From the Temperley Lieb algebra to non-crossing partitions

V.S. Sunder joint work with Vijay Kodiyalam (both of IMSc, Chennai) A Kauffman diagram is an isotopy class of a planar (i.e., non-crossing) arrangement of n curves in a box with their ends tied to 2nmarked points on the boundary; an example, with n = 4 is illustrated below:

The collection of such diagrams will be denoted by \mathcal{K}_n .

Proposition 1:

$$|\mathcal{K}_n| = \frac{1}{n+1} \left(\begin{array}{c} 2n\\ n \end{array} \right)$$

We shall indicate a proof of this identity (taken from [GHJ]) below.

For $x, y \in \mathbb{R}^2$ such that $x_i \leq y_i$ for i = 1, 2, let P(x, y) denote the collection of all 'walks' γ from x to y, in which each step is of unit length, and is to the right (R) or up (U). It is clear that

$$|P(x,y)| = \begin{pmatrix} y_1 - x_1 + y_2 - x_2 \\ y_1 - x_1 \end{pmatrix}$$

We will primarily be interested in P((0,0), (n,n)). For instance, we see that P((0,0), (2,2)) is as follows:

Let $P_g((0,0), (n,n))$ consist of those paths which do not cross the main diagonal (- i.e., every initial segment has at least as many R's as U's.) Thus, P((0,0), (2,2)) is as follows:

It is an easy exercise to verify that

$$|\mathcal{K}_n| = |P_g((0,0), (n,n))|.$$

The bijection is illustrated below, for n = 3:

Proof of Proposition 1:

We need to show that

$$|P_g((0,0),(n,n))| = \frac{1}{n+1} \begin{pmatrix} 2n \\ n \end{pmatrix}$$

Note - by a shift - that $|P_g((0,0), (n,n))| = |P_g((1,0), (n+1,n))|$, and that the right side counts the ('good') paths in P((1,0), (n+1,n))which do not meet the main diagonal. Consider the set $P_b((1,0), (n+1,n))$ of ('bad') paths which do cross the main diagonal. The point is that any path in $P_b((1,0), (n+1,n))$ is of the form $\gamma = \gamma_1 \circ \gamma_2 \in P_b((1,0), (n+1,n))$, where $\gamma_1 \in P((1,0), (j,j)), \gamma_2 \in P((j,j), (n+1,n))$, where $\gamma_1 \in P((1,0), (j,j)), \gamma_2 \in P((j,j), (n+1,n))$, where γ_1 is the reflection of γ_1 about the main diagonal. This yields a bijection

 $P_b((1,0),(n+1,n)) \ni \gamma \leftrightarrow \widetilde{\gamma} \in P((0,1),(n+1,n))$

Hence

$$\begin{aligned} |P_g((1,0), (n+1,n))| &= |P((1,0), (n+1,n))| - |P_b((1,0), (n+1,n))| \\ &= |P((1,0), (n+1,n))| - |P((0,1), (n+1,n))| \\ &= \binom{2n}{n} - \binom{2n}{n+1} \\ &= \frac{1}{n+1} \binom{2n}{n}, \end{aligned}$$

thereby proving Prop. 1.

We now move to another sequence $\{NC_n : n \ge 1\}$ of sets whose cardinalities are also given by the Catalan numbers, where NC_n is the set of *non-crossing partitions*: these being partitions of a set of *n* marked points on a circle with the property that the convex hulls of any two distinct equivalence classes of the partition are disjoint.

The *n* points of the element \tilde{S} of NC_n which corresponds to a $S \in NC_n$ may be chosen as points midway between an odd point and the next even point, with the 'black regions' of Sdetermining the equivalence classes of \tilde{S} . The algebras $TL_n(\delta)$: Fix a positive scalar δ (often assumed to be greater than 2, for technical reasons) and define a (complex) algebra $TL_n(\delta)$ with a basis consisting of Kauffman diagrams on 2n points, and multiplication defined by the rule

$$ST = \delta^{\lambda(S,T)}U$$

where (1) U is the diagram obtained by concatenation - i.e., identifying the point marked (2n - j + 1) for S with the point marked j for T, for $1 \le j \le n$ - and erasing any 'internal loops' formed in the process, and (2) $\lambda(S,T)$ is the number of 'internal loops so erased. For example, we have, if

7

In fact, the algebra $TL_n(\delta)$ is associative (since isotopic diagrams are identified), and even unital - with all the strands of the identity element 'coming straight down' (joining j and 2n - j + 1).

In much the same way, each NC_{2n} indexes a basis for an algebra $NC_{2n}(\delta)$ - the only difference being that 'internal loops' are replaced by 'internal components'.

The further ingredient that these algebras come equipped with is a natural pictorially defined trace. Specifically, for $S \in \mathcal{K}_n$ (resp., $\tilde{S} \in$ NC_{2n}) define $\tau(S)$ (resp., $\tau(\tilde{S})$ to be δ^c , where c is the number of loops (resp., components) occurring in the diagram obtained by connecting the point marked j to the point marked 2n - j + 1. In the example below:

we see that

$$\tau(S) = \delta^2 , \ \tau(\tilde{S}) = \delta .$$

We have the following result whose statement seems intuitively reasonable/plausible, but where neither the asserted isomorphism nor the proof of the theorem are so intuitively obvious! *Theorem:* There exists a trace-preserving algebra isomorphism $\phi : TL_{2n}(\delta) \to NC_n(\delta^2)$; this has the property that

$$\phi(S) = \frac{\tau(S)}{\tau(\tilde{S})}\tilde{S}$$

for all Kauffmann diagrams $S \in \mathcal{K}_n$.

This boils down to proving that, for arbitrary $S, T \in \mathcal{K}_{2n}$, we have

$$\frac{\tau(S)}{\tau(\tilde{S})}\frac{\tau(T)}{\tau(\tilde{T})} = \frac{\tau(ST)}{\tau(\tilde{S}\tilde{T})} \qquad (*)$$

And it turns out that the proof of (*), in turn, can be reduced to that of the special case - of (*) - where neither S nor T has any *through strings*.

Such an S is seen to be determined by an ordered pair (S_+, S_-) where $S_{\pm} \in \mathcal{K}_n$ - where we think of the 2n marked points of S_{\pm} as being arrayed on one side of the box.

We shall think of elements of \mathcal{K}_n , such as S_{\pm} , as partitions of $\{1, 2, \dots, 2n\}$ (where equivalence classes are doubletons); we shall write $S_+ \lor S_-$ for the finest partition which is refined by S_+ as well as S_- . (Thus, in our example above, $S_+ \lor S_-$ is the partition of $\{1, \dots, 8\}$ containing only one equivalence class.)

One more piece of notation: given $B \in \mathcal{K}_n$, we shall write |B| for the number of classes in B and \tilde{B} for $B \vee B_0$, where

$$B_0 = \{\{1, 2\}, \{3, 4\}, \dots \{2n - 1, 2n\}\}.$$

The key lemma turns out to be the following 'linearisation result':

Lemma:

$$2(|X \vee Y| - 2|\tilde{X} \vee \tilde{Y}|) \\= |X| - 2|\tilde{X}| + |Y| - 2|\tilde{Y}|$$

for all $X, Y \in \mathcal{K}_n$.

This is because the assertion (*) translates in case neither S nor T has through strings to the assertion that

$$(|S_{-} \lor T_{+}| - 2|\tilde{S}_{-} \lor \tilde{T}_{+}| + |S_{+} \lor T_{-}| - 2|\tilde{S}_{+} \lor \tilde{T}_{-}| = (|S_{-} \lor S_{+}|) - 2(|\tilde{S}_{-} \lor \tilde{S}_{+}|) + (|T_{-} \lor T_{+}|) - 2(|\tilde{T}_{-} \lor \tilde{T}_{+}|)$$

which is seen, by our 'linearisation result', to indeed be true.

Since $|X| = n \ \forall X \in \mathcal{K}_n$, our linearisation lemma may be restated thus:

$$|X \vee Y| - 2|\tilde{X} \vee \tilde{Y}|$$

= $n - |\tilde{X}| - |\tilde{Y}|$

for all $X, Y \in \mathcal{K}_n$.

Instead of spelling out a detailed proof of this result, we shall simply:

(a) state that 'one half' of this assertion is a consequence of the Euler characteristic, and

(b) illustrate the assertion above with an example.

Consider the example given by

Here, n = 6, and we see that

 $X \bigvee Y = \{\{1,4\},\{2,3\},\{5,6\},\{12,11\},\{10,9,8,7\}\}$ while

 $\widetilde{X} \bigvee \widetilde{Y} = \widetilde{X} = \{\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}\}$ and

 $\tilde{Y} = \{\{1, 2, 3, 4, 12, 11, 10, 9\}, \{5, 6, 7, 8\}\}$ so the equation to be proved reads:

$$5 - 2 \cdot 1 = 6 - 1 - 2$$

Further details can be found in our paper [KS] below:

References:

[GHJ] F. Goodman, P. de la Harpe and V.F.R. Jones, *Coxeter graphs and towers of algebras,* MSRI Publ., 14, Springer, New York, 1989.

[KS] Vijay Kodiyalam and V.S. Sunder, *Temperley-Lieb and Non-crossing Partition planar alge-bras*, to appear in a Conference Proceedings to be published by AMS, in the 'Contemporary Math.' series. (may also be found on my home-page "http://www.imsc.res.in/~sunder/")