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Some knots
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Questions
When is K ∼ U1?

More generally, when is K1 ∼ K2?

(here, ∼ denotes ambient isotopy.)

i.e., when can you jiggle K1 into K2?
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Knot-projections vs
knot-diagrams

As above, we employ plane projections to denote
knots.

Many links may have the same ‘projection’:

Use device of over- and under-crossings.
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Link invariants

An S-valued link invariant is an assignment

L 3 L 7→ φL ∈ S

such that

L1 ∼ L2 ⇒ φL1
= φL2

.

L = set of ‘oriented link diagrams’
S = any set

So if φL1
6= φL2

then L1 and L2 are not equivalent.

link invariants may tell inequivalent links apart – p. 7



Examples of Link
invariants

c(L) = no. of components of L

c(Un) = n

But, c(K) = 1 for every knot K!
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Examples of Link
invariants

c(L) = no. of components of L

c(Un) = n

But, c(K) = 1 for every knot K!

k(L) = no. of ‘cuts’ needed to ‘unlink’ L

But, saying k(K) = 0 is no easier than saying
K ∼ U1!

Useful link invariants must be discriminating
and computable.
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Skein relation

_LL L
+ 0

A triple (L+, L−, L0) as above is said to be
skein-related – p. 9



Example U of a
skein-related triple
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Example U of a
skein-related triple

L+ = L− = U1, L0 = U2

and more generally, for any n ≥ 1,

L+ = L− = Un, L0 = Un+1
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Example H of a
skein-related triple

H U U
+ 2 1
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Example H of a
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H U U
+ 2 1

L+ = H+, L− = U2, L0 = U1
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Example T of a
skein-related triple
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Example T of a
skein-related triple

T +
U

1
H

+

L+ = T+, L− = U1, L0 = H+
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Aside on Laurent
polynomials

Here is an example of a (usual) polynomial:

3 − 4t + 17t3 − 50.7t419

Here is an example of a Laurent polynomial:

2

t6
− 3

t
+ 7 + 9t5

= t−6 × (2 − 3t5 + 7t6 + 9t11)

So a Laurent polynomial (in q) is an expression

of the form q−m × P (q)
– p. 13



The Jones
polynomial

Theorem (V. Jones) There exists an invariant of

oriented links
L 7→ VL(q)

taking, as values, Laurent polynomials in q
1

2 ,
which is uniquely determined by the properties

VU1
(q) = 1

and

q−1VL+
(q) − qVL

−

(q) = (q
1

2 − q−
1

2 )VL0
(q)

for any skein-related triple .
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VUn

The first equation in Example U of a skein
related triple gives:

(q
1

2 − q−
1

2 )VU2
(q) = (q−1 − q)VU1

(q)

and so

VU2
(q) =

(
q−1 − q

q
1

2 − q−
1

2

)
= −(q

1

2 + q−
1

2 ) ;

and similarly the second equation of that
example yields

VUn+1
(q) = −(q

1

2 + q−
1

2 )VUn
(q) – p. 15



VH+

Example H of a skein related triple yields

VH+
(q) = q

(
qVU2

(q) + (
√

q − 1
√

q
)VU1

(q)

)

= q

(
−q(q + 1)

√
q

) +
q − 1
√

q

)

= −√
q(q2 + 1)
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VT+

Example T of a skein related triple yields

VT+
(q) = q

(
qVU1

(q) + (
√

q − 1
√

q
)VH+

(q)

)

= q

(
q + (

√
q − 1

√
q
)(−√

q)(q2 + 1)

)

= q
(
q − (q − 1)(q2 + 1)

)

= q
(
q + 1 − q + q2 − q3

)

= q + q3 − q4
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Properties of VL(q)

The relation between the Jones polynomials
associated to skein-related links, together with a
sort of induction argument, can be used to prove
the following properties of the Jones polynomial:

If c(L) is odd, then VL(q) is a Laurent
polynomial in q

– p. 18
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Properties of VL(q)

The relation between the Jones polynomials
associated to skein-related links, together with a
sort of induction argument, can be used to prove
the following properties of the Jones polynomial:

If c(L) is odd, then VL(q) is a Laurent
polynomial in q

If c(L) is even, then then VL(q) is
√

q times a
Laurent polynomial in q

If L̃ denotes the ‘mirror-reflection’ of L, then
V

L̃
(q) = VL(q−1)
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Conclusion
1. VT+

(q) = q + q3 − q4.

2. VT
−

(q) = q−1 + q−3 − q−4.

3. VH+
(q) = −√

q(q2 + 1)

4. VUn
(q) =

(
−(q

1

2 + q−
1

2 )
)n−1

Hence, T+, T−, H+, Un all have different Jones
polynomials; and we may deduce that they are
all pairwise inequivalent links!
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Open problem

Though the Jones polynomial can detect all this,
the following problem is still open.

Can the Jones polynomial decide if a knot is not
the unknot?

If you can crack this problem, Vaughan Jones
would be only too happy to split his Leff with you.
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Vaughan Jones and
his Leff
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