Multipliers and free probabilities

Éric Ricard

Laboratoire de Mathématiques de Besançon

Satellite Conference on Operator algebras Chennai, August, 2010

Let A, B be C^{*}-algebras, a map

$$
T: A \rightarrow B
$$

is completely bounded if

$$
T \otimes I d: A \otimes \mathbb{K} \rightarrow B \otimes \mathbb{K}
$$

is bounded, where \mathbb{K} are the compact operators, and

$$
\|T\|_{c b}=\|T \otimes I d\|
$$

General problem

To find concrete examples of families of cb maps

Applications

Approximation properties of C^{*}-algebras : nuclearity, exactness...

Completely Contractive Approximation Property (CCAP)

Definition

A C^{*}-algebra A is said to have the CCAP if
There exists a net of maps $\left(T_{i}: A \rightarrow A\right)_{i \in I}$ such that

- T_{i} is finite rank.
- $\left\|T_{i}\right\|_{c b} \leqslant 1$.
- $\forall a \in A, \lim _{l}\left\|T_{i}(a)-a\right\|=0$.

Remark :

$$
\text { Nuclearity } \Rightarrow \text { CCAP } \Rightarrow \text { Exactness }
$$

Silly example : \mathbb{K} has the CCAP
We can see \mathbb{K} as some infinite matrices over \mathbb{N} :
For $n \in \mathbb{N}$

$$
T_{n}\left(\left[\begin{array}{ll}
& a_{i, j} \\
& \\
\end{array}\right]\right)=\left[\begin{array}{ccccc}
a_{1,1} & \cdots & a_{1, n} & 0 & \cdots \\
\vdots & & \vdots & 0 & \cdots \\
a_{n, 1} & \cdots & a_{n, n} & 0 & \cdots \\
0 & \cdots & 0 & 0 & \cdots \\
\vdots & & \vdots & \vdots & \vdots
\end{array}\right]
$$

Those maps T_{n} are diagonal with respect to the canonical matrix units. We call them multipliers.

Schur multipliers

We identify elements of $\mathbb{B}\left(\ell_{2}\right)$ with their matrices.
Given an infinite matricial symbol $m=\left(m_{i, j}\right)_{i, j \in \mathbb{N}}, m_{i, j} \in \mathbb{C}$, if the map :

$$
\mathcal{S}_{m}:\left\{\begin{array}{ccc}
\mathbb{B}\left(\ell_{2}\right) & \rightarrow & \mathbb{B}\left(\ell_{2}\right) \\
\left(a_{i, j}\right) & \mapsto & \left(m_{i, j} a_{i, j}\right)
\end{array}\right.
$$

is well defined, we say that \mathcal{S}_{m} is the Schur multiplier with symbol m. We have $\mathcal{S}_{m}\left(e_{i, j}\right)=m_{i, j} e_{i, j}$.

Very basic examples. They appears very often in operator space theory and have many applications.
$\mathcal{S}_{m} \otimes I d_{\mathbb{K}}$ is also a Schur multiplier.
They are pretty well understood but not on $S_{p}(1<p \neq 2<\infty)$.

Grothendieck-Haagerup's Theorem

For a symbol $\left(m_{i, j}\right)$ tfae

- \mathcal{S}_{m} is contractive on $\mathbb{B}\left(\ell_{2}\right)$
- \mathcal{S}_{m} is completely contractive on $\mathbb{B}\left(\ell_{2}\right)$
- There are vectors x_{i} and y_{j} in ℓ_{2} so that

$$
m_{i, j}=\left\langle x_{i}, y_{j}\right\rangle \quad \text { and } \quad \sup _{i}\left\|x_{i}\right\| \sup _{j}\left\|y_{j}\right\| \leqslant 1
$$

- $\left(m_{i, j}\right) \in \ell_{\infty} \otimes_{h} \ell_{\infty}$ and $\left\|\left(m_{i, j}\right)\right\|_{\ell_{\infty} \otimes_{h} \ell_{\infty}} \leqslant 1$

It can be used in concrete situations :

$$
m=\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 1 & -1 \\
-1 & 1 & 1
\end{array}\right], \quad\left\|\mathcal{S}_{m}\right\|_{c b}=\frac{5}{3}
$$

This m is a Toeplitz matrix. In general, it is very difficult to compute the exact norm.

Fourier multipliers

Let G be a countable discrete group and $C^{*}(G) \subset \mathbb{B}\left(\ell_{2}(G)\right)$ its reduced C^{*}-algebra

$$
C^{*}(G)=\overline{\operatorname{Span}}^{\|\cdot\|}\{\lambda(g), g \in G\} .
$$

$\lambda(g)=\sum_{h \in G} e_{h, g h} \in \mathbb{B}\left(\ell_{2}(G)\right)$
Take $f: G \rightarrow \mathbb{C}$, if the map

$$
\begin{array}{ccc}
\operatorname{Span}\{\lambda(g), g \in G\} & \rightarrow & \operatorname{Span}\{\lambda(g), g \in G\} \\
\lambda(g) & \mapsto & f(g) \cdot \lambda(g)
\end{array}
$$

extends to a bounded $\operatorname{map} \mathcal{F}_{f}$, we say that f defines a Fourier multiplier.
We have $\mathcal{F}_{f}\left(\sum_{h \in G} e_{h, g h}\right)=f(g) \sum_{h \in G} e_{h, g h} e_{h, g h}$,
So \mathcal{F}_{f} is somehow a restriction of the Schur multiplier $m=\left(f\left(j i^{-1}\right)\right)$.

Bożejko-Fendler, Gilbert

Let $f: G \rightarrow \mathbb{C}$, tfae

- \mathcal{F}_{f} is a completely bounded Fourier multiplier on $C^{*}(G)$ and $\left\|\mathcal{F}_{f}\right\|_{c b} \leqslant 1$.
- With $m=\left(f\left(j i^{-1}\right)\right)_{i, j}, \mathcal{S}_{m}$ is a Schur multiplier on $B\left(\ell_{2}(G)\right)$ with

$$
\left\|\mathcal{S}_{m}\right\| \leqslant 1
$$

If G is non amenable then bounded and completely bounded Fourier multipliers are different.

Proposition (Haagerup)

If $C^{*}(G)$ has the CCAP, then one can chose the approximating sequence T_{i} to be completely bounded Fourier multipliers.

Main example : free groups

\mathbb{F}_{∞} : the free group with infinitely many generators $g_{1}, \ldots g_{n}, \ldots$

Theorem (Haagerup)

$C^{*}\left(\mathbb{F}_{\infty}\right)$ has the CCAP.
2 steps:

- To reduce to \mathbb{F}_{n} : using a conditional expectation
- One need to construct completely bounded Fourier multipliers \rightarrow to use a length function.

$$
\left|g_{1}^{3} g_{2} g_{1}^{-2}\right|=6
$$

$$
W_{n}: \text { set of words of length } \leqslant n
$$

Naive idea: $f=1_{W_{n}}$
This works up to a Poisson type regularization like for $\mathcal{C}(\mathbb{T})$.
We need to estimate the norm of radial multipliers.

$$
f(w)=f(|w|)
$$

Let $\phi: \mathbb{N} \rightarrow \mathbb{C}$, and $f: \mathbb{F}_{\infty} \rightarrow \mathbb{C}$ given by

$$
f(w)=\phi(|w|)
$$

Theorem (Haagerup-Szwarc)

TFAE

- \mathcal{F}_{f} is a cc radial multiplier on $L\left(\mathbb{F}_{\infty}\right)$
- \mathcal{S}_{m} is a cc Schur multiplier on $\mathbb{B}\left(\ell_{2}\left(\mathbb{F}_{\infty}\right)\right)$
- There are constants so that $\phi(n)=c_{1}+c_{2}(-1)^{n}+\psi(n)$ with $\lim _{n} \psi(n)=0$ and

$$
\left|c_{1}\right|+\left|c_{2}\right|+\left\|[\phi(i+j)-\phi(i+j+2)]_{i, j \geqslant 0}\right\|_{1} \leqslant 1
$$

$\|.\|_{1}$ is the trace norm, $S_{1}^{*}=\mathbb{K}$.
There is a way to estimate this norm (Peller)
With S. Steenstrup, they have also exact values for other groups acting on trees.

Corollary

With $f=1_{W_{n}},\left\|\mathcal{F}_{f}\right\|_{c b} \approx n$.
\rightarrow polynomial estimate, enough for the CCAP.
Simplest case $n=1$: projection onto generators.

Corollary

In particular, $\left\|\mathcal{F}_{1_{\left\{g_{1}^{ \pm 1}, \ldots\right\}}}\right\|_{c b}=2$.

- $\left\|\mathcal{F}_{1_{\left\{g_{1}^{ \pm 1}, \ldots, g_{d}^{ \pm 1}\right\}}}\right\|_{c b}<2$.
- $\frac{16}{3 \pi} \leqslant\left\|\mathcal{F}_{1_{\left\{g_{1}^{ \pm 1}, \ldots\right\}}} f\right\|<2$.
- $\left\{g_{1}^{ \pm 1}, \ldots\right\}$ is a Leinert set.

$$
\left\|\mathcal{F}_{1_{\left\{g_{1}, g_{2}, \ldots\right\}}}\right\|_{c b}=2
$$

Another length

$$
\left|\left\|g_{1}^{3} g_{2} g_{1}^{-2} \mid=6\right\|=3\right.
$$

$\|\cdot\|$: the free product length
Let $\phi: \mathbb{N} \rightarrow \mathbb{C}$, and $f: \mathbb{F}_{\infty} \rightarrow \mathbb{C}$ given by

$$
f(w)=\phi(\|w\|) .
$$

Wysoczanski

TFAE

- \mathcal{F}_{f} is a cc radial multiplier on $L\left(\mathbb{F}_{\infty}\right)$
- \mathcal{S}_{m} is a cc Schur multiplier on $\mathbb{B}\left(\ell_{2}\left(\mathbb{F}_{\infty}\right)\right)$
- There is a constant so that $\phi(n)=d+\psi(n)$ with $\lim _{n} \psi(n)=0$ and

$$
|d|+\left\|[\phi(i+j)-\phi(i+j+1)]_{i, j \geqslant 0}\right\|_{1}+\left\|[\phi(i+j+1)-\phi(i+j+2)]_{i, j \geqslant 0}\right\|_{1} \leqslant 1
$$

- An exact formula for \mathbb{F}_{n}.
- Same formula for any infinite free products of infinite groups.

Corollary

Let W_{n}^{\prime} be the words of $\|$.$\| -length less than n$, then

$$
\left\|\mathcal{F}_{1_{W_{n}}}\right\|_{c b}=2 n+1
$$

Theorem (with Q. Xu)

The free product of discrete groups with the CCAP has the CCAP.

When dealing with $L\left(\mathbb{F}_{\infty}\right)$ and free products, there is another approach by Voiculescu

$$
L\left(\mathbb{F}_{\infty}\right)=\Gamma\left(\ell_{2}\right)^{\prime \prime}
$$

Voiculescu's functor

H be a complex separable Hilbert space.
The full Fock space of H :

$$
\mathcal{F}(H)=\mathbb{C} \Omega \oplus \bigoplus_{n=1}^{\infty} H^{\otimes n}
$$

For $\xi \in H$, the creation operator $\ell(\xi) \in \mathbb{B}(\mathcal{F}(H))$.

$$
\ell(\xi)^{*} \ell(\eta)=\langle\xi, \eta\rangle / d
$$

$s(\xi)=\ell(\xi)+\ell(\xi)^{*}$: semi-circle random variable.
With respect to the vacuum state $\tau(x)=\langle x \Omega, \Omega\rangle$.
Voiculescu's algebras: $\Gamma\left(H_{\mathbb{R}}\right)=\left\langle s(\xi), \xi \in H_{\mathbb{R}}\right\rangle$ where $H=H_{\mathbb{R}}+i H_{\mathbb{R}}$ and the "involution" is isometric.
τ is a nf trace on $\Gamma\left(H_{\mathbb{R}}\right)^{\prime \prime}$, and

$$
\left(\Gamma\left(H_{\mathbb{R}}\right)^{\prime \prime}, \tau\right) \sim\left(L\left(\mathbb{F}_{\operatorname{dim}} H_{\mathbb{R}}\right), \tau\right)
$$

$$
C^{*}\left(\mathbb{F}_{\infty}\right) \quad \subset \quad \mathbb{B}\left(\ell_{2}\left(\mathbb{F}_{\infty}\right)\right)
$$

Fourier multipliers
Schur multipliers

$$
\Gamma\left(\ell_{2}\right) \quad \subset \mathcal{T}\left(\ell_{2}\right)=\left\langle\ell\left(e_{i}\right), e_{i} \text { o.n.b of } \ell_{2}\right\rangle
$$

Multi-index notation : $\underline{i}=\left(i_{1}, \ldots, i_{n}\right),|\underline{i}|=n, \mathcal{J}$ the set of multi-index

$$
\mathcal{T}\left(\ell_{2}\right)=\overline{\operatorname{Span}} S_{\underline{i}, \underline{j}}
$$

where

$$
S_{i \underline{i}, \underline{j}}=\ell\left(e_{i_{1}}\right) \ldots \ell\left(e_{i_{n}}\right) \ell\left(e_{j_{m}}\right)^{*} \ldots \ell\left(e_{j_{1}}\right)^{*}
$$

New notion of multiplier : Given $f: \mathcal{J} \times \mathcal{J} \rightarrow \mathbb{C}$,

$$
M_{\phi}\left(S_{\underline{i-j}}\right)=f_{\underline{i}, \underline{j}} S_{\underline{i}-\underline{j}}
$$

is well defined

Abstract characterization

Given $\phi: \mathcal{J} \times \mathcal{J} \rightarrow \mathbb{C}$, tfae

- M_{ϕ} is completely contractive on $\mathcal{T}\left(\ell_{2}\right)$
- with $h_{\underline{\alpha}, \underline{i}, \underline{j}, \underline{\beta}}= \begin{cases}\phi_{\underline{i}-\underline{j}}-\phi_{\left(\underline{i}, s_{1}\right),\left(\underline{j}, s_{1}\right)} & \text { if }(\underline{i}, \underline{s})=\underline{\alpha},(\underline{j}, \underline{s})=\underline{\beta} \\ 0 & \text { otherwise }\end{cases}$

$$
H=\left(h_{\underline{\alpha}, \underline{i}, \underline{j}, \underline{\beta}}\right)_{\underline{\alpha}, \underline{j}, \underline{i}, \underline{\beta}} \in \ell_{\infty} \otimes_{h} S_{1} \otimes_{h} \ell_{\infty}
$$

and $\|H\| \leqslant 1$

- Similar to the Haagerup-Grothendieck characterization.
- Hardly tractable

To look for multipliers that leave $\Gamma\left(\ell_{2}\right)$ invariant.
Ω is separating and cyclic for $\Gamma\left(\ell_{2}\right)^{\prime \prime}$. For $\underline{i} \in \mathcal{J}$

$$
\Gamma\left(\ell_{2}\right) \ni W\left(e_{i}\right), \quad W\left(e_{i}\right) \cdot \Omega=e_{i_{1}} \otimes \ldots \otimes e_{i_{n}}
$$

Wick's Formula

$$
W\left(e_{\underline{i}}\right)=\sum_{k=0}^{n} \ell\left(e_{i_{1}}\right) \ldots \ell\left(e_{i_{k}}\right) \ell\left(e_{i_{k+1}}\right)^{*} \ldots \ell\left(e_{i_{n}}\right)^{*}
$$

If $\phi: \mathbb{N} \rightarrow \mathbb{C}$

Then

$$
\begin{gathered}
f(\underline{i})=\phi(\mid \underline{i}) \\
M_{f}\left(\Gamma\left(\ell_{2}\right)\right) \subset \Gamma\left(\ell_{2}\right) . \\
M_{f}\left(W\left(e_{\underline{i}}\right)\right)=\phi(\mid \underline{i}) W\left(e_{i}\right)
\end{gathered}
$$

Theorem (With C. Houdayer)

Let $\phi: \mathbb{N} \rightarrow \mathbb{C}$, with $f(\underline{i})=\phi(|i|)$ TFAE
i) M_{f} is a cc radial multiplier on $\Gamma\left(\ell_{2}\right)$
ii) M_{f} is a cc radial multiplier on $\mathcal{T}(H)$
iii) M_{f} is a contractive radial multiplier on $\mathcal{T}(\mathbb{C})$
iv) There are constants so that $\phi(n)=c_{1}+c_{2}(-1)^{n}+\psi(n)$ with $\lim _{n} \psi(n)=0$ and

$$
\left|c_{1}\right|+\left|c_{2}\right|+\left\|[\phi(i+j)-\phi(i+j+2)]_{i, j \geqslant 0}\right\|_{1} \leqslant 1
$$

Substitute to Gilbert's and Haagerup-Szwarc theorems iv) \Leftrightarrow iii) is a part of [HS] or the above characterization.
iii) \Rightarrow ii) Universal property of $\mathcal{T}(H)$.
ii) \Rightarrow i) Wick's Formula
i) \Rightarrow iii) To find a shift algebra on which M_{f} acts.

$$
\begin{gathered}
\mathcal{T}(\mathbb{C}) \subset \Gamma\left(\ell_{2}\right) \otimes \mathbb{B}\left(\mathcal{F}\left(\ell_{2}\right)\right) \\
S_{n}=\frac{1}{\sqrt{n}} \sum_{k=1}^{n} W\left(e_{i}\right) \otimes \ell\left(e_{i}\right) \\
S_{n}^{*} S_{n} \sim 1
\end{gathered}
$$

$$
\left(M_{f} \otimes I d\right)\left(S_{n}^{k} S_{n}^{* l}\right) \sim \phi_{n+l} S_{n}^{k} S_{n}^{* I}
$$

$$
M_{f} \otimes I d \text { acts like } T_{\phi} \text { on } \mathcal{T}(\mathbb{C})=\left\langle S_{n}\right\rangle
$$

Corollary (with C. Houdayer)

$\Gamma\left(\ell_{2}\right)$ has the CCAP.
Same scheme as for $C^{*}\left(\mathbb{F}_{\infty}\right)$.

- to use a regularized truncation : $\phi_{r, d}(n)=e^{-r n} \delta_{n \leqslant d}$
- to use a conditional expectation onto $\Gamma\left(\ell_{2}^{n}\right)$

Another length on $\mathcal{J} \times \mathcal{J}$

Block length coming from the free product $\Gamma\left(\ell_{2}\right)=*_{i=0}^{\infty} \Gamma\left(\mathbb{R} e_{i}\right)$

$$
\|(1,1,1,2,2,1)\|=3
$$

M_{f} is block-radial if $f(\underline{i}, \underline{j})=\phi\left(\left\|\left(\underline{i}, \underline{j}^{o p}\right)\right\|\right)$.

Theorem (Haagerup-Møller)

TFAE

- M_{f} is a cc block radial multiplier on $\Gamma\left(\ell_{2}\right)$
- There is a constant so that $\phi(n)=d+\psi(n)$ with $\lim _{n} \psi(n)=0$ and

$$
|d|+\left\|[\phi(i+j)-\phi(i+j+1)]_{i, j \geqslant 0}\right\|_{1}+\left\|[\phi(i+j+1)-\phi(i+j+2)]_{i, j \geqslant 0}\right\|_{1} \leqslant 1
$$

- For any infinite dimensional C^{*} algebra $\left(A_{i}, \psi_{i}\right), M_{\phi}$ is a cc radial multiplier on $*\left(A_{i}, \psi_{i}\right)$
- Wysoszanski's formula.
- More intricate than radial multipliers
- The norm is strictly smaller if there are finitely many terms.

Corollary (with Q. Xu)

The projection onto word of length $\leqslant n$ for reduced free product has a cb norm of order n. The reduced free product of finite dimensional C^{*} algebras has the CCAP.

free Araki-Woods algebras

\rightarrow Shlyakhtenko (97) : type III generalization of Voiculescu's gaussian functor.
Free Araki-Woods : same construction, another real $K_{\mathbb{R}} \subset H$.
A general isometric inclusion $K_{\mathbb{R}} \subset H$ with $H=\overline{K_{\mathbb{R}}+i K_{\mathbb{R}}}$
$\rightarrow I(x+i y)=x-i y x, y \in K_{\mathbb{R}}$ is unbounded closable antilinear map
$I^{*} I=A^{-1}$ is unbounded positive operator on H with $I A I=A^{-1}$.
$\left(A^{i t}\right)$ is an orthogonal group on another $H_{\mathbb{R}}$ with $H=\overline{H_{\mathbb{R}}+i H_{\mathbb{R}}}$.
Conversely, any orthogonal group $\left(U_{t}\right)$ some $H_{\mathbb{R}}$ arises in this way.
Free-quasi free algebras : $\Gamma\left(H_{\mathbb{R}},\left(U_{t}\right)\right)=\left\langle s(\xi), \xi \in K_{\mathbb{R}}\right\rangle$
τ is a nf state on $\Gamma\left(H_{\mathbb{R}},\left(U_{t}\right)\right)^{\prime \prime}$.
In general $\Gamma\left(H_{\mathbb{R}},\left(U_{t}\right)\right)^{\prime \prime}$ is type III.
$U_{t}=I d, \Gamma\left(H_{\mathbb{R}},\left(U_{t}\right)\right)^{\prime \prime}=\Gamma\left(H_{\mathbb{R}}\right)^{\prime \prime}$

Theorem (with C. Houdayer)

$\Gamma\left(H_{\mathbb{R}},\left(U_{t}\right)\right)$ has the CCAP.

First step with multipliers \rightarrow no difficulty
Second step is more delicate
Second quantization: If $T: H_{\mathbb{R}} \rightarrow H_{\mathbb{R}}$ is a contraction with

$$
U_{t} T=T U_{t} T \text { extends to a contraction on } H,
$$

then there is a ucp map on $\Gamma\left(H_{\mathbb{R}}, U_{t}\right)^{\prime \prime}$ satisfying

$$
\Gamma(T) \cdot W\left(e_{1} \otimes \ldots \otimes e_{n}\right)=W\left(T\left(e_{1}\right) \otimes \ldots \otimes T\left(e_{n}\right)\right)
$$

for all $e_{i} \in K_{\mathbb{R}}$

