PLANAR ALGEBRAS AND KUPERBERG'S 3-MANIFOLD INVARIANT

VIJAY KODIYALAM AND V. S. SUNDER

Abstract

We recapture Kuperberg's numerical invariant of 3-manifolds associated to a semisimple and cosemisimple Hopf algebra through a 'planar algebra construction'. A result of possibly independent interest, used during the proof, which relates duality in planar graphs and Hopf algebras, is the subject of a final section.

1. Introduction

Throughout this paper, the symbol \mathbf{k} will always denote an algebraically closed field and H will always denote a semisimple and cosemisimple Hopf algebra over k. We use S to denote the antipodes of both H and its dual Hopf algebra H^{*}. The notations h and ϕ will be reserved for the unique two-sided integrals of H and H^{*} normalised to satisfy $\epsilon(h)=(\operatorname{dim} H) 1=\phi(1)$ (in which case $\phi(h)=(\operatorname{dim} H) 1)$. We will identify H with $H^{* *}$ and write the scalar obtained by pairing $x \in H$ with $\psi \in H^{*}$ as one of $\psi(x), x(\psi),\langle\psi, x\rangle$, or $\langle x, \psi\rangle$. Thus for instance, $\langle\psi, S x\rangle=\langle x, S \psi\rangle$.

We will need the formalism of Jones' planar algebras. The basic reference is [Jns]. A somewhat more leisurely treatment of the basic notions may also be found in [KdySnd1]. (Mostly, we will follow the latter where, for instance, the *'s are attached to 'distinguished points' on boxes rather than to regions.)

While Vaughan Jones (who introduced planar algebras) mainly looked at ' C^{*} planar algebras', which are \grave{a} fortiori defined over \mathbb{C}, we will need to discuss planar algebras over fields possibly different from \mathbb{C}. We will, in particular, require some results from [KdySnd2] about the planar algebra $P=P(H)$ associated to a semisimple and cosemisimple Hopf algebra H over an arbitrary (algebraically closed) field. (To be entirely precise, we should call it $P(H, \delta)$, where δ is a solution in \mathbf{k} of the equation $\delta^{2}=(\operatorname{dim} H) 1$, as we have in [KdySnd2]; but we shall be sloppy and just write $P(H)$, with the understanding that one choice of a δ has been made as above.) In the sequel, we shall freely use 'planar algebra terminology' without any apology; explanations of such terminology can be found in [KdySnd1] or [KdySnd2].

This paper is devoted to showing that a 'planar algebra construction', when one works with the planar algebra $P=P(H)$, yields an alternative construction of Kuperberg's 'state-sum invariant' - see [Kpr] - of a closed 3-manifold associated with H.

We start with a recapitulation of Kuperberg's construction, which involves working with a Heegaard decomposition of the manifold. We describe Heegaard diagrams in some detail in the short $\S 2$. Another short section, $\S 3$, describes our planar algebra construction. A long $\S 4$ contains the details of the verification that the result of our construction agrees with that of Kuperberg's, and is consequently an invariant of the manifold.

Given a directed graph G embedded in an oriented 2-sphere, and a semisimple co-semisimple Hopf algebra H, we associate, in $\S 5$, two elements $V(G, H)$ and $F(G, H)$ of appropriate tensor powers of H. We show that $V(G, H)$ and $F\left(G, H^{*}\right)$ are related via the Fourier transform of the Hopf algebra H. Our initial verification that Kuperberg's invariant could be obtained by our planar algebraic prescription depended on this graph-theoretic result; what we have presented here is a shorter, cleaner version of the verification which only uses a special case (Corollary 3) of this result.

2. KUPERBERG'S INVARIANT OF 3 -MANIFOLDS

In this section we describe Kuperberg's construction of his invariant. In addition to Kuperberg's original paper [Kpr], a very clear description of the invariant can be found in [BrrWst] which gives yet another construction.

The only 3 -manifolds discussed here will be closed and oriented. Kuperberg's invariant (which is also defined for 3 -manifolds that are not necessarily closed, though we restrict ourselves to these) is constructed from a Heegaard diagram of the 3-manifold. We recall - see [PrsSss] - that a Heegaard diagram consists of an oriented smooth surface Σ, say, of genus g, and two systems of smoothly embedded circles on Σ, which we will denote by U^{1}, \ldots, U^{g} and L_{1}, \ldots, L_{g} (to conform to Kuperberg's upper and lower circles), such that each is a non-intersecting system of curves that does not disconnect Σ. (Note that a system of g non-intersecting simple closed curves on a genus g surface will fail to disconnect it precisely when the complement of the union of small tubular neighbourhoods of the curves is a 2 -sphere with $2 g$-holes). However the U-circles and L-circles may well intersect but only transversally. There is a well-known procedure for constructing a 3 -manifold from such data, and a theorem of Reidemeister and Singer specifies a set of moves under which two such Heegaard diagrams determine the same 3-manifold. It is a fact that either (i) reversing the orientation of Σ or (ii) interchanging the systems of U - and L-circles determines the oppositely oriented 3-manifold.

Consider now a genus g Heegaard diagram $\left(\Sigma, U^{1}, \ldots, U^{g}, L_{1}, \ldots, L_{g}\right)$. The computation of Kuperberg's invariant requires a choice of orientation and base-point on each of the circles $U^{1}, \ldots, U^{g}, L_{1}, \ldots, L_{g}$, so fix such a choice. We assume that none of the base-points is a point of intersection of a U - and an L-circle. Set $K_{t}^{i}=U^{i} \cap L_{t}, K^{i}=\coprod_{t} K_{t}^{i}, K_{t}=\coprod_{i} K_{t}^{i}, K=\coprod_{i, t} K_{t}^{i}$ and let $k_{t}^{i}, k^{i}, k_{t}, k$ denote their cardinalities respectively ${ }^{1}$. Traverse the circles L_{1} to L_{g} in order beginning from their base-points according to their orientation and index the points of intersection by the set $I_{L}=\left\{(t, p): 1 \leq t \leq g, 1 \leq p \leq k_{t}\right\}$, with the lexicographic ordering of I_{L} agreeing with the order in which the points of K are encountered. Refer to this as the 'lower numbering' of the points of intersection. Next, traverse the circles U^{1} to U^{g} the same way and index the points of intersection by the set $I^{U}=\left\{(i, j): 1 \leq i \leq g, 1 \leq j \leq k^{i}\right\}$, with the lexicographic ordering of I^{U} agreeing with the order in which the points of K are encountered. Refer to this as the 'upper numbering' of the points of intersection. These give bijections $l: I_{L} \rightarrow K$ and $u: I^{U} \rightarrow K$.

Consider now the elements $\Delta_{k_{1}}(h) \otimes \cdots \otimes \Delta_{k_{g}}(h) \in H^{\otimes k}$ and $\Delta_{k^{1}}(\phi) \otimes \cdots \otimes$ $\Delta_{k^{g}}(\phi) \in\left(H^{*}\right)^{\otimes k}$. Also consider, for each $q \in K$, the endomorphism T_{q} of H^{*} (or

[^0]of H) defined to be $i d$ or S according as the tangent vectors of the lower and upper circles at the point q, in that order, form a positively or negatively oriented basis for the tangent space at q to Σ. Kuperberg's invariant is obtained by pairing these off using the bijections l and u after twisting by the T_{q}.

Here, and elsewhere in this paper, we will find it convenient to use two bits of Hopf algebra notation: (i) superscripts indicate that multiple copies of Haar integrals are being used, while (ii) subscripts indicate use of our version of the so-called Sweedler notation for comultiplication - according to which we write, for example, $\Delta_{n}(x)=x_{1} \otimes \cdots \otimes x_{n}$ rather than the more familiar $\Delta_{n}(x)=\sum_{(x)} x_{(1)} \otimes$ $\cdots \otimes x_{(n)}$ in the interest of notational convenience.

Thus explicitly, suppose that c and d are the numbers of isolated U - and L-circles repectively in the Heegaard diagram. Then Kuperberg's invariant is given by the expression:

$$
\delta^{-2 g+2 c+2 d} \prod_{q \in K}\left\langle h_{p(q)}^{t(q)}, T_{q} \phi_{j(q)}^{i(q)}\right\rangle
$$

where t, p and i, j are the obvious projection functions on I_{L} and I^{U} regarded as functions on K via the l and u identifications respectively. We may also rewrite this expression as

$$
\begin{equation*}
\delta^{-2 g+2 c} \prod_{t=1}^{g} h^{t}\left(\prod_{p=1}^{k_{t}} T_{l(t, p)} \phi_{j(l(t, p))}^{i(l(t, p))}\right) \tag{2.1}
\end{equation*}
$$

Note that the $\delta^{2 d}$ is absorbed into the product as those terms for which $k_{t}=0$, each of which gives a $h^{t}(\epsilon)=\delta^{2}$.

That this expression is independent of the chosen base-points follows from the traciality of ϕ and h on H and H^{*} respectively while independence of the chosen orientations follows from the fact of S being an anti-algebra and anti-coalgebra map. The main result of $[\mathrm{Kpr}]$ is that this is a topological invariant of the 3 -manifold determined by the Heegaard diagram and is, in a sense that is made precise there, complete. We note that Kuperberg's invariant is a 'picture invariant' in the sense of [DttKdySnd].

3. A PLANAR ALGEBRA CONSTRUCTION

In this section, we will describe our method of starting with a connected, spherical, non-degenerate planar algebra P with non-zero modulus δ, and associating a number to a Heegaard diagram with data $\left(\Sigma, U^{1}, \ldots, U^{g}, L_{1}, \ldots, L_{g}\right)$ as above.

Associated to such a Heegaard diagram is a certain planar diagram that conveys the same information. This is also often called a Heegaard diagram but in order to distinguish the two, we will refer to the latter picture as a planar Heegaard diagram. The planar Heegaard digram is obtained from the Heegaard diagram in the following way. Remove thin tubular neighbourhoods of the L-circles from Σ to get an oriented 2 -sphere with $2 g$ holes. Now a U-circle U^{i} becomes either (a) a simple closed curve on this sphere with holes - in case $k^{i}=0$, or (b) a collection of k^{i} arcs with endpoints on the boundaries of the holes, if $k^{i}>0$.

Fix a point on the sphere, and identify its complement with the plane - with anti-clockwise orientation - and finally arrive at the associated planar Heegaard diagram, which consists of the following data:
(1) a set of $2 g$ of circles (the boundaries of the tubular neighbourhoods of the L-circles) that comes in pairs - two circles being paired off if they come from the same L-circle - and denoted $L_{1}^{+}, L_{1}^{-}, \ldots, L_{g}^{+}, L_{g}^{-}$(with L_{i}^{+}and L_{i}^{-} being paired for each i, and the choice of which to call + and which - being arbitrary);
(2) diffeomorphisms of L_{t}^{+}onto L_{t}^{-}which reverse the orientations inherited by $L_{t}^{ \pm}$from the plane;
(3) collections of k_{t} distinguished points on each of L_{t}^{+}and L_{t}^{-}- that are points of intersection with the U-curves - which are mapped to one another by the diffeomorphism of 2 above;
(4) a collection of curves - which we shall refer to as the strings of the diagram - which are either (a) entire U-circles which intersect no L-circles, or (b) arcs of U-curves terminating at distinguished points on the L-circles.

It is to be noted that the planar Heegaard diagram is specified by the associated Heegaard diagram together with a 'choice of point at infinity'.

From a planar Heegaard diagram we create a planar network in the sense of Jones. For this, we will first make a choice of base-points on all the circles $L_{t}^{ \pm}$, taking care to ensure that (i) the base-points on L_{t}^{+}and L_{t}^{-}correspond under the diffeomorphism (of 2 above) between $L_{t}^{ \pm}$, and (ii) the base-points are not on the U-curves.

Next, thicken the U-curves of the planar Heegaard diagram to black bands. If the bands are sufficiently thin, no base-point on the L-circles will lie in a black region. We will refer to the L_{t}^{+}as 'positive circles' and the L_{t}^{-}as 'negative circles'. Each of the positive and negative circles now has an even number of distinguished points on its boundary - these being the points of intersection of the boundaries of the black bands, i.e., the doubled U-curves, with the circles. For each circle $L_{t}^{ \pm}$, start from its base-point and move clockwise until the first band is hit - at a distinguished point - and mark that point with a $*$. This yields a planar network in Jones' sense. Call it N.

The boxes of this network are the holes bounded by the circles $L_{t}^{ \pm}$. There are $2 g$ of them with colours k_{1}, \ldots, k_{g}, each occuring twice, and we denote these boxes by $B_{t}^{ \pm}$. (Recall that k_{t} is the number of points of intersection of L_{t} with all the U curves in the original Heegaard diagram.) Suppose that the boxes of N are ordered as $B_{1}^{+}, B_{1}^{-}, \ldots, B_{g}^{+}, B_{g}^{-}$. The number we wish to associate to the Heegaard diagram is given by the expression

$$
\begin{equation*}
\delta^{-\left(k_{1}+k_{2}+\ldots+k_{g}\right)} Z_{N}^{P}\left(c_{k_{1}} \otimes \ldots \otimes c_{k_{g}}\right) \tag{3.2}
\end{equation*}
$$

where Z_{N}^{P} is the partition function of the planar network N for the planar algebra P and $c_{k} \in P_{k} \otimes P_{k}$ is the unique element satisfying $\left(i d \otimes \tau_{k}\right)\left((1 \otimes x) c_{k}\right)=x$ for all $x \in P_{k}$, and τ_{k} is the normalised 'picture trace' on the P_{k}. The element c_{k} is sometimes referred to as a quasi-basis for the functional τ_{k} on P_{k} - see [BhmNllSzl] - and its existence and uniqueness are guaranteed by the non-degeneracy of τ_{k}. It is true and easy to see that

$$
\begin{equation*}
c_{k}=\sum_{j \in J} f_{j} \otimes f^{j} . \tag{3.3}
\end{equation*}
$$

whenever $\left\{f_{j}: j \in J\right\}$ and $\left\{f^{j}: j \in J\right\}$ are any pair of bases for P_{k} which are dual with respect to the trace τ_{k} meaning that

$$
\tau_{k}\left(f_{i} f^{j}\right)=\left\{\begin{array}{ll}
0 & \text { if } i \neq j \\
1 & \text { if } i=j
\end{array} .\right.
$$

We will show that when $P=P(H)$, the expression given by (3.2) agrees with Kuperberg's invariant.

We would like to remark that the expression given by (3.2) is independent of the chosen base-points (because c_{k} is invariant under $Z_{R} \otimes Z_{R^{-1}}$, where R is the k rotation tangle) and also independent of the choice of which circles to call positive and which negative, due to the symmetry of c_{k} under the flip (which is an easy consequence of the traciality of τ_{k}).

4. Concordance with Kuperberg's construction

Our aim in this section is to show that when $P=P(H)$, the construction of $\S 4$ yields the same result as that of $\S 3$.

We begin by observing that the construction of the previous section makes perfectly good sense at the following level of generality. Let us say that a planar network is box doubled if there is given a fixed-point free involution on the set of its boxes which preserves colours, i.e., its boxes are paired off with each k-box being paired with another such. Suppose P is a connected, spherical, non-degenerate planar algebra with non-zero modulus δ and N is a box doubled planar network with $2 g$ boxes; let $\sigma \in \Sigma_{2 g}$ be any permutation with the property that the boxes $D_{\sigma(2 l-1)}(N)$ and $D_{\sigma(2 l)}(N)$ are paired off, and are of colour k_{l}, say, for $1 \leq l \leq g$. Then define

$$
\begin{equation*}
\tau^{P}(N):=\delta^{-\left(k_{1}+k_{2}+\ldots+k_{g}\right)} Z_{\sigma^{-1}(N)}^{P}\left(c_{k_{1}} \otimes \cdots \otimes c_{k_{g}}\right) \tag{4.4}
\end{equation*}
$$

where, for $\pi \in \Sigma_{n}, \pi(N)$ refers to the network which is N, but with its boxes re-numbered according to π - see [KdySnd1].Thus, again by equation (2.3) of [KdySnd1], we have

$$
\tau^{P}(N):=\delta^{-\left(k_{1}+k_{2}+\ldots+k_{g}\right)} Z_{N}^{P}\left(U_{\sigma}\left(c_{k_{1}} \otimes \cdots \otimes c_{k_{g}}\right)\right.
$$

where the notation U_{σ} refers, as in [KdySnd1], to the invertible operator U_{σ} : $\otimes_{i=1}^{n} V_{i} \rightarrow \otimes_{i=1}^{n} V_{\sigma^{-1}(i)}$ - between n-fold tensor products - defined by

$$
U_{\sigma}\left(\otimes_{i=1}^{n} v_{i}\right)=\otimes_{i=1}^{n} v_{\sigma^{-1}(i)} .
$$

The motivation for this definition, and in particular for the normalisation, comes from the $(1+1)$ TQFT of [KdyPtiSnd]. Symmetry of the $c_{k_{j}}$ under the flip implies - as in $\S 3$ - that the definition $\tau^{P}(N)$ depends only on N, P, and on the pairing between the boxes of N, and not on the choice of the permutation σ above.

For the rest of this section, we assume that
(1) $P=P(H)$. (Recall that in this case $H=P_{2}$ with non-degenerate trace given by $\tau_{2}=\delta^{-2} \phi$.)
(2) N is obtained from a planar Heegaard diagram D - and we assume that the choices of $L_{t}^{ \pm}$are made in such a way as to ensure that the orientation inherited by L_{t}^{+}(resp., L_{t}^{-}) from the choice of orientation made for L_{t} in Kuperberg's construction is the clockwise (resp., anticlockwise) one.
(3) N has $2 g$ boxes $B_{1}^{+}, B_{1}^{-}, \ldots, B_{g}^{+}, B_{g}^{-}$in that order, where the $B_{t}^{ \pm}$have colour k_{t} and have been paired off as above, with the boundary of $B_{t}^{ \pm}$being identified with $L_{t}^{ \pm}$. Thus, the boxes of N are naturally indexed by $X=$ $\{(t, \epsilon): 1 \leq t \leq g, \epsilon \in\{+,-\}\}$. (So, we may choose σ to be the identity permutation in the computation of $\tau^{P}(N)$.)
We will proceed to calculate $\tau^{P}(N)$ in several steps. Our first step will be to relate $\tau^{P}(N)$ and $\tau^{P}(\widetilde{N})$, where \widetilde{N} is a box doubled planar network that contains only 2-boxes (and is built from N).

In an obviously suggestive notation, we set \widetilde{N} to be the planar network defined by

$$
\widetilde{N}=N \circ_{\left\{B_{t}^{\epsilon}:(t, \epsilon) \in X\right\}}(\{S(t, \epsilon)\}),
$$

where $S(t, \epsilon)$ is defined to be $C_{k_{t}}$ or $C_{k_{t}}^{*}$ according as $\epsilon=+$ or $\epsilon=-$, and the tangles C_{k} are defined in Figure 1 and their adjoint tangles are illustrated in Figure 2. Note that \widetilde{N} is box doubled, by pairing off the $p^{t h}$ box of $C_{k_{t}}$ with the $p^{t h}$ box

Figure 1. The tangles C_{k} for $k \geq 2, k=1$ and $k=0_{+}$

Figure 2. The tangles C_{k}^{*} for $k \geq 2, k=1$ and $k=0_{+}$
of $C_{k_{t}}^{*}$.
Our immediate aim is to prove, with the foregoing notation, that

$$
\begin{equation*}
\delta^{k_{1}+\cdots+k_{g}} \tau^{P}(\tilde{N})=\delta^{2 g} \tau^{P}(N) \tag{4.5}
\end{equation*}
$$

For this, we begin by noting that in P_{2}, we have

$$
\begin{equation*}
c_{2}=h_{1} \otimes S h_{2}=S h_{2} \otimes h_{1} \tag{4.6}
\end{equation*}
$$

In order to prove equation (4.6), note that, for all $x \in H$, we have

$$
\begin{aligned}
\left(i d_{H} \otimes \frac{1}{n} \phi\right)\left((1 \otimes x)\left(h_{1} \otimes S h_{2}\right)\right) & =\left(i d_{H} \otimes \frac{1}{n} \phi\right)\left(h_{1} \otimes x S h_{2}\right) \\
& =\left(i d_{H} \otimes \frac{1}{n} \phi\right)\left(h_{1} x \otimes S h_{2}\right) \\
& =\frac{1}{n} \phi\left(S h_{2}\right) h_{1} x \\
& =x ;
\end{aligned}
$$

The second identity of equation (4.6) is established in similar fashion.
The next step towards proving equation (4.5) is to establish the following identity for $k=0_{+}, 1,2, \cdots$:

$$
\begin{equation*}
\delta^{2} c_{k}=\left(Z_{C_{k}} \otimes Z_{C_{k}^{*}}\right)\left(U_{\sigma_{k}}\left(c_{2}^{\otimes k}\right)\right) \tag{4.7}
\end{equation*}
$$

where $\sigma_{k} \in \Sigma_{2 k}$ is the permutation defined by

$$
\sigma_{k}=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & \cdots & 2 k-1 & 2 k \\
1 & k+1 & 2 & k+2 & \cdots & k & 2 k
\end{array}\right) .
$$

Note that $U_{\sigma_{k}}$ maps $H^{\otimes 2 k}$ into itself, and we find from the definition that (4.8)
$U_{\sigma_{k}}(a(1) \otimes b(1) \otimes a(2) \otimes b(2) \otimes \cdots \otimes a(k) \otimes b(k))=a(1) \otimes \cdots \otimes a(k) \otimes b(1) \otimes \cdots \otimes b(k)$
for any $a(i), b(i) \in H$.
We shall now prove equation (4.7) for $k \geq 2$. The verification of the equation in the cases $k=0_{+}$and $k=1$ is easy - and is a consequence of the facts $Z_{C_{0}}(1)=$ $Z_{C_{0}^{*}}(1)=\delta 1_{0_{+}}$and $Z_{C_{1}}=\epsilon(\cdot) 1_{1}=(\epsilon \circ S)(\cdot) 1_{1}=Z_{C_{1}^{*}}$.

We now wish to observe that what was called X_{k} in Lemma 5 of [KdySnd2] is nothing but the tangle $C_{k} \circ_{k}\left(1^{2}\right)$, so that $Z_{X_{k}}^{P}\left(\otimes_{i=1}^{k-1}(a(i))=Z_{C_{k}}^{P}\left(\left(\otimes_{i=1}^{k-1}(a(i)) \otimes 1_{H}\right)\right.\right.$. It follows from Lemma 5 of [KdySnd2], that for $k \geq 1$, the LHS of equation (4.7) is given by

$$
\begin{align*}
\delta^{2} c_{k} & =\delta^{2} \sum_{\mathbf{i} \in I^{k-1}} Z_{C_{k}}\left(e_{i_{1}} \otimes \cdots \otimes e_{i_{k-1}} \otimes 1\right) \otimes Z_{C_{k}^{*}}\left(e^{i_{1}} \otimes \cdots \otimes e^{i_{k-1}} \otimes 1\right) \\
& =\left(Z_{C_{k}} \otimes Z_{C_{k}^{*}}\right)\left[U_{\sigma_{k}}\left(\left(\otimes_{j=1}^{k-1}\left(e_{i_{j}} \otimes e^{i_{j}}\right)\right) \otimes(1 \otimes 1)\right)\right] \quad \text { (by eq. (4.8)) } \\
& =\left(Z_{C_{k}} \otimes Z_{C_{k}^{*}}\right)\left[U_{\sigma_{k}}\left(c_{2}^{\otimes(k-1)} \otimes(1 \otimes 1)\right)\right] \quad \text { (by eq. (3.3)) } \\
& =\left(Z_{C_{k}} \otimes Z_{C_{k}^{*}}\right)\left[U_{\sigma_{k}}\left(\otimes_{j=1}^{k-1}\left(h_{1}^{j} \otimes S h_{2}^{j}\right) \otimes(1 \otimes 1)\right)\right] \text { (by eq. (4.6)) } \\
& =\delta^{2} Z_{C_{k}}\left(h_{1}^{1} \otimes h_{1}^{2} \otimes \cdots \otimes h_{1}^{k-1} \otimes 1\right) \otimes Z_{C_{k}^{*}}\left(S h_{2}^{1} \otimes S h_{2}^{2} \otimes \cdots \otimes S h_{2}^{k-1} \otimes 1\right) . \tag{4.9}
\end{align*}
$$

On the other hand, equations (4.8) and (4.6) imply that the RHS of equation (4.7) is given by

$$
Z_{C_{k}}\left(h_{1}^{1} \otimes h_{1}^{2} \otimes \cdots h_{1}^{k}\right) \otimes Z_{C_{k}^{*}}\left(S h_{2}^{1} \otimes S h_{2}^{2} \otimes \cdots S h_{2}^{k}\right)
$$

To proceed further, we need the following consequences of the so-called 'exchange relation' (see [Lnd] and [KdySnd2]) in $P(H)$:

$$
\begin{aligned}
& Z_{C_{k}}(a(1) \otimes a(2) \otimes \cdots \otimes a(k)) \\
& \quad=\quad Z_{C_{k}}\left(a(1) S a(k)_{k-1} \otimes a(2) S a(k)_{k-2} \otimes \cdots \otimes a(k-1) S a(k)_{1} \otimes 1\right) \\
& Z_{C_{k}^{*}}(a(1) \otimes a(2) \otimes \cdots \otimes a(k-1) \otimes S a(k)) \\
& \quad=\quad Z_{C_{k}^{*}}\left(a(k)_{1} a(1) \otimes a(k)_{2} a(2) \otimes \cdots \otimes a(k)_{k-1} a(k-1) \otimes 1\right)
\end{aligned}
$$

for arbitrary $a(1), \cdots, a(k) \in H$. (It is still assumed that k is larger than 1.)
We may now deduce that the RHS of equation (4.7) is given by

$$
\begin{align*}
& Z_{C_{k}}\left(h_{1}^{1} S h_{k-1}^{k} \otimes h_{1}^{2} S h_{k-2}^{k} \otimes \cdots h_{1}^{k} S h_{1}^{k} \otimes 1\right) \\
& \quad \otimes Z_{C_{k}^{*}}\left(h_{k}^{k} S h_{2}^{1} \otimes h_{k+1}^{k} S h_{2}^{2} \otimes \cdots h_{2 k-2}^{k} S h_{2}^{k-1} \otimes 1\right) \\
& =\quad Z_{C_{k}}\left(h_{1}^{1} h_{k}^{k} S h_{k-1}^{k} \otimes h_{1}^{2} h_{k+1}^{k} S h_{k-2}^{k} \otimes \cdots h_{1}^{k-1} h_{2 k-2}^{k} S h_{1}^{k} \otimes 1\right) \\
& \quad \otimes Z_{C_{k}^{*}}\left(S h_{2}^{1} \otimes S h_{2}^{2} \otimes \cdots S h_{2}^{k-1} \otimes 1\right) \tag{4.10}
\end{align*}
$$

where we have used the Hopf algebra fact $x S h_{2} \otimes h_{1} y=S h_{2} \otimes h_{1} x y$ in the last line above. Yet another Hopf algebra fact guarantees the equality of the right sides of equations (4.9) and (4.10); this other (easily established) fact is that

$$
h_{k} S h_{k-1} \otimes h_{k+1} S h_{k-2} \otimes \cdots h_{2 k-2} S h_{1}=\delta^{2} 1^{\otimes(k-1)} .
$$

Now for proving equation (4.5), note that

$$
\begin{align*}
\delta^{2 g} \tau^{P}(N) & =\delta^{2 g-\left(k_{1}+\cdots+k_{g}\right)} Z_{N}^{P}\left(c_{k_{1}} \otimes \cdots \otimes c_{k_{g}}\right) \\
& =\delta^{-\left(k_{1}+\cdots+k_{g}\right)} Z_{N}^{P}\left[\otimes_{t=1}^{g}\left(Z_{C_{k_{t}}}^{P} \otimes Z_{C_{k_{t}}^{*}}^{P}\right)\left(U_{\sigma_{k_{t}}}\left(c_{2}^{\otimes k_{t}}\right)\right)\right] \text { (by eq. } \tag{4.7}\\
(4.11) & =\delta^{-\left(k_{1}+\cdots+k_{g}\right)} Z_{\widetilde{N}}^{P}\left(U_{\sigma}\left(c_{2}^{\otimes k}\right)\right) \tag{4.11}\\
& =\delta^{\left(k_{1}+\cdots+k_{g}\right)} \tau^{P}(\widetilde{N})
\end{align*}
$$

where the last step uses the fact that one choice for the permutation $\sigma \in \Sigma_{2 k}$ that is needed in the computation of $\tau^{P}(\widetilde{N})$ is given by $\sigma=\coprod_{i=1}^{g} \sigma_{k_{i}}$; and equation (4.5) has finally been established.

Next, note that K^{i} splits the U-circle U^{i} into k^{i} strings if $k^{i}>0$ or into a single closed string if $k^{i}=0$. For $(i, j) \in I^{U}$, define $e(i, j)$ to be the string bounded by $u(i, j-1)$ and $u(i, j)$. (The symbols l and u refer, of course, to the lower and upper numbering defined in $\S 3$. Further, we adopt the cyclic convention that $u(i, 0)=u\left(i, k^{i}\right)$.) Orient each string of the diagram to agree with the choice of orientation of the U-circles in computing Kuperberg's invariant.

We shall use the symbol E to denote the set of non-closed strings of the diagram D and C to denote the set of closed strings. Thus $|C|$ is the number of isolated U-circles, which was earlier denoted by c. Note that each $e \in E$ comes equipped with the data of various features of its source and range; specifically, we shall write:

- $a(e)$ (resp., $z(e))$ for the point in K at which the string of the Heegard diagram which corresponds to e originates (resp., terminates); (these depend only on the original Heegaard diagram.)
- $\alpha(e)$ (resp., $\zeta(e))$ for 1 or 2 according as the string in D which corresponds to e originates (resp., terminates) in a positive or negative box; (these depend on the planar Heegaard diagram derived from the original Heegaard diagram.)
Note that, by definition,

$$
\begin{equation*}
z(e(i, j))=a(e(i, j+1))=u(i, j) \forall 1 \leq i \leq g, 1 \leq j \leq k^{i} \tag{4.12}
\end{equation*}
$$

with the convention that $e\left(i, k^{i}+1\right)=e(i, 1)$. Note also that the maps

$$
z, a: E \rightarrow K
$$

are bijections and in particular, that $|E|=k$.
We will need to recall the definition and some basic properties of the Fourier transform map for a semisimple and cosemisimple Hopf algebra. This is the map $F: H \rightarrow H^{*}$ defined by $F(x)=\delta^{-1} \phi_{1}(x) \phi_{2}$. The properties that will be relevant for us are (i) $F \circ F=S$, (ii) $F \circ S=S \circ F$, (iii) $F(1)=\delta^{-1} \phi$ and $F(h)=\delta \epsilon$. An easily proved Hopf algebra result is:

$$
\begin{equation*}
(F \otimes F)\left(h_{1} \otimes S h_{2}\right)=\left(\phi_{1} \otimes \phi_{2}\right) . \tag{4.13}
\end{equation*}
$$

We refer the reader to [KdySnd2] for an explanation of the notations involved and a proof of the following result which appears as Corollary 10 there.

Proposition 1. Let $P=P(H)$ and $Q=P\left(H^{*}\right)$ for a semisimple and cosemisimple Hopf algebra H. Suppose that N is a planar network with g boxes all of which are 2-boxes. Then:

$$
Z_{N}^{P}=Z_{N^{-}}^{Q} \circ F^{\otimes g}
$$

where both sides are regarded as \mathbf{k}-valued functions on $H^{\otimes g}$.
It follows from Proposition 1, equation (4.11) and equation (4.13) that

$$
\begin{align*}
\tau^{P}(N) & =\delta^{-\left(2 g+k_{1}+\cdots+k_{g}\right)} Z_{\widetilde{N}}^{P}\left(U_{\sigma}\left(c_{2}^{\otimes k}\right)\right) \\
& =\delta^{-\left(2 g+k_{1}+\cdots+k_{g}\right)} Z_{\tilde{N}^{-}}^{Q}\left(U_{\sigma}\left(\left(\phi_{1} \otimes \phi_{2}\right)^{\otimes k}\right)\right) \tag{4.14}
\end{align*}
$$

We next apply Corollary 3 of [KdySnd2] in order to evaluate $Z_{\tilde{N}^{-}}^{Q}\left(U_{\sigma}\left(\left(\phi_{1} \otimes\right.\right.\right.$ $\left.\left.\phi_{2}\right)^{\otimes k}\right)$). According to this, given a planar network with only 2-boxes that are labelled by elements of H, its partition function is computed by first replacing each 2-box labelled by a with a pair of strands, where the one going through $*$ is labelled a_{1} and the other $S a_{2}$. (This prescription was first outlined in the case of the group planar algebra in [Lnd].) The labels on each loop so formed are read in the order opposite to the orientation of the loop and $\delta^{-1} \phi$ evaluated on the product. The product of these terms over all loops is the required scalar. We assert that applied to \widetilde{N}^{-}, the number of loops formed is given by $2 g+k+2 c$.

For instance consider the planar Heegaard diagram of $L(3,1) \#\left(S^{2} \times S^{1}\right)$ - the connected sum of the lens space $L(3,1)$ and $S^{2} \times S^{1}$ - shown in Figure 3. It consists of $2 U$ - and $2 L$-curves. The L curves have their \pm versions and are shown as dark circles along with basepoints chosen on $L_{1}^{ \pm}$(the others are irrelevant), while the U-curves are shown by lighter lines. One of the U curves is isolated (the one

Figure 3. The planar Heegaard diagram for $L(3,1) \#\left(S^{2} \times S^{1}\right)$
around L_{2}^{+}) while the other breaks up into 3 strings. The labellings of the points of intersection between the L - and U-curves is the 'lower numbering'.

The planar network \widetilde{N} corresponding to this Heegaard diagram is shown in Figure 4. The planar network \widetilde{N}^{-}is, by definition, obtained from \widetilde{N} by moving all

Figure 4. The planar network \widetilde{N} for $L(3,1) \#\left(S^{2} \times S^{1}\right)$
the *'s anticlockwise by one and therefore $Z_{\tilde{N}^{-}}^{Q}\left(U_{\sigma}\left(\left(\phi_{1} \otimes \phi_{2}\right)^{\otimes 3}\right)\right)$ in this example is given by the labelled planar network in Figure 5. Applying the procedure of Corollary 3 of [KdySnd2] to this labelled planar network yields the labelled loops as in Figure 6. It should now be clear why even in the general case, the number of loops obtained is $2 g+k+2 c$.

Furthermore, a little thought shows that, as in this example, $Z_{\tilde{N}^{-}}^{Q}\left(U_{\sigma}\left(\left(\phi_{1} \otimes\right.\right.\right.$ $\left.\left.\phi_{2}\right)^{\otimes k}\right)$) is the product of the following 4 types of terms:
(a) For each circle of the form L_{t}^{+}, a term $\delta^{-1} h^{(t,+)}\left(\prod_{p=1}^{k_{t}} \phi_{1}^{(t, p)}\right)$,
(b) For each circle of the form L_{t}^{-}, a term $\delta^{-1} h^{(t,-)}\left(\prod_{p=1}^{k_{t}} S \phi_{4}^{\left(t, k_{t}+1-p\right)}\right)$,
(c) For each closed string in C, a multiplicative factor of $\left(\delta^{-1} h(\epsilon)\right)^{2}=\delta^{2}$, and

Figure 5. $Z_{\tilde{N}^{-}}^{Q}\left(U_{\sigma}\left(\left(\phi_{1} \otimes \phi_{2}\right)^{\otimes 3}\right)\right)$
(d) For each non-closed string $e \in E$, a term of the form $\delta^{-1} h^{e}\left(T_{a} \phi_{\alpha(e)+1}^{\left(t_{a}, p_{a}\right)} T_{z} \phi_{\zeta(e)+1}^{\left(t_{z}, p_{z}\right)}\right)$, where $l^{-1}(a(e))=\left(t_{a}, p_{a}\right)$ and $l^{-1}(z(e))=\left(t_{z}, p_{z}\right)$ and T_{a} (resp. $\left.T_{z}\right)$ is S or id according as e originates (resp. terminates) at a positive or negative box.
Note that (i) since the computation is being done in $Q=P\left(H^{*}\right), h$ and ϕ have interchanged roles, as have 1 and ϵ and (ii) the prescriptions of (a) and (b) also work for L_{t} 's where $k_{t}=0$ with the obvious interpretation of the empty product.

To summarise, we have seen that

$$
\begin{aligned}
& Z_{\tilde{N}^{-}}^{Q}\left(U_{\sigma}\left(\left(\phi_{1} \otimes \phi_{2}\right)^{\otimes k}\right)\right) \\
& \quad=\delta^{-2 g+2 c-k} \prod_{t=1}^{g} h^{(t,+)}\left(\prod_{p=1}^{k_{t}} \phi_{1}^{(t, p)}\right) \prod_{t=1}^{g} h^{(t,-)}\left(\prod_{p=1}^{k_{t}} S \phi_{4}^{\left(t, k_{t}+1-p\right)}\right) \prod_{e \in E} h^{e}\left(T_{a} \phi_{\alpha(e)+1}^{\left(t_{a}, p_{a}\right)} T_{z} \phi_{\zeta(e)+1}^{\left(t_{z}, p_{z}\right)}\right) \\
& =\delta^{-2 g+2 c-k} \prod_{t=1}^{g} h^{(t,+)}\left(\prod_{p=1}^{k_{t}} \phi_{4}^{(t, p)}\right) \prod_{t=1}^{g} h^{(t,-)}\left(\prod_{p=1}^{k_{t}} S \phi_{3}^{\left(t, k_{t}+1-p\right)}\right) \prod_{e \in E} h^{e}\left(T_{a} \phi_{\alpha(e)}^{\left(t_{a}, p_{a}\right)} T_{z} \phi_{\zeta(e)}^{\left(t_{z}, p_{z}\right)}\right) \\
& =\delta^{-2 g+2 c-k} \prod_{t=1}^{g} h^{(t,+)}\left(\prod_{p=1}^{k_{t}} \phi_{4}^{(t, p)}\right) \prod_{t=1}^{g} h^{(t,-)}\left(\prod_{p=1}^{k_{t}} S \phi_{3}^{\left(t, k_{t}+1-p\right)}\right) \prod_{e \in E} \phi_{\alpha(e)}^{\left(t_{a}, p_{a}\right)}\left(T_{a} h_{1}^{e}\right) \phi_{\zeta(e)}^{\left(t_{z}, p_{z}\right)}\left(T_{z} h_{2}^{e}\right)
\end{aligned}
$$

where the second equality is a consequence of an application of $\phi_{1} \otimes \phi_{2} \otimes \phi_{3} \otimes$ $\phi_{4}=\phi_{4} \otimes \phi_{1} \otimes \phi_{2} \otimes \phi_{3}$ to each $\phi^{(t, p)}$. We are guilty of a little sloppiness in the equations above, since actually, $t_{a}, p_{a}, t_{z}, p_{z}, T_{a}, T_{z}$ are all functions of e; for instance, $t_{a}(e)=t(a(e))$ while

$$
\begin{equation*}
T_{a}(e)=S T_{a(e)} \tag{4.15}
\end{equation*}
$$

(The $T_{a(e))}$ on the right side of the last equation refers to the T_{q} used in §2.)

Figure 6. The labelled loops for Figure 5

Using the relations $S h=h$ and $h^{2}=\delta^{2} h$, it is easy to see that

$$
\prod_{t=1}^{g} h^{(t,+)}\left(\prod_{p=1}^{k_{t}} \phi_{4}^{(t, p)}\right) \prod_{t=1}^{g} h^{(t,-)}\left(\prod_{p=1}^{k_{t}} S \phi_{3}^{\left(t, k_{t}+1-p\right)}\right)=\delta^{2 g} \prod_{t=1}^{g} h^{t}\left(\prod_{p=1}^{k_{t}} \phi_{3}^{(t, p)}\right)
$$

and therefore we have:

$$
\begin{align*}
& Z_{\widetilde{N}^{-}}^{Q}\left(U_{\sigma}\left(\left(\phi_{1} \otimes \phi_{2}\right)^{\otimes k}\right)\right) \tag{4.16}\\
& \quad=\delta^{2 c-k} \prod_{t=1}^{g} h^{t}\left(\prod_{p=1}^{k_{t}} \phi_{3}^{(t, p)}\right) \prod_{e \in E} \phi_{\alpha(e)}^{\left(t_{a}, p_{a}\right)}\left(T_{a} h_{1}^{e}\right) \phi_{\zeta(e)}^{\left(t_{z}, p_{z}\right)}\left(T_{z} h_{2}^{e}\right)
\end{align*}
$$

We will next analyse the terms in the product coming from $e \in E$ by grouping together those terms where the e 's come from a single U-curve. In other words we write:

$$
\prod_{e \in E} \phi_{\alpha(e)}^{\left(t_{a}, p_{a}\right)}\left(T_{a} h_{1}^{e}\right) \phi_{\zeta(e)}^{\left(t_{z}, p_{z}\right)}\left(T_{z} h_{2}^{e}\right)=\prod_{\left\{i: 1 \leq i \leq g, U^{i} \notin C\right\}} \prod_{e \subset U^{i}} \phi_{\alpha(e)}^{\left(t_{a}, p_{a}\right)}\left(T_{a} h_{1}^{e}\right) \phi_{\zeta(e)}^{\left(t_{z}, p_{z}\right)}\left(T_{z} h_{2}^{e}\right)
$$

and for a fixed i such that $U^{i} \notin C$ (so that $k^{i} \neq 0$), consider the product $\prod_{e \subset U^{i}} \phi_{\alpha(e)}^{\left(t_{a}, p_{a}\right)}\left(T_{a} h_{1}^{e}\right) \phi_{\zeta(e)}^{\left(t_{z}, p_{z}\right)}\left(T_{z} h_{2}^{e}\right)$.

Now U^{i} comprises of the edges $e(i, j)$ where $1 \leq j \leq k^{i}$; suppose $a(e(i, j))=$ $l\left(t_{j-1}^{i}, p_{j-1}^{i}\right)$ so that $u(i, j)=z(e(i, j))=l\left(t_{j}^{i}, p_{j}^{i}\right)\left(\right.$ with the convention that $\left(t_{0}^{i}, p_{0}^{i}\right)=$ $\left(t_{k^{i}}^{i}, p_{k^{i}}^{i}\right)$).

It follows - from equation (4.15) - that

$$
\begin{aligned}
& \prod_{e \in U^{i}} \phi_{\alpha(e)}^{\left(t_{a}, p_{a}\right)}\left(T_{a} h_{1}^{e}\right) \phi_{\zeta(e)}^{\left(t_{z}, p_{z}\right)}\left(T_{z} h_{2}^{e}\right) \\
& \quad=\prod_{j=1}^{k^{i}} \phi_{\alpha(e(i, j))}^{\left(t_{j-1}^{i}, p_{j-1}^{i}\right)}\left(S T_{a(e(i, j))} h_{1}^{e(i, j)}\right) \phi_{\zeta(e(i, j))}^{\left(t_{j}^{i}, p_{j}^{i}\right)}\left(S T_{z(e(i, j))} h_{2}^{e(i, j)}\right) .
\end{aligned}
$$

After some minor rearrangement, this product may be rewritten as

$$
\prod_{j=1}^{k^{i}} \phi_{\zeta(e(i, j))}^{\left(t_{j}^{i}, p_{j}^{i}\right)}\left(S T_{z(e(i, j))} h_{2}^{e(i, j)}\right) \phi_{\alpha(e(i, j+1))}^{\left(t_{j}^{i}, p_{j}^{i}\right)}\left(S T_{a(e(i, j+1))} h_{1}^{e(i, j+1)}\right)
$$

The definitions show that the $j^{\text {th }}$ term of the above product is $\phi_{1}^{\left(t_{j}^{i}, p_{j}^{i}\right)}\left(h_{2}^{e(i, j)} S h_{1}^{e(i, j+1)}\right)$ or $\phi_{1}^{\left(t_{j}^{i}, p_{j}^{i}\right)}\left(h_{1}^{e(i, j+1)} S h_{2}^{e(i, j)}\right)$ according as $e(i, j)$ terminates at a positive or negative circle. Finally, the product above may be written as:

$$
\prod_{j=1}^{k^{i}} \phi_{1}^{\left(t_{j}^{i}, p_{j}^{i}\right)}\left(S T_{l\left(t_{j}^{i}, p_{j}^{i}\right)}\left(h_{2}^{e(i, j)} S h_{1}^{e(i, j+1)}\right)\right)
$$

Next, we appeal to Corollary $3(g-c)$ times - once for each non-isolated U^{i}. From that corollary, we get: $\otimes_{j=1}^{k^{i}} h_{2}^{e(i, j)} S h_{1}^{e(i, j+1)}$ as $\delta^{k^{i}} F^{\otimes k^{i}}\left(\Delta_{k^{i}} \phi^{i}\right)=\otimes_{j=1}^{k^{i}} \delta F\left(\phi_{j}^{i}\right)$, which implies that

$$
\prod_{j=1}^{k^{i}} \phi_{1}^{\left(t_{j}^{i}, p_{j}^{i}\right)}\left(S T_{l\left(t_{j}^{i}, p_{j}^{i}\right)}\left(h_{2}^{e(i, j)} S h_{1}^{e(i, j+1)}\right)\right)=\prod_{j=1}^{k^{i}} \phi_{1}^{\left(t_{j}^{i}, p_{j}^{i}\right)}\left(S T_{l\left(t_{j}^{i}, p_{j}^{i}\right)}\left(\delta F\left(\phi_{j}^{i}\right)\right)\right.
$$

Observe that $(t, p)=\left(t_{j}^{i}, p_{j}^{i}\right)$ iff $l(t, p)=u(i, j)$ iff $i=i(l(t, p))$ and $j=j(l(t, p))$. It now follows from equation (4.16) that

$$
\begin{aligned}
& Z_{\widetilde{N}^{-}}^{Q}\left(U_{\sigma}\left(\left(\phi_{1} \otimes \phi_{2}\right)^{\otimes k}\right)\right) \\
& \quad=\delta^{-k+2 c} \prod_{t=1}^{g} h^{t}\left(\prod_{p=1}^{k_{t}} \phi_{1}^{(t, p)}\left(S T_{l(t, p)}\left(\delta F\left(\phi_{j(l(t, p))}^{i(l(t, p))}\right)\right)\right) \phi_{2}^{(t, p)}\right) \\
& =\delta^{2 c} \prod_{t=1}^{g} h^{t}\left(\prod_{p=1}^{k_{t}} \phi_{1}^{(t, p)}\left(S T_{l(t, p)}\left(F\left(\phi_{j(l(t, p))}^{i(l(t, p))}\right)\right)\right) \phi_{2}^{(t, p)}\right) \\
& =\delta^{2 c} \prod_{t=1}^{g} h^{t}\left(\prod_{p=1}^{k_{t}} \delta F S T_{l(t, p)} F\left(\phi_{j(l(t, p))}^{i(l(t, p))}\right)\right) \\
& =\delta^{k+2 c} \prod_{t=1}^{g} h^{t}\left(\prod_{p=1}^{k_{t}} T_{l(t, p)}\left(\phi_{j(l(t, p))}^{i(l(t, p))}\right)\right)
\end{aligned}
$$

Finally, a perusal of equations (2.1) and (4.14) completes the verification that Kuperberg's invariant is indeed given by $\tau^{P}(N)$.

5. On spherical graphs and Hopf algebras

Throughout this section, the symbol G will denote an oriented graph embedded on an oriented smooth sphere S^{2}. Thus G comprises of a finite subset $V \subset S^{2}$ of vertices and a finite set E of edges. We regard an edge $e \in E$ as a smooth map from the unit interval I to S^{2} such that $e(0), e(1) \in V$ and such that e is injective except possibly that $e(0)=e(1)$. Two (images of) distinct edges do not intersect except possibly at vertices. Thus multiple edges and self-loops are allowed. An edge e is regarded as being oriented from $e(0)$ to $e(1)$. We regard G as the subset of S^{2} given by the union of its edges and isolated vertices, if any. By a face of G, we mean a connected component of the complement of G in S^{2}.

We will use the terms anticlockwise and clockwise to stand for "agreeing with the orientation of" and "opposite to the orientation of" S^{2} respectively. If u is the direction of the oriented edge e at a point p, and if v is a perpendicular direction such that $\{u, v\}$ is positively (resp., negatively) oriented (according to the orientation of the underlying S^{2}), we shall call the points near p on the side indicated by v as the 'left' (resp., 'right') of the edge e.

We digress now with a discussion of tensor products of indexed families of vector spaces. We consider only finite indexing sets. For a family $\left\{V_{p}: p \in K\right\}$ of vector spaces (over some field \mathbf{k}), which is indexed by the finite set K, we define $\otimes_{p \in K} V_{p}$ to be the quotient of the vector space, with basis consisting of functions $f: K \rightarrow \coprod_{p \in K} V_{p}$ such that $f(p) \in V_{p}$ for all $p \in K$, by the subspace spanned by

$$
\left\{f-\alpha_{1} f_{1}-\alpha_{2} f_{2}: \exists p_{0} \in K \text { such that } f(p)=\left\{\begin{array}{ll}
f_{1}(p)=f_{2}(p) & \text { if } p \neq p_{0} \\
\alpha_{1} f_{1}(p)+\alpha_{2} f_{2}(p) & \text { if } p=p_{0}
\end{array}\right\}\right.
$$

We denote the image in $\otimes_{p \in K} V_{p}$ of the function f by $\otimes_{p \in K} f(p)$. If $\left\{T_{p}: V_{p} \rightarrow\right.$ $\left.W_{p}\right\}_{p}$ is an indexed family of vector space maps, there is a natural induced map $\otimes_{p \in K} T_{p}: \otimes_{p \in K} V_{p} \rightarrow \otimes_{p \in K} W_{p}$.

In the important special case of this indexed tensor product when $V_{p}=V$ for all $p \in K$, we will also denote $\otimes_{p \in K} V_{p}$ by $V^{\otimes K}$. We adopt a similar convention for tensor product of vector space maps.

Note that if $K=\{1,2, \ldots, k\}$, then $\otimes_{p \in K} V_{p}$ can be naturally identified with $\otimes_{p=1}^{k} V_{p}=V_{1} \otimes \cdots \otimes V_{k}$, and in particular, we will write $V^{\otimes K}=V^{\otimes k}$. More generally, if K is a totally ordered finite set with $|K|=k$, then $V^{\otimes K}$ can be naturally identified with $V^{\otimes k}$. Even more generally, a bijection, say θ, from a set L to a set K, induces a functorial isomorphism, which we will denote by $\tilde{\theta}$, from $\otimes_{l \in L} V_{l}$ to $\otimes_{k \in L} V_{k}$, and in particular from $V^{\otimes L}$ to $V^{\otimes K}$. In the sequel, we will use without explicit mention, the canonical identifications

$$
\begin{aligned}
V^{\otimes\left(\amalg_{i \in I} K_{i}\right)} & \sim \otimes_{i \in I} V^{\otimes K_{i}} \\
\left(V^{\otimes K}\right)^{\otimes L} & \sim V^{\otimes(L \times K)} .
\end{aligned}
$$

To the pair (G, H) (of a graph and a Hopf algebra), we shall associate two elements of $H^{\otimes E}$. One of these is computed using the faces of G and is denoted by $F(G, H)$ and the other is computed using the vertices of G and is denoted by $V(G, H)$. The main result of the section relates $F\left(G, H^{*}\right)$ and $V(G, H)$.

We will make use of the following example - of a directed graph G with eight vertices and three faces - with multiple edges ($e 4$ and $e 5$ between vertices 5 and 6)
and an isolated vertex (vertex 8) - to clarify our definitions:

Let $D(V)$ denote the set $E \times\{0,1\}$. For a vertex $v \in V$, let D_{v} denote the set $\{(e, i) \in D(V): e(i)=v\}$ and let d_{v} denote its cardinality which is the degree of v. Consider an enumeration of D_{v} in clockwise order around the vertex v. This is, of course, determined once one of the edges at v is chosen as the first. ${ }^{2}$ Denote this bijection by $\theta_{v}:\left\{1, \cdots, d_{v}\right\} \rightarrow D_{v}$. Note that $D(V)$ is the disjoint union of D_{v} as v varies over V and consider $\otimes_{v \in V} \widetilde{\theta_{v}}\left(\delta^{-1} \Delta_{d_{v}}(h)\right) \in H^{\otimes D(V)}$. The traciality of h implies that this element is independent of the choice of clockwise ordering of the edges around each vertex.

Now consider the map $\mu \circ(i d \otimes S): H^{\otimes\{0,1\}}=H^{\otimes 2} \rightarrow H$ and the tensor product map $\otimes_{e \in E}(\mu \circ(i d \otimes S)): H^{\otimes D(V)}=H^{E \times\{0,1\}} \rightarrow H^{E}$. Define $V(G, H)$ to be the image under this map of $\otimes_{v \in V} \widetilde{\theta_{v}}\left(\delta^{-1} \Delta_{d_{v}}(h)\right)$. Explicitly, we have

$$
\begin{equation*}
V(G, H)=\delta^{\rho(G)} \otimes_{e \in E} h_{m(e)}^{s(e)} S h_{n(e)}^{r(e)} \tag{5.17}
\end{equation*}
$$

where (i) $\rho(G)=-|V|+2\left|\left\{v \in V: d_{v}=0\right\}\right| ;{ }^{3}$ and (ii) s, r, m, n are functions defined on E and with appropriate ranges, so that $(e, 0)$ is the $m(e)$-th element of $D_{s(e)}$ while $(e, 1)$ the $n(e)$-th element of of $D_{r(e)}$, for any edge $e \in E$. (Thus, for example, $s, r: E \rightarrow V$ are the 'source' and 'range' maps.)

For our example, $V(G, H) \in H^{\otimes 7}$ - since there are 7 edges; the prescription unravels to yield

$$
\begin{equation*}
V(G, H)=\delta^{-6}\left(h^{1} S h_{1}^{2} \otimes h_{2}^{2} S h^{3} \otimes h_{3}^{2} S h^{4} \otimes h_{1}^{5} S h_{1}^{6} \otimes h_{3}^{6} S h_{2}^{5} \otimes h_{2}^{6} S h_{1}^{7} \otimes h_{3}^{5} S h_{2}^{7}\right) \tag{5.18}
\end{equation*}
$$

A similar construction using the faces yields $F(G, H)$. For this, begin with the set $D(F)=E \times\{l, r\}$. Consider a pair (f, c) where f is a face of G and c is a component of the boundary of f. By \widetilde{F}, we will refer to the set of all such pairs. (This set is the set 'dual' to the vertex set V in case the graph G is disconnected.) Let $D_{(f, c)}=\{(e, d) \in D(F): e(t) \in c$ for all $t \in[0,1]$ and there exist points in f sufficiently close to c where the orientation agrees or disagrees with the orientation of e according as d is l or $r\}$. We pause to explain this mouthful of a definition. A pair consisting of an edge e and a direction d is put into $D_{(f, c)}$ exactly when

[^1]the image of the edge is part of c and some parts of f lie to the left or right of e according as d is l or r. Note that it is quite possible for points of f to lie on both sides of the image of e. Set $d_{(f, c)}$ to be the cardinality of $D_{(f, c)}$.

In our example, there are three faces $f 1, f 2, f 3$, and these boundaries have 1,2 and 2 components respectively, and we have
$\widetilde{F}=\{\tilde{f} 1=(f 1,4 \overline{5}), \tilde{f} 2=(f 2, \overline{5} 6 \overline{7}), \tilde{f} 3=(f 2, \cdot), \tilde{f} 4=(f 3,12 \overline{2} 3 \overline{3} \overline{1}), \tilde{f} 5=(f 3, \overline{4} 7 \overline{6})\}$, with the notation $(f 1,4 \overline{5})$ signifying the pair consisting of the face $f 1$ and the component given by the traversing the edge $e 4$ followed by the reverse of the edge e5.

We will need the notion of a thickening of G - by which we will understand a sufficiently small neighbourhood of G with respect to some Riemannian metric on S^{2}. A moment's thought shows that there is a natural bijection between the set of boundary components of such a thickening of G and what we earlier called \widetilde{F}. A clockwise traversal of the boundary component corresponding to $(f, c) \in \widetilde{F}$ (under the above bijection) leads naturally to what we would like to term a clockwise enumeration of $D_{(f, c)}$. Denote this enumeration by $\rho_{(f, c)}:\left\{1, \cdots, d_{(f, c)}\right\} \rightarrow D_{(f, c)}$.

In our example, the sets $D_{(f, c)}$, with their members listed in a choice of such a clockwise order, are as follows:

$$
\begin{aligned}
D_{\tilde{f} 1} & =\{(e 4, r),(e 5, r)\} \\
D_{\tilde{f} 2} & =\{(e 5, l),(e 6, r),(e 7, l)\} \\
D_{\tilde{f} 3} & =\emptyset \\
D_{\tilde{f} 4} & =\{(e 1, r),(e 3, r),(e 3, l),(e 2, r),(e 2, l),(e 1, l)\} \\
D_{\tilde{f} 5} & =\{(e 4, l),(e 7, r),(e 6, l)\} .
\end{aligned}
$$

Now, $D(F)$ is the disjoint union of the $D_{(f, c)}$ as (f, c) range over \widetilde{F} and so the element $\otimes_{(f, c) \in \widetilde{F}} \widetilde{\rho_{(f, c)}}\left(\delta^{-1} \Delta_{d_{(f, c)}}(h)\right)$ is a well-defined element of $H^{\otimes D(F)}$ which is independent of the choice of clockwise enumerations of the $D_{(f, c)}$'s.

Finally, consider the map $\mu \circ(i d \otimes S): H^{\otimes\{l, r\}}=H^{\otimes 2} \rightarrow H$. In this, $\{l, r\}$ is mapped to $\{1,2\}$ by $l \mapsto 1$ and $r \mapsto 2$. The tensor product map $\otimes_{e \in E}(\mu \circ(i d \otimes S))$: $H^{\otimes D(F)}=H^{E \times\{l, r\}} \rightarrow H^{E}$. Define $F(G, H)$ to be the image under this map of $\otimes_{(f, c) \in \widetilde{F}} \widetilde{\rho_{(f, c)}}\left(\delta^{-1} \Delta_{d_{(f, c)}}(h)\right)$. The element of interest is $F\left(G, H^{*}\right)$ which is obtained by replacing h by ϕ in the above expression. Explicitly, we have

$$
\begin{equation*}
F\left(G, H^{*}\right)=\delta^{\sigma(G)} \otimes_{e \in E} \phi_{i(e)}^{L(e)} S \phi_{j(e)}^{R(e)} \tag{5.19}
\end{equation*}
$$

where (i) $\sigma(G)=-|\widetilde{F}|+2\left|\left\{v \in V: d_{v}=0\right\}\right|$; and (ii) L, R, i, j are functions defined on E and with appropriate ranges, so that (e, l) is the $i(e)$-th element of $D_{L(e)}$ while (e, r) the $j(e)$-th element of of $D_{R(e)}$, for any edge $e \in E$. (Thus, for example, $L, R: E \rightarrow \widetilde{F}$.)

In our example, $F\left(G, H^{*}\right) \in\left(H^{*}\right)^{\otimes 7}$; and the prescription unravels to yield (5.20)
$F\left(G, H^{*}\right)=\delta^{-3}\left(\phi_{6}^{4} S \phi_{1}^{4} \otimes \phi_{5}^{4} S \phi_{4}^{4} \otimes \phi_{3}^{4} S \phi_{2}^{4} \otimes \phi_{1}^{5} S \phi_{1}^{1} \otimes \phi_{1}^{2} S \phi_{2}^{1} \otimes \phi_{3}^{5} S \phi_{2}^{2} \otimes \phi_{3}^{2} S \phi_{2}^{5}\right)$.
The remainder of this section is devoted to proving the following:

Proposition 2.

$$
\begin{equation*}
F\left(G, H^{*}\right)=F^{\otimes E}(V(G, H)) \tag{5.21}
\end{equation*}
$$

for any spherical graph G.
Our proof goes through the machinery of planar algebras but it would be desirable to find a direct proof.

We use G to construct a network in the Jones sense on S^{2}. This network will be denoted $N=N(G)$. To construct N, choose a thickening of G, as described above. Colour this subset of S^{2} black. Each edge of G now appears as a thin black band in this subset. Replace this portion of the band by introducing a 2-box as indicated below:

with the orientation of the edge determining the position of the $*$. This yields our network N on the sphere; note that N has only 2-boxes. From the construction it should be clear that there are natural bijections between the sets of black regions, white regions and 2-boxes of N and the sets of vertices, faces and edges of G respectively.

If P is any planar algebra, the partition function of $N(G)$ specifies a function from $\left(P_{2}\right)^{\otimes E}$ to $P_{0_{+}}$. In particular, if $P=P(H)$, this partition function may be identified with a linear map from $H^{\otimes E}$ to k or equivalently, with an element of $\left(H^{*}\right)^{\otimes E}$. We assert that this element is exactly $F\left(G, H^{*}\right)$. Explicitly, we need to verify that

$$
\begin{equation*}
Z_{N(G)}\left(\otimes_{e \in E} a^{e}\right)=\left(F\left(G, H^{*}\right)\right)\left(\otimes_{e \in E} a^{e}\right) \forall a^{e} \in H \tag{5.22}
\end{equation*}
$$

By definition of $F\left(G, H^{*}\right)$, we have

$$
\begin{aligned}
\left(F\left(G, H^{*}\right)\right)\left(\otimes_{e \in E} a^{e}\right) & =\delta^{\sigma(G)} \prod_{e \in E}\left(\phi_{i(e)}^{L(e)} S \phi_{j(e)}^{R(e)}\right)\left(a^{e}\right) \\
& =\delta^{\sigma(G)} \prod_{e \in E} \phi_{i(e)}^{L(e)}\left(a_{1}^{e}\right) \phi_{j(e)}^{R(e)}\left(S a_{2}^{e}\right) \\
& =\delta^{\sigma(G)} \prod_{Q \in \widetilde{F}}\left[\left(\prod_{e \in E: L(e)=Q} \phi_{i(e)}^{Q}\left(a_{1}^{e}\right)\right)\left(\prod_{e \in E: R(e)=Q} \phi_{j(e)}^{Q}\left(S a_{2}^{e}\right)\right)\right] \\
& =\delta^{\sigma(G)} \prod_{Q \in \widetilde{F}} \phi^{Q}\left(\prod_{i=1}^{d_{Q}} T_{i}^{Q} a_{\epsilon_{i}^{Q}}^{\rho_{Q}(i)}\right)
\end{aligned}
$$

where $\left(T_{i}^{Q}, \epsilon_{Q}(i)\right)=\left\{\begin{array}{ll}(i d, 1) & \text { if }\left(\rho_{Q}(i), l\right) \in D_{Q} \\ (S, 2) & \text { if }\left(\rho_{Q}(i), r\right) \in D_{Q}\end{array}\right.$.
The proof of the asserted equation (5.22) follows immediately from Corollary 3 of [KdySnd2]. (One only needs to note that the 'loops' of that prescription are in bijection with members of \widetilde{F}, and exercise a little caution - in case G has isolated vertices, so that $N(G)$ has isolated loops - to see that the powers of δ also match.)

We assert now that with identifications as above, that $Z_{N^{-}}=V\left(G, H^{*}\right)$. This assertion is proved exactly like the equation $Z_{N}=F\left(G, H^{*}\right)$ was proved - after
having observed that the black and white regions for the network N^{-}, correspond to the white and black regions for N.

Applying Proposition 1 to $N=N(G)$,

$$
F\left(G, H^{*}\right)=Z_{N}^{P(H)}=Z_{N^{-}}^{P\left(H^{*}\right)} \circ F^{\otimes E}=V(G, H) \circ F^{\otimes E}=F^{\otimes E}(V(G, H))
$$

The first $V(G, H)$ is regarded as an element of $\left(H^{* *}\right)^{\otimes E}$ while the second is regarded as an element of $H^{\otimes E}$, and the last equality follows from $x(F(y))=(F(x))(y)$.

So, Proposition 2 has been finally proved.
We finally wish to observe a consequence of this proposition.
Corollary 3. In any semisimple co-semisimple Hopf algebra, we have
(a) $h_{1}^{0} S h_{2}^{1} \otimes h_{1}^{1} S h_{2}^{2} \otimes \cdots \otimes h_{1}^{(n-1)} S h_{2}^{0}=\delta^{n} F^{\otimes n}\left(\Delta_{n} \phi\right)$
(b) $h_{1}^{1} S h_{2}^{0} \otimes h_{1}^{2} S h_{2}^{1} \otimes \cdots \otimes h_{1}^{0} S h_{2}^{(n-1)}=\delta^{n} F^{\otimes n}\left(\Delta_{n}^{o p} \phi\right)$
for any $n \geq 1$.
Proof: (a) In fact, consider the special case of Proposition 2 corresponding to G being a cyclically oriented n-gon. Write $V=\{0,1, \cdots, n-1\}, E=\{e 0, e 1, \cdots, e(n-$ $1)\}, F=\{$ in, out $\}$, and make 'cyclically symmetric' choices as below (where we illustrate the case $n=6$:

We set

$$
D_{i}=\{e i, e(i-1)\}, \forall 0 \leq i<n
$$

with addition modulo n. Further, $\widetilde{F}=F$, and we choose

$$
D_{i n}=\{e(n-1), \cdots, e 1, e 0\} \text { and } D_{o u t}=\{e 0, \cdots, e(n-1)\}
$$

Our prescriptions yield

$$
V(G, H)=\delta^{-n}\left(h_{1}^{0} S h_{2}^{1} \otimes h_{1}^{1} S h_{2}^{2} \otimes \cdots \otimes h_{1}^{(n-1)} S h_{2}^{0}\right)
$$

and

$$
F\left(G, H^{*}\right)=\delta^{-2}\left(\phi_{n}^{\text {in }} S \phi_{1}^{\text {out }} \otimes \phi_{n-1}^{\text {in }} S \phi_{2}^{\text {out }} \otimes \cdots \otimes \phi_{1}^{\text {in }} S \phi_{n}^{\text {out }}\right) .
$$

Since $S^{\otimes n}\left(\Delta_{n}(a)\right)=\Delta_{n}^{o p}(S a)$ in any Hopf algebra, this simpliies to

$$
\begin{aligned}
F\left(G, H^{*}\right) & =\delta^{-2} \Delta_{n}^{o p}\left(\phi^{i n} S \phi^{o u t}\right) \\
& =\Delta_{n}^{o p}(\phi)
\end{aligned}
$$

the final equality being a consequence of the fact that $\phi^{2}=\delta^{2} \phi$ and $S \phi=\phi$.

So we deduce from Proposition 2 that

$$
F^{\otimes n}\left(\delta^{-n}\left(h_{1}^{0} S h_{2}^{1} \otimes h_{1}^{1} S h_{2}^{2} \otimes \cdots \otimes h_{1}^{(n-1)} S h_{2}^{0}\right)\right)=\Delta_{n}^{o p}(\phi) ;
$$

and since $F^{-1}=F \circ S$, we conclude that

$$
\begin{aligned}
h_{1}^{0} S h_{2}^{1} \otimes h_{1}^{1} S h_{2}^{2} \otimes \cdots \otimes h_{1}^{(n-1)} S h_{2}^{0} & =\delta^{n}(F \circ S)^{\otimes n}\left(\Delta_{n}^{o p}(\phi)\right) \\
& =\delta^{n} F^{\otimes n}\left(\Delta_{n}(\phi)\right),
\end{aligned}
$$

as desired.
(b) This follows by applying $S^{\otimes n}$ to both sides of (a).

References

[BhmNllSzl] Gabriella Bohm, Florian Nill and Kornel Szlachanyi, Weak Hopf algebras I. Integral theory and C^{*}-structure, Journal of Algebra, 221, (1999) 385-438.
[BrrWst] Barrett, John W.; Westbury, Bruce W. The equality of 3-manifold invariants. Math. Proc. Cambridge Philos. Soc. 118 (1995), no. 3, 503-510.
[DttKdySnd] Sumanth Datt, Vijay Kodiyalam and V. S. Sunder, Complete invariants for complex semisimple Hopf algebras, Math. Res. Lett., 10, (2003) 571-586.
[Jns] V. F. R. Jones, Planar algebras I, New Zealand J. of Math., to appear. e-print arXiv : math.QA/9909027
[KdyLndSnd] Vijay Kodiyalam, Zeph Landau and V. S. Sunder, The planar algebra associated to a Kac algebra, Proc. Indian Acad. of Sciences, 113, (2003) 15-51.
[KdyPtiSnd] Vijay Kodiyalam, Vishwambhar Pati and V. S. Sunder, Subfactors and $1+1$ dimensional TQFTs, Preprint.
[KdySnd1] Vijay Kodiyalam and V. S. Sunder, On Jones' planar algebras, J. Knot theory and its ramifications, 13, (2004) 219-247.
[KdySnd2] Vijay Kodiyalam and V. S. Sunder, The planar algebra of a semisimple cosemisimple Hopf algebra, e-print arXiv math.QA/0506153.
[Kpr] G. Kuperberg, Involutory Hopf algebras and 3-manifold invariants, Internat. J. Math., 2, (1991) 41-66.
[Lnd] Zeph Landau, Exchange Relation Planar Algebras, Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part II (Haifa, 2000). Geom. Dedicata 95 (2002), 183-214.
[PrsSss] V.V. Prasolov and A B. Sossinsky, Knots, Links, Braids and 3-Manifolds : Introduction to the New Invariants in Low-Dimensional Topology : (Transl. of Math. Monographs 154), Amer. Math. Soc., USA, 1997.

The Institute of Mathematical Sciences, Chennai, India
E-mail address: vijay@imsc.res.in,sunder@imsc.res.in

[^0]: ${ }^{1} \amalg$ denotes disjoint union.

[^1]: ${ }^{2}$ For our example, the sets D_{v}, with their elements listed in a possible order, are: $D_{1}=\{(e 1,0)\}, D_{2}=\{(e 1,1),(e 2,0),(e 3,0)\}, D_{3}=\{(e 2,1)\}, D_{4}=\{(e 3,1)\}, D_{5}=$ $\{(e 4,0),(e 5,1),(e 7,0)\}, D_{6}=\{(e 4,1),(e 6,0),(e 5,0)\}, D_{7}=\{(e 6,1),(e 7,1)\}, D_{8}=\emptyset$.
 ${ }^{3}$ The reason for the correction term ' $+2\left|\left\{v: d_{v}=0\right\}\right|$ ' is that $\Delta_{0}(h)=\epsilon(h)=n=\delta^{2}$.

