ATM lectures

S. Sundar

January 31, 2012

1 Vector bundles

Throughout X denotes a compact Hausdorff space.
Definition 1.1 A vector bundle over X is a topological space E together with a surjection $p: E \rightarrow X$ such that

1. For $x \in X, E_{x}:=p^{-1}(x)$ has a finite dimensional vector space structure,
2. E is locally trivial i.e.

For $x \in X$, there exists an open set $U_{x} \ni x, n_{x} \geq 0$ and a homeomorphism $h_{x}: p^{-1}\left(U_{x}\right) \rightarrow U_{x} \times \mathbb{C}^{n_{x}}$ such that h_{x} is fibre-wise linear and $\pi_{1} \circ h_{x}=p$.

Remark 1.2 If E is a vector bundle over X then $\operatorname{dim}\left(E_{x}\right)$ is locally constant.

Example 1.3 Let $E:=X \times \mathbb{C}^{n}$. E is called the trivial bundle of rank n.

Example 1.4 Let M be a smooth manifold. Then TM, the tangent bundle is a real bundle and one can complexify it to get a complex vector bundle.

Example 1.5 Let $\operatorname{Gr}(n, k):=\left\{k\right.$ - dimensional subspaces of $\left.\mathbb{C}^{n}\right\}$. Topologise $\operatorname{Gr}(n, k)$ by identifying it with projections in $M_{n}(\mathbb{C})$ with trace k. Then $\operatorname{Gr}(n, k)$ is a compact Hausdorff space. Let

$$
E:=\left\{(p, v) \in G r(n, k) \times \mathbb{C}^{n}: p v=v\right\}
$$

Then E is a vector bundle over $G r(n, k)$.

Example 1.6 Let $p \in M_{n}(C(X))$ be a projection. We can think of p as a continuous projection valued map from X to $M_{n}(C(X))$. Let

$$
E:=\left\{(x, v) \in X \times \mathbb{C}^{n}: p(x) v=v\right\}
$$

Then E is a vector bundle over X.

Definition 1.7 Let $p: E \rightarrow X$ be a vector bundle. A section is a map $s: X \rightarrow E$ such that $s(x) \in E_{x}$ for every $x \in X$.

Exercise 1.1 Let E be a vector bundle over X of rank n. Prove that E is trivial if and only if there exists n-linearly independent sections.

Thus choosing a trivialisation is the same as choosing local sections which form a basis at each fibre.

Exercise 1.2 Prove that the bundle described in 1.6 is indeed a vector bundle.

Pullback: Let $f: Y \rightarrow X$ be continuous and $p: E \rightarrow X$ be a vector bundel. Define

$$
f^{*}(E):=\{(y, e): f(y)=p(e)\} \subset Y \times E
$$

Check that $f^{*}(E)$ is a vector bundle over Y.
Whitney sum: Let $p: E \rightarrow X$ and $q: F \rightarrow X$ be vector bundles over X. Define

$$
E \oplus F:=\{(e, f) \in E \times F: p(e)=q(f)\}
$$

Check that $E \oplus F$ is a vector bundle over X. Clearly $E \oplus F$ is isomorphic to $F \oplus E$. Also upto isomorphism \oplus is associative.

Let us denote the set of isomorphism classes of vector bundles over X by $V(X)$. The Whitney sum of vector bundles makes $V(X)$ an abelian semigroup with an identity element. The abelian group $K(X)$ is defined to be the group obtained from $V(X)$ by the Grothendieck construction. The group $K(X)$ is called the K-group of X.

Let us recall the Grothendieck construction. Suppose $(R,+)$ is an abelian semigroup with identity. Define an equivalence relation \sim on $R \times R$ as follows:

$$
(a, b) \sim(c, d) \text { if there exists } e \in R \text { such that } a+d+e=b+c+e
$$

We think of the equivalence class $[(a, b)]$ as representing the difference $a-b$. The addition + on $R \times R / \sim$ is defined as

$$
[(a, b)]+[(c, d)]=[(a+c, b+d)]
$$

Then + is well defined on $R \times R / \sim$ and $(R \times R / \sim,+)$ is an abelian group with [(a,a)] as the identity element for any $a \in R$ and the inverse of $[(a, b)]$ is $[(b, a)]$.

The map $X \rightarrow K(X)$ is a contravariant functor from the category of compact Hausdorff spaces to the category of abelian groups. It is homotopy invariant and the K-groups can be computed for a large family of topological spaces.

Exercise 1.3 Let $\left(U_{\alpha}, h_{\alpha}\right)$ be a trivialising cover for a vector bundle E over X. Then the map $h_{\alpha} h_{\beta}^{-1}: U_{\alpha} \cap U_{\beta} \times \mathbb{C}^{n} \rightarrow U_{\alpha} \cap U_{\beta} \times \mathbb{C}^{n}$ has the form

$$
h_{\alpha} h_{\beta}^{-1}(x, v)=\left(x, g_{\alpha \beta}(x) v\right)
$$

where $g_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow G L(n, \mathbb{C})$ is continuous. Prove that

$$
\begin{aligned}
g_{\alpha \alpha} & =1 \\
g_{\alpha \beta} g_{\beta \gamma} & =g_{\alpha \gamma}
\end{aligned}
$$

The above relations is expressed by saying $\left\{g_{\alpha \beta}\right\}$ is a co-cycle. Also $g_{\alpha \beta}^{\prime}$ s are also called transition maps.

Exercise 1.4 Write down the transition functions for the pull-back and the Whitney sum.

Exercise 1.5 Let $\left\{g_{\alpha \beta}\right\}$ be a co-cycle. Consider the disjoint union $\bigsqcup_{\alpha} U_{\alpha} \times \mathbb{C}^{n}$. Define a equivalence relation on $\bigsqcup_{\alpha} U_{\alpha} \times \mathbb{C}^{n}$ by declaring

$$
U_{\alpha} \times \mathbb{C}^{n} \ni(x, v) \sim(y, w) \in U_{\beta} \times \mathbb{C}^{n} \quad \text { if and only if } x=y \quad \text { and } g_{\alpha \beta}(x) w=v
$$

Let

$$
E:=\frac{\bigsqcup_{\alpha} U_{\alpha} \times \mathbb{C}^{n}}{\sim}
$$

Prove that E is a vector bundle over X with the obvious projection map.

2 Serre-Swan theorem

If $p: E \rightarrow X$ is a vector bundle, let $\Gamma(E)$ denote the space of sections. Then $\Gamma(E)$ is a $C(X)$ module.

Exercise 2.1 Prove that $\Gamma\left(E_{1} \oplus E_{2}\right)=\Gamma\left(E_{1}\right) \oplus \Gamma\left(E_{2}\right)$ as $C(X)$-modules.

The main aim of this section is to prove the following theorem.

Theorem 2.1 (Serre-Swan theorem) The map $[E] \rightarrow[\Gamma(E)]$ is a bijection from the set of isomorphism classes of vector bundles over X and the set of isomorphism classes of finitely generated projective modules over $C(X)$.

Lemma 2.2 Let F be a subbundle of E. Consider a point $x \in F$. Then there exists an open set U containing x and linearly independent sections $s_{1}, s_{2}, \cdots, s_{m}, s_{m+1}, \cdots, s_{n}$ on U such that

1. For $y \in U, F_{y}=\operatorname{span}\left\{s_{1}(y), s_{2}(y), \cdots, s_{m}(y)\right\}$.
2. For $y \in U, E_{y}=\operatorname{span}\left\{s_{1}(y), s_{2}(y), \cdots, s_{m}(y), s_{m+1}(y), \cdots, s_{n}(y)\right\}$.

Proof. Let V be a nbd around x on which both F and E are trivial. Assume that rank of F over V is m and that of E over V is n.

Identify $\left.E\right|_{V} \cong V \times \mathbb{C}^{n}$. Choose m linearly independent sections for F over V. Name them $s_{1}, s_{2}, \cdots, s_{m}$. Choose $v_{m+1}, v_{m+2}, \cdots, v_{n}$ such that the vectors

$$
\left\{s_{1}(x), s_{2}(x), \cdots, s_{m}(x), v_{m+1}, v_{m+2}, \cdots, v_{n}\right\}
$$

forms a basis for \mathbb{C}^{n}.
By continuity (of what ?), it follows that there exists a nbd U around x such that $\left\{s_{1}(y), s_{2}(y), \cdots, s_{m}(y), v_{m+1}, v_{m+2}, \cdots, v_{n}\right\}$ is a basis for every $y \in U$. Now complete the proof.

Definition 2.3 Let E be a vector bundle over X. An inner product on E is a collection of inner products $\left\{<,>_{x}: x \in X\right\}$, one for each fibre E_{x}, such that if $s, t \in \Gamma(E)$ then the map $X \ni x \rightarrow<s(x), t(x)>_{x}$ is continuous. A vector bundle equipped with an inner product is called a Hermitian vector bundle.

It is clear that trivial bundles admit an inner product. The proof of the following proposition is a partition of unity type argument.

Proposition 2.4 Let E be a vector bundle over X. Then E admits an inner product.

Proposition 2.5 Let E be a Hermitian vector bundle over X and $F \subset E$ be a subbundle. Then F^{\perp} is a vector bundle over X and $F \oplus F^{\perp}$ is isomorphic to E.

Proof. It is enough to show that F^{\perp} is a vector bundle (Justify). Choose locally independent sections $s_{1}, s_{2}, \cdots, s_{m}, s_{m+1}, \cdots s_{n}$ which form a basis for E and the first m sections form a basis for F.

Apply Gram-Schmidt process to replace $\left\{s_{i}\right\}$ by \widetilde{s}_{i}. Then

1. $\left\{\widetilde{s}_{1}, \widetilde{s}_{2}, \cdots, \widetilde{s}_{m}\right\}$ form a local basis for F,
2. $\left\{\widetilde{s}_{m+1}, \widetilde{s}_{m+2}, \cdots, \widetilde{s}_{n}\right\}$ form a local basis for F^{\perp}, and
3. $\left\{\widetilde{s}_{1}, \widetilde{s}_{2}, \cdots, \widetilde{s}_{n}\right\}$ form a local basis for E.

The local sections $\left\{\widetilde{s}_{m+1}, \widetilde{s}_{m+2}, \cdots, \widetilde{s}_{n}\right\}$ trivialises F^{\perp}.
Proposition 2.6 Let E be a vector bundle over X. Then E is a subbundle of $X \times \mathbb{C}^{N}$ for some N.

Proof. Choose finitely many trivialisations $\left(U_{i}, h_{i}\right)_{i=1}^{n}$. Let $\left\{\phi_{i}\right\}_{i=1}^{n}$ be a partition of unity such that $\operatorname{supp}\left(\phi_{i}\right) \subset U_{i}$.

Let $i \in\{1,2, \cdots, n\}$ be given. Consider the trivialisation $h_{i}: p^{-1}\left(U_{i}\right) \rightarrow U_{i} \times \mathbb{C}^{m_{i}}$. We denote the projection from $U_{i} \times \mathbb{C}^{m_{i}} \rightarrow \mathbb{C}^{m_{i}}$ by π_{2}. Define $g_{i}: E \rightarrow \mathbb{C}^{m}$ by

$$
g_{i}(e):= \begin{cases}\phi_{i}(p(e)) \pi_{2} h_{i}(e) & \text { if } e \in p^{-1}\left(U_{i}\right) \\ 0 & \text { otherwise }\end{cases}
$$

Check that g_{i} is continuous.
Define $g: E \rightarrow X \times \mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}} \times \cdots \times \mathbb{C}^{m_{n}}$ by

$$
g(e):=\left(p(e), g_{1}(e), g_{2}(e), \cdots, g_{n}(e)\right)
$$

Prove that

- g is injective,
- g is fibre-wise linear, and
- g is a topological embedding.

The proof is now complete.
Using the last two propositions, do the following exercise.
Exercise 2.2 If E is a vector bundle over X then $\Gamma(E)$ is a finitely generated projective $C(X)$-module.

Exercise 2.3 Let E be a vector bundle over X. Let $x \in X$ and $s: X \rightarrow E$ be a section such that $s(x)=0$. Then s can be written as $s=\sum_{i=1}^{n} g_{i} s_{i}$ where $g_{i} \in C(X)$ and $s_{i} \in \Gamma(E)$ with g_{i} vanishing at x.

Idea: Choose n-locally independent sections $s_{1}, s_{2}, \cdots, s_{n}$ around x and write $s:=$ $\sum_{i=1}^{n} f_{i} s_{i}$. Let ϕ be a continuous function such that $\phi \geq 0, \phi(x)=1$ and $\operatorname{supp}(\phi)$ concentrated around x. Now $s=(1-\phi) s+\sum_{i=1}^{n} \phi^{\frac{1}{2}} f_{i} \phi^{\frac{1}{2}} s_{i}$. Note that $\phi^{\frac{1}{2}} s_{i}$ are globally defined.

Exercise 2.4 Let $g: E_{1} \rightarrow E_{2}$ be a bundle map. Then $g_{*}: \Gamma\left(E_{1}\right) \rightarrow \Gamma\left(E_{2}\right)$ defined by $g_{*}(s)=g \circ s$ is a $C(X)$-module map.

Proposition 2.7 Let $T: \Gamma\left(E_{1}\right) \rightarrow \Gamma\left(E_{2}\right)$ be a $C(X)$-module map. Then there exists a bundle map $g: E_{1} \rightarrow E_{2}$ such that $g_{*}=T$.

Idea of the proof: Let $v \in E_{1}$ be such that v lies over $x \in X$. Choose any section s such that $s(x)=v$. Define $g(v):=(T s)(x)$. Now Exercise 2.3 implies that g is well-defined.

Proposition 2.8 (Surjectivity part) Let \mathcal{E} be a f.g. projective $C(X)$-module. Then there exists a vector bundle over X such that $\mathcal{E} \cong \Gamma(E)$.

Proof. Let $p \in M_{n}(C(X))$ be the idempotent which corresponds to \mathcal{E}. Define

$$
E:=\{(x, v): p(x) v=v\}
$$

Then E is a vector bundle over X and $\Gamma(E) \cong \mathcal{E}$.
Exercise 2.5 Now convince yourself that we have proved Serre-Swan theorem.

3 Basic K-theory

Let \mathcal{A} be a unital algebra over \mathbb{C}. We consider only right \mathcal{A} modules. For $n \geq 1$, we write elements of \mathcal{A}^{n} as column vectors. The matrix algebra $M_{n}(\mathcal{A})$ acts on \mathcal{A}^{n} by left multiplication as module maps.

Exercise 3.1 Prove that $E n d_{\mathcal{A}}\left(\mathcal{A}^{n}\right)=M_{n}(\mathcal{A})$.

Definition 3.1 Let \mathcal{E} be a right \mathcal{A} module.

1. The module \mathcal{E} is said to be finitely generated if there exists $\xi_{1}, \xi_{2}, \cdots, \xi_{n} \in \mathcal{E}$ such that the \mathcal{A}-module generated by $\left\{\xi_{1}, \xi_{2}, \cdots, \xi_{n}\right\}$ is \mathcal{E}.
2. The module \mathcal{E} is said to be projective if it is a direct summand of a free \mathcal{A}-module.

Exercise 3.2 Prove that \mathcal{E} is finitely generated if and only if there exists a \mathcal{A}-module surjection $p: \mathcal{A}^{n} \rightarrow \mathcal{E}$.

Exercise 3.3 Prove that the following are equivalent.

1. The module \mathcal{E} is projective.
2. If $p: M \rightarrow N$ is a surjection and $f: \mathcal{E} \rightarrow N$ is any map then f admits a lift $\tilde{f}: \mathcal{E} \rightarrow M$.

Exercise 3.4 Let \mathcal{E} be a finitely generated projective \mathcal{A}-module. Prove that \mathcal{E} is a direct summand of \mathcal{A}^{n} for some $n \geq 1$.

For the rest of this section $\mathcal{E}, \mathcal{E}^{\prime}$ will denote f.g. projective modules.
Exercise 3.5 Let $p \in M_{n}(\mathcal{A})$ be an idempotent i.e. $p^{2}=p$. Consider p as a \mathcal{A}-module map on \mathcal{A}^{n}.

Prove that $\operatorname{Ker}(1-p)$ is a finitely generated projective \mathcal{A}-module. Show that any f.g. projective module arises this way.

Exercise 3.6 Let $p \in M_{m}(\mathcal{A})$ and $q \in M_{n}(\mathcal{A})$ be idempotents.
Prove that $\operatorname{Im}(p)$ and $\operatorname{Im}(q)$ are isomorphic as \mathcal{A} modules if and only if there exists $x \in M_{m, n}(\mathcal{A})$ and $y \in M_{n, m}(\mathcal{A})$ such that $x y=p$ and $y x=q$.

In view of the above exercises, we will identify a f.g. projective module(its isomorphism class) with an idempotent in $\bigcup_{n=1}^{\infty} M_{n}(\mathcal{A})$ (its equivalence class).

Exercise 3.7 Let \mathcal{E} and \mathcal{E}^{\prime} be f.g. projective \mathcal{A}-modules. Then $\mathcal{E} \oplus \mathcal{E}^{\prime}$ is finitely generated and projective. Moreover if \mathcal{E} and \mathcal{E}^{\prime} are given by the idempotents p and q respectively then $\mathcal{E} \oplus \mathcal{E}^{\prime}$ is given by the idempotent $\left[\begin{array}{ll}p & 0 \\ 0 & q\end{array}\right]$.

Let $E(\mathcal{A}):=\left\{e \in \mathcal{A}: e^{2}=e\right\}$ and $E_{\infty}(\mathcal{A}):=\bigcup_{n=1}^{\infty} E\left(M_{n}(\mathcal{A})\right)$. Define an equivalence relation on $E_{\infty}(\mathcal{A})$ as follows: Let $p \in M_{m}(\mathcal{A})$ and $q \in M_{n}(\mathcal{A})$.
$p \sim q \Leftrightarrow$ there exists $u \in M_{m \times n}(\mathcal{A}), v \in M_{n \times m}(\mathcal{A})$ such that $u v=p$ and $v u=q$.
We also denote the set of equivalence classes by $E_{\infty}(\mathcal{A})$. Then we have the following proposition.
Proposition 3.2 The operation \oplus defined as $[p] \oplus[q]:=\left[\begin{array}{ll}p & 0 \\ 0 & q\end{array}\right]$ is well defined on $E_{\infty}(\mathcal{A})$. Moreover, $\left(E_{\infty}(\mathcal{A}), \oplus\right)$ is a commutative semigroup with identity.

Remark 3.3 The abelian semigroup $E_{\infty}(\mathcal{A})$ is nothing but the semigroup of isomorphic classes of finitely generated projective \mathcal{A}-modules.

Definition 3.4 The K-group $\widehat{K}_{0}(\mathcal{A})$ is the the Grothendieck group of the abelian semigroup $\left(E_{\infty}(\mathcal{A}), \oplus\right)$.

Elements of $\widehat{K}_{0}(\mathcal{A})$ are of the form $[e]-[f]$ where e and f are idempotents in $M_{N}(\mathcal{A})$ for some N. Also $[e]-[f]=\left[e^{\prime}\right]-\left[f^{\prime}\right]$ if and only if there exists $g \in M_{k}(\mathcal{A})$ such that $e \oplus f^{\prime} \oplus g \sim e^{\prime} \oplus f \oplus g$.
\widehat{K}_{0} is a functor from the category of unital algebras to abelian groups.
Non-unital case: Let \mathcal{A} be an algebra over \mathbb{C}. The algebra \mathcal{A} is not assumed to be unital. Consider $\mathcal{A}^{+}:=\mathcal{A} \oplus \mathbb{C}$ with the multiplication defined by

$$
(a, \lambda)(b, \mu)=(a b+\lambda b+\mu a, \lambda \mu) .
$$

Let $\epsilon: \mathcal{A}^{+} \rightarrow \mathbb{C}$ be the map defined by $\epsilon(a, \lambda)=\lambda$. Then ϵ is an algebra homomorphism.

Define $K_{0}(\mathcal{A}):=\operatorname{Ker} \widehat{K}_{0}(\epsilon)$.

Remark 3.5 If \mathcal{A} is unital then $K_{0}(\mathcal{A})$ and $\widehat{K}_{0}(\mathcal{A})$ are naturally isomorphic. Reason: If \mathcal{A} is unital then \mathcal{A}^{+}is isomorphic to $\mathcal{A} \oplus \mathbb{C}$ as algebras. \widehat{K}_{0} preserves direct sums.

Theorem 3.6 If X is a compact smooth manifold then to define $K(X)$ it is enough to consider smooth vector bundles.

We end our discussion by seeing a similar theorem for non-commutative algebras.
Throughout A will stand for a unital Banach algebra and $\mathcal{A} \subset A$ is a dense subalgebra which contains the unit of A.

Lemma 3.7 Let $e, f \in A$ be idempotents such that $\|e-f\|<\frac{1}{\|2 e-1\|}$. Then e and f are similar i.e. there exists $z \in A$ such that zez $z^{-1}=f$.

Proof. Let $z:=(2 e-1)(2 f-1)+1$. Then $z f=e z$. Note that $z-2=2(f-e)(2 e-1)$. Hence $\|z-2\|<2$. Thus z is invertible and $z^{-1} e z=f$. This completes the proof.

Lemma 3.8 Let e, $f \in M_{n}(A)$ be idempotents such that $e \sim f$. Then in $M_{2 n}(A)$, the idempotents $\left[\begin{array}{ll}e & 0 \\ 0 & 0\end{array}\right]$ and $\left[\begin{array}{ll}f & 0 \\ 0 & 0\end{array}\right]$ are similar.

Hint: Split

$$
A^{n}=e A^{n} \oplus(1-e) A^{n}=f A^{n} \oplus(1-f) A^{n} .
$$

Definition 3.9 Let $\mathcal{A} \subset A$ be a dense subalgebra and assume that the inclusion $\mathcal{A} \subset A$ is unital. We call \mathcal{A} smooth if

1. \mathcal{A} admits a Frechet algebra structure,
2. the inclusion $\mathcal{A} \subset A$ is continuous, and
3. \mathcal{A} is spectrally invariant i.e. if $a \in \mathcal{A}$ is invertible in A then $a^{-1} \in \mathcal{A}$.

Exercise 3.8 Let $\mathcal{A} \subset A$ be smooth and let $a \in \mathcal{A}$ be given. Show that $\sigma_{\mathcal{A}}(a)=\sigma_{A}(a)$.
Exercise 3.9 Let $a \in A$ be such that $\left\|a^{2}-a\right\|<\frac{1}{4}$. Prove that the spectrum $\sigma(a)$ does not intersect the line $\left\{z \in \mathbb{C}: \operatorname{Re}(z)=\frac{1}{2}\right\}$.

Exercise 3.10 Let $g:\left\{z: \operatorname{Re}(z) \neq \frac{1}{2}\right\} \rightarrow \mathbb{C}$ be holomorphic such that $g^{2}=g$ and $g(z)=z$ if $z \in\{0,1\}$.

Let K be a compact set. Let

$$
X:=\left\{a \in A: \sigma(a) \subset K, \sigma(a) \text { does not intersect } \operatorname{Re}(z)=\frac{1}{2}\right\} .
$$

Show that $X \ni a \rightarrow g(a) \in A$ is norm continuous.
If \mathcal{A} is smooth in A then \mathcal{A} is closed under holomorphic functional calculus i.e. for $a \in \mathcal{A}$ and f a holomorphic function in the nbd of $\sigma(a), f(a) \in \mathcal{A}$. It is also true that $M_{n}(\mathcal{A})$ is closed under holomorphic functional calculus.

Theorem 3.10 Let $\mathcal{A} \subset A$ be a smooth subalgebra. The inclusion $\mathcal{A} \subset A$ induces isomorphism between $K_{0}(\mathcal{A})$ and $K_{0}(A)$.

Proof. Let us denote the inclusion map by i. We need to prove that $i_{*}: K_{0}(\mathcal{A}) \rightarrow K_{0}(A)$ is an isomorphism. Use Exercises 3.9 and 3.10 to make the following proof precise.

Surjectivity of i_{*}. Let e be an idempotent in $M_{n}(A)$. Choose a in $M_{n}(\mathcal{A})$ close to e. Then a^{2} is close to a. Thus $\sigma(a)$ does not intersect the line $\operatorname{Re}(z)=\frac{1}{2}$. Then $g(a)$ is an idempotent and $g(a) \in M_{n}(\mathcal{A})$. By 3.10, it follows that $g(a)$ is close to $g(e)=e$. By Lemma 3.7, it follows that $[g(a)]=[e]$ in $K_{0}(A)$. Hence i_{*} is surjective.

Injectivity of i_{*}. Suppose $[e]-[f]=[0]$ in $K_{0}(A)$ with $e, f \in M_{n}(\mathcal{A})$. Then there exists $g \in M_{n}(A)$ such that $e \oplus g \sim f \oplus g$. By the surjectivity part, we can assume that $g \in M_{n}(\mathcal{A})$. By Lemma 3.8, it follows that there exists $v \in M_{n}(A)$ such that $v(e \oplus g \oplus 0) v^{-1}=f \oplus g \oplus 0$. Choose $u \in M_{n}(\mathcal{A})$ close enough to v. Then $u(e \oplus g \oplus 0) u^{-1}$ is close to $f \oplus g \oplus 0$. Thus again by Lemma 3.8 and its proof, it follows that there exists z such that $z u(e \oplus g \oplus 0) u^{-1} z^{-1}=f \oplus g \oplus 0$. Hence $[e]-[f]=0$ in $K_{0}(\mathcal{A})$.

This completes the proof.

References

[1] B. Blackadar. K-theory for operator algebras. Springer Verlag,Newyork, 1987.
[2] Allen Hatcher. Vector bundles and K-theory. online book.
[3] M.F.Atiyah. K-Theory. W.A.Benjamin,Newyork, 1967.

