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II1 factors

Recall that a von Neumann algebra (vNa) is called a factor if
Z(M) = M ∩M ′ = C; and that a factor M is said to be finite if

u ∈ M, u∗u = 1⇒ uu∗ = 1.

Theorem: The following conditions on a factor M are equivalent:
1 M is a finite factor.
2 ∃ a positive, normalised trace trM on M.

Such a trace is automatically unique, faithful and normal. 2

The following conditions on two projections p, q in a finite factor M, are
equivalent:

1 p ∼M q
2 trMp = trMq
3 ∃u ∈ U(M) such that upu∗ = q.

Let M be a finite factor. There are two possibilities:
1 dimCM <∞. In this case M ∼= Mn(C) = L(Cn) for a unique n, and
{trMp : p ∈ P(M)} = { k

n
: 0 ≤ k ≤ n}.

2 dimCM =∞. Then M is a II1 factor, and in this case,
{trMp : p ∈ P(M)} = [0, 1].

So II1 factors are the arena for continuously varying dimensions; they got von
Neumann looking at continuous geometries.
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von Neumann dimension of modules over II1 factors

Henceforth, M will be a II1 factor.

Def: An M-module is a separable Hilbert space H, equipped with a morphism
π : M → L(H) of von Neumann algebras (i.e., a normal representation). Two
M-modules are isomorphic if there exists an invertible (equivalently, unitary)
M-linear map between them.

Proposition: There exists a complete isomorphism invariant

H 7→ dimMH ∈ [0,∞]

of M-modules such that:

H ∼= K ⇔ dimMH = dimMK.

dimM(⊕nHn) =
P

n dimMHn.

For each d ∈ [0,∞], ∃ an M-module Hd with dimMHd = d .
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The standard form of a II1 factor

In view of the uniqueness of trM , we shall simply write L2(M)(= (M̂))̄. It is
true as in the finite dimensional case that there exist the left and right regular
representations of M on L2(M) which satisfy

λM(x)ŷ = cxy = ρM(y)x̂ ∀x , y ∈ M; and

(λM(M))′ = ρM(M)′′

As before, we identify x ∈ M with λM(x) ∈ L(L2(M)).

H1 = L2(M, trM) is an M −M-bimodule.

If 0 ≤ d ≤ 1, then Hd = L2(M, trM) · p where p ∈ P(M) satisfies trMp = d .

Hd is a finitely generated projective module iff d <∞.

It follows that K0(M) ∼= R.
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Examples

The hyperfinite II1 factor R: Among II1 factors, pride of place goes to the
ubiquitous hyperfinite II1 factor R. It is characterised as the unique II1 factor
which has any of several properties, such as injectivity and approximate
finite-dimensionality (= hyperfiniteness).

Thus, up to isomorphism, there exists a unique II1 factor R which contains an
increasing sequence

A1 ⊂ A2 ⊂ · · · ⊂ An ⊂ · · ·

of finite-dimensional C∗-subalgebras such that ∪nAn is σ-weakly dense in R.

Examples of II1 factors: Let λ : G → U(L(`2(G))) denote the left-regular
representation of a countable infinite group G , and let LG = (λ(G))′′. The
group von Neumann algebra LG is a II1 factor iff every conjugacy class of G
other than {1} is infinite.

LΣ∞ ∼= R, while LF2 is not hyperfinite.

Big open problem: is LF2
∼= LF3? (Compare with the C∗red case.)
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Subfactors and Index

The study of bimodules over II1 factors is essentially equivalent to that of
‘subfactors’. (The bimodule NHM corresponds to λM(N) ⊂ ρM(M)′.)

A subfactor is a unital inclusion N ⊂ M of II1 factors. For a subfactor as
above, Jones defined the index of the subfactor by

[M : N] = dimNL2(M, trM)

and proved that

[M : N] ∈ [4,∞] ∪ {4cos2(
π

n
: n ≥ 3}

A subfactor N is said to be irreducible if N ′ ∩M = C - or equivalently, if
L2(M, trM) is irreducible as an N −M bimodule - meaning it has no non-zero
submodule other than itself.
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Possible values of index of irreducible subfactors

It is known that if a subfactor N ⊂ M has finite index, then N is hyperfinite if
and only if M is. In this case, call the subfactor hyperfinite.

Very little is known about the set I0
R of possible index values of irreducible

hyperfinite subfactors.

1 (Jones) IR = [4,∞] ∪ {4cos2( π
n

) : n ≥ 3} and I0
R ⊃ {4cos2( π

n
: n ≥ 3}

2

„
N+
√

N2+4

2

«2

,

„
N+
√

N2+8

2

«2

∈ I0
R ∀N ≥ 1

3 (N + 1
N

)2 is the limit of an increasing sequence in I0
R .
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Automorphisms

We list below a few facts concerning automorphisms of von Neumann algebras:

1 If π : M → N is a normal homomorphism of von Neumann algebras, there
exists a central projection z such that ker π = Mz = {xz : x ∈ M}.

2 If π is a ∗-isomorphism of von Neumann algebras (just algebraically à
priori), then it is automatically normal.

3 if π : M → N is a ∗-homomorphism of a factor onto a von Neumann
algebra, then π is identically zero or a normal isomorphism.

4 Thus an algebraic ∗-automorphism of a von Neumann algebra is
automatically normal.

5 An automorphism of a finite factor M preserves trM .
6 An automorphism θ of M is said to be free if

x ∈ M, θ(y)x = xy ∀y ∈ M ⇒ x = 0.

Proposition:
1 Suppose M = L∞(X ,B, µ), with µ σ-finite. Then

1 θ ∈ Aut(M) ⇔ there exists a non-singular automorphism T of (X ,B, µ)
such that θ(f ) = f ◦ T−1.

2 θ ∈ Aut(M) is free iff it moves almost all points - i.e.,
µ({x ∈ X : Tx = x}) = 0.

2 An automorpism of a factor is free iff it is outer - i.e., it is not inner,
meaning there is no u ∈ U(M) such that θ(x) = uxu∗ ∀x ∈ M
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Group actions

Definitions:

1 An action of a group G on a von Neumann algebra M (written G y M)
is a group homomorphism α from G into the group Aut(M) of
∗-automorphisms of M.

2 The action α is said to be outer if αg is outer for each g 6= 1.

Proposition:

1 For any n, Un(C) = U(Mn(C)) - and hence every finite group - admits an
outer action on R.

2 If G y R is an outer action of a finite group G on R, the fixed subalgebra
RG = {x ∈ R : g · x = x∀g ∈ G} is a subfactor of R with [R : RG ] = |G |.

3 If G y R is as in (2) above, then every intermediate ∗-subalgebra
RG ⊂ P ⊂ R is of the form P = RH for some subgroup H of G ; further,
[RH : RG ] = [G : H].

4 If Gi y R, i = 1, 2 are outer actions of finite groups, then
(RG1 ⊂ R) ∼= (RG2 ⊂ R) ⇔ G1

∼= G2.
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Basic construction

Our earlier results (in the case of finite-dimensional C∗-algebras) about
conditional expectations and basic constructions have perfect analogues here.
Specifically one can show without much difficulty that:

Proposition: Suppose N ⊂ M is a subfactor. Then L2(N) sits naturally as a
subspace of L2(M). Let us write eN for the orthogonal projection of L2(M)
onto L2(N).

1 Then eN(M̂) ⊂ N̂, and we define EN , the so-called tr-preserving
conditional expectation of M onto N by

ÊN(m) = eN(m̂)

2 The map EN satisfies and is characterised by the following properties:
tr |N = tr ◦ E .
E(nm) = nE(m), i.e., EN is N-linear.

3 enmen = E(m)eN , where, as usual, we identify m ∈ M with λM(m).

The modular conjugation associated to M is the antiunitary operator JM

defined on L2(M) by JM(x̂) = cx∗.
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Basic construction (contd.)

Proposition: For a subfactor N ⊂ M, simply writing J for JM and e for eN , we
have:

JxJ = ρM(x∗) ∀x ∈ M

Je = eJ

JN ′J = (M ∪ {e})′′, where N ′ means λM(N)′ in L(L2(M))

JN ′J is a II1 factor iff [M : N] <∞.

2

Proposition:
If [M : N] <∞, then

1 N ′ ∩M is finite-dimensional; in fact, dim(N ′ ∩M) ≤ [M : N]; and

[M : N] < 4⇒ N ′ ∩M = C.

2 M1 =: < M, e >= (M ∪ {e})′′ is also a II1 factor and
[M1 : M] = [M : N].

3 EM(e) = 1
[M:N]

1
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Basic construction tower

If N ⊂ M is a finite index subfactor, we write

N ⊂ M ⊂e1 M1

to denote the basic construction, where we write e1 for eN for reasons that will
soon become clear.

Since M ⊂ M1 is also a finite index subfactor, we can play the game once
more, and in fact ad infinitum (nauseum?), to get a tower

(M−1 =)N ⊂ (M0 =)M ⊂e1 M1 ⊂e2 M2 ⊂ · · ·

of II1 factors.

Since the index is multiplicative, we see that [Mi : Mj ] = [M : N]j−i .
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The standard invariant

Thus we have the following grid of finite-dimensional C∗-algebras:

C = N ′ ∩ N ⊂ N ′ ∩M ⊂ N ′ ∩M1 ⊂ · · ·
∪ ∪ ∪ · · ·
C = M ′ ∩M ⊂ M ′ ∩M1 ⊂ · · ·

Further, this comes equipped with a consistent trace (which, on M ′i ∩Mj is the
restriction of trMj ). This grid, with this trace, is called the standard invariant
of N ⊂ M.

This turns out to be a complete invariant for a ‘good class’ of subfactors - the
so-called extremal ones.
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An example

To better understand this standard invariant, start by observing that the tower
in the first row of the grid is described by the total Bratteli diagram obtained
by glueing the several individual Bratteli diagrams together. We illustrate
varous features of this tower in the example RS3 ⊂ R:

P

P

P

P

P

P

0

1

2

3

4

5

1
2

= 1

1 = 1

1 + 4 + 1 = 6

1

1

11 2

6

6 6
12

36

216 = 36 + 144 + 36

36
6

4

Here, we have written Pk = N ′ ∩Mk−1. The diagram illustrates several
features that are present in the corresponding diagram of relative commutants
for every subfactor:
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The principal graphs

(a) The part of the diagram between the nth and (n + 1)-st floors consists of
two parts: (i) a (horizontal) mirror-reflection of the part of the diagram between
the (n− 1)-th and nth floors, and (ii) a ‘new part’. In fact, new vertices, if any,
on the (n + 1)-st floor are connected only to new vertices on the n-th floor.

(b) The (red) graph comprising all the ‘new parts’ is called the principal graph
Γ of the subfactor N ⊂ M. (It follows from (a) that the Bratteli diagram for
the entire tower {N ′ ∩Mk−1 : k ≥ 0} is determined by the principal graph.)

(c) In fact, the Bratteli diagram for the entire tower {M ′ ∩Mk : k ≥ 0} is

recovered in the same fashion from the so-called dual principal graph eΓ, which
is just the principal graph of M ⊂ M1.

(d) In the exhibited example, the principal graph and the dual principal graph
are given by:

τσ
2

τ στσ
2

σ1

Γ Γ

∼
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The Jones projections

(e) It is a fact that Γ is finite iff eΓ is finite, in which case the subfactor is said
to have finite depth.

In addition to the two principal graphs, which only describe the two towers of
relative commutants, one also needs to encode the data of how one tower is
embedded into the next. This has been done in at least three ways: as a
paragroup (Ocneanu), a λ-lattice (Popa), or a planar algebra (Jones). Any
one of these notions is equivalent to the ‘standard invariant, and is a complete
invariant, provided the subfactor is extremal. (Finite depth subfactors are
known to be extremal, and thus determined by their standard invariant.)

We shall content ourselves with recording the following relations satisfied by
the Jones projections {en : n ≥ 1} (which are easy consequences of the basic
construction):

e2
i = ei ∀i

ei ej = ejei if |i − j | ≥ 2
ei ejei = τei if |i − j | = 1

where τ = [M : N]−1.
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