Quantum Symmetries in Free Probability Theory

Roland Speicher
Queen's University
Kingston, Canada

Quantum Groups

- are generalizations of groups G (actually, of $C(G)$)
- are supposed to describe non-classical symmetries
- are Hopf algebras, with some additional structure ...

Quantum Groups: Deformation of Classical

Symmetries

$$
G \rightsquigarrow G_{q}
$$

- quantum groups are often deformations G_{q} of classical groups, depending on some parameter q, such that for $q \rightarrow 1$, they go to the classical group $G=G_{1}$
- G_{q} and G_{1} are incomparable, none is stronger than the other
- G_{1} is supposed to act on commuting variables
- G_{q} is the right replacement to act on q-commuting variables

Quantum Groups: Strengthening of Classical

Symmetries

$$
G \rightsquigarrow G^{+}
$$

- there are situations where a classical group G has a genuine non-commutative analogue G^{+}(no interpolations)
- G^{+}is "stronger" than $G: \quad G \subset G^{+}$
- G acts on commuting variables
$-G^{+}$is the right replacement for acting on non-commuting variables

We are interested in quantum versions of
real compact matrix groups

Think of

- orthogonal matrices
- permutation matrices

Such quantum versions are captured by the notion of orthogonal Hopf algebra

Orthogonal Hopf Algebra

is a C^{*}-algebra A, given with a system of n^{2} self-adjoint generators $u_{i j} \in A(i, j=1, \ldots, n)$, subject to the following conditions:

- The inverse of $u=\left(u_{i j}\right)$ is the transpose matrix $u^{t}=\left(u_{j i}\right)$.
- $\Delta\left(u_{i j}\right)=\Sigma_{k} u_{i k} \otimes u_{k j}$ defines a morphism $\Delta: A \rightarrow A \otimes A$.
- $\varepsilon\left(u_{i j}\right)=\delta_{i j}$ defines a morphism $\varepsilon: A \rightarrow \mathbb{C}$.
- $S\left(u_{i j}\right)=u_{j i}$ defines a morphism $S: A \rightarrow A^{o p}$.

These are compact quantum groups in the sense of Woronowicz.

In the spirit of non-commutative geometry, we are thinking of

$$
A=C\left(G^{+}\right)
$$

as the continuous functions, generated by the coordinate functions $u_{i j}$, on some (non-existing) quantum group G^{+}, replacing a classical group G.

Quantum Orthogonal Group O_{n}^{+}(Wang 1995)

The quantum orthogonal group $A_{o}(n)=C\left(O_{n}^{+}\right)$is the universal unital C^{*}-algebra generated by $u_{i j}(i, j=1, \ldots, n)$ subject to the relation

- $u=\left(u_{i j}\right)_{i, j=1}^{n}$ is an orthogonal matrix

This means: for all i, j we have

$$
\sum_{k=1}^{n} u_{i k} u_{j k}=\delta_{i j} \quad \text { and } \quad \sum_{k=1}^{n} u_{k i} u_{k j}=\delta_{i j}
$$

Quantum Permutation Group S_{n}^{+}(Wang 1998)

The quantum permutation group $A_{s}(n)=C\left(S_{n}^{+}\right)$is the universal unital C^{*}-algebra generated by $u_{i j}(i, j=1, \ldots, n)$ subject to the relations

- $u_{i j}^{2}=u_{i j}=u_{i j}^{*}$ for all $i, j=1, \ldots, n$
- each row and column of $u=\left(u_{i j}\right)_{i, j=1}^{n}$ is a partition of unity:

$$
\sum_{j=1}^{n} u_{i j}=1 \quad \sum_{i=1}^{n} u_{i j}=1
$$

Are there more of those?

S_{n}^{+}
\cup
\subset
O_{n}^{+}
$S_{n} \quad \subset \quad O_{n}$

Are there more of those?

$$
\begin{array}{cccccc}
S_{n}^{+} & \subset & G_{n}^{+} & \subset & O_{n}^{+} \\
& & & & & \\
& & & \cup & & \\
& & & & & \\
S_{n} & \subset & G_{n} & \subset & O_{n}
\end{array}
$$

- Are there more non-commutative versions G_{n}^{+}of classical groups G_{n} ?

Are there more of those?

- Are there more non-commutative versions G_{n}^{+}of classical groups G_{n} ?
- Actually, are there more nice non-commutative quantum groups G_{n}^{*}, stronger than S_{n} ?

How can we describe and understand intermediate quantum groups:

$$
\begin{gathered}
S_{n} \subset \mathrm{G}_{\mathbf{n}}^{*} \subset O_{n}^{+} \\
C\left(S_{n}\right) \leftarrow \mathrm{C}\left(\mathrm{G}_{\mathbf{n}}^{*}\right) \leftarrow C\left(O_{n}^{+}\right)
\end{gathered}
$$

How can we describe and understand intermediate quantum groups:

$$
\begin{gathered}
S_{n} \subset \mathrm{G}_{\mathbf{n}}^{*} \subset O_{n}^{+} \\
C\left(S_{n}\right) \leftarrow \mathrm{C}\left(\mathrm{G}_{\mathbf{n}}^{*}\right) \leftarrow C\left(O_{n}^{+}\right)
\end{gathered}
$$

Deal with quantum groups by looking on their representations!!!

Spaces of Intertwiners

Associated to an orthogonal Hopf algebra ($\left.A=C\left(G_{n}^{*}\right),\left(u_{i j}\right)_{i, j=1}^{n}\right)$ are the spaces of intertwiners:

$$
\mathbf{I}_{G_{n}^{*}}(k, l)=\left\{T:\left(\mathbb{C}^{n}\right)^{\otimes k} \rightarrow\left(\mathbb{C}^{n}\right)^{\otimes l} \mid T u^{\otimes k}=u^{\otimes l} T\right\}
$$

where $u^{\otimes k}$ is the $n^{k} \times n^{k}$ matrix $\left(u_{i_{1} j_{1}} \ldots u_{i_{k} j_{k}}\right)_{i_{1} \ldots i_{k}, j_{1} \ldots j_{k}}$.

$$
\begin{gathered}
u \in M_{n}(A) \quad u: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n} \otimes A \\
u^{\otimes k}:\left(\mathbb{C}^{n}\right)^{\otimes k} \rightarrow\left(\mathbb{C}^{n}\right)^{\otimes k} \otimes A
\end{gathered}
$$

$\mathrm{I}_{G_{n}^{*}}$ is Tensor Category with Duals

Collection of vector spaces $\mathbf{I}_{G_{n}^{*}}(k, l)$ has the following properties:

- $T, T^{\prime} \in \mathbf{I}_{G_{n}^{*}}$ implies $T \otimes T^{\prime} \in \mathbf{I}_{G_{n}^{*}}$.
- If $T, T^{\prime} \in \mathbf{I}_{G_{n}^{*}}$ are composable, then $T T^{\prime} \in \mathbf{I}_{G_{n}^{*}}$.
- $T \in \mathbf{I}_{G_{n}^{*}}$ implies $T^{*} \in \mathbf{I}_{G_{n}^{*}}$.
- $i d(x)=x$ is in $\mathbf{I}_{G_{n}^{*}}(1,1)$.
- $\xi=\sum e_{i} \otimes e_{i}$ is in $\mathbf{I}_{G_{n}^{*}}(0,2)$.

Quantum Groups \leftrightarrow Intertwiners

The compact quantum group G_{n}^{*} can actually be rediscovered from its space of intertwiners:

There is a one-to-one correspondence between:

- orthogonal Hopf algebras $C\left(O_{n}^{+}\right) \rightarrow \mathrm{C}\left(\mathrm{G}_{\mathrm{n}}^{*}\right) \rightarrow C\left(S_{n}\right)$
- tensor categories with duals $\mathbf{I}_{O_{n}^{+}} \subset \mathbf{I}_{\mathbf{G}_{\mathbf{n}}^{*}} \subset \mathbf{I}_{S_{n}}$.

We denote by $P(k, l)$ the set of partitions of the set with repetitions $\{1, \ldots, k, 1, \ldots, l\}$. Such a partition will be pictured as

$$
p=\left\{\begin{array}{c}
1 \ldots k \\
\mathcal{P} \\
1 \ldots l
\end{array}\right\}
$$

where \mathcal{P} is a diagram joining the elements in the same block of the partition.

Example in $P(5,1)$:

Associated to any partition $p \in P(k, l)$ is the linear map

$$
T_{p}:\left(\mathbb{C}^{n}\right)^{\otimes k} \rightarrow\left(\mathbb{C}^{n}\right)^{\otimes l}
$$

given by

$$
T_{p}\left(e_{i_{1}} \otimes \ldots \otimes e_{i_{k}}\right)=\sum_{j_{1} \ldots j_{l}} \delta_{p}(i, j) e_{j_{1}} \otimes \ldots \otimes e_{j_{l}}
$$

where e_{1}, \ldots, e_{n} is the standard basis of \mathbb{C}^{n}.

$$
T_{p}:\left(\mathbb{C}^{n}\right)^{\otimes k} \rightarrow\left(\mathbb{C}^{n}\right)^{\otimes l}
$$

given by

$$
T_{p}\left(e_{i_{1}} \otimes \ldots \otimes e_{i_{k}}\right)=\sum_{j_{1} \ldots j_{l}} \delta_{p}(i, j) e_{j_{1}} \otimes \ldots \otimes e_{j_{l}}
$$

Examples:

$$
T_{\{| |\}}\left(e_{a} \otimes e_{b}\right)=e_{a} \otimes e_{b}
$$

$$
T_{p}:\left(\mathbb{C}^{n}\right)^{\otimes k} \rightarrow\left(\mathbb{C}^{n}\right)^{\otimes l}
$$

given by

$$
T_{p}\left(e_{i_{1}} \otimes \ldots \otimes e_{i_{k}}\right)=\sum_{j_{1} \ldots j_{l}} \delta_{p}(i, j) e_{j_{1}} \otimes \ldots \otimes e_{j_{l}}
$$

Examples:

$$
\begin{gathered}
T_{\{| |\}}\left(e_{a} \otimes e_{b}\right)=e_{a} \otimes e_{b} \\
T_{\{|-|\}}\left(e_{a} \otimes e_{b}\right)=\delta_{a b} e_{a} \otimes e_{a}
\end{gathered}
$$

$$
T_{p}:\left(\mathbb{C}^{n}\right)^{\otimes k} \rightarrow\left(\mathbb{C}^{n}\right)^{\otimes l}
$$

given by

$$
T_{p}\left(e_{i_{1}} \otimes \ldots \otimes e_{i_{k}}\right)=\sum_{j_{1} \ldots j_{l}} \delta_{p}(i, j) e_{j_{1}} \otimes \ldots \otimes e_{j_{l}}
$$

Examples:

$$
\begin{gathered}
T_{\{| |\}}\left(e_{a} \otimes e_{b}\right)=e_{a} \otimes e_{b} \\
T_{\{|-|\}}\left(e_{a} \otimes e_{b}\right)=\delta_{a b} e_{a} \otimes e_{a} \\
T_{\left\{\begin{array}{c}
\sqcup \\
\mid 1
\end{array}\right\}} \begin{array}{l}
\left(e_{a} \otimes e_{b}\right)=\delta_{a b} \sum_{c d} e_{c} \otimes e_{d}
\end{array}
\end{gathered}
$$

Intertwiners of (Quantum) Permutation and of

 (Quantum) Orthogonal Group| S_{n}^{+} | \subset | O_{n}^{+} | $\mathbf{I}_{S_{n}^{+}}$ | \supset | $\mathbf{I}_{O_{n}^{+}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \cup | | \cup | \cap | | \cap |
| S_{n} | \subset | O_{n} | $\mathbf{I}_{S_{n}}$ | \supset | $\mathbf{I}_{O_{n}}$ |

Intertwiners of

Permutation
Group

$$
\operatorname{span}\left(T_{p} \mid p \in P(k, l)\right)=\mathbf{I}_{S_{n}}(k, l)
$$

Intertwiners of (Quantum) Permutation

Group

Let $N C(k, l) \subset P(k, l)$ be the subset of noncrossing partitions.

$$
\begin{gathered}
\operatorname{span}\left(T_{p} \mid p \in N C(k, l)\right)=\mathbf{I}_{S_{n}^{+}}(k, l) \\
\cap \\
\operatorname{span}\left(T_{p} \mid p \in P(k, l)\right)=\mathbf{I}_{S_{n}}(k, l)
\end{gathered}
$$

Intertwiners of (Quantum) Permutation and of (Quantum) Orthogonal Group

Let $N C(k, l) \subset P(k, l)$ be the subset of noncrossing partitions.

$$
\begin{array}{cc}
\operatorname{span}\left(T_{p} \mid p \in N C(k, l)\right)=\mathbf{I}_{S_{n}^{+}}(k, l) & \supset \\
\cap & \mathbf{I}_{O_{n}^{+}}(k, l)=\operatorname{span}\left(T_{p} \mid p \in N C_{2}(k, l)\right) \\
\cap \\
\operatorname{span}\left(T_{p} \mid p \in P(k, l)\right)=\mathbf{I}_{S_{n}}(k, l) & \supset \\
\cap & \mathbf{I}_{O_{n}}(k, l)=\operatorname{span}\left(T_{p} \mid p \in P_{2}(k, l)\right)
\end{array}
$$

Easy Quantum Groups

(Banica, Speicher 2009)

A quantum group $S_{n} \subset G_{n}^{*} \subset O_{n}^{+}$is called easy when its associated tensor category is of the form

$$
\begin{gathered}
\mathbf{I}_{S_{n}}=\operatorname{span}\left(T_{p} \mid p \in P\right) \\
\cup \\
\mathbf{I}_{\mathbf{G}_{\mathbf{n}}^{*}} \\
\\
\mathbf{I}_{O_{n}}=\operatorname{span}\left(T_{p} \mid p \in N C_{2}\right)
\end{gathered}
$$

Easy Quantum Groups

(Banica, Speicher 2009)
A quantum group $S_{n} \subset G_{n}^{*} \subset O_{n}^{+}$is called easy when its associated tensor category is of the form

$$
\begin{gathered}
\mathbf{I}_{S_{n}}=\operatorname{span}\left(T_{p} \mid p \in P\right) \\
\cup \\
\mathbf{I}_{\mathbf{G}_{\mathbf{n}}^{*}}=\operatorname{span}\left(\mathbf{T}_{\mathbf{p}} \mid \mathbf{p} \in \mathbf{P}_{\mathbf{G}^{*}}\right) \\
\cup \\
\mathbf{I}_{O_{n}}=\operatorname{span}\left(T_{p} \mid p \in N C_{2}\right)
\end{gathered}
$$

for a certain collection of subsets $P_{G^{*}} \subset P$.

What are we interested in?

- classification of easy (and more general) quantum groups (Banica\&S, Banica\&Vergnioux, Banica\&Curran\&S)
- understanding of meaning/implications of symmetry under such quantum groups; in particular, under quantum permutations S_{n}^{+}, or quantum rotations O_{n}^{+} (Köstler\&S, Curran, Banica\&Curran\&S)
- treating series of such quantum groups (like S_{n}^{+}or O_{n}^{+}) as fundamental examples of non-commuting random matrices (Banica\&Curran\&S)

Classification Results

The category of partitions $P_{G^{*}} \subset P$ for an easy quantum group G_{n}^{*} must satisfy:

- $P_{G^{*}}$ is stable by tensor product.
- $P_{G^{*}}$ is stable by composition.
- $P_{G^{*}}$ is stable by involution.
- $P_{G^{*}}$ contains the "unit" partition |.
- $P_{G^{*}}$ contains the "duality" partition \sqcap.

Classification Results

There are:

- 6 Categories of Noncrossing Partitions and
- 6 Categories of Partitions containing Basic Crossing:
$\left\{\begin{array}{c}\text { singletons and } \\ \text { pairings }\end{array}\right\} \supset\left\{\begin{array}{c}\text { singletons and } \\ \text { pairings (even part) }\end{array}\right\} \supset \quad\left\{\begin{array}{c}\text { all } \\ \text { pairings }\end{array}\right\}$

$$
\begin{array}{ccc}
\cap & \cap & \cap \\
\left\{\begin{array}{c}
\text { all } \\
\text { partitions }
\end{array}\right\} & \supset \quad\left\{\begin{array}{c}
\text { all partitions } \\
\text { (even part) }
\end{array}\right\}
\end{array}>\left\{\begin{array}{c}
\text { with blocks of } \\
\text { even size }
\end{array}\right\}
$$

Classification Results

and thus:

- 6 free easy quantum groups $S_{n}^{+} \subset G_{n}^{+} \subset O_{n}^{+}$and
- 6 classical easy quantum groups $S_{n} \subset G_{n} \subset O_{n}$

$$
\left\{\begin{array}{c}
\text { singletons and } \\
\text { pairings }
\end{array}\right\} \supset\left\{\begin{array}{c}
\text { singletons and } \\
\text { pairings (even part) }
\end{array}\right\} \supset \quad\left\{\begin{array}{c}
\text { all } \\
\text { pairings }
\end{array}\right\}
$$

$$
\begin{gathered}
\cap \\
\left\{\begin{array}{c}
\text { all } \\
\text { partitions }
\end{array}\right\}
\end{gathered} \supset \quad\left\{\begin{array}{c}
\text { all partitions } \\
\text { (even part) }
\end{array}\right\} \quad \supset\left\{\begin{array}{c}
\text { with blocks of } \\
\text { even size }
\end{array}\right\}
$$

Classification Results

- there are easy quantum groups which are neither classical nor free
- we have partial classification of them
- problematic are the ones of hyperoctahedral type (corresponding to partitions with blocks of even size)
- one can also ask whether there are any other (not necessarily easy) quantum groups of this sort, e.g.: can one classify all quantum rotations $O_{n} \subset G_{n}^{*} \subset O_{n}^{+}$

Quantum Symmetries

A vector

$$
x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)
$$

is (quantum) symmetric (with respect to some property) if

$$
y=u x=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right) \quad \text { i.e. } \quad y_{i}=\sum_{j=1}^{n} u_{i j} \otimes x_{j}
$$

satisfies the same property as x.

Quantum Exchangeability

$x_{1}, \ldots, x_{n} \in(\mathcal{A}, \varphi)$ is
(quantum) exchangeable
if

$$
y_{1}, \ldots, y_{n} \in\left(C\left(S_{n}^{(+)}\right) \otimes \mathcal{A}, \text { id } \otimes \varphi\right)
$$

has the same distribution as x. Concretely this means

$$
\varphi\left(x_{i_{1}} \cdots x_{i_{k}}\right) \cdot 1_{C\left(S_{n}^{(+)}\right)}=\sum_{j_{1}, \ldots, j_{k}=1}^{n} u_{i_{1} j_{1}} \cdots u_{i_{k} j_{k}} \varphi\left(x_{j_{1}} \cdots x_{j_{k}}\right)
$$

de Finetti Theorem

(de Finetti 1931, Hewitt, Savage 1955)

The following are equivalent for an infinite sequence of classical, commuting random variables:

- the sequence is exchangeable (i.e., invariant under all S_{n})
- the sequence is independent and identically distributed with respect to the conditional expectation E onto the tail σ algebra of the sequence

Non-commutative de Finetti Theorem

(Köstler, Speicher 2008)

The following are equivalent for an infinite sequence of noncommutative random variables:

- the sequence is quantum exchangeable (i.e., invariant under all S_{n}^{+})
- the sequence is free and identically distributed with respect to the conditional expectation E onto the tail-algebra of the sequence

This "explains" occurrence of non-crossing pictures in free probability as emerging from the fact that free probability goes nicely with our quantum symmetries.

This "explains" occurrence of non-crossing pictures in free probability as emerging from the fact that free probability goes nicely with our quantum symmetries.

Question

Could it be that occurrence of planar pictures in subfactor theory emerges also somehow from the fact that subfactors have some nice relation with quantum permutations or alike symmetries?

Non-Commutative Random Matrices

- there exists, as for any compact quantum group, a unique Haar state on the easy quantum groups, thus one can integrate/average over the quantum groups
- actually: for the easy quantum groups, there exist nice and " concrete" formula for the calculation of this state:

$$
\int_{G_{n}^{*}} u_{i_{1} j_{1}} \cdots u_{i_{k} j_{k}} d u=\sum_{\substack{p, q \in P_{G^{*}}(k) \\ p \leq \operatorname{ker} i \\ q \leq \operatorname{ker} j}} W_{n}(p, q),
$$

where W_{n} is inverse of

$$
G_{n}(p, q)=n^{|p \vee q|} .
$$

Non-Commutative Random Matrices

- this allows the calculation of distributions of functions of our non-commutative random matrices G_{n}^{*}, in the limit $n \rightarrow \infty$
- in particular, in analogy to Diaconis\&Shashahani, we have results about the asymptotic distribution of $\operatorname{Tr}\left(u^{k}\right)$
- note: in the classical case, knowledge about traces of powers of the matrices is the same as knowledge about the eigenvalues of the matrices

Question

What are eigenvalues of a non-commutative (random) matrix?

- CAUTION

YOU HAVE REACHED THE
LAST PAGE
OF THE INTERNET
TURN OFF YOUR BROWSER AND GO BACK TO WORK THERE'S NOTHIMG ELSE TO SEE HERE

