Operator algebras - stage for non-commutativity (Panorama Lectures Series)
 IV. I_{1} factors and their subfactors

V.S. Sunder
Institute of Mathematical Sciences
Chennai, India
sunder@imsc.res.in

IISc, January 30, 2009

$\|_{1}$ factors

Recall that a von Neumann algebra (vNa) is called a factor if $Z(M)=M \cap M^{\prime}=\mathbb{C}$; and that a factor M is said to be finite if

$$
u \in M, u^{*} u=1 \Rightarrow u u^{*}=1 .
$$

Recall that a von Neumann algebra (vNa) is called a factor if $Z(M)=M \cap M^{\prime}=\mathbb{C}$; and that a factor M is said to be finite if

$$
u \in M, u^{*} u=1 \Rightarrow u u^{*}=1 .
$$

Theorem: The following conditions on a factor M are equivalent:
(1) M is a finite factor.
(2) \exists a positive, normalised $\operatorname{trace} t_{M}$ on M.

$\|_{1}$ factors

Recall that a von Neumann algebra (vNa) is called a factor if $Z(M)=M \cap M^{\prime}=\mathbb{C}$; and that a factor M is said to be finite if

$$
u \in M, u^{*} u=1 \Rightarrow u u^{*}=1 .
$$

Theorem: The following conditions on a factor M are equivalent:
(1) M is a finite factor.
(2) \exists a positive, normalised trace tr_{M} on M.

Such a trace is automatically unique, faithful and normal.

Recall that a von Neumann algebra (vNa) is called a factor if $Z(M)=M \cap M^{\prime}=\mathbb{C}$; and that a factor M is said to be finite if

$$
u \in M, u^{*} u=1 \Rightarrow u u^{*}=1
$$

Theorem: The following conditions on a factor M are equivalent:
(1) M is a finite factor.
(2) \exists a positive, normalised trace tr_{M} on M.

Such a trace is automatically unique, faithful and normal.
The following conditions on two projections p, q in a finite factor M, are equivalent:
(1) $p \sim_{M} q$
(2) $\operatorname{tr}_{M} p=\operatorname{tr}_{M} q$
(3) $\exists u \in \mathcal{U}(M)$ such that $u p u^{*}=q$.

Recall that a von Neumann algebra (vNa) is called a factor if $Z(M)=M \cap M^{\prime}=\mathbb{C}$; and that a factor M is said to be finite if

$$
u \in M, u^{*} u=1 \Rightarrow u u^{*}=1
$$

Theorem: The following conditions on a factor M are equivalent:
(1) M is a finite factor.
(2) \exists a positive, normalised trace tr_{M} on M.

Such a trace is automatically unique, faithful and normal.
The following conditions on two projections p, q in a finite factor M, are equivalent:
(1) $p \sim_{M} q$
(2) $\operatorname{tr}_{M} p=\operatorname{tr}_{M} q$
(3) $\exists u \in \mathcal{U}(M)$ such that $u p u^{*}=q$.

Let M be a finite factor. There are two possibilities:
(1) $\operatorname{dim}_{\mathbb{C}} M<\infty$. In this case $M \cong M_{n}(\mathbb{C})=\mathcal{L}\left(\mathbb{C}^{n}\right)$ for a unique n, and $\left\{\operatorname{tr}_{M} p: p \in \mathcal{P}(M)\right\}=\left\{\frac{k}{n}: 0 \leq k \leq n\right\}$.
(2) $\operatorname{dim}_{\mathbb{C}} M=\infty$. Then M is a I_{1} factor, and in this case, $\left\{\operatorname{tr}_{M} p: p \in \mathcal{P}(M)\right\}=[0,1]$.

Henceforth, M will be a I_{1} factor.
Def: An M-module is a separable Hilbert space \mathcal{H}, equipped with a morphism $\pi: M \rightarrow \mathcal{L}(\mathcal{H})$ of von Neumann algebras (i.e., a normal representation). Two M-modules are isomorphic if there exists an invertible (equivalently, unitary) M-linear map between them.

Henceforth, M will be a I_{1} factor.
Def: An M-module is a separable Hilbert space \mathcal{H}, equipped with a morphism $\pi: M \rightarrow \mathcal{L}(\mathcal{H})$ of von Neumann algebras (i.e., a normal representation). Two M-modules are isomorphic if there exists an invertible (equivalently, unitary) M-linear map between them.

Proposition: There exists a complete isomorphism invariant

$$
\mathcal{H} \mapsto \operatorname{dim}_{\mathrm{M}} \mathcal{H} \in[0, \infty]
$$

of M-modules such that:

- $\mathcal{H} \cong \mathcal{K} \Leftrightarrow \operatorname{dim}_{M} \mathcal{H}=\operatorname{dim}_{M} \mathcal{K}$.
- $\operatorname{dim}_{M}\left(\oplus_{n} \mathcal{H}_{n}\right)=\sum_{n} \operatorname{dim}_{M} \mathcal{H}_{n}$.
- For each $d \in[0, \infty], \exists$ an M-module \mathcal{H}_{d} with $\operatorname{dim}_{M} \mathcal{H}_{d}=d$.

In view of the uniqueness of tr_{M}, we shall simply write $L^{2}(M)\left(=(\hat{M})^{-1}\right.$. It is true as in the finite dimensional case that there exist the left and right regular representations of M on $L^{2}(M)$ which satisfy

- $\lambda_{M}(x) \hat{y}=\widehat{x y}=\rho_{M}(y) \hat{x} \forall x, y \in M$; and
- $\left(\lambda_{M}(M)\right)^{\prime}=\rho_{M}(M)^{\prime \prime}$

As before, we identify $x \in M$ with $\lambda_{M}(x) \in \mathcal{L}\left(L^{2}(M)\right)$.

In view of the uniqueness of tr_{M}, we shall simply write $L^{2}(M)\left(=(\hat{M})^{-1}\right.$. It is true as in the finite dimensional case that there exist the left and right regular representations of M on $L^{2}(M)$ which satisfy

- $\lambda_{M}(x) \hat{y}=\widehat{x y}=\rho_{M}(y) \hat{x} \forall x, y \in M$; and
- $\left(\lambda_{M}(M)\right)^{\prime}=\rho_{M}(M)^{\prime \prime}$

As before, we identify $x \in M$ with $\lambda_{M}(x) \in \mathcal{L}\left(L^{2}(M)\right)$.
$\mathcal{H}_{1}=L^{2}\left(M, \operatorname{tr}_{M}\right)$ is an $M-M$-bimodule.

In view of the uniqueness of tr_{M}, we shall simply write $L^{2}(M)\left(=(\hat{M})^{-1}\right.$. It is true as in the finite dimensional case that there exist the left and right regular representations of M on $L^{2}(M)$ which satisfy

- $\lambda_{M}(x) \hat{y}=\widehat{x y}=\rho_{M}(y) \hat{x} \forall x, y \in M$; and
- $\left(\lambda_{M}(M)\right)^{\prime}=\rho_{M}(M)^{\prime \prime}$

As before, we identify $x \in M$ with $\lambda_{M}(x) \in \mathcal{L}\left(L^{2}(M)\right)$.
$\mathcal{H}_{1}=L^{2}\left(M, \operatorname{tr}_{M}\right)$ is an $M-M$-bimodule.
If $0 \leq d \leq 1$, then $\mathcal{H}_{d}=L^{2}\left(M, \operatorname{tr}_{M}\right) \cdot p$ where $p \in \mathcal{P}(M)$ satisfies $\operatorname{tr}_{M} p=d$.

In view of the uniqueness of tr_{M}, we shall simply write $L^{2}(M)\left(=(\hat{M})^{-1}\right.$. It is true as in the finite dimensional case that there exist the left and right regular representations of M on $L^{2}(M)$ which satisfy

- $\lambda_{M}(x) \hat{y}=\widehat{x y}=\rho_{M}(y) \hat{x} \forall x, y \in M$; and
- $\left(\lambda_{M}(M)\right)^{\prime}=\rho_{M}(M)^{\prime \prime}$

As before, we identify $x \in M$ with $\lambda_{M}(x) \in \mathcal{L}\left(L^{2}(M)\right)$.
$\mathcal{H}_{1}=L^{2}\left(M, \operatorname{tr}_{M}\right)$ is an $M-M$-bimodule.
If $0 \leq d \leq 1$, then $\mathcal{H}_{d}=L^{2}\left(M, \operatorname{tr}_{M}\right) \cdot p$ where $p \in \mathcal{P}(M)$ satisfies $\operatorname{tr}_{M} p=d$.
\mathcal{H}_{d} is a finitely generated projective module iff $d<\infty$.

In view of the uniqueness of tr_{M}, we shall simply write $L^{2}(M)\left(=(\hat{M})^{-1}\right.$. It is true as in the finite dimensional case that there exist the left and right regular representations of M on $L^{2}(M)$ which satisfy

- $\lambda_{M}(x) \hat{y}=\widehat{x y}=\rho_{M}(y) \hat{x} \forall x, y \in M$; and
- $\left(\lambda_{M}(M)\right)^{\prime}=\rho_{M}(M)^{\prime \prime}$

As before, we identify $x \in M$ with $\lambda_{M}(x) \in \mathcal{L}\left(L^{2}(M)\right)$.
$\mathcal{H}_{1}=L^{2}\left(M, \operatorname{tr}_{M}\right)$ is an $M-M$-bimodule.
If $0 \leq d \leq 1$, then $\mathcal{H}_{d}=L^{2}\left(M, \operatorname{tr}_{M}\right) \cdot p$ where $p \in \mathcal{P}(M)$ satisfies $\operatorname{tr}_{M} p=d$.
\mathcal{H}_{d} is a finitely generated projective module iff $d<\infty$.
It follows that $K_{0}(M) \cong \mathbb{R}$.

The hyperfinite I_{1} factor R : Among I_{1} factors, pride of place goes to the ubiquitous hyperfinite I_{1} factor R. It is characterised as the unique I_{1} factor which has any of several properties, such as injectivity and approximate finite-dimensionality (= hyperfiniteness).

The hyperfinite I_{1} factor R : Among I_{1} factors, pride of place goes to the ubiquitous hyperfinite I_{1} factor R. It is characterised as the unique I_{1} factor which has any of several properties, such as injectivity and approximate finite-dimensionality (= hyperfiniteness).

Thus, up to isomorphism, there exists a unique I_{1} factor R which contains an increasing sequence

$$
A_{1} \subset A_{2} \subset \cdots \subset A_{n} \subset \cdots
$$

of finite-dimensional C^{*}-subalgebras such that $\cup_{n} A_{n}$ is σ-weakly dense in R.

The hyperfinite I_{1} factor R : Among I_{1} factors, pride of place goes to the ubiquitous hyperfinite $I I_{1}$ factor R. It is characterised as the unique I_{1} factor which has any of several properties, such as injectivity and approximate finite-dimensionality (= hyperfiniteness).

Thus, up to isomorphism, there exists a unique I_{1} factor R which contains an increasing sequence

$$
A_{1} \subset A_{2} \subset \cdots \subset A_{n} \subset \cdots
$$

of finite-dimensional C^{*}-subalgebras such that $\cup_{n} A_{n}$ is σ-weakly dense in R.
Examples of $I I_{1}$ factors: Let $\lambda: G \rightarrow \mathcal{U}\left(\mathcal{L}\left(\ell^{2}(G)\right)\right)$ denote the left-regular representation of a countable infinite group G, and let $L G=(\lambda(G))^{\prime \prime}$. The group von Neumann algebra $L G$ is a I_{1} factor iff every conjugacy class of G other than $\{1\}$ is infinite.

The hyperfinite I_{1} factor R : Among I_{1} factors, pride of place goes to the ubiquitous hyperfinite $I I_{1}$ factor R. It is characterised as the unique I_{1} factor which has any of several properties, such as injectivity and approximate finite-dimensionality (= hyperfiniteness).

Thus, up to isomorphism, there exists a unique I_{1} factor R which contains an increasing sequence

$$
A_{1} \subset A_{2} \subset \cdots \subset A_{n} \subset \cdots
$$

of finite-dimensional C^{*}-subalgebras such that $\cup_{n} A_{n}$ is σ-weakly dense in R.
Examples of $I I_{1}$ factors: Let $\lambda: G \rightarrow \mathcal{U}\left(\mathcal{L}\left(\ell^{2}(G)\right)\right)$ denote the left-regular representation of a countable infinite group G, and let $L G=(\lambda(G))^{\prime \prime}$. The group von Neumann algebra $L G$ is a I_{1} factor iff every conjugacy class of G other than $\{1\}$ is infinite.
$L \Sigma_{\infty} \cong R$, while $L \mathbb{F}_{2}$ is not hyperfinite.

The hyperfinite I_{1} factor R : Among I_{1} factors, pride of place goes to the ubiquitous hyperfinite I_{1} factor R. It is characterised as the unique I_{1} factor which has any of several properties, such as injectivity and approximate finite-dimensionality (= hyperfiniteness).

Thus, up to isomorphism, there exists a unique I_{1} factor R which contains an increasing sequence

$$
A_{1} \subset A_{2} \subset \cdots \subset A_{n} \subset \cdots
$$

of finite-dimensional C^{*}-subalgebras such that $\cup_{n} A_{n}$ is σ-weakly dense in R.
Examples of $I I_{1}$ factors: Let $\lambda: G \rightarrow \mathcal{U}\left(\mathcal{L}\left(\ell^{2}(G)\right)\right)$ denote the left-regular representation of a countable infinite group G, and let $L G=(\lambda(G))^{\prime \prime}$. The group von Neumann algebra $L G$ is a I_{1} factor iff every conjugacy class of G other than $\{1\}$ is infinite.
$L \Sigma_{\infty} \cong R$, while $L \mathbb{F}_{2}$ is not hyperfinite.
Big open problem: is $L \mathbb{F}_{2} \cong L \mathbb{F}_{3}$? (Compare with the $C_{\text {red }}^{*}$ case.)

The study of bimodules over I_{1} factors is essentially equivalent to that of 'subfactors'. (The bimodule ${ }_{N} \mathcal{H}_{M}$ corresponds to $\lambda_{M}(N) \subset \rho_{M}(M)^{\prime}$.)

The study of bimodules over I_{1} factors is essentially equivalent to that of 'subfactors'. (The bimodule $N \mathcal{H}_{M}$ corresponds to $\lambda_{M}(N) \subset \rho_{M}(M)$ '.)

A subfactor is a unital inclusion $N \subset M$ of I_{1} factors. For a subfactor as above, Jones defined the index of the subfactor by

$$
[M: N]=\operatorname{dim}_{N} L^{2}\left(M, \operatorname{tr}_{M}\right)
$$

The study of bimodules over I_{1} factors is essentially equivalent to that of 'subfactors'. (The bimodule $N \mathcal{H}_{M}$ corresponds to $\lambda_{M}(N) \subset \rho_{M}(M)^{\prime}$.)

A subfactor is a unital inclusion $N \subset M$ of I_{1} factors. For a subfactor as above, Jones defined the index of the subfactor by

$$
[M: N]=\operatorname{dim}_{N} L^{2}\left(M, t r_{M}\right)
$$

and proved that

$$
[M: N] \in[4, \infty] \cup\left\{4 \cos ^{2}\left(\frac{\pi}{n}: n \geq 3\right\}\right.
$$

The study of bimodules over I_{1} factors is essentially equivalent to that of 'subfactors'. (The bimodule $N \mathcal{H}_{M}$ corresponds to $\lambda_{M}(N) \subset \rho_{M}(M)^{\prime}$.)

A subfactor is a unital inclusion $N \subset M$ of I_{1} factors. For a subfactor as above, Jones defined the index of the subfactor by

$$
[M: N]=\operatorname{dim}_{N} L^{2}\left(M, t r_{M}\right)
$$

and proved that

$$
[M: N] \in[4, \infty] \cup\left\{4 \cos ^{2}\left(\frac{\pi}{n}: n \geq 3\right\}\right.
$$

A subfactor N is said to be irreducible if $N^{\prime} \cap M=\mathbb{C}$ - or equivalently, if $L^{2}\left(M, \operatorname{tr}_{M}\right)$ is irreducible as an $N-M$ bimodule - meaning it has no non-zero submodule other than itself.

It is known that if a subfactor $N \subset M$ has finite index, then N is hyperfinite if and only if M is. In this case, call the subfactor hyperfinite.

It is known that if a subfactor $N \subset M$ has finite index, then N is hyperfinite if and only if M is. In this case, call the subfactor hyperfinite.

Very little is known about the set \mathcal{I}_{R}^{0} of possible index values of irreducible hyperfinite subfactors.

It is known that if a subfactor $N \subset M$ has finite index, then N is hyperfinite if and only if M is. In this case, call the subfactor hyperfinite.

Very little is known about the set \mathcal{I}_{R}^{0} of possible index values of irreducible hyperfinite subfactors.
(1) (Jones) $\mathcal{I}_{R}=[4, \infty] \cup\left\{4 \cos ^{2}\left(\frac{\pi}{n}\right): n \geq 3\right\}$ and $\mathcal{I}_{R}^{0} \supset\left\{4 \cos ^{2}\left(\frac{\pi}{n}: n \geq 3\right\}\right.$
(2) $\left(\frac{N+\sqrt{N^{2}+4}}{2}\right)^{2},\left(\frac{N+\sqrt{N^{2}+8}}{2}\right)^{2} \in \mathcal{I}_{R}^{0} \forall N \geq 1$
(3) $\left(N+\frac{1}{N}\right)^{2}$ is the limit of an increasing sequence in \mathcal{I}_{R}^{0}.

Automorphisms

We list below a few facts concerning automorphisms of von Neumann algebras:
(1) If $\pi: M \rightarrow N$ is a normal homomorphism of von Neumann algebras, there exists a central projection z such that ker $\pi=M z=\{x z: x \in M\}$.
(2) If π is a $*$-isomorphism of von Neumann algebras (just algebraically à priori), then it is automatically normal.
(3) if $\pi: M \rightarrow N$ is a *-homomorphism of a factor onto a von Neumann algebra, then π is identically zero or a normal isomorphism.
(4) Thus an algebraic $*$-automorphism of a von Neumann algebra is automatically normal.
(5) An automorphism of a finite factor M preserves tr_{M}.
(6) An automorphism θ of M is said to be free if

$$
x \in M, \theta(y) x=x y \forall y \in M \Rightarrow x=0
$$

We list below a few facts concerning automorphisms of von Neumann algebras:
(1) If $\pi: M \rightarrow N$ is a normal homomorphism of von Neumann algebras, there exists a central projection z such that $\operatorname{ker} \pi=M z=\{x z: x \in M\}$.
(2) If π is a $*$-isomorphism of von Neumann algebras (just algebraically à priori), then it is automatically normal.
(3) if $\pi: M \rightarrow N$ is a $*$-homomorphism of a factor onto a von Neumann algebra, then π is identically zero or a normal isomorphism.
(4) Thus an algebraic $*$-automorphism of a von Neumann algebra is automatically normal.
(5) An automorphism of a finite factor M preserves tr_{M}.
(6) An automorphism θ of M is said to be free if

$$
x \in M, \theta(y) x=x y \forall y \in M \Rightarrow x=0
$$

Proposition:

(1) Suppose $M=L^{\infty}(X, \mathcal{B}, \mu)$, with $\mu \sigma$-finite. Then
(9) $\theta \in \operatorname{Aut}(M) \Leftrightarrow$ there exists a non-singular automorphism T of (X, \mathcal{B}, μ) such that $\theta(f)=f \circ T^{-1}$.
(2) $\theta \in \operatorname{Aut}(M)$ is free iff it moves almost all points - i.e., $\mu\left(\left\{x \in X: T_{x}=x\right\}\right)=0$.
(2) An automorpism of a factor is free iff it is outer - i.e., it is not inner, meaning there is no $u \in \mathcal{U}(M)$ such that $\theta(x)=u x u^{*} \forall x \in M$

Definitions:
(1) An action of a group G on a von Neumann algebra M (written $G \curvearrowright M$) is a group homomorphism α from G into the $\operatorname{group} \operatorname{Aut}(M)$ of *-automorphisms of M.
(2) The action α is said to be outer if α_{g} is outer for each $g \neq 1$.

Definitions:
(1) An action of a group G on a von Neumann algebra M (written $G \curvearrowright M$) is a group homomorphism α from G into the group $\operatorname{Aut}(M)$ of *-automorphisms of M.
(2) The action α is said to be outer if α_{g} is outer for each $g \neq 1$.

Proposition:

(1) For any $n, U_{n}(\mathbb{C})=\mathcal{U}\left(M_{n}(\mathbb{C})\right)$ - and hence every finite group - admits an outer action on R.
(2) If $G \curvearrowright R$ is an outer action of a finite group G on R, the fixed subalgebra $R^{G}=\{x \in R: g \cdot x=x \forall g \in G\}$ is a subfactor of R with $\left[R: R^{G}\right]=|G|$.
(3) If $G \curvearrowright R$ is as in (2) above, then every intermediate $*$-subalgebra $R^{G} \subset P \subset R$ is of the form $P=R^{H}$ for some subgroup H of G; further, $\left[R^{H}: R^{G}\right]=[G: H]$.
(4) If $G_{i} \curvearrowright R, i=1,2$ are outer actions of finite groups, then $\left(R^{G_{1}} \subset R\right) \cong\left(R^{G_{2}} \subset R\right) \Leftrightarrow G_{1} \cong G_{2}$.

Our earlier results (in the case of finite-dimensional C^{*}-algebras) about conditional expectations and basic constructions have perfect analogues here. Specifically one can show without much difficulty that:

Our earlier results (in the case of finite-dimensional C^{*}-algebras) about conditional expectations and basic constructions have perfect analogues here. Specifically one can show without much difficulty that:

Proposition: Suppose $N \subset M$ is a subfactor. Then $L^{2}(N)$ sits naturally as a subspace of $L^{2}(M)$. Let us write e_{N} for the orthogonal projection of $L^{2}(M)$ onto $L^{2}(N)$.
(1) Then $e_{N}(\hat{M}) \subset \hat{N}$, and we define E_{N}, the so-called tr-preserving conditional expectation of M onto N by

$$
\widehat{E_{N}(m)}=e_{N}(\hat{m})
$$

(2) The map E_{N} satisfies and is characterised by the following properties:

- $\left.\operatorname{tr}\right|_{N}=\operatorname{tr} \circ E$.
- $E(n m)=n E(m)$, i.e., E_{N} is N-linear.
(3) $e_{n} m e_{n}=E(m) e_{N}$, where, as usual, we identify $m \in M$ with $\lambda_{M}(m)$.

Our earlier results (in the case of finite-dimensional C^{*}-algebras) about conditional expectations and basic constructions have perfect analogues here. Specifically one can show without much difficulty that:

Proposition: Suppose $N \subset M$ is a subfactor. Then $L^{2}(N)$ sits naturally as a subspace of $L^{2}(M)$. Let us write e_{N} for the orthogonal projection of $L^{2}(M)$ onto $L^{2}(N)$.
(1) Then $e_{N}(\hat{M}) \subset \hat{N}$, and we define E_{N}, the so-called tr-preserving conditional expectation of M onto N by

$$
\widehat{E_{N}(m)}=e_{N}(\hat{m})
$$

(2) The map E_{N} satisfies and is characterised by the following properties:

- $\left.\operatorname{tr}\right|_{N}=t r \circ E$.
- $E(n m)=n E(m)$, i.e., E_{N} is N-linear.
(3) $e_{n} m e_{n}=E(m) e_{N}$, where, as usual, we identify $m \in M$ with $\lambda_{M}(m)$.

The modular conjugation associated to M is the antiunitary operator J_{M} defined on $L^{2}(M)$ by $J_{M}(\hat{x})=\widehat{x^{*}}$.

Proposition: For a subfactor $N \subset M$, simply writing J for J_{M} and e for e_{N}, we have:

- $J x J=\rho_{M}\left(x^{*}\right) \forall x \in M$
- Je=eJ
- $J N^{\prime} J=(M \cup\{e\})^{\prime \prime}$, where N^{\prime} means $\lambda_{M}(N)^{\prime}$ in $\mathcal{L}\left(L^{2}(M)\right)$
- $J N^{\prime} J$ is a $I I_{1}$ factor iff $[M: N]<\infty$.

Proposition: For a subfactor $N \subset M$, simply writing J for J_{M} and e for e_{N}, we have:

- $J x J=\rho_{M}\left(x^{*}\right) \forall x \in M$
- $J e=e J$
- $J N^{\prime} J=(M \cup\{e\})^{\prime \prime}$, where N^{\prime} means $\lambda_{M}(N)^{\prime}$ in $\mathcal{L}\left(L^{2}(M)\right)$
- $J N^{\prime} J$ is a I_{1} factor iff $[M: N]<\infty$.

Proposition:

If $[M: N]<\infty$, then
(1) $N^{\prime} \cap M$ is finite-dimensional; in fact, $\operatorname{dim}\left(N^{\prime} \cap M\right) \leq[M: N]$; and

$$
[M: N]<4 \Rightarrow N^{\prime} \cap M=\mathbb{C} .
$$

(2) $M_{1}=:\langle M, e\rangle=(M \cup\{e\})^{\prime \prime}$ is also a I_{1} factor and $\left[M_{1}: M\right]=[M: N]$.
(3) $E_{M}(e)=\frac{1}{[M: N]} 1$

If $N \subset M$ is a finite index subfactor, we write

$$
N \subset M \subset^{e_{1}} M_{1}
$$

to denote the basic construction, where we write e_{1} for e_{N} for reasons that will soon become clear.

If $N \subset M$ is a finite index subfactor, we write

$$
N \subset M \subset^{e_{1}} M_{1}
$$

to denote the basic construction, where we write e_{1} for e_{N} for reasons that will soon become clear.

Since $M \subset M_{1}$ is also a finite index subfactor, we can play the game once more, and in fact ad infinitum (nauseum?), to get a tower

$$
\left(M_{-1}=\right) N \subset\left(M_{0}=\right) M \subset^{e_{1}} M_{1} \subset^{e_{2}} M_{2} \subset \cdots
$$

of I_{1} factors.

If $N \subset M$ is a finite index subfactor, we write

$$
N \subset M \subset^{e_{1}} M_{1}
$$

to denote the basic construction, where we write e_{1} for e_{N} for reasons that will soon become clear.

Since $M \subset M_{1}$ is also a finite index subfactor, we can play the game once more, and in fact ad infinitum (nauseum?), to get a tower

$$
\left(M_{-1}=\right) N \subset\left(M_{0}=\right) M \subset^{e_{1}} M_{1} \subset^{e_{2}} M_{2} \subset \cdots
$$

of I_{1} factors.
Since the index is multiplicative, we see that $\left[M_{i}: M_{j}\right]=[M: N]^{j-i}$.

Thus we have the following grid of finite-dimensional C^{*}-algebras:

$$
\begin{array}{rccccccc}
\mathbb{C}= & N^{\prime} \cap N & \subset & N^{\prime} \cap M & \subset & N^{\prime} \cap M_{1} & \subset & \cdots \\
\cup & & \cup & & \cup & & \cdots \\
\mathbb{C} & = & M^{\prime} \cap M & \subset & M^{\prime} \cap M_{1} & \subset & \cdots
\end{array}
$$

Thus we have the following grid of finite-dimensional C^{*}-algebras:

$$
\begin{array}{rcccccc}
\mathbb{C}= & N^{\prime} \cap N & \subset & N^{\prime} \cap M & \subset & N^{\prime} \cap M_{1} & \subset \\
\cup & \cdots \\
\cup & & \cup & & \cup & & \cdots \\
\mathbb{C} & = & M^{\prime} \cap M & \subset & M^{\prime} \cap M_{1} & \subset & \cdots
\end{array}
$$

Further, this comes equipped with a consistent trace (which, on $M_{i}^{\prime} \cap M_{j}$ is the restriction of $\operatorname{tr}_{M_{j}}$). This grid, with this trace, is called the standard invariant of $N \subset M$.

Thus we have the following grid of finite-dimensional C^{*}-algebras:

$$
\begin{array}{rccccccc}
\mathbb{C}= & N^{\prime} \cap N & \subset & N^{\prime} \cap M & \subset & N^{\prime} \cap M_{1} & \subset & \cdots \\
\cup & & \cup & & \cup & & \cdots \\
\mathbb{C} & = & M^{\prime} \cap M & \subset & M^{\prime} \cap M_{1} & \subset & \cdots
\end{array}
$$

Further, this comes equipped with a consistent trace (which, on $M_{i}^{\prime} \cap M_{j}$ is the restriction of $\operatorname{tr}_{M_{j}}$). This grid, with this trace, is called the standard invariant of $N \subset M$.

This turns out to be a complete invariant for a 'good class' of subfactors - the so-called extremal ones.

To better understand this standard invariant, start by observing that the tower in the first row of the grid is described by the total Bratteli diagram obtained by glueing the several individual Bratteli diagrams together. We illustrate varous features of this tower in the example $R^{S_{3}} \subset R$:

Here, we have written $P_{k}=N^{\prime} \cap M_{k-1}$. The diagram illustrates several features that are present in the corresponding diagram of relative commutants for every subfactor:
(a) The part of the diagram between the nth and $(n+1)$-st floors consists of two parts: (i) a (horizontal) mirror-reflection of the part of the diagram between the ($n-1$)-th and nth floors, and (ii) a 'new part'. In fact, new vertices, if any, on the $(n+1)$-st floor are connected only to new vertices on the n-th floor.
(a) The part of the diagram between the nth and $(n+1)$-st floors consists of two parts: (i) a (horizontal) mirror-reflection of the part of the diagram between the ($n-1$)-th and nth floors, and (ii) a 'new part'. In fact, new vertices, if any, on the $(n+1)$-st floor are connected only to new vertices on the n-th floor.
(b) The (red) graph comprising all the 'new parts' is called the principal graph Γ of the subfactor $N \subset M$. (It follows from (a) that the Bratteli diagram for the entire tower $\left\{N^{\prime} \cap M_{k-1}: k \geq 0\right\}$ is determined by the principal graph.)
(a) The part of the diagram between the nth and $(n+1)$-st floors consists of two parts: (i) a (horizontal) mirror-reflection of the part of the diagram between the ($n-1$)-th and nth floors, and (ii) a 'new part'. In fact, new vertices, if any, on the $(n+1)$-st floor are connected only to new vertices on the n-th floor.
(b) The (red) graph comprising all the 'new parts' is called the principal graph Γ of the subfactor $N \subset M$. (It follows from (a) that the Bratteli diagram for the entire tower $\left\{N^{\prime} \cap M_{k-1}: k \geq 0\right\}$ is determined by the principal graph.)
(c) In fact, the Bratteli diagram for the entire tower $\left\{M^{\prime} \cap M_{k}: k \geq 0\right\}$ is recovered in the same fashion from the so-called dual principal graph $\widetilde{\Gamma}$, which is just the principal graph of $M \subset M_{1}$.
(a) The part of the diagram between the nth and $(n+1)$-st floors consists of two parts: (i) a (horizontal) mirror-reflection of the part of the diagram between the ($n-1$)-th and nth floors, and (ii) a 'new part'. In fact, new vertices, if any, on the $(n+1)$-st floor are connected only to new vertices on the n-th floor.
(b) The (red) graph comprising all the 'new parts' is called the principal graph Γ of the subfactor $N \subset M$. (It follows from (a) that the Bratteli diagram for the entire tower $\left\{N^{\prime} \cap M_{k-1}: k \geq 0\right\}$ is determined by the principal graph.)
(c) In fact, the Bratteli diagram for the entire tower $\left\{M^{\prime} \cap M_{k}: k \geq 0\right\}$ is recovered in the same fashion from the so-called dual principal graph $\widetilde{\Gamma}$, which is just the principal graph of $M \subset M_{1}$.
(d) In the exhibited example, the principal graph and the dual principal graph are given by:

(e) It is a fact that Γ is finite iff $\widetilde{\Gamma}$ is finite, in which case the subfactor is said to have finite depth.
(e) It is a fact that Γ is finite iff $\widetilde{\Gamma}$ is finite, in which case the subfactor is said to have finite depth.

In addition to the two principal graphs, which only describe the two towers of relative commutants, one also needs to encode the data of how one tower is embedded into the next. This has been done in at least three ways: as a paragroup (Ocneanu), a λ-lattice (Popa), or a planar algebra (Jones). Any one of these notions is equivalent to the 'standard invariant, and is a complete invariant, provided the subfactor is extremal. (Finite depth subfactors are known to be extremal, and thus determined by their standard invariant.)
(e) It is a fact that Γ is finite iff $\widetilde{\Gamma}$ is finite, in which case the subfactor is said to have finite depth.

In addition to the two principal graphs, which only describe the two towers of relative commutants, one also needs to encode the data of how one tower is embedded into the next. This has been done in at least three ways: as a paragroup (Ocneanu), a λ-lattice (Popa), or a planar algebra (Jones). Any one of these notions is equivalent to the 'standard invariant, and is a complete invariant, provided the subfactor is extremal. (Finite depth subfactors are known to be extremal, and thus determined by their standard invariant.)

We shall content ourselves with recording the following relations satisfied by the Jones projections $\left\{e_{n}: n \geq 1\right\}$ (which are easy consequences of the basic construction):
(e) It is a fact that Γ is finite iff $\widetilde{\Gamma}$ is finite, in which case the subfactor is said to have finite depth.

In addition to the two principal graphs, which only describe the two towers of relative commutants, one also needs to encode the data of how one tower is embedded into the next. This has been done in at least three ways: as a paragroup (Ocneanu), a λ-lattice (Popa), or a planar algebra (Jones). Any one of these notions is equivalent to the 'standard invariant, and is a complete invariant, provided the subfactor is extremal. (Finite depth subfactors are known to be extremal, and thus determined by their standard invariant.)

We shall content ourselves with recording the following relations satisfied by the Jones projections $\left\{e_{n}: n \geq 1\right\}$ (which are easy consequences of the basic construction):

$$
\begin{aligned}
e_{i}^{2} & =e_{i} \quad \forall i \\
e_{i} e_{j} & =e_{j} e_{i} \quad \text { if }|i-j| \geq 2 \\
e_{i} e_{j} e_{i} & =\tau e_{i} \quad \text { if }|i-j|=1
\end{aligned}
$$

where $\tau=[M: N]^{-1}$.

Goodman, F., de la Harpe, P. and Jones, V. F. R., Coxeter graphs and towers of algebras, MSRI Publications (Springer), 14, 1989.

Jones, V. F. R., Index for subfactors, Inventiones Mathematicae, 72, (1983), 1-15.

Jones, V.F.R. and Sunder, V.S., Introduction to Subfactors, Cambridge University Press, 1997.

Ocneanu, A., Quantized group, string algebras and Galois theory for algebras, Operator algebras and applications, Vol. 2 (Warwick) (ed. D. E. Evans and M. Takesaki), London Mathematical Society Lecture Note Series Vol. 136, Cambridge University Press, 119-172, 1987.

