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3 Cardinalty of sets - order and infinities

4 Well-ordering - ordinals and cardinals, transfinite induction

V.S. Sunder IMSc, Chennai Transfinite considerations



Posets

‘Poset’ is an abbreviation for Partially Ordered Set: i.e., a set (X ,≤)
equipped with a partial order, meaning:
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Posets

‘Poset’ is an abbreviation for Partially Ordered Set: i.e., a set (X ,≤)
equipped with a partial order, meaning:

The ‘order relation’ x ≤ y holds for some elements of X , and ≤ satisfies the
following natural requirements for the notion of ‘order’:

reflexivity:
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‘Poset’ is an abbreviation for Partially Ordered Set: i.e., a set (X ,≤)
equipped with a partial order, meaning:

The ‘order relation’ x ≤ y holds for some elements of X , and ≤ satisfies the
following natural requirements for the notion of ‘order’:

reflexivity:

x ≤ x ∀x ∈ X

anti-symmetry
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Posets

‘Poset’ is an abbreviation for Partially Ordered Set: i.e., a set (X ,≤)
equipped with a partial order, meaning:

The ‘order relation’ x ≤ y holds for some elements of X , and ≤ satisfies the
following natural requirements for the notion of ‘order’:

reflexivity:

x ≤ x ∀x ∈ X

anti-symmetry

x ≤ y , y ≤ x ⇒ x = y

transitivity
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Posets

‘Poset’ is an abbreviation for Partially Ordered Set: i.e., a set (X ,≤)
equipped with a partial order, meaning:

The ‘order relation’ x ≤ y holds for some elements of X , and ≤ satisfies the
following natural requirements for the notion of ‘order’:

reflexivity:

x ≤ x ∀x ∈ X

anti-symmetry

x ≤ y , y ≤ x ⇒ x = y

transitivity

x ≤ y , y ≤ x ⇒ x = y
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Examples of posets

1 The familiar examples N, Z, R are totally ordered in that for any x , y
either x ≤ y or y ≤ x
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Examples of posets

1 The familiar examples N, Z, R are totally ordered in that for any x , y
either x ≤ y or y ≤ x

2 The so-called ‘power set’ P(X ) of any set X , is partially, but not totally,
ordered by inclusion:

A ≤ B ⇔ A ⊂ B
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Examples of posets

1 The familiar examples N, Z, R are totally ordered in that for any x , y
either x ≤ y or y ≤ x

2 The so-called ‘power set’ P(X ) of any set X , is partially, but not totally,
ordered by inclusion:

A ≤ B ⇔ A ⊂ B

3 Another example of a poset which is not totally ordered is given by
X = {1, 2, ..., 9, 10}, with x ≤ y⇔x |y . The order is best illustrated by a
directed graph as follows:

1

2 3

4

5 7

6

8 9 10
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Maximal elements

An element ω ∈ X is said to be a maximal element if x ∈ X , ω ≤ x ⇒ x = ω.
Note that ‘maximal’ is not the same as ‘largest’. In the last example, 6,7,8,9
and 10 are all maximal elements, while only 10 is the largest element.
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Maximal elements

An element ω ∈ X is said to be a maximal element if x ∈ X , ω ≤ x ⇒ x = ω.
Note that ‘maximal’ is not the same as ‘largest’. In the last example, 6,7,8,9
and 10 are all maximal elements, while only 10 is the largest element.

Consider the question: does every poset contain a maximal element?
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Maximal elements

An element ω ∈ X is said to be a maximal element if x ∈ X , ω ≤ x ⇒ x = ω.
Note that ‘maximal’ is not the same as ‘largest’. In the last example, 6,7,8,9
and 10 are all maximal elements, while only 10 is the largest element.

Consider the question: does every poset contain a maximal element?

Our graphical portrayal of posets shows that finite posets clearly have maximal
elements (reason: keep going up as long as you can, and the assumed finiteness
ensures your quest will eventually end in success). It also shows there may be
problems with infinite posets.
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Maximal elements

An element ω ∈ X is said to be a maximal element if x ∈ X , ω ≤ x ⇒ x = ω.
Note that ‘maximal’ is not the same as ‘largest’. In the last example, 6,7,8,9
and 10 are all maximal elements, while only 10 is the largest element.

Consider the question: does every poset contain a maximal element?

Our graphical portrayal of posets shows that finite posets clearly have maximal
elements (reason: keep going up as long as you can, and the assumed finiteness
ensures your quest will eventually end in success). It also shows there may be
problems with infinite posets.

Counterexample: Let X be the collection of all subsets of N with infinite
complements. For any ω ∈ X , set x = ω ∪ {n} for some n /∈ ω, then
x ∈ X , ω ≤ x and ω 6= x . Thus X has no maximal element.
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Zorn’s lemma

A subset C of a poset X is said to be a chain if it it is totally ordered w.r.t. the
order in X .
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Zorn’s lemma

A subset C of a poset X is said to be a chain if it it is totally ordered w.r.t. the
order in X .

Theorem (Zorn’s lemma)

Suppose a non-empty poset X satisfies the following condition:

Every chain C in X has an upper bound - meaning there is an elemet x ∈ X

such that y ≤ x ∀y ∈ C.

Then X has a maximal element.
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Zorn’s lemma

A subset C of a poset X is said to be a chain if it it is totally ordered w.r.t. the
order in X .

Theorem (Zorn’s lemma)

Suppose a non-empty poset X satisfies the following condition:

Every chain C in X has an upper bound - meaning there is an elemet x ∈ X

such that y ≤ x ∀y ∈ C.

Then X has a maximal element.

Zorn’s lemma is a vital ingredient of every mathematician’s tool-kit; it is
essential to prove existence of (i) maximal ideals in commutative rings, (ii)
bases in vector spaces, (iii) orthonormal bases in Hilbert spaces, ....
A more understandable consequence is:
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Zorn’s lemma

A subset C of a poset X is said to be a chain if it it is totally ordered w.r.t. the
order in X .

Theorem (Zorn’s lemma)

Suppose a non-empty poset X satisfies the following condition:

Every chain C in X has an upper bound - meaning there is an elemet x ∈ X

such that y ≤ x ∀y ∈ C.

Then X has a maximal element.

Zorn’s lemma is a vital ingredient of every mathematician’s tool-kit; it is
essential to prove existence of (i) maximal ideals in commutative rings, (ii)
bases in vector spaces, (iii) orthonormal bases in Hilbert spaces, ....
A more understandable consequence is:

Any infinite but locally finite tree has an infinite path.
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Cardinality

The common propery possessed by three wise men, three oranges and three
clowns, is their cardinality (or their three-ness).
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Cardinality

The common propery possessed by three wise men, three oranges and three
clowns, is their cardinality (or their three-ness).

Sets X and Y are said to have the same cardinality if there exists a bijective
correspondencwe between them, i.e., if there exists a function f : X → Y which
is 1-1 (i.e., f (x1) = f (x2) ⇒ x1 = x2) and onto (i.e., y ∈ Y ⇒ ∃x ∈ X such
that y = f (x)).
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Cardinality

The common propery possessed by three wise men, three oranges and three
clowns, is their cardinality (or their three-ness).

Sets X and Y are said to have the same cardinality if there exists a bijective
correspondencwe between them, i.e., if there exists a function f : X → Y which
is 1-1 (i.e., f (x1) = f (x2) ⇒ x1 = x2) and onto (i.e., y ∈ Y ⇒ ∃x ∈ X such
that y = f (x)).

When this happens, we say |X | = |Y |. Thus, we have not defined |X |, but
identified when |X | = |Y |. More generally, say |X | ≤ |Y | if there exists a 1-1
function f : X → Y . (Thus, |X | ≤ |Y | if and only if there exists a subset
Y0 ⊂ Y such that |X | = |Y0|.)
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Cardinality

The common propery possessed by three wise men, three oranges and three
clowns, is their cardinality (or their three-ness).

Sets X and Y are said to have the same cardinality if there exists a bijective
correspondencwe between them, i.e., if there exists a function f : X → Y which
is 1-1 (i.e., f (x1) = f (x2) ⇒ x1 = x2) and onto (i.e., y ∈ Y ⇒ ∃x ∈ X such
that y = f (x)).

When this happens, we say |X | = |Y |. Thus, we have not defined |X |, but
identified when |X | = |Y |. More generally, say |X | ≤ |Y | if there exists a 1-1
function f : X → Y . (Thus, |X | ≤ |Y | if and only if there exists a subset
Y0 ⊂ Y such that |X | = |Y0|.)

It is easy to see that ≤ is a reflexive and transitive relation. That it is
anti-symmetric is the content of the so-called Schroeder-Bernstein theorem -
whose proof amounts to showing that if you are given that there exist 1-1
functions f : X → Y and g : Y → X then you can construct a bijection, say F

between X and Y .
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The Schroeder-Bernstein theorem

Theorem

|X | ≤ |Y |, |Y | ≤ |X | ⇒ |X | = |Y |
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The Schroeder-Bernstein theorem

Theorem

|X | ≤ |Y |, |Y | ≤ |X | ⇒ |X | = |Y |

Proof.

We are given that there exist 1-1 functions f : X → Y and g : Y → X and
need to construct a bijection, say F between X and Y .
Let h = g ◦ f and define

Xn =

8

>

>

<

>

>

:

X if n = 0
g(Y ) if n = 1
h(Xn−2) if n ≥ 2
∩∞

k=1Xk if n = ∞

X

X

X

X

X
X

1

2

3

4

5
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Proof.

(contd.)Notice that X0 ⊃ X1 ⊃ X2 ⊃ · · · , and that

X =

 

∞
a

n=0

((X2n \ X2n+1)

!

a

 

∞
a

n=0

((X2n+1 \ X2n+2)

!

a

X∞

X1 =

 

∞
a

n=1

((X2n \ X2n+1)

!

a

 

∞
a

n=0

((X2n+1 \ X2n+2)

!

a

X∞

V.S. Sunder IMSc, Chennai Transfinite considerations



Proof.

(contd.)Notice that X0 ⊃ X1 ⊃ X2 ⊃ · · · , and that

X =

 

∞
a

n=0

((X2n \ X2n+1)

!

a

 

∞
a

n=0

((X2n+1 \ X2n+2)

!

a

X∞

X1 =

 

∞
a

n=1

((X2n \ X2n+1)

!

a

 

∞
a

n=0

((X2n+1 \ X2n+2)

!

a

X∞

Notice that the equation

F (x) =



g−1(x) if x ∈ X∞

f (x) if x /∈ X∞

defines the desired bijection F of X onto Y . 2
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Infinite sets

Property 2 of the next result can be taken to be a working definition of infinity:
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Infinite sets

Property 2 of the next result can be taken to be a working definition of infinity:

Theorem

The following conditions on a set X are equivalent:

1 |N| ≤ |X |

2 There exists a subset X0 $ X such that |X | = |X0|
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Infinite sets

Property 2 of the next result can be taken to be a working definition of infinity:

Theorem

The following conditions on a set X are equivalent:

1 |N| ≤ |X |

2 There exists a subset X0 $ X such that |X | = |X0|

Proof.

(1) ⇒ (2) Note that |N| = |N \ {1}|. If f : N → X is 1-1, set
X0 = X \ {f (1)} (= f (N \ {1})

‘

(X \ f (N))).

(2) ⇒ (1) If x1 ∈ X \ X0, inductively define xN+1 = f (xn) and notice that
N ∋ n 7→ xn ∈ X is an injective map. 2
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Infinite sets

Property 2 of the next result can be taken to be a working definition of infinity:

Theorem

The following conditions on a set X are equivalent:

1 |N| ≤ |X |

2 There exists a subset X0 $ X such that |X | = |X0|

Proof.

(1) ⇒ (2) Note that |N| = |N \ {1}|. If f : N → X is 1-1, set
X0 = X \ {f (1)} (= f (N \ {1})

‘

(X \ f (N))).

(2) ⇒ (1) If x1 ∈ X \ X0, inductively define xN+1 = f (xn) and notice that
N ∋ n 7→ xn ∈ X is an injective map. 2

In fact, these are equivalent to requiring that there exists a partition
X = X1

‘

X2 such that |X | = |X1| = |X2| (provided X is not empty).
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Infinity of infinities

Theorem

For any set X , |X | � |P(X )|, meaning that |X | ≤ |P(X )|, but |X | 6= |P(X )|.
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Infinity of infinities

Theorem

For any set X , |X | � |P(X )|, meaning that |X | ≤ |P(X )|, but |X | 6= |P(X )|.

Proof.

The mapping x 7→ {x} shows that |X | ≤ |P(X )|. Suppose, if posible, that
|X | = |P(X )| and that f : X → P(X ) is a bijection. Set
A = {x ∈ X : x /∈ f (x)}. By the assumed surjectivity of f , there exists a ∈ X

such that f (a) = A. If a ∈ A, then by definition of A, we find a /∈ A. Similarly
the assumption a /∈ A will imply that a ∈ A. Thus both cases a ∈ A and a /∈ A

are untenable. This contradiction shows that we cannot have |X | = |P(X )|. 2
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Infinity of infinities

Theorem

For any set X , |X | � |P(X )|, meaning that |X | ≤ |P(X )|, but |X | 6= |P(X )|.

Proof.

The mapping x 7→ {x} shows that |X | ≤ |P(X )|. Suppose, if posible, that
|X | = |P(X )| and that f : X → P(X ) is a bijection. Set
A = {x ∈ X : x /∈ f (x)}. By the assumed surjectivity of f , there exists a ∈ X

such that f (a) = A. If a ∈ A, then by definition of A, we find a /∈ A. Similarly
the assumption a /∈ A will imply that a ∈ A. Thus both cases a ∈ A and a /∈ A

are untenable. This contradiction shows that we cannot have |X | = |P(X )|. 2

Now, if we inductively define

Xn =



N if n = 1
P(Xn−1) if n ≥ 2

we see that {|Xn| : n ∈ N} yields an infinite sequence of distinct infinities!
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Infinity of infinities

Theorem

For any set X , |X | � |P(X )|, meaning that |X | ≤ |P(X )|, but |X | 6= |P(X )|.

Proof.

The mapping x 7→ {x} shows that |X | ≤ |P(X )|. Suppose, if posible, that
|X | = |P(X )| and that f : X → P(X ) is a bijection. Set
A = {x ∈ X : x /∈ f (x)}. By the assumed surjectivity of f , there exists a ∈ X

such that f (a) = A. If a ∈ A, then by definition of A, we find a /∈ A. Similarly
the assumption a /∈ A will imply that a ∈ A. Thus both cases a ∈ A and a /∈ A

are untenable. This contradiction shows that we cannot have |X | = |P(X )|. 2

Now, if we inductively define

Xn =



N if n = 1
P(Xn−1) if n ≥ 2

we see that {|Xn| : n ∈ N} yields an infinite sequence of distinct infinities!

A slight variation of this argument can be used to show that |N| � |R|.
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Well-ordering theorem

A poset is said to be well-ordered if every non-empty subset has a least
element.
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Well-ordering theorem

A poset is said to be well-ordered if every non-empty subset has a least
element.

Every well-ordered set is totally ordered. Of the examples considered so far, the
only well-ordered sets are N and its subsets.
Two statements which are logically equivalent to Zorn’s lemma are:
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Well-ordering theorem

A poset is said to be well-ordered if every non-empty subset has a least
element.

Every well-ordered set is totally ordered. Of the examples considered so far, the
only well-ordered sets are N and its subsets.
Two statements which are logically equivalent to Zorn’s lemma are:

1 The Axiom of Choice: If {Xi : i ∈ I} is any family of non-empty sets,
then the Cartesian product

Q

i∈I
Xi is non-empty.
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Well-ordering theorem

A poset is said to be well-ordered if every non-empty subset has a least
element.

Every well-ordered set is totally ordered. Of the examples considered so far, the
only well-ordered sets are N and its subsets.
Two statements which are logically equivalent to Zorn’s lemma are:

1 The Axiom of Choice: If {Xi : i ∈ I} is any family of non-empty sets,
then the Cartesian product

Q

i∈I
Xi is non-empty.

2 The well-ordering theorem: Every non-empty set can be well-ordered,
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Ordinal numbers

An ordinal number is the order-type or isomorphism class of a well-ordered set.
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Ordinal numbers

An ordinal number is the order-type or isomorphism class of a well-ordered set.

Thus, the finite ordinals are
1, 2, 3, · · ·

where n denotes the ‘type’ of any well-ordered set with n elements.

V.S. Sunder IMSc, Chennai Transfinite considerations



Ordinal numbers

An ordinal number is the order-type or isomorphism class of a well-ordered set.

Thus, the finite ordinals are
1, 2, 3, · · ·

where n denotes the ‘type’ of any well-ordered set with n elements.

The smallest infinite ordinal is ω, the ‘type’ of N with its natural ordering.
(Notice that any finite totally ordered set is well-ordered, as is N, so that

1, 2, 3, · · · , n, · · · , ω

are indeed well-defined ordinal numbers.)
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Ordinal numbers

An ordinal number is the order-type or isomorphism class of a well-ordered set.

Thus, the finite ordinals are
1, 2, 3, · · ·

where n denotes the ‘type’ of any well-ordered set with n elements.

The smallest infinite ordinal is ω, the ‘type’ of N with its natural ordering.
(Notice that any finite totally ordered set is well-ordered, as is N, so that

1, 2, 3, · · · , n, · · · , ω

are indeed well-defined ordinal numbers.)

Before we can see more ordinal numbers, it will be desirable to digress into the
algebra of ordinal numbers. Ordinal numbers can be added, multiplied, etc.,
although these operations are not commutative!
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Operations on posets

First consider a sum and product operation on sets, say X and Y
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Operations on posets

First consider a sum and product operation on sets, say X and Y

The product is easier to define: it is the so-called Cartesian product given by

X × Y = {(x , y) : x ∈ X , y ∈ Y }
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Operations on posets

First consider a sum and product operation on sets, say X and Y

The product is easier to define: it is the so-called Cartesian product given by

X × Y = {(x , y) : x ∈ X , y ∈ Y }

The sum is a little more delicate. The disjoint union of X and Y is the union
of copies of them which have no intersection; a formal way to do this is to set

X
a

Y = ({1} × X ) ∪ ({2} × Y ) ⊂ {1, 2} × (X ∪ Y )
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Operations on posets

First consider a sum and product operation on sets, say X and Y

The product is easier to define: it is the so-called Cartesian product given by

X × Y = {(x , y) : x ∈ X , y ∈ Y }

The sum is a little more delicate. The disjoint union of X and Y is the union
of copies of them which have no intersection; a formal way to do this is to set

X
a

Y = ({1} × X ) ∪ ({2} × Y ) ⊂ {1, 2} × (X ∪ Y )

If (Xj ,≤j), j = 1, 2 are posets, their Cartesian product acquires the reverse

dictionary ordering, thus:

(x1, x2) ≤ (y1, y2) ⇒



y1 ≤ y2 if y1 6= y2

x1 ≤ x2 if y1 = y2
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Operations on posets

First consider a sum and product operation on sets, say X and Y

The product is easier to define: it is the so-called Cartesian product given by

X × Y = {(x , y) : x ∈ X , y ∈ Y }

The sum is a little more delicate. The disjoint union of X and Y is the union
of copies of them which have no intersection; a formal way to do this is to set

X
a

Y = ({1} × X ) ∪ ({2} × Y ) ⊂ {1, 2} × (X ∪ Y )

If (Xj ,≤j), j = 1, 2 are posets, their Cartesian product acquires the reverse

dictionary ordering, thus:

(x1, x2) ≤ (y1, y2) ⇒



y1 ≤ y2 if y1 6= y2

x1 ≤ x2 if y1 = y2

And their disjoint union acquires a partial order if we demand that
x1 ≤ x2 ∀xj ∈ Xj and that the new order restricts on Xj to ≤j .

V.S. Sunder IMSc, Chennai Transfinite considerations



Ordinal arithmetic

Exercises: Suppose (Xj ,≤j), (X
′

j ,≤
′

j), j = 1, 2 are posets.
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Ordinal arithmetic

Exercises: Suppose (Xj ,≤j), (X
′

j ,≤
′

j), j = 1, 2 are posets.

1 If the posets (Xj ,≤j), (X
′

j ,≤
′

j) are isomorphic, for j = 1, 2, show that

the posets X1
‘

X2 and X ′

1

‘

X ′

2 are isomorphic; and
the posets X1 × X2 and X ′

1 × X ′

2 are isomorphic.

V.S. Sunder IMSc, Chennai Transfinite considerations



Ordinal arithmetic

Exercises: Suppose (Xj ,≤j), (X
′

j ,≤
′

j), j = 1, 2 are posets.

1 If the posets (Xj ,≤j), (X
′

j ,≤
′

j) are isomorphic, for j = 1, 2, show that

the posets X1
‘

X2 and X ′

1

‘

X ′

2 are isomorphic; and
the posets X1 × X2 and X ′

1 × X ′

2 are isomorphic.

2 If (Xj ,≤j), j = 1, 2 are well-ordered posets, show that so also are X1

‘

X2

and X1 × X2.
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Ordinal arithmetic

Exercises: Suppose (Xj ,≤j), (X
′

j ,≤
′

j), j = 1, 2 are posets.

1 If the posets (Xj ,≤j), (X
′

j ,≤
′

j) are isomorphic, for j = 1, 2, show that

the posets X1
‘

X2 and X ′

1

‘

X ′

2 are isomorphic; and
the posets X1 × X2 and X ′

1 × X ′

2 are isomorphic.

2 If (Xj ,≤j), j = 1, 2 are well-ordered posets, show that so also are X1

‘

X2

and X1 × X2.

3 Deduce from the previous problems that if αj , j = 1, 2 are ordinal numbers,
then the sum α1 + α2 and the product α1 · α2 are well-defined.
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Ordinal arithmetic

Exercises: Suppose (Xj ,≤j), (X
′

j ,≤
′

j), j = 1, 2 are posets.

1 If the posets (Xj ,≤j), (X
′

j ,≤
′

j) are isomorphic, for j = 1, 2, show that

the posets X1
‘

X2 and X ′

1

‘

X ′

2 are isomorphic; and
the posets X1 × X2 and X ′

1 × X ′

2 are isomorphic.

2 If (Xj ,≤j), j = 1, 2 are well-ordered posets, show that so also are X1

‘

X2

and X1 × X2.

3 Deduce from the previous problems that if αj , j = 1, 2 are ordinal numbers,
then the sum α1 + α2 and the product α1 · α2 are well-defined.

4 Show that
3 + ω = ω 6= ω + 3
3 · ω = ω 6= ω · 3
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Ordinal arithmetic

Exercises: Suppose (Xj ,≤j), (X
′

j ,≤
′

j), j = 1, 2 are posets.

1 If the posets (Xj ,≤j), (X
′

j ,≤
′

j) are isomorphic, for j = 1, 2, show that

the posets X1
‘

X2 and X ′

1

‘

X ′

2 are isomorphic; and
the posets X1 × X2 and X ′

1 × X ′

2 are isomorphic.

2 If (Xj ,≤j), j = 1, 2 are well-ordered posets, show that so also are X1

‘

X2

and X1 × X2.

3 Deduce from the previous problems that if αj , j = 1, 2 are ordinal numbers,
then the sum α1 + α2 and the product α1 · α2 are well-defined.

4 Show that
3 + ω = ω 6= ω + 3
3 · ω = ω 6= ω · 3

5 If α, β, γ are ordinal numbers, show that
(α + β) + γ = α + (β + γ)
(α · β) · γ = α · (β · γ)
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Some facts on ordinals

We now list some facts about ordinal numbers, which may be found in, for
instance, the delightful little book Naive Set Theory, written by the master
expositor Paul Halmos - but after making two definitions:
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Some facts on ordinals

We now list some facts about ordinal numbers, which may be found in, for
instance, the delightful little book Naive Set Theory, written by the master
expositor Paul Halmos - but after making two definitions:

The expression initial segment denotes any subset of a poset of the form

s(x) = {y ∈ X : y < x} ,

where of course y < x means y � x .
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Some facts on ordinals

We now list some facts about ordinal numbers, which may be found in, for
instance, the delightful little book Naive Set Theory, written by the master
expositor Paul Halmos - but after making two definitions:

The expression initial segment denotes any subset of a poset of the form

s(x) = {y ∈ X : y < x} ,

where of course y < x means y � x .

A well-ordered set B is said to be a contrinuation of a well-ordered set A,
if A is order-isomorphic to some initial segment of B; if this happens and if
α and β denote the order-types of A and B respectively, we shall say that
α ≤ β.

V.S. Sunder IMSc, Chennai Transfinite considerations



Some facts on ordinals

We now list some facts about ordinal numbers, which may be found in, for
instance, the delightful little book Naive Set Theory, written by the master
expositor Paul Halmos - but after making two definitions:

The expression initial segment denotes any subset of a poset of the form

s(x) = {y ∈ X : y < x} ,

where of course y < x means y � x .

A well-ordered set B is said to be a contrinuation of a well-ordered set A,
if A is order-isomorphic to some initial segment of B; if this happens and if
α and β denote the order-types of A and B respectively, we shall say that
α ≤ β.

It is true that if α, β are any two ordinals, then either α < β or α = β or
β < α
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The list of ordinals

Mathematicians discovered long ago that there logical pitfalls and landmines
around if one speaks loosely of things like ‘the set of all sets’. (Reason: If you
want to allow such gadget as A = {A : A /∈ A}, you run into the fallacy that
both possibilities A ∈ A and A /∈ A lead to contradictions.
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The list of ordinals

Mathematicians discovered long ago that there logical pitfalls and landmines
around if one speaks loosely of things like ‘the set of all sets’. (Reason: If you
want to allow such gadget as A = {A : A /∈ A}, you run into the fallacy that
both possibilities A ∈ A and A /∈ A lead to contradictions.

Thus, while one should shy away from talking of the ‘set of all ordinals’, one

may talk of the set of all ordinals which are less than a fixed ordinal; and since

one can take as large an ordinal, say Ω, as one may care to, it makes sense to

talk of the set of all ordinals that are less than any fixed ordinal, however large.
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The list of ordinals

Mathematicians discovered long ago that there logical pitfalls and landmines
around if one speaks loosely of things like ‘the set of all sets’. (Reason: If you
want to allow such gadget as A = {A : A /∈ A}, you run into the fallacy that
both possibilities A ∈ A and A /∈ A lead to contradictions.

Thus, while one should shy away from talking of the ‘set of all ordinals’, one

may talk of the set of all ordinals which are less than a fixed ordinal; and since

one can take as large an ordinal, say Ω, as one may care to, it makes sense to

talk of the set of all ordinals that are less than any fixed ordinal, however large.

If you are not put off by this bit of ‘transfinite trickery’, you will be ready to
accept that a ‘listing’ of the ordinals looks like this:

1, 2, 3, · · · , ω, ω + 1, ω + 2, ω + 3, · · · , ω + ω = ω · 2, ω · 2 + 1, · · ·

ω · 3, · · · , ω2, · · · , ω3, · · · , ωω, · · · , ωωω

, · · ·
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The list of ordinals

Mathematicians discovered long ago that there logical pitfalls and landmines
around if one speaks loosely of things like ‘the set of all sets’. (Reason: If you
want to allow such gadget as A = {A : A /∈ A}, you run into the fallacy that
both possibilities A ∈ A and A /∈ A lead to contradictions.

Thus, while one should shy away from talking of the ‘set of all ordinals’, one

may talk of the set of all ordinals which are less than a fixed ordinal; and since

one can take as large an ordinal, say Ω, as one may care to, it makes sense to

talk of the set of all ordinals that are less than any fixed ordinal, however large.

If you are not put off by this bit of ‘transfinite trickery’, you will be ready to
accept that a ‘listing’ of the ordinals looks like this:

1, 2, 3, · · · , ω, ω + 1, ω + 2, ω + 3, · · · , ω + ω = ω · 2, ω · 2 + 1, · · ·

ω · 3, · · · , ω2, · · · , ω3, · · · , ωω, · · · , ωωω

, · · ·

To make sense of αβ for ordinal numbers α, β, one needs, as in the case of
sums and products, to show that if A and B are posets, then (i) there is a
natural poset structure on the set AB of all functions from B into A, (ii) the
isomorphism type of AB only depends on those of A and B, and (iii) AB is
well-ordered if A and B are.
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Cardinal Numbers

We are finally in a position to define a cardinal number as an ordinal number ,
say α such that if A is any well-ordered set of type α, and if B is any
well-ordered set of type β, say, then |A| = |B| ⇒ α ≤ β.
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Cardinal Numbers

We are finally in a position to define a cardinal number as an ordinal number ,
say α such that if A is any well-ordered set of type α, and if B is any
well-ordered set of type β, say, then |A| = |B| ⇒ α ≤ β.

Thus, a cardinal number is the smallest ordinal number in the set of all ordinal
numbers of the same cardinality. The italicised paragraph in the last slide
ensures that there is no logical problem about this definition. We could also
have defined a cardinal number as the set of all ordinal numbers of a fixed
cardinality, rather than as the smallest element of that set.
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Cardinal Numbers

We are finally in a position to define a cardinal number as an ordinal number ,
say α such that if A is any well-ordered set of type α, and if B is any
well-ordered set of type β, say, then |A| = |B| ⇒ α ≤ β.

Thus, a cardinal number is the smallest ordinal number in the set of all ordinal
numbers of the same cardinality. The italicised paragraph in the last slide
ensures that there is no logical problem about this definition. We could also
have defined a cardinal number as the set of all ordinal numbers of a fixed
cardinality, rather than as the smallest element of that set.

Unlike ordinals, addition and multiplication are commutative operations on
cardinal numbers. In fact, if α, β are cardinal numbers, of which at least one is
infinite, then

α + β = α · β = max{α, β}.
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Transfinite Induction

If A is any well-ordered set, there is an ‘induction’ mechanism available, as
follows:
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Transfinite Induction

If A is any well-ordered set, there is an ‘induction’ mechanism available, as
follows:

Suppose {Px : x ∈ A} is a family of statements, indexed by the well-ordered set
A. In order to prove the validity of each Px , it suffices to verify that Px is true
if Py is true for every y ∈ s(x).
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Transfinite Induction

If A is any well-ordered set, there is an ‘induction’ mechanism available, as
follows:

Suppose {Px : x ∈ A} is a family of statements, indexed by the well-ordered set
A. In order to prove the validity of each Px , it suffices to verify that Px is true
if Py is true for every y ∈ s(x).

This can be used to verify the validity of some statement for every ordinal
nuber!
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