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A Kauffman diagram is an isotopy class of

a planar (i.e., non-crossing) arrangement of

n curves in a box with their ends tied to 2n

marked points on the boundary; an example,

with n = 4 is illustrated below:
1 2 3 4

6 58 7

The collection of such diagrams will be de-

noted by Kn.

Proposition 1:

|Kn| =
1

n + 1

(
2n

n

)

�

We shall indicate a proof of this identity (taken

from [GHJ]) below.
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For x, y ∈ R2 such that xi ≤ yi for i = 1,2,

let P(x, y) denote the collection of all ‘walks’

γ from x to y, in which each step is of unit

length, and is to the right (R) or up (U). It is

clear that

|P(x, y)| =

(
y1 − x1 + y2 − x2

y1 − x1

)
.

We will primarily be interested in P((0, 0), (n, n)).

For instance, we see that P((0, 0), (2,2)) is as

follows:

RRUU RUURRURU

URRU URUR UURR
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Let Pg((0,0), (n, n)) consist of those paths which

do not cross the main diagonal (- i.e., every ini-

tial segment has at least as many R’s as U ’s.)

Thus, P((0, 0), (2,2)) is as follows:

RRUU RURU

It is an easy exercise to verify that

|Kn| = |Pg((0,0), (n, n))|.

The bijection is illustrated below, for n = 3:

(*

)*

(1(2(34)5)6) (1(23)(45)6)

(1(23)4)(56) (12)(3(45)6)

RRRUUU RRURUU

RRUURU RURRUU

R

L

(12)(34)(56) RURURU
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Proof of Proposition 1:

We need to show that

|Pg((0,0), (n, n))| =
1

n + 1

(
2n

n

)
.

Note - by a shift - that |Pg((0,0), (n, n))| =

|Pg((1,0), (n + 1, n))|, and that the right side

counts the (‘good’) paths in P((1, 0), (n+1, n))

which do not meet the main diagonal. Con-

sider the set Pb((1,0), (n + 1, n)) of (‘bad’)

paths which do cross the main diagonal. The

point is that any path in Pb((1,0), (n+1, n)) is

of the form γ = γ1 ◦ γ2 ∈ Pb((1,0), (n + 1, n)),

where γ1 ∈ P((1, 0), (j, j)), γ2 ∈ P((j, j), (n +

1, n)), and (j, j) is the ‘first point’ where γ

touches the main diagonal. Define γ̃ = γ′
1 ◦ γ2,

where γ′
1 is the reflection of γ1 about the main

diagonal. This yields a bijection

Pb((1,0), (n+1, n)) ∋ γ↔γ̃ ∈ P((0, 1), (n+1, n))
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Hence

|Pg((1,0), (n + 1, n))|

= |P((1, 0), (n + 1, n))| − |Pb((1,0), (n + 1, n))|

= |P((1, 0), (n + 1, n))| − |P((0, 1), (n + 1, n))|

=

(
2n

n

)
−

(
2n

n + 1

)

=
1

n + 1

(
2n

n

)
,

thereby proving Prop. 1. �

We now move to another sequence {NCn : n ≥

1} of sets whose cardinalities are also given by

the Catalan numbers, where NCn is the set of

non-crossing partitions: these being partitions

of a set of n marked points on a circle with

the property that the convex hulls of any two

distinct equivalence classes of the partition are

disjoint.
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|Kn| = |NCn| ,

the bijection being illustrated below for n = 3.

(1(2(34)5)6) (1(23)(45)6)

(1(23)4)(56) (12)(3(45)6)

(12)(34)(56)

The n points of the element S̃ of NCn which

corresponds to a S ∈ NCn may be chosen as

points midway between an odd point and the

next even point, with the ‘black regions’ of S

determining the equivalence classes of S̃.
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The algebras TLn(δ): Fix a positive scalar δ

(often assumed to be greater than 2, for tech-

nical reasons) and define a (complex) algebra

TLn(δ) with a basis consisting of Kauffman di-

agrams on 2n points, and multiplication de-

fined by the rule

ST = δλ(S,T)U

where (1) U is the diagram obtained by con-

catenation - i.e., identifying the point marked

(2n − j + 1) for S with the point marked j for

T , for 1 ≤ j ≤ n - and erasing any ‘internal

loops’ formed in the process, and (2) λ(S, T)

is the number of ‘internal loops so erased. For

example, we have, if

S T = δ T

= δT
2 2

T

=S

=T
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In fact, the algebra TLn(δ) is associative (since

isotopic diagrams are identified), and even uni-

tal - with all the strands of the identity el-

ement ‘coming straight down’ (joining j and

2n − j + 1).

In much the same way, each NC2n indexes a

basis for an algebra NC2n(δ) - the only differ-

ence being that ‘internal loops’ are replaced by

‘internal components’.

The further ingredient that these algebras come

equipped with is a natural pictorially defined

trace. Specifically, for S ∈ Kn (resp., S̃ ∈

NC2n) define τ(S) (resp., τ(S̃) to be δc, where

c is the number of loops (resp., components)

occurring in the diagram obtained by connect-

ing the point marked j to the point marked

2n − j + 1.
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In the example below:

S
~ =

S  =

we see that

τ(S) = δ2 , τ(S̃) = δ .

We have the following result whose statement

seems intuitively reasonable/plausible, but where

neither the asserted isomorphism nor the proof

of the theorem are so intuitively obvious!
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Theorem: There exists a trace-preserving alge-

bra isomorphism φ : TL2n(δ) → NCn(δ2); this

has the property that

φ(S) =
τ(S)

τ(S̃)
S̃

for all Kauffmann diagrams S ∈ Kn . �

This boils down to proving that, for arbitrary

S, T ∈ K2n, we have

τ(S)

τ(S̃)

τ(T)

τ(T̃ )
=

τ(ST)

τ(S̃T̃)
(∗) .

And it turns out that the proof of (*), in turn,

can be reduced to that of the special case - of

(*) - where neither S nor T has any through

strings.

Such an S is seen to be determined by an or-

dered pair (S+, S−) where S± ∈ Kn - where we

think of the 2n marked points of S± as being

arrayed on one side of the box.
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S = S =

S =

−+ 

1 2 3 4 5 6 7 8

910111213141516

1 2 3 4 5 6 7 8
4321 5 6 7 8

We shall think of elements of Kn, such as S±,

as partitions of {1,2, · · · ,2n} (where equiva-
lence classes are doubletons); we shall write

S+∨S− for the finest partition which is refined
by S+ as well as S−. (Thus, in our example

above, S+ ∨ S− is the partition of {1, · · · ,8}
containing only one equivalence class.)

One more piece of notation: given B ∈ Kn, we
shall write |B| for the number of classes in B

and B̃ for B ∨ B0, where

B0 = {{1,2}, {3,4}, · · · {2n − 1,2n}}.
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The key lemma turns out to be the following

‘linearisation result’:

Lemma:

2(|X ∨ Y | − 2|X̃ ∨ Ỹ |)

= |X| − 2|X̃| + |Y | − 2|Ỹ |

for all X, Y ∈ Kn. �

This is because the assertion (*) translates -

in case neither S nor T has through strings -

to the assertion that

(|S− ∨ T+| − 2|S̃− ∨ T̃+|

+|S+ ∨ T−| − 2|S̃+ ∨ T̃−|

= (|S− ∨ S+|) − 2(|S̃− ∨ S̃+|)

+(|T− ∨ T+|) − 2(|T̃− ∨ T̃+|)

which is seen, by our ‘linearisation result’, to

indeed be true.
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Since |X| = n ∀X ∈ Kn, our linearisation lemma

may be restated thus:

|X ∨ Y | − 2|X̃ ∨ Ỹ |

= n − |X̃| − |Ỹ |

for all X, Y ∈ Kn.

Instead of spelling out a detailed proof of this

result, we shall simply:

(a) state that ‘one half’ of this assertion is a

consequence of the Euler characteristic, and

(b) illustrate the assertion above with an ex-

ample.
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Consider the example given by

{{1,4},{(2,3},{5,6}

= =

= =Y

X

5 64321

2 3 4 5 61

789101112

10 9 8 71112

{12,11},{10,7},{9,8}}
{{1,4},{2,3},{5,6}

{12,11},{10,9},{8,7}}

Here, n = 6, and we see that

X
∨

Y = {{1,4}, {2,3}, {5,6}, {12,11}, {10,9,8,7}}

while

X̃
∨

Ỹ = X̃ = {{1,2,3,4,5,6,7,8,9,10,11,12}}

and

Ỹ = {{1,2,3,4,12,11,10,9}, {5,6,7,8}}

so the equation to be proved reads:

5 − 2 · 1 = 6 − 1 − 2
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Further details can be found in our paper [KS]

below:

References:

[GHJ] F. Goodman, P. de la Harpe and V.F.R.

Jones, Coxeter graphs and towers of algebras,

MSRI Publ., 14, Springer, New York, 1989.

[KS] Vijay Kodiyalam and V.S. Sunder, Temperley-

Lieb and Non-crossing Partition planar alge-

bras, to appear in a Conference Proceedings

to be published by AMS, in the ‘Contempo-

rary Math.’ series. (may also be found on my

home-page “http://www.imsc.res.in/˜sunder/”)

15


