessarily also an

inner produt preserving linear mapping. A mapping suh as U

above is alled a unitary operator from V

1

to V

2

.
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In partiular, we may apply the above proposition with V

1

=

C

n

and any n-dimensional inner produt spae V = V

2

. The

following lemma and de�nition are fundamental. (We omit the

proof whih is not diÆult and may be found in [H℄, for instane.

The reader is urged to try and write down the proof of the

impliations (i), (ii).)

Lemma 1.3 Let V be an n-dimensional inner produt spae.

The following onditions on a set fv

1

; v

2

; � � � ; v

n

g of vetors in

V are equivalent:

(i) there exists a unitary operator U : C

n

! V suh that

v

i

= Ue

(n)

i

for all i.

(ii) hv

i

; v

j

i = Æ

ij

=

�

1 if i = j

0 if i 6= j

.

The set fv

1

; v

2

; � � � ; v

n

g is said to be an orthonormal basis

for V if it satis�es the above onditions.

If V is as above, and if fv

1

; v

2

; � � � ; v

n

g is any orthonormal

basis for V , then it is easy to see that

(i) v =

P

n

i=1

hv; v

i

iv

i

for all v 2 V ; and

(ii) hv; wi =

P

n

i=1

hv; v

i

ihv

i

; wi for all v; w 2 V .

Now if T : V ! V is a linear transformation on V , the

ation of T may be enoded, with respet to the basis fv

i

g, by

the matrix A 2M

n�n

(C ) de�ned by

a

ij

= hTv

j

; v

i

i :

We shall allA the matrix representing T in the basis fv

1

; � � � ; v

n

g.

It is natural to all an n�n matrix unitary if it represents a

unitary operator U : V ! V in some orthonormal basis; and it

is not too diÆult to show that a matrix is unitary if and only

if its olumns form an orthonormal basis for C

n

.

More or less by de�nition, we see that if A;B 2 M

n�n

(C ),

the following onditions are equivalent:

(a) there exists a linear transformation T : V ! V suh that

A and B represent T with repet to two orthonormal bases;

(b) there exists a unitary matrix U suh that B = UAU

�1

.

In (b) above, the U

�1

denotes the unique matrix whih serves

as the multipliative inverse of the matrix U . (Reall that the
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multipliative identity is given by the matrix I

n

whose (ij)-th

entry is Æ

ij

(de�ned in Lemma 1.3(ii) above); and that the matrix

representing an operator is invertible if and only if that operator

is invertible.)

Finally reall that the trae of a matrix A 2 M

n

(C ) is de�ned

by

3

Tr

n

A = Tr A =

n

X

i=1

a

ii

and reall the following basi property of the trae:

Proposition 1.4 Suppose A 2M

m�n

(C ); B 2M

n�m

(C ). Then,

Tr

m

AB = Tr

n

BA :

In partiular, if C; S 2M

n

(C ) and if S is invertible, then

Tr SCS

�1

= Tr C ;

Proof: For the �rst identity, note that

Tr

m

AB =

m

X

i=1

 

n

X

k=1

a

ik

b

ki

!

=

n

X

k=1

 

m

X

i=1

b

ki

a

ik

!

= Tr

n

BA :

The seond identity follows from the �rst, sine

Tr SCS

�1

= Tr CS

�1

S = Tr CI

n

= Tr C :

2

2 On ommutators, numerial ranges

and zero diagonals

We wish to disuss elementary proofs of the following three well-

known results:

(A) A square omplex matrix A has trae zero if and only if it

is a ommutator - i.e., A = BC � CB, for some B;C.

3

Here and in the sequel, we shall write M

n

instead of M

n�n

.
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(B) If T is a linear operator on an inner produt spae V , then

its numerial range W (T ) = fhTx; xi : x 2 V; jjxjj = 1g is a

onvex set.

(C) A matrix A 2 M

n

(C ) has trae zero if and only if there

exists a unitary matrix U 2 M

n

(C ) suh that UAU

�1

has all

entries on its `main diagonal' equal to zero.

As for the arrangement of the proof, we shall show that (C)

follows from (B), whih in turn is a onsequene of the ase

n = 2 of (C). So as to be logially onsistent, we shall �rst prove

(C) when n = 2, then derive (B), then dedue (C) for general n,

and �nally dedue (A) from (C). Further, sine the `if' parts of

both (A) and (C) are immediate (given the truth of Proposition

1.4), we shall only be onerned with the `only if' parts of these

statements.

Our proofs will not be totally self-ontained; we will need one

`standard fat' from linear algebra. Thus, in the proof of Lemma

2.1 below, we shall need the fat that - at least in two-dimensions

- every omplex matrix has an `upper triangular form'.

In the following proofs, we shall interhangeably think about

elements ofM

n

(C ) as linear operators on C

n

(or equivalently, on

some n-dimensional omplex inner produt spae with a distin-

guished orthonormal basis).

Lemma 2.1 If A 2 M

2

(C ) and Tr A = 0, then there exists a

unitary matrix U 2M

2

(C ) suh that

UAU

�1

=

�

0 �

� 0

�

:

Proof: To start with, we appeal to the fat - see [H℄, for

instane - that every omplex square matrix has an `upper tri-

angular form' with respet to a suitable orthonormal basis; in

other words, there exists a unitary matrix U

1

2M

2

(C ) suh that

U

1

AU

�1

1

=

�

a b

0 

�

: (2.7)

Note - by Proposition 1.4 - that

a+  = Tr U

1

AU

�1

1

= Tr A = 0 ;
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and so  = �a. In ase a = 0, we may take U = U

1

and the

proof will be omplete.

So suppose a 6= 0. This hypothesis guarantees that the ma-

trix A has the distint `eigenvalues' a and �a; i.e., we an �nd

vetors x; y of norm 1 suh that U

1

AU

�1

1

x = ax and U

1

AU

�1

1

y =

�ay. (In fat, x = e

(2)

1

and y = pe

(2)

1

+ qe

(2)

2

for suitable p and q

with q 6= 0 (sine a 6= 0). Thus x and y are lineary independent.

Now, if �; � 2 C , we have:

hU

1

AU

�1

1

(�x + �y); (�x+ �y)i = ah(�x� �y); (�x+ �y)i

= a(j�j

2

� j�j

2

+ 2iIm �

�

�hx; yi) :

Now pik �; � to satisfy j�j = j�j = 1 and Im �

�

�hx; yi = 0

- whih is learly possible. Independene of x and y and the

fat that �; � 6= 0 guarantee that w = �x + �y 6= 0. Then,

hU

1

AU

�1

1

w;wi = 0.

Let u

1

=

w

jjwjj

, and let u

2

be a unit vetor orthogonal to u

1

.

Let U

2

be the unitary operator on C

2

suh that U

�1

2

e

(2)

j

= u

j

for j = 1; 2. It is then seen that if U = U

2

U

1

and B = UAU

�1

,

then

hBe

(2)

1

; e

(2)

1

i = hU

2

(U

1

AU

�1

1

)U

�1

2

e

(2)

1

; e

(2)

1

i

= h(U

1

AU

�1

1

)U

�1

2

e

(2)

1

; U

�1

2

e

(2)

1

i

= h(U

1

AU

�1

1

)u

1

; u

1

i

= 0 :

Sine Tr B = Tr A = 0, we onlude that the (2,2)-entry of B

must also be zero; in other words, this U does the trik for us.

Proof of (B): It suÆes to prove the result in the speial ase

when V is two-dimensional. (Reason: Indeed, if x and y are unit

vetors in V , and if V

0

is the subspae spanned by x and y, let

T

0

denote the operator on V

0

indued by the matrix

�

hTu

1

; u

1

i hTu

2

; u

1

i

hTu

1

; u

2

i hTu

2

; u

2

i

�

;

where fu

1

; u

2

g is an orthonomal basis for V

0

. The point is that

T

0

is what is alled a `ompression' of T and we have

hT

0

x

0

; y

0

i = hTx

0

; y

0

i whenever x

0

; y

0

2 V

0

:
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In partiular, if we knew that W (T

0

) was onvex, then the line

joining hTx; xi and hTy; yi would be ontained in the onvex

set W (T

0

) whih in turn is ontained in W (T ) (by the displayed

inlusion above).)

Thus we may assume V = C

2

. Also, sine W (T � �I

2

) =

W (T )� � - as is readily heked - we may assume, without loss

of generality that Tr T = 0. Then, by Lemma 2.1, the operator

T is represented, with respet to a suitable orthonormal basis,

by the matrix

�

0 a

b 0

�

:

An easy omputation then shows that

W (T ) = fay�x+ bx�y : x; y 2 C ; jxj

2

+ jyj

2

= 1g :

Sine fy�x : x; y 2 C ; jxj

2

+ jyj

2

= 1g = fz 2 C : jzj �

1

2

g, we

thus �nd that

W (T ) = faz + b�z : z 2 C ; jzj �

1

2

g

and we may dedue the onvexity of W (T ) from that of the dis

fz 2 C : jzj �

1

2

g. 2

Proof of (C):We prove this by indution, the ase n = 2 being

overed by Lemma 2.1.

So assume the result for n � 1, and suppose A 2 M

n

(C ).

Then notie, by the now established (B), that

0 =

1

n

n

X

i=1

hAe

(n)

i

; e

(n)

i

i 2 W (A) :

Consequently, there exists a unit vetor u

1

in C

n

suh that

hAu

1

; u

1

i = 0. Choose u

2

; � � � :u

n

be so that fu

1

; � � � ; u

n

g is an

orthonormal basis for C

n

, and let U be the unitary operator on

C

n

suh that U

�1

1

e

(n)

i

= u

i

for 1 � i � n. Then it is not hard to

see that if A

1

= U

1

AU

�1

1

, then

� hA

1

e

(n)

1

; e

(n)

1

i = 0; and
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� if B denotes the submatrix of A

1

determined by deleting

its �rst row and �rst olumn, then, Tr

n�1

B = Tr

n

A

1

=

Tr

n

A = 0; and hene by our indution hypothesis, we an

hoose an orthonormal basis fv

2

; � � � ; v

n

g for the subspae

spanned by fe

(n)

2

; � � � ; e

(n)

n

g suh that hBv

j

; v

j

i = 0 for all

2 � j � n.

We then �nd that fu

0

1

= u

1

; u

0

2

= U

�1

v

2

; � � � ; u

0

n

= U

�1

v

n

g is an

orthonormal basis for C

n

suh that hAu

0

i

; u

0

i

i = 0 for 1 � i � n.

Finally, if we let U be a unitary matrix so that U

�1

e

(n)

i

= u

0

i

for

eah i, then UAU

�1

is seen to satisfy

hUAU

�1

e

(n)

i

; e

(n)

i

i = 0 for all i :

Proof of (A): By replaing A by UAU

�1

for a suitable uni-

tary matrix U , we may, by (C), assume that a

ii

= 0 for all i.

Let b

1

; b

2

; � � � ; b

n

be any set of n distint omplex numbers, and

de�ne

b

ij

= Æ

ij

b

j

; 

ij

=

�

0 if i = j

a

ij

b

i

�b

j

if i 6= j

:

It is then seen that indeed A = BC � CB.

3 Extensions

It is natural to ask if omplex numbers have anything to do with

the result that we have alled (A). The referene [AM℄ extends

the result to more general �elds.

In another diretion, one an seek `good in�nite-dimensional

analogues' of (A); one possible suh line of generalisation is pur-

sued in [BP℄, where it is shown that `a bounded operator on

Hilbert spae is a ommutator (of suh operators) if and only if

it is not a ompat perturbation of a non-zero salar'.
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