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Quantum Groups

• are generalizations of groups G (actually, of C(G))

• are supposed to describe non-classical symmetries

• are Hopf algebras, with some additional structure ...
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Quantum Groups: Deformation of Classical

Symmetries

G Gq

• quantum groups are often deformations Gq of classical
groups, depending on some parameter q, such that for q → 1,
they go to the classical group G = G1

• Gq and G1 are incomparable, none is stronger than the other

– G1 is supposed to act on commuting variables

– Gq is the right replacement to act on q-commuting vari-
ables
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Quantum Groups: Strengthening of Classical

Symmetries

G G+

• there are situations where a classical group G has a genuine
non-commutative analogue G+ (no interpolations)

• G+ is ”stronger” than G: G ⊂ G+

– G acts on commuting variables

– G+ is the right replacement for acting on non-commuting
variables
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We are interested in quantum versions of

real compact matrix groups

Think of

• orthogonal matrices

• permutation matrices

Such quantum versions are captured by the notion of

orthogonal Hopf algebra
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Orthogonal Hopf Algebra

is a C∗-algebra A, given with a system of n2 self-adjoint genera-
tors uij ∈ A (i, j = 1, . . . , n), subject to the following conditions:

• The inverse of u = (uij) is the transpose matrix ut = (uji).

• ∆(uij) = Σk uik ⊗ ukj defines a morphism ∆ : A→ A⊗A.

• ε(uij) = δij defines a morphism ε : A→ C.

• S(uij) = uji defines a morphism S : A→ Aop.

These are compact quantum groups in the sense of Woronowicz.
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In the spirit of non-commutative geometry, we are thinking of

A = C(G+)

as the continuous functions, generated by the coordinate func-

tions uij, on some (non-existing) quantum group G+, replacing

a classical group G.
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Quantum Orthogonal Group O+
n (Wang 1995)

The quantum orthogonal group Ao(n) = C(O+
n ) is the universal

unital C∗-algebra generated by uij (i, j = 1, . . . , n) subject to the

relation

• u = (uij)
n
i,j=1 is an orthogonal matrix

This means: for all i, j we have

n∑
k=1

uikujk = δij and
n∑

k=1

ukiukj = δij
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Quantum Permutation Group S+
n (Wang 1998)

The quantum permutation group As(n) = C(S+
n ) is the universal

unital C∗-algebra generated by uij (i, j = 1, . . . , n) subject to the

relations

• u2
ij = uij = u∗ij for all i, j = 1, . . . , n

• each row and column of u = (uij)
n
i,j=1 is a partition of unity:

n∑
j=1

uij = 1
n∑

i=1

uij = 1
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Are there more of those?

S+
n ⊂ ⊂ → O+

n

↘

∪ ∪

↘
Sn →) ⊂ ⊂ On

Are there more non-commutative versions G+
n of classical

groups Gn?

Actually, are there more nice non-commutative quantum
groups G∗n?
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Are there more of those?

S+
n ⊂ O+

n

�

∪ G∗n ∪

�
Sn ⊂ On

• Are there more non-commutative versions G+
n of classical

groups Gn?

• Actually, are there more nice non-commutative quantum
groups G∗n, stronger than Sn?
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How can we describe and understand

intermediate quantum groups:

Sn ⊂ G∗n ⊂ O+
n

C(Sn)← C(G∗n)← C(O+
n )

Deal with quantum groups by looking on their

representations!!!
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Spaces of Intertwiners

Associated to an orthogonal Hopf algebra (A = C(G∗n), (uij)
n
i,j=1)

are the spaces of intertwiners:

IG∗n(k, l) = {T : (Cn)⊗k → (Cn)⊗l | Tu⊗k = u⊗lT}

where u⊗k is the nk × nk matrix (ui1j1 . . . uikjk)i1...ik,j1...jk
.

u ∈Mn(A) u : Cn → Cn ⊗A

u⊗k : (Cn)⊗k → (Cn)⊗k ⊗A
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IG∗n is Tensor Category with Duals

Collection of vector spaces IG∗n(k, l) has the following properties:

• T, T ′ ∈ IG∗n implies T ⊗ T ′ ∈ IG∗n.

• If T, T ′ ∈ IG∗n are composable, then TT ′ ∈ IG∗n.

• T ∈ IG∗n implies T ∗ ∈ IG∗n.

• id(x) = x is in IG∗n(1,1).

• ξ =
∑

ei ⊗ ei is in IG∗n(0,2).
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Quantum Groups ↔ Intertwiners

The compact quantum group G∗n can actually be rediscovered

from its space of intertwiners:

There is a one-to-one correspondence between:

• orthogonal Hopf algebras C(O+
n )→ C(G∗n)→ C(Sn)

• tensor categories with duals I
O+

n
⊂ IG∗n ⊂ ISn.
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We denote by P (k, l) the set of partitions of the set with repe-
titions {1, . . . , k,1, . . . , l}. Such a partition will be pictured as

p =


1 . . . k
P

1 . . . l


where P is a diagram joining the elements in the same block of
the partition.

Example in P (5,1): 
1 2 34 5
|−−−−|

t
−−−−−−−|
|
1
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Associated to any partition p ∈ P (k, l) is the linear map

Tp : (Cn)⊗k → (Cn)⊗l

given by

Tp(ei1 ⊗ . . .⊗ eik) =
∑

j1...jl

δp(i, j) ej1 ⊗ . . .⊗ ejl

where e1, . . . , en is the standard basis of Cn.
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Tp : (Cn)⊗k → (Cn)⊗l

given by

Tp(ei1 ⊗ . . .⊗ eik) =
∑

j1...jl

δp(i, j) ej1 ⊗ . . .⊗ ejl

Examples:

T{∣∣∣ ∣∣∣}(ea ⊗ eb) = ea ⊗ eb

T{∣∣∣−∣∣∣}(ea ⊗ eb) = δab ea ⊗ ea

T{
t
| |

}(ea ⊗ eb) = δab

∑
cd

ec ⊗ ed
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Intertwiners of (Quantum) Permutation and of

(Quantum) Orthogonal Group

S+
n ⊂ ⊂ → O+

n

↘
∪ ∪

↘
Sn →) ⊂ ⊂ On

I
S+

n
⊃ ⊃ → I

O+
n

↘
∩ ∩

↘
ISn →) ⊃ ⊃ IOn
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Intertwiners of (Quantum) Permutation and of

(Quantum) Orthogonal Group

Let NC(k, l) ⊂ P (k, l) be the subset of noncrossing partitions.

span(Tp|p ∈ NC(k, l)) = I
S+

n
(k, l) ⊃ I

O+
n
(k, l) = span(Tp|p ∈ NC2(k, l))

∩ ∩

span(Tp|p ∈ P (k, l)) = ISn(k, l) ⊃ IOn(k, l) = span(Tp|p ∈ P2(k, l))
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Easy Quantum Groups
(Banica, Speicher 2009)

A quantum group Sn ⊂ G∗n ⊂ O+
n is called easy when its associ-

ated tensor category is of the form

ISn = span(Tp | p ∈ P )

∪
IG∗n= span(Tp | p ∈ PG∗),

∪
IOn = span(Tp | p ∈ NC2)

for a certain collection of subsets PG∗ ⊂ P .
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What are we interested in?

• classification of easy (and more general) quantum groups

(Banica&S, Banica&Vergnioux, Banica&Curran&S)

• understanding of meaning/implications of symmetry under

such quantum groups; in particular, under quantum permu-

tations S+
n , or quantum rotations O+

n

(Köstler&S, Curran, Banica&Curran&S)

• treating series of such quantum groups (like S+
n or O+

n ) as

fundamental examples of non-commuting random matrices

(Banica&Curran&S)
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Classification Results

The category of partitions PG∗ ⊂ P for an easy quantum group
G∗n must satisfy:

• PG∗ is stable by tensor product.

• PG∗ is stable by composition.

• PG∗ is stable by involution.

• PG∗ contains the “unit” partition |.

• PG∗ contains the “duality” partition u.
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Classification Results

There are:

• 6 Categories of Noncrossing Partitions and

• 6 Categories of Partitions containing Basic Crossing:

{
singletons and

pairings

}
⊃

{
singletons and

pairings (even part)

}
⊃

{
all

pairings

}

∩ ∩ ∩{
all

partitions

}
⊃

{
all partitions
(even part)

}
⊃

{
with blocks of

even size

}
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Classification Results

and thus:

• 6 free easy quantum groups S+
n ⊂ G+

n ⊂ O+
n and

• 6 classical easy quantum groups Sn ⊂ Gn ⊂ On

{
singletons and

pairings

}
⊃

{
singletons and

pairings (even part)

}
⊃

{
all

pairings

}

∩ ∩ ∩{
all

partitions

}
⊃

{
all partitions
(even part)

}
⊃

{
with blocks of

even size

}
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Classification Results

• there are easy quantum groups which are neither classical
nor free

• we have partial classification of them

• problematic are the ones of hyperoctahedral type (corre-
sponding to partitions with blocks of even size)

• one can also ask whether there are any other (not necessarily
easy) quantum groups of this sort, e.g.: can one classify all
quantum rotations On ⊂ G∗n ⊂ O+

n
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Quantum Symmetries

A vector

x =

x1
...

xn



is (quantum) symmetric (with respect to some property) if

y = ux =

y1
...

yn

 i.e. yi =
n∑

j=1

uij ⊗ xj

satisfies the same property as x.
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Quantum Exchangeability

x1, . . . , xn ∈ (A, ϕ) is

(quantum) exchangeable

if

y1, . . . , yn ∈ (C(S(+)
n )⊗A, id⊗ ϕ)

has the same distribution as x. Concretely this means

ϕ(xi1 · · ·xik) · 1C(S(+)
n )

=
n∑

j1,...,jk=1

ui1j1 · · ·uikjkϕ(xj1 · · ·xjk)
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de Finetti Theorem
(de Finetti 1931, Hewitt, Savage 1955)

The following are equivalent for an infinite sequence of classical,

commuting random variables:

• the sequence is exchangeable (i.e., invariant under all Sn)

• the sequence is independent and identically distributed with

respect to the conditional expectation E onto the tail σ-

algebra of the sequence
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Non-commutative de Finetti Theorem
(Köstler, Speicher 2008)

The following are equivalent for an infinite sequence of non-

commutative random variables:

• the sequence is quantum exchangeable (i.e., invariant under

all S+
n )

• the sequence is free and identically distributed with respect

to the conditional expectation E onto the tail-algebra of the

sequence
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This ”explains” occurrence of non-crossing pictures in free prob-

ability as emerging from the fact that free probability goes nicely

with our quantum symmetries.
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This ”explains” occurrence of non-crossing pictures in free prob-
ability as emerging from the fact that free probability goes nicely
with our quantum symmetries.

Question

Could it be that occurrence of planar pictures in subfactor theory
emerges also somehow from the fact that subfactors have some
nice relation with quantum permutations or alike symmetries?
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Non-Commutative Random Matrices

• there exists, as for any compact quantum group, a unique
Haar state on the easy quantum groups, thus one can inte-
grate/average over the quantum groups

• actually: for the easy quantum groups, there exist nice and
”concrete” formula for the calculation of this state:∫

G∗n
ui1j1 · · ·uikjkdu =

∑
p,q∈PG∗(k)

p≤ker i
q≤ker j

Wn(p, q),

where Wn is inverse of

Gn(p, q) = n|p∨q|.
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Non-Commutative Random Matrices

• this allows the calculation of distributions of functions of our

non-commutative random matrices G∗n, in the limit n→∞

• in particular, in analogy to Diaconis&Shashahani, we have

results about the asymptotic distribution of Tr(uk)

• note: in the classical case, knowledge about traces of powers

of the matrices is the same as knowledge about the eigen-

values of the matrices
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Question

What are eigenvalues of a non-commutative (random) matrix?

41



42


