From the Temperley Lieb algebra to non-crossing partitions

V.S. Sunder
joint work with Vijay Kodiyalam
(both of IMSc, Chennai)

A Kauffman diagram is an isotopy class of a planar (i.e., non-crossing) arrangement of n curves in a box with their ends tied to $2 n$ marked points on the boundary; an example, with $n=4$ is illustrated below:

The collection of such diagrams will be denoted by \mathcal{K}_{n}.

Proposition 1:

$$
\left|\mathcal{K}_{n}\right|=\frac{1}{n+1}\binom{2 n}{n}
$$

We shall indicate a proof of this identity (taken from [GHJ]) below.

For $x, y \in \mathbb{R}^{2}$ such that $x_{i} \leq y_{i}$ for $i=1,2$, let $P(x, y)$ denote the collection of all 'walks' γ from x to y, in which each step is of unit length, and is to the right (R) or up (U). It is clear that

$$
|P(x, y)|=\binom{y_{1}-x_{1}+y_{2}-x_{2}}{y_{1}-x_{1}}
$$

We will primarily be interested in $P((0,0),(n, n))$. For instance, we see that $P((0,0),(2,2))$ is as follows:

URRU

URUR

Let $P_{g}((0,0),(n, n))$ consist of those paths which do not cross the main diagonal (- i.e., every initial segment has at least as many R 's as U 's.) Thus, $P((0,0),(2,2))$ is as follows:

RRUU

It is an easy exercise to verify that

$$
\left|\mathcal{K}_{n}\right|=\left|P_{g}((0,0),(n, n))\right|
$$

The bijection is illustrated below, for $n=3$:

Proof of Proposition 1:

We need to show that

$$
\left|P_{g}((0,0),(n, n))\right|=\frac{1}{n+1}\binom{2 n}{n} .
$$

Note - by a shift - that $\left|P_{g}((0,0),(n, n))\right|=$ $\left|P_{g}((1,0),(n+1, n))\right|$, and that the right side counts the ('good') paths in $P((1,0),(n+1, n))$ which do not meet the main diagonal. Consider the set $P_{b}((1,0),(n+1, n))$ of ('bad') paths which do cross the main diagonal. The point is that any path in $P_{b}((1,0),(n+1, n))$ is of the form $\gamma=\gamma_{1} \circ \gamma_{2} \in P_{b}((1,0),(n+1, n))$, where $\gamma_{1} \in P((1,0),(j, j)), \gamma_{2} \in P((j, j),(n+$ $1, n)$), and (j, j) is the 'first point' where γ touches the main diagonal. Define $\widetilde{\gamma}=\gamma_{1}^{\prime} \circ \gamma_{2}$, where γ_{1}^{\prime} is the reflection of γ_{1} about the main diagonal. This yields a bijection

$$
P_{b}((1,0),(n+1, n)) \ni \gamma \leftrightarrow \tilde{\gamma} \in P((0,1),(n+1, n))
$$

Hence

$$
\begin{aligned}
& \left|P_{g}((1,0),(n+1, n))\right| \\
& \quad=|P((1,0),(n+1, n))|-\left|P_{b}((1,0),(n+1, n))\right| \\
& =|P((1,0),(n+1, n))|-|P((0,1),(n+1, n))| \\
& =\binom{2 n}{n}-\binom{2 n}{n+1} \\
& =\frac{1}{n+1}\binom{2 n}{n}
\end{aligned}
$$

thereby proving Prop. 1.

We now move to another sequence $\left\{N C_{n}: n \geq\right.$ $1\}$ of sets whose cardinalities are also given by the Catalan numbers, where $N C_{n}$ is the set of non-crossing partitions: these being partitions of a set of n marked points on a circle with the property that the convex hulls of any two distinct equivalence classes of the partition are disjoint.

$$
\left|\mathcal{K}_{n}\right|=\left|N C_{n}\right|
$$

the bijection being illustrated below for $n=3$.

(1(23)(45)6)

(12)(34)(56)

The n points of the element \widetilde{S} of $N C_{n}$ which corresponds to a $S \in N C_{n}$ may be chosen as points midway between an odd point and the next even point, with the 'black regions' of S determining the equivalence classes of \tilde{S}.

The algebras $T L_{n}(\delta)$: Fix a positive scalar δ (often assumed to be greater than 2, for technical reasons) and define a (complex) algebra $T L_{n}(\delta)$ with a basis consisting of Kauffman diagrams on $2 n$ points, and multiplication defined by the rule

$$
S T=\delta^{\lambda(S, T)} U
$$

where (1) U is the diagram obtained by concatenation - i.e., identifying the point marked $(2 n-j+1)$ for S with the point marked j for T, for $1 \leq j \leq n$ - and erasing any 'internal loops' formed in the process, and (2) $\lambda(S, T)$ is the number of 'internal loops so erased. For example, we have, if

In fact, the algebra $T L_{n}(\delta)$ is associative (since isotopic diagrams are identified), and even unital - with all the strands of the identity element 'coming straight down' (joining j and $2 n-j+1$).

In much the same way, each $N C_{2 n}$ indexes a basis for an algebra $N C_{2 n}(\delta)$ - the only difference being that 'internal loops' are replaced by 'internal components'.

The further ingredient that these algebras come equipped with is a natural pictorially defined trace. Specifically, for $S \in \mathcal{K}_{n}$ (resp., $\widetilde{S} \in$ $N C_{2 n}$) define $\tau(S)$ (resp., $\tau(\widetilde{S})$ to be δ^{c}, where c is the number of loops (resp., components) occurring in the diagram obtained by connecting the point marked j to the point marked $2 n-j+1$.

In the example below:

we see that

$$
\tau(S)=\delta^{2}, \tau(\widetilde{S})=\delta
$$

We have the following result whose statement seems intuitively reasonable/plausible, but where neither the asserted isomorphism nor the proof of the theorem are so intuitively obvious!

Theorem: There exists a trace-preserving algebra isomorphism $\phi: T L_{2 n}(\delta) \rightarrow N C_{n}\left(\delta^{2}\right)$; this has the property that

$$
\phi(S)=\frac{\tau(S)}{\tau(\widetilde{S})} \widetilde{S}
$$

for all Kauffmann diagrams $S \in \mathcal{K}_{n}$.

This boils down to proving that, for arbitrary $S, T \in \mathcal{K}_{2 n}$, we have

$$
\frac{\tau(S)}{\tau(\tilde{S})} \frac{\tau(T)}{\tau(\tilde{T})}=\frac{\tau(S T)}{\tau(\tilde{S} \tilde{T})} \quad(*)
$$

And it turns out that the proof of (*), in turn, can be reduced to that of the special case - of (*) - where neither S nor T has any through strings.

Such an S is seen to be determined by an ordered pair $\left(S_{+}, S_{-}\right)$where $S_{ \pm} \in \mathcal{K}_{n}$ - where we think of the $2 n$ marked points of $S_{ \pm}$as being arrayed on one side of the box.

We shall think of elements of \mathcal{K}_{n}, such as $S_{ \pm}$, as partitions of $\{1,2, \cdots, 2 n\}$ (where equivalence classes are doubletons); we shall write $S_{+} \vee S_{-}$for the finest partition which is refined by S_{+}as well as S_{-}. (Thus, in our example above, $S_{+} \vee S_{-}$is the partition of $\{1, \cdots, 8\}$ containing only one equivalence class.)

One more piece of notation: given $B \in \mathcal{K}_{n}$, we shall write $|B|$ for the number of classes in B and \widetilde{B} for $B \vee B_{0}$, where

$$
B_{0}=\{\{1,2\},\{3,4\}, \cdots\{2 n-1,2 n\}\}
$$

The key lemma turns out to be the following 'linearisation result':

Lemma:

$$
\begin{aligned}
& 2(|X \vee Y|-2|\tilde{X} \vee \tilde{Y}|) \\
& \quad=|X|-2|\tilde{X}|+|Y|-2|\tilde{Y}|
\end{aligned}
$$

for all $X, Y \in \mathcal{K}_{n}$.

This is because the assertion (*) translates in case neither S nor T has through strings to the assertion that

$$
\begin{aligned}
\left(\mid S_{-}\right. & \vee T_{+}|-2| \tilde{S_{-}} \vee \tilde{T_{+}} \mid \\
& +\left|S_{+} \vee T_{-}\right|-2\left|\widetilde{S_{+}} \vee \tilde{T_{-}}\right| \\
= & \left(\left|S_{-} \vee S_{+}\right|\right)-2\left(\left|\widetilde{S_{-}} \vee \widetilde{S_{+}}\right|\right) \\
& +\left(\left|T_{-} \vee T_{+}\right|\right)-2\left(\left|\widetilde{T_{-}} \vee \widetilde{T_{+}}\right|\right)
\end{aligned}
$$

which is seen, by our 'linearisation result', to indeed be true.

Since $|X|=n \forall X \in \mathcal{K}_{n}$, our linearisation lemma may be restated thus:

$$
\begin{aligned}
& |X \vee Y|-2|\tilde{X} \vee \tilde{Y}| \\
& \quad=n-|\tilde{X}|-|\tilde{Y}|
\end{aligned}
$$

for all $X, Y \in \mathcal{K}_{n}$.

Instead of spelling out a detailed proof of this result, we shall simply:
(a) state that 'one half' of this assertion is a consequence of the Euler characteristic, and
(b) illustrate the assertion above with an example.

Consider the example given by

Here, $n=6$, and we see that
$X \bigvee Y=\{\{1,4\},\{2,3\},\{5,6\},\{12,11\},\{10,9,8,7\}\}$
while
$\widetilde{X} \bigvee \widetilde{Y}=\widetilde{X}=\{\{1,2,3,4,5,6,7,8,9,10,11,12\}\}$ and

$$
\tilde{Y}=\{\{1,2,3,4,12,11,10,9\},\{5,6,7,8\}\}
$$

so the equation to be proved reads:

$$
5-2 \cdot 1=6-1-2
$$

Further details can be found in our paper [KS] below:

References:

[GHJ] F. Goodman, P. de la Harpe and V.F.R. Jones, Coxeter graphs and towers of algebras, MSRI Publ., 14, Springer, New York, 1989.
[KS] Vijay Kodiyalam and V.S. Sunder, TemperleyLieb and Non-crossing Partition planar algebras, to appear in a Conference Proceedings to be published by AMS, in the 'Contemporary Math.' series. (may also be found on my home-page "http://www.imsc.res.in/~sunder/")

