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1 Vector bundles

Throughout X denotes a compact Hausdorff space.

Definition 1.1 A vector bundle over X is a topological space E together with a surjec-

tion p : E → X such that

1. For x ∈ X, Ex := p−1(x) has a finite dimensional vector space structure,

2. E is locally trivial i.e.

For x ∈ X, there exists an open set Ux 3 x , nx ≥ 0 and a homeomorphism

hx : p−1(Ux)→ Ux × Cnx such that hx is fibre-wise linear and π1 ◦ hx = p.

Remark 1.2 If E is a vector bundle over X then dim(Ex) is locally constant.

Example 1.3 Let E := X × Cn. E is called the trivial bundle of rank n.

Example 1.4 Let M be a smooth manifold. Then TM , the tangent bundle is a real

bundle and one can complexify it to get a complex vector bundle.

Example 1.5 Let Gr(n, k) := {k − dimensional subspaces of Cn}. Topologise Gr(n, k)

by identifying it with projections in Mn(C) with trace k. Then Gr(n, k) is a compact

Hausdorff space. Let

E := {(p, v) ∈ Gr(n, k)× Cn : pv = v}

Then E is a vector bundle over Gr(n, k).
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Example 1.6 Let p ∈ Mn(C(X)) be a projection. We can think of p as a continuous

projection valued map from X to Mn(C(X)). Let

E := {(x, v) ∈ X × Cn : p(x)v = v}

Then E is a vector bundle over X.

Definition 1.7 Let p : E → X be a vector bundle. A section is a map s : X → E such

that s(x) ∈ Ex for every x ∈ X.

Exercise 1.1 Let E be a vector bundle over X of rank n. Prove that E is trivial if and

only if there exists n-linearly independent sections.

Thus choosing a trivialisation is the same as choosing local sections which form a basis

at each fibre.

Exercise 1.2 Prove that the bundle described in 1.6 is indeed a vector bundle.

Pullback: Let f : Y → X be continuous and p : E → X be a vector bundel. Define

f ∗(E) := {(y, e) : f(y) = p(e)} ⊂ Y × E

Check that f ∗(E) is a vector bundle over Y .

Whitney sum: Let p : E → X and q : F → X be vector bundles over X. Define

E ⊕ F := {(e, f) ∈ E × F : p(e) = q(f)}

Check that E ⊕ F is a vector bundle over X. Clearly E ⊕ F is isomorphic to F ⊕ E.

Also upto isomorphism ⊕ is associative.

Let us denote the set of isomorphism classes of vector bundles over X by V (X).

The Whitney sum of vector bundles makes V (X) an abelian semigroup with an identity

element. The abelian group K(X) is defined to be the group obtained from V (X) by

the Grothendieck construction. The group K(X) is called the K-group of X.

Let us recall the Grothendieck construction. Suppose (R,+) is an abelian semigroup

with identity. Define an equivalence relation ∼ on R×R as follows:

(a, b) ∼ (c, d) if there exists e ∈ R such that a+ d+ e = b+ c+ e.
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We think of the equivalence class [(a, b)] as representing the difference a−b. The addition

+ on R×R/ ∼ is defined as

[(a, b)] + [(c, d)] = [(a+ c, b+ d)].

Then + is well defined on R×R/ ∼ and (R×R/ ∼,+) is an abelian group with [(a, a)]

as the identity element for any a ∈ R and the inverse of [(a, b)] is [(b, a)].

The map X → K(X) is a contravariant functor from the category of compact Haus-

dorff spaces to the category of abelian groups. It is homotopy invariant and the K-groups

can be computed for a large family of topological spaces.

Exercise 1.3 Let (Uα, hα) be a trivialising cover for a vector bundle E over X. Then

the map hαh
−1
β : Uα ∩ Uβ × Cn → Uα ∩ Uβ × Cn has the form

hαh
−1
β (x, v) = (x, gαβ(x)v)

where gαβ : Uα ∩ Uβ → GL(n,C) is continuous. Prove that

gαα = 1

gαβgβγ = gαγ

The above relations is expressed by saying {gαβ} is a co-cycle. Also g′αβs are also called

transition maps.

Exercise 1.4 Write down the transition functions for the pull-back and the Whitney

sum.

Exercise 1.5 Let {gαβ} be a co-cycle. Consider the disjoint union
⊔
α Uα ×Cn. Define

a equivalence relation on
⊔
α Uα × Cn by declaring

Uα × Cn 3 (x, v) ∼ (y, w) ∈ Uβ × Cn if and only if x = y and gαβ(x)w = v

Let

E :=

⊔
α Uα × Cn

∼
.

Prove that E is a vector bundle over X with the obvious projection map.
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2 Serre-Swan theorem

If p : E → X is a vector bundle, let Γ(E) denote the space of sections. Then Γ(E) is a

C(X) module.

Exercise 2.1 Prove that Γ(E1 ⊕ E2) = Γ(E1)⊕ Γ(E2) as C(X)-modules.

The main aim of this section is to prove the following theorem.

Theorem 2.1 (Serre-Swan theorem) The map [E]→ [Γ(E)] is a bijection from the

set of isomorphism classes of vector bundles over X and the set of isomorphism classes

of finitely generated projective modules over C(X).

Lemma 2.2 Let F be a subbundle of E. Consider a point x ∈ F . Then there exists an

open set U containing x and linearly independent sections s1, s2, · · · , sm, sm+1, · · · , sn on

U such that

1. For y ∈ U , Fy = span{s1(y), s2(y), · · · , sm(y)}.

2. For y ∈ U , Ey = span{s1(y), s2(y), · · · , sm(y), sm+1(y), · · · , sn(y)}.

Proof. Let V be a nbd around x on which both F and E are trivial. Assume that rank

of F over V is m and that of E over V is n.

Identify E|V ∼= V ×Cn. Choose m linearly independent sections for F over V . Name

them s1, s2, · · · , sm. Choose vm+1, vm+2, · · · , vn such that the vectors

{s1(x), s2(x), · · · , sm(x), vm+1, vm+2, · · · , vn}

forms a basis for Cn.

By continuity ( of what ?), it follows that there exists a nbd U around x such that

{s1(y), s2(y), · · · , sm(y), vm+1, vm+2, · · · , vn} is a basis for every y ∈ U . Now complete

the proof. 2

Definition 2.3 Let E be a vector bundle over X. An inner product on E is a collection

of inner products {<,>x: x ∈ X}, one for each fibre Ex, such that if s, t ∈ Γ(E) then

the map X 3 x→< s(x), t(x) >x is continuous. A vector bundle equipped with an inner

product is called a Hermitian vector bundle.
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It is clear that trivial bundles admit an inner product. The proof of the following

proposition is a partition of unity type argument.

Proposition 2.4 Let E be a vector bundle over X. Then E admits an inner product.

Proposition 2.5 Let E be a Hermitian vector bundle over X and F ⊂ E be a subbundle.

Then F⊥ is a vector bundle over X and F ⊕ F⊥ is isomorphic to E.

Proof. It is enough to show that F⊥ is a vector bundle (Justify). Choose locally in-

dependent sections s1, s2, · · · , sm, sm+1, · · · sn which form a basis for E and the first m

sections form a basis for F .

Apply Gram-Schmidt process to replace {si} by s̃i. Then

1. {s̃1, s̃2, · · · , s̃m} form a local basis for F ,

2. {s̃m+1, s̃m+2, · · · , s̃n} form a local basis for F⊥, and

3. {s̃1, s̃2, · · · , s̃n} form a local basis for E.

The local sections {s̃m+1, s̃m+2, · · · , s̃n} trivialises F⊥.

Proposition 2.6 Let E be a vector bundle over X. Then E is a subbundle of X × CN

for some N .

Proof. Choose finitely many trivialisations (Ui, hi)
n
i=1. Let {φi}ni=1 be a partition of unity

such that supp(φi) ⊂ Ui.

Let i ∈ {1, 2, · · · , n} be given. Consider the trivialisation hi : p−1(Ui) → Ui × Cmi .

We denote the projection from Ui × Cmi → Cmi by π2. Define gi : E → Cm by

gi(e) :=

{
φi(p(e))π2hi(e) if e ∈ p−1(Ui),
0 otherwise.

Check that gi is continuous.

Define g : E → X × Cm1 × Cm2 × · · · × Cmn by

g(e) := (p(e), g1(e), g2(e), · · · , gn(e))

Prove that
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• g is injective,

• g is fibre-wise linear, and

• g is a topological embedding.

The proof is now complete. 2

Using the last two propositions, do the following exercise.

Exercise 2.2 If E is a vector bundle over X then Γ(E) is a finitely generated projective

C(X)-module.

Exercise 2.3 Let E be a vector bundle over X. Let x ∈ X and s : X → E be a section

such that s(x) = 0. Then s can be written as s =
∑n

i=1 gisi where gi ∈ C(X) and

si ∈ Γ(E) with gi vanishing at x.

Idea: Choose n-locally independent sections s1, s2, · · · , sn around x and write s :=∑n
i=1 fisi. Let φ be a continuous function such that φ ≥ 0 , φ(x) = 1 and supp(φ)

concentrated around x. Now s = (1− φ)s+
∑n

i=1 φ
1
2fiφ

1
2 si. Note that φ

1
2 si are globally

defined. 2

Exercise 2.4 Let g : E1 → E2 be a bundle map. Then g∗ : Γ(E1) → Γ(E2) defined by

g∗(s) = g ◦ s is a C(X)-module map.

Proposition 2.7 Let T : Γ(E1) → Γ(E2) be a C(X)-module map. Then there exists a

bundle map g : E1 → E2 such that g∗ = T .

Idea of the proof: Let v ∈ E1 be such that v lies over x ∈ X. Choose any section s such

that s(x) = v. Define g(v) := (Ts)(x). Now Exercise 2.3 implies that g is well-defined.

Proposition 2.8 (Surjectivity part) Let E be a f.g. projective C(X)-module. Then

there exists a vector bundle over X such that E ∼= Γ(E).

Proof. Let p ∈Mn(C(X)) be the idempotent which corresponds to E . Define

E := {(x, v) : p(x)v = v}

Then E is a vector bundle over X and Γ(E) ∼= E . 2

Exercise 2.5 Now convince yourself that we have proved Serre-Swan theorem.
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3 Basic K-theory

Let A be a unital algebra over C. We consider only right A modules. For n ≥ 1, we

write elements of An as column vectors. The matrix algebra Mn(A) acts on An by left

multiplication as module maps.

Exercise 3.1 Prove that EndA(An) = Mn(A).

Definition 3.1 Let E be a right A module.

1. The module E is said to be finitely generated if there exists ξ1, ξ2, · · · , ξn ∈ E such

that the A-module generated by {ξ1, ξ2, · · · , ξn} is E.

2. The module E is said to be projective if it is a direct summand of a free A-module.

Exercise 3.2 Prove that E is finitely generated if and only if there exists a A-module

surjection p : An → E.

Exercise 3.3 Prove that the following are equivalent.

1. The module E is projective.

2. If p : M → N is a surjection and f : E → N is any map then f admits a lift

f̃ : E →M .

Exercise 3.4 Let E be a finitely generated projective A-module. Prove that E is a direct

summand of An for some n ≥ 1.

For the rest of this section E , E ′
will denote f.g. projective modules.

Exercise 3.5 Let p ∈ Mn(A) be an idempotent i.e. p2 = p. Consider p as a A-module

map on An.

Prove that Ker(1− p) is a finitely generated projective A-module. Show that any f.g.

projective module arises this way.

Exercise 3.6 Let p ∈Mm(A) and q ∈Mn(A) be idempotents.

Prove that Im(p) and Im(q) are isomorphic as A modules if and only if there exists

x ∈Mm,n(A) and y ∈Mn,m(A) such that xy = p and yx = q.
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In view of the above exercises, we will identify a f.g. projective module( its isomor-

phism class) with an idempotent in
⋃∞
n=1Mn(A) (its equivalence class) .

Exercise 3.7 Let E and E ′
be f.g. projective A-modules. Then E⊕E ′

is finitely generated

and projective. Moreover if E and E ′
are given by the idempotents p and q respectively

then E ⊕ E ′
is given by the idempotent

[
p 0

0 q

]
.

Let E(A) := {e ∈ A : e2 = e} and E∞(A) :=
⋃∞
n=1E(Mn(A)). Define an equivalence

relation on E∞(A) as follows: Let p ∈Mm(A) and q ∈Mn(A).

p ∼ q ⇔ there exists u ∈Mm×n(A), v ∈Mn×m(A) such that uv = p and vu = q.

We also denote the set of equivalence classes by E∞(A). Then we have the following

proposition.

Proposition 3.2 The operation ⊕ defined as [p] ⊕ [q] :=

[
p 0

0 q

]
is well defined on

E∞(A). Moreover, (E∞(A),⊕) is a commutative semigroup with identity.

Remark 3.3 The abelian semigroup E∞(A) is nothing but the semigroup of isomorphic

classes of finitely generated projective A-modules.

Definition 3.4 The K-group K̂0(A) is the the Grothendieck group of the abelian semi-

group (E∞(A),⊕).

Elements of K̂0(A) are of the form [e]− [f ] where e and f are idempotents in MN(A)

for some N . Also [e] − [f ] = [e
′
] − [f

′
] if and only if there exists g ∈ Mk(A) such that

e⊕ f ′ ⊕ g ∼ e
′ ⊕ f ⊕ g.

K̂0 is a functor from the category of unital algebras to abelian groups.

Non-unital case: Let A be an algebra over C. The algebra A is not assumed to be

unital. Consider A+ := A⊕ C with the multiplication defined by

(a, λ)(b, µ) = (ab+ λb+ µa, λµ).

Let ε : A+ → C be the map defined by ε(a, λ) = λ. Then ε is an algebra homomor-

phism.

Define K0(A) := KerK̂0(ε).
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Remark 3.5 If A is unital then K0(A) and K̂0(A) are naturally isomorphic. Reason:

If A is unital then A+ is isomorphic to A⊕ C as algebras. K̂0 preserves direct sums.

Theorem 3.6 If X is a compact smooth manifold then to define K(X) it is enough to

consider smooth vector bundles.

We end our discussion by seeing a similar theorem for non-commutative algebras.

Throughout A will stand for a unital Banach algebra and A ⊂ A is a dense subalgebra

which contains the unit of A.

Lemma 3.7 Let e, f ∈ A be idempotents such that ||e− f || < 1
||2e−1|| . Then e and f are

similar i.e. there exists z ∈ A such that zez−1 = f .

Proof. Let z := (2e− 1)(2f − 1) + 1. Then zf = ez. Note that z− 2 = 2(f − e)(2e− 1).

Hence ||z − 2|| < 2. Thus z is invertible and z−1ez = f . This completes the proof. 2

Lemma 3.8 Let e, f ∈ Mn(A) be idempotents such that e ∼ f . Then in M2n(A), the

idempotents

[
e 0

0 0

]
and

[
f 0

0 0

]
are similar.

Hint: Split

An = eAn ⊕ (1− e)An = fAn ⊕ (1− f)An.

Definition 3.9 Let A ⊂ A be a dense subalgebra and assume that the inclusion A ⊂ A

is unital. We call A smooth if

1. A admits a Frechet algebra structure,

2. the inclusion A ⊂ A is continuous, and

3. A is spectrally invariant i.e. if a ∈ A is invertible in A then a−1 ∈ A.

Exercise 3.8 Let A ⊂ A be smooth and let a ∈ A be given. Show that σA(a) = σA(a).

Exercise 3.9 Let a ∈ A be such that ||a2 − a|| < 1
4
. Prove that the spectrum σ(a) does

not intersect the line {z ∈ C : Re(z) = 1
2
}.
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Exercise 3.10 Let g : {z : Re(z) 6= 1
2
} → C be holomorphic such that g2 = g and

g(z) = z if z ∈ {0, 1}.
Let K be a compact set. Let

X := {a ∈ A : σ(a) ⊂ K, σ(a) does not intersect Re(z) =
1

2
}.

Show that X 3 a→ g(a) ∈ A is norm continuous.

If A is smooth in A then A is closed under holomorphic functional calculus i.e. for

a ∈ A and f a holomorphic function in the nbd of σ(a), f(a) ∈ A. It is also true that

Mn(A) is closed under holomorphic functional calculus.

Theorem 3.10 Let A ⊂ A be a smooth subalgebra. The inclusion A ⊂ A induces

isomorphism between K0(A) and K0(A).

Proof. Let us denote the inclusion map by i. We need to prove that i∗ : K0(A)→ K0(A)

is an isomorphism. Use Exercises 3.9 and 3.10 to make the following proof precise.

Surjectivity of i∗. Let e be an idempotent in Mn(A). Choose a in Mn(A) close to

e. Then a2 is close to a. Thus σ(a) does not intersect the line Re(z) = 1
2
. Then g(a) is

an idempotent and g(a) ∈ Mn(A). By 3.10, it follows that g(a) is close to g(e) = e. By

Lemma 3.7, it follows that [g(a)] = [e] in K0(A). Hence i∗ is surjective.

Injectivity of i∗. Suppose [e] − [f ] = [0] in K0(A) with e, f ∈ Mn(A). Then there

exists g ∈ Mn(A) such that e ⊕ g ∼ f ⊕ g. By the surjectivity part, we can assume

that g ∈ Mn(A). By Lemma 3.8, it follows that there exists v ∈ Mn(A) such that

v(e⊕ g⊕ 0)v−1 = f ⊕ g⊕ 0. Choose u ∈Mn(A) close enough to v. Then u(e⊕ g⊕ 0)u−1

is close to f ⊕ g⊕ 0. Thus again by Lemma 3.8 and its proof, it follows that there exists

z such that zu(e⊕ g ⊕ 0)u−1z−1 = f ⊕ g ⊕ 0. Hence [e]− [f ] = 0 in K0(A).

This completes the proof. 2

References

[1] B. Blackadar. K-theory for operator algebras. Springer Verlag,Newyork, 1987.

[2] Allen Hatcher. Vector bundles and K-theory. online book.

[3] M.F.Atiyah. K-Theory. W.A.Benjamin,Newyork, 1967.

10


	Vector bundles
	Serre-Swan theorem
	Basic K-theory

