

Outline of talk

■ What are knots?

Outline of talk

- What are knots?
- Equivalence of (oriented) knots/links

Outline of talk

- What are knots?
- Equivalence of (oriented) knots/links
- Knot invariants

Outline of talk

- What are knots?
- Equivalence of (oriented) knots/links
- Knot invariants

■ Skein relations

Outline of talk

- What are knots?
- Equivalence of (oriented) knots/links
- Knot invariants
- Skein relations
- The Jones polynomial invariant

Some knots

right-handed trefoil
T_{+}

Some knots

right-handed trefoil
T_{+}

left-handed trefoil

τ_{-}

Some knots

Questions

When is $K \sim U_{1}$?
More generally, when is $K_{1} \sim K_{2}$?
(here, ~ denotes ambient isotopy.)
i.e., when can you jiggle K_{1} into K_{2} ?

Knot-projections vs knot-diagrams

As above, we employ plane projections to denote knots.

Many links may have the same 'projection':

Use device of over- and under-crossings.

Links

unlink on two

components
\boldsymbol{U}_{2}

Links

unlink on two

components
\boldsymbol{U}_{2}

Hopf link
H_{+}

Links

Link invariants

An \mathcal{S}-valued link invariant is an assignment

$$
\mathcal{L} \ni \mathcal{L} \mapsto \phi_{L} \in \mathcal{S}
$$

such that

$$
L_{1} \sim L_{2} \Rightarrow \phi_{L_{1}}=\phi_{L_{2}}
$$

$\mathcal{L}=$ set of 'oriented link diagrams'
$\mathcal{S}=$ any set
So if $\phi_{L_{1}} \neq \phi_{L_{2}}$ then L_{1} and L_{2} are not equivalent. link invariants may tell inequivalent links apart

Examples of Link invariants

- $c(L)=$ no. of components of L

$$
c\left(U_{n}\right)=n
$$

But, $c(K)=1$ for every knot K !

Examples of Link invariants

- $c(L)=$ no. of components of L

$$
c\left(U_{n}\right)=n
$$

But, $c(K)=1$ for every knot K !
■ $k(L)=$ no. of 'cuts' needed to 'unlink' L
But, saying $k(K)=0$ is no easier than saying $K \sim U_{1}$!

Examples of Link invariants

■ $c(L)=$ no. of components of L

$$
c\left(U_{n}\right)=n
$$

But, $c(K)=1$ for every knot K !
■ $k(L)=$ no. of 'cuts' needed to 'unlink' L
But, saying $k(K)=0$ is no easier than saying $K \sim U_{1}$!
■ Useful link invariants must be discriminating and computable.

Skein relation

A triple $\left(L_{+}, L_{-}, L_{0}\right)$ as above is said to be skein-related

Example U of a skein-related triple

Example U of a skein-related triple

$$
L_{+}=L_{-}=U_{1}, L_{0}=U_{2}
$$

and more generally, for any $n \geq 1$,

$$
L_{+}=L_{-}=U_{n}, L_{0}=U_{n+1}
$$

Example H of a skein-related triple

Example H of a skein-related triple

Example T of a skein-related triple

Example T of a skein-related triple

Aside on Laurent polynomials

Here is an example of a (usual) polynomial:

$$
3-4 t+17 t^{3}-50.7 t^{419}
$$

Here is an example of a Laurent polynomial:

$$
\begin{aligned}
& \frac{2}{t^{6}}-\frac{3}{t}+7+9 t^{5} \\
& \quad=t^{-6} \times\left(2-3 t^{5}+7 t^{6}+9 t^{11}\right)
\end{aligned}
$$

So a Laurent polynomial (in q) is an expression of the form $q^{-m} \times P(q)$

The Jones polynomial

Theorem (V. Jones) There exists an invariant of oriented links

$$
L \mapsto V_{L}(q)
$$

taking, as values, Laurent polynomials in $q^{\frac{1}{2}}$, which is uniquely determined by the properties

$$
V_{U_{1}}(q)=1
$$

and

$$
q^{-1} V_{L_{+}}(q)-q V_{L_{-}}(q)=\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right) V_{L_{0}}(q)
$$

$$
V_{U_{n}}
$$

The first equation in Example U of a skein related triple gives:

$$
\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right) V_{U_{2}}(q)=\left(q^{-1}-q\right) V_{U_{1}}(q)
$$

and so

$$
V_{U_{2}}(q)=\left(\frac{q^{-1}-q}{q^{\frac{1}{2}}-q^{-\frac{1}{2}}}\right)=-\left(q^{\frac{1}{2}}+q^{-\frac{1}{2}}\right) ;
$$

and similarly the second equation of that example yields

$$
V_{U_{n+1}}(q)=-\left(q^{\frac{1}{2}}+q^{-\frac{1}{2}}\right) V_{U_{n}}(q)
$$

$V_{H_{+}}$

Example H of a skein related triple yields

$$
\begin{aligned}
V_{H_{+}}(q) & =q\left(q V_{U_{2}}(q)+\left(\sqrt{q}-\frac{1}{\sqrt{q}}\right) V_{U_{1}}(q)\right) \\
& \left.=q\left(-\frac{q(q+1)}{\sqrt{q}}\right)+\frac{q-1}{\sqrt{q}}\right) \\
& =-\sqrt{q}\left(q^{2}+1\right)
\end{aligned}
$$

$$
V_{T_{+}}
$$

Example T of a skein related triple yields

$$
\begin{aligned}
V_{T_{+}}(q) & =q\left(q V_{U_{1}}(q)+\left(\sqrt{q}-\frac{1}{\sqrt{q}}\right) V_{H_{+}}(q)\right) \\
& =q\left(q+\left(\sqrt{q}-\frac{1}{\sqrt{q}}\right)(-\sqrt{q})\left(q^{2}+1\right)\right) \\
& =q\left(q-(q-1)\left(q^{2}+1\right)\right) \\
& =q\left(q+1-q+q^{2}-q^{3}\right) \\
& =q+q^{3}-q^{4}
\end{aligned}
$$

Properties of $V_{L}(q)$

The relation between the Jones polynomials associated to skein-related links, together with a sort of induction argument, can be used to prove the following properties of the Jones polynomial:

- If $c(L)$ is odd, then $V_{L}(q)$ is a Laurent polynomial in q

Properties of $V_{L}(q)$

The relation between the Jones polynomials associated to skein-related links, together with a sort of induction argument, can be used to prove the following properties of the Jones polynomial:

- If $c(L)$ is odd, then $V_{L}(q)$ is a Laurent polynomial in q
- If $c(L)$ is even, then then $V_{L}(q)$ is \sqrt{q} times a Laurent polynomial in q

Properties of $V_{L}(q)$

The relation between the Jones polynomials associated to skein-related links, together with a sort of induction argument, can be used to prove the following properties of the Jones polynomial:

- If $c(L)$ is odd, then $V_{L}(q)$ is a Laurent polynomial in q
- If $c(L)$ is even, then then $V_{L}(q)$ is \sqrt{q} times a Laurent polynomial in q
- If \widetilde{L} denotes the 'mirror-reflection' of L, then $V_{\widetilde{L}}(q)=V_{L}\left(q^{-1}\right)$

Conclusion

1. $V_{T_{+}}(q)=q+q^{3}-q^{4}$.
2. $V_{T_{-}}(q)=q^{-1}+q^{-3}-q^{-4}$.
3. $V_{H_{+}}(q)=-\sqrt{q}\left(q^{2}+1\right)$
4. $V_{U_{n}}(q)=\left(-\left(q^{\frac{1}{2}}+q^{-\frac{1}{2}}\right)\right)^{n-1}$

Hence, $T_{+}, T_{-}, H_{+}, U_{n}$ all have different Jones polynomials; and we may deduce that they are all pairwise inequivalent links!

Open problem

Though the Jones polynomial can detect all this, the following problem is still open.
Can the Jones polynomial decide if a knot is not the unknot?

If you can crack this problem, Vaughan Jones would be only too happy to split his Leff with you.

Vaughan Jones and his Leff

References

[1] Knots, V.S. Sunder, Resonance, Vol. 1, no. 7, (1996), 31-43.
(This contains details of many things discussed in this talk.)
[2] On the Jones polynomial, Pierre de la Harpe, Michael Kervaire and Claude Weber, l'Enseignement Mathématique, 32, (1986), 271-335.
(This is much more meaty; it includes a proof of the fact that the Jones polynomial is indeed an invariant of oriented links.)

