Operator algebras - stage for non-commutativity (Panorama Lectures Series) II. K-theory for C^{*}-algebras

V.S. Sunder
Institute of Mathematical Sciences
Chennai, India
sunder@imsc.res.in

IISc, January 28, 2009

Vector bundles

We begin with a brief re-cap of classical topological K-theory, which studies the classification of vector bundles up to so-called stable equivalence.

We begin with a brief re-cap of classical topological K-theory, which studies the classification of vector bundles up to so-called stable equivalence.

By a vector bundle of rank \mathbf{n} on a compact Hausdorff space X is meant an ordered pair (E, p) consisting of a topological space E and a continuous map $p: E \rightarrow X$, which satisfy some requirements which say loosely that:

- for each $x \in X$, the fibre $E_{x}=\pi^{-1}(x)$ over x has the structure of a vector space of dimension n
- the fibres are all 'tied together in a continuous manner', the precise formulation being referred to as local triviality.

We begin with a brief re-cap of classical topological K-theory, which studies the classification of vector bundles up to so-called stable equivalence.

By a vector bundle of rank \mathbf{n} on a compact Hausdorff space X is meant an ordered pair (E, p) consisting of a topological space E and a continuous map $p: E \rightarrow X$, which satisfy some requirements which say loosely that:

- for each $x \in X$, the fibre $E_{x}=\pi^{-1}(x)$ over x has the structure of a vector space of dimension n
- the fibres are all 'tied together in a continuous manner', the precise formulation being referred to as local triviality.

The prime examples are the tangent bundle $T M$ and the cotangent bundle $T M^{*}$ over a compact manifold. For example,

$$
T S^{n-1}=\left\{(x, v) \in S^{n-1} \times \mathbb{R}^{n}: x \cdot v=0\right\}
$$

We begin with a brief re-cap of classical topological K-theory, which studies the classification of vector bundles up to so-called stable equivalence.

By a vector bundle of rank \mathbf{n} on a compact Hausdorff space X is meant an ordered pair (E, p) consisting of a topological space E and a continuous map $p: E \rightarrow X$, which satisfy some requirements which say loosely that:

- for each $x \in X$, the fibre $E_{x}=\pi^{-1}(x)$ over x has the structure of a vector space of dimension n
- the fibres are all 'tied together in a continuous manner', the precise formulation being referred to as local triviality.

The prime examples are the tangent bundle $T M$ and the cotangent bundle $T M^{*}$ over a compact manifold. For example,

$$
T S^{n-1}=\left\{(x, v) \in S^{n-1} \times \mathbb{R}^{n}: x \cdot v=0\right\}
$$

We will, however, be concerned primarily with complex vector bundles here.

If (E, p) is a vector bundle on X, a section of E is a continuous function $s: X \rightarrow E$ such that $s(x) \in E_{x} \forall x \in X$. The set $\Gamma(E)$ of sections of E is naturally a vector space - with

$$
(\alpha s+\beta t)(x)=\alpha s(x)+\beta t(x)
$$

and with the linear combination on the right interpreted in the vector space E_{x}. In fact, $\Gamma(E)$ is naturally a module over $C(X)$ - with

$$
(f \cdot s)(x)=f(x) s(x)
$$

If (E, p) is a vector bundle on X, a section of E is a continuous function $s: X \rightarrow E$ such that $s(x) \in E_{x} \forall x \in X$. The set $\Gamma(E)$ of sections of E is naturally a vector space - with

$$
(\alpha s+\beta t)(x)=\alpha s(x)+\beta t(x)
$$

and with the linear combination on the right interpreted in the vector space E_{x}. In fact, $\Gamma(E)$ is naturally a module over $C(X)$ - with

$$
(f \cdot s)(x)=f(x) s(x)
$$

Theorem: (Serre-Swan theorem:)
If (E, p) is a vector bundle over a compact Hausdorff space X, then $\Gamma(X)$ is a finitely generated projective module over $C(X)$ (i.e., there exist finitely many elements $s_{1}, \cdots, s_{n} \in \Gamma(X)$ such that $\left.\Gamma(E)=\sum_{i=1}^{n} C(X) \cdot s_{i}\right)$.

If (E, p) is a vector bundle on X, a section of E is a continuous function $s: X \rightarrow E$ such that $s(x) \in E_{x} \forall x \in X$. The set $\Gamma(E)$ of sections of E is naturally a vector space - with

$$
(\alpha s+\beta t)(x)=\alpha s(x)+\beta t(x)
$$

and with the linear combination on the right interpreted in the vector space E_{x}. In fact, $\Gamma(E)$ is naturally a module over $C(X)$ - with

$$
(f \cdot s)(x)=f(x) s(x)
$$

Theorem: (Serre-Swan theorem:)
If (E, p) is a vector bundle over a compact Hausdorff space X, then $\Gamma(X)$ is a finitely generated projective module over $C(X)$ (i.e., there exist finitely many elements $s_{1}, \cdots, s_{n} \in \Gamma(X)$ such that $\left.\Gamma(E)=\sum_{i=1}^{n} C(X) \cdot s_{i}\right)$.

Further, every finitely generated projective module over $C(X)$ is of this form.

Notice next that if A is any unital C^{*}-algebra, so is $M_{n}(A)$ (in a natural way); the algebraic operations are the natural ones, while the norm may be obtained thus: if $A \hookrightarrow \mathcal{L}(\mathcal{H})$, then $M_{n}(A) \hookrightarrow M_{n}(\mathcal{L}(\mathcal{H})) \cong \mathcal{L}\left(\mathcal{H} \oplus \mathcal{H} \oplus{ }^{n}\right.$ terms $\left.\mathcal{H}\right)$. We shall identify $M_{n}(A)$ with the 'northwest corner' of $M_{n+1}(A)$ via $x \sim\left[\begin{array}{ll}x & 0 \\ 0 & 0\end{array}\right]$.

Notice next that if A is any unital C^{*}-algebra, so is $M_{n}(A)$ (in a natural way); the algebraic operations are the natural ones, while the norm may be obtained thus: if $A \hookrightarrow \mathcal{L}(\mathcal{H})$, then $M_{n}(A) \hookrightarrow M_{n}(\mathcal{L}(\mathcal{H})) \cong \mathcal{L}\left(\mathcal{H} \oplus \mathcal{H} \oplus{ }^{n}{ }^{\text {terms }} \mathcal{H}\right)$. We shall identify $M_{n}(A)$ with the 'northwest corner' of $M_{n+1}(A)$ via $x \sim\left[\begin{array}{ll}x & 0 \\ 0 & 0\end{array}\right]$.

Write $\mathcal{P}_{n}(A)=\mathcal{P}\left(M_{n}(A)\right)$, and $\mathcal{U}_{n}(A)=\mathcal{U}\left(M_{n}(A)\right)$ where $\mathcal{P}(B)$) (resp., $\mathcal{U}(B))$) denotes the set $\left\{p \in B: p=p^{2}=p^{*}\right\}$, (resp., $\left\{u \in B: u^{*} u=u u^{*}=1\right\}$) of projections (resp., unitary elements) in any C^{*}-algebra B.

Notice next that if A is any unital C^{*}-algebra, so is $M_{n}(A)$ (in a natural way); the algebraic operations are the natural ones, while the norm may be obtained thus: if $A \hookrightarrow \mathcal{L}(\mathcal{H})$, then $M_{n}(A) \hookrightarrow M_{n}(\mathcal{L}(\mathcal{H})) \cong \mathcal{L}\left(\mathcal{H} \oplus \mathcal{H} \oplus{ }^{n}{ }^{\text {terms }} \mathcal{H}\right)$. We shall identify $M_{n}(A)$ with the 'northwest corner' of $M_{n+1}(A)$ via $x \sim\left[\begin{array}{ll}x & 0 \\ 0 & 0\end{array}\right]$.

Write $\mathcal{P}_{n}(A)=\mathcal{P}\left(M_{n}(A)\right)$, and $\mathcal{U}_{n}(A)=\mathcal{U}\left(M_{n}(A)\right)$ where $\mathcal{P}(B)$) (resp., $\mathcal{U}(B))$) denotes the set $\left\{p \in B: p=p^{2}=p^{*}\right\}$, (resp., $\left\{u \in B: u^{*} u=u u^{*}=1\right\}$) of projections (resp., unitary elements) in any C^{*}-algebra B.

Regard $\mathcal{P}_{n}(A)$ (resp., $\mathcal{U}_{n}(A)$) as being included in $\mathcal{P}_{n+1}(A)$ (resp., $\mathcal{U}_{n+1}(A)$) via the identification

$$
\mathcal{P}_{n}(A) \ni p \sim\left[\begin{array}{ll}
p & 0 \\
0 & 0
\end{array}\right] \in \mathcal{P}_{n+1}(A)
$$

(resp. $u \sim\left[\begin{array}{ll}u & 0 \\ 0 & 1\end{array}\right]$) and write $\mathcal{P}_{\infty}(A), M_{\infty}(A)$ and $\mathcal{U}_{\infty}(A)$ for the indicated increasing union.

A finitely generated projective module over A is of the form

$$
V_{p}=\left\{\xi \in M_{1 \times n}(A): \xi=\xi p\right\}
$$

for some $p \in \mathcal{P}_{n}(A)$, and some positive integer n - where of course the A action on V_{p} is given by

$$
(a \cdot \xi)_{i}=a \xi_{i}
$$

A finitely generated projective module over A is of the form

$$
V_{p}=\left\{\xi \in M_{1 \times n}(A): \xi=\xi p\right\}
$$

for some $p \in \mathcal{P}_{n}(A)$, and some positive integer n - where of course the A action on V_{p} is given by

$$
(a \cdot \xi)_{i}=a \xi_{i}
$$

It is not hard to see that if $p, q \in \mathcal{P}_{\infty}(A)$, then a linear map $x: V_{p} \rightarrow V_{q}$ is A-linear if and only if there exists a matrix $X=\left(\left(x_{i j}\right)\right) \in M_{\infty}(A)$ such that

$$
x \cdot v=v \cdot X \quad \text { and } \quad X=p x q
$$

where we think of elements of V_{p} and V_{q} as row vectors. (This assertion is an instance of the thesis 'what commutes with all left-multiplications must be a right-multiplication', many instances of which we will keep running into.) In particular, modules V_{p} and V_{q} are isomorphic iff there exists a $u \in M_{\infty}(A)$ such that $u^{*} u=p$ and $u u^{*}=q$; write $p \sim q$ when this happens.

A finitely generated projective module over A is of the form

$$
V_{p}=\left\{\xi \in M_{1 \times n}(A): \xi=\xi p\right\},
$$

for some $p \in \mathcal{P}_{n}(A)$, and some positive integer n - where of course the A action on V_{P} is given by

$$
(a \cdot \xi)_{i}=a \xi_{i}
$$

It is not hard to see that if $p, q \in \mathcal{P}_{\infty}(A)$, then a linear map $x: V_{p} \rightarrow V_{q}$ is A-linear if and only if there exists a matrix $X=\left(\left(x_{i j}\right)\right) \in M_{\infty}(A)$ such that

$$
x \cdot v=v \cdot X \quad \text { and } \quad X=p x q
$$

where we think of elements of V_{p} and V_{q} as row vectors. (This assertion is an instance of the thesis 'what commutes with all left-multiplications must be a right-multiplication', many instances of which we will keep running into.) In particular, modules V_{p} and V_{q} are isomorphic iff there exists a $u \in M_{\infty}(A)$ such that $u^{*} u=p$ and $u u^{*}=q$; write $p \sim q$ when this happens.

Proposition The set $\mathcal{K}_{0}(A)=\mathcal{P}_{\infty}(A) / \sim$ is an abelian monoid (=semigroup with identity) with respect to addition defined by

$$
[p]+[q]=[p \oplus q],
$$

the identity element being [0].

If S is an abelian semigroup, the set $\{a-b: a, b \in S\}$ of formal differences in S - with the convention that $a-b=c-d$ iff $a+d+f=c+b+f$ for some $f \in S$ - turns out to be an abelian group, called the Grothendieck group of S.

If S is an abelian semigroup, the set $\{a-b: a, b \in S\}$ of formal differences in S - with the convention that $a-b=c-d$ iff $a+d+f=c+b+f$ for some $f \in S$ - turns out to be an abelian group, called the Grothendieck group of S.

Definition: If A is a unital C^{*}-algebra, then
(i) $K_{0}(A)$ is defined to be the Grothendieck group of $\mathcal{K}_{0}(A)$:
(ii) $K_{1}(A)$ is defined to be the quotient of the group $\mathcal{U}_{\infty}(A)$ by the normal subgroup $\mathcal{U}_{\infty}(A)^{(0)}$ (defined by the connected component of its identity element).

It turns out that $K_{1}(A)$ is also an abelian group, with the group law being given in two equivalent ways, thus: if $u \in \mathcal{U}_{m}(A), v \in \mathcal{U}_{k}(A)$, then

$$
\left.[u v]=[u][v]=\left[\left[\begin{array}{ll}
u & 0 \\
0 & 1_{k}
\end{array}\right]\right]\left[\begin{array}{cc}
1_{m} & 0 \\
0 & v
\end{array}\right]\right]=[u \oplus v]
$$

where we write 1_{ℓ} for the identity in $M_{\ell}(A)$.

It turns out that $K_{1}(A)$ is also an abelian group, with the group law being given in two equivalent ways, thus: if $u \in \mathcal{U}_{m}(A), v \in \mathcal{U}_{k}(A)$, then

$$
\left.[u v]=[u][v]=\left[\left[\begin{array}{ll}
u & 0 \\
0 & 1_{k}
\end{array}\right]\right]\left[\begin{array}{ll}
1_{m} & 0 \\
0 & v
\end{array}\right]\right]=[u \oplus v]
$$

where we write 1_{ℓ} for the identity in $M_{\ell}(A)$.
Some fundamental properties of the K-groups, which we shall briefly discuss below, are:

- Functoriality
- Normalisation
- Stability
- Homotopy invariance

Functoriality: $K_{i}, i=0,1$ define covariant functors from the category of C^{*}-algebras to abelian groups; i.e., if $\phi \in \operatorname{Hom}(A, B)$ is a morphism of C^{*}-algebras, there exist group homomorphisms $K_{i}(\phi)=\phi_{*}: K_{i}(A) \rightarrow K_{i}(B)$ satisfying the usual functoriality requirements - of being well-behaved with respect to compositions and identity morphisms: i.e.,

$$
K_{i}(\phi \circ \psi)=K_{i}(\phi) \circ K_{i}(\psi), K_{i}\left(i d_{A}\right)=i d_{K_{i}(A)}
$$

Functoriality: $K_{i}, i=0,1$ define covariant functors from the category of C^{*}-algebras to abelian groups; i.e., if $\phi \in \operatorname{Hom}(A, B)$ is a morphism of C^{*}-algebras, there exist group homomorphisms $K_{i}(\phi)=\phi_{*}: K_{i}(A) \rightarrow K_{i}(B)$ satisfying the usual functoriality requirements - of being well-behaved with respect to compositions and identity morphisms: i.e.,

$$
K_{i}(\phi \circ \psi)=K_{i}(\phi) \circ K_{i}(\psi), K_{i}\left(i d_{A}\right)=i d_{K_{i}(A)}
$$

Normalisation:

$$
K_{0}(\mathbb{C})=\mathbb{Z}, K_{1}(\mathbb{C})=\{0\}
$$

Functoriality: $K_{i}, i=0,1$ define covariant functors from the category of C^{*}-algebras to abelian groups; i.e., if $\phi \in \operatorname{Hom}(A, B)$ is a morphism of C^{*}-algebras, there exist group homomorphisms $K_{i}(\phi)=\phi_{*}: K_{i}(A) \rightarrow K_{i}(B)$ satisfying the usual functoriality requirements - of being well-behaved with respect to compositions and identity morphisms: i.e.,

$$
K_{i}(\phi \circ \psi)=K_{i}(\phi) \circ K_{i}(\psi), K_{i}\left(i d_{A}\right)=i d_{K_{i}(A)}
$$

Normalisation:

$$
K_{0}(\mathbb{C})=\mathbb{Z}, K_{1}(\mathbb{C})=\{0\}
$$

Stability: If $\phi: A \rightarrow M_{n}(A)$ is defined by $\phi(a)=\left[\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right]$, then ϕ_{*} is an isomorphism.

Functoriality: $K_{i}, i=0,1$ define covariant functors from the category of C^{*}-algebras to abelian groups; i.e., if $\phi \in \operatorname{Hom}(A, B)$ is a morphism of C^{*}-algebras, there exist group homomorphisms $K_{i}(\phi)=\phi_{*}: K_{i}(A) \rightarrow K_{i}(B)$ satisfying the usual functoriality requirements - of being well-behaved with respect to compositions and identity morphisms: i.e.,

$$
K_{i}(\phi \circ \psi)=K_{i}(\phi) \circ K_{i}(\psi), K_{i}\left(i d_{A}\right)=i d_{K_{i}(A)}
$$

Normalisation:

$$
K_{0}(\mathbb{C})=\mathbb{Z}, K_{1}(\mathbb{C})=\{0\}
$$

Stability: If $\phi: A \rightarrow M_{n}(A)$ is defined by $\phi(a)=\left[\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right]$, then ϕ_{*} is an isomorphism.

Homotopy invariance: If $\left\{\phi_{t}: t \in[0,1]\right\}$ is a continously varying family of homomorphisms from A into B (or equivalently, if there exists a homomorphism $\left.A \ni a \mapsto\left(t \mapsto \phi_{t}(a)\right) \in C([0,1], B)\right)$, then $\left(\phi_{0}\right)_{*}=\left(\phi_{1}\right)_{*}$.

Use of homotopy of invariance

Example: If X is a contractible space, then $K_{i}(C(X))=K_{i}(\mathbb{C})$.

Example: If X is a contractible space, then $K_{i}(C(X))=K_{i}(\mathbb{C})$.
Proof: Let $\left\{h_{t}: t \in[0,1]\right\}$ be a homotopy with $h_{1}=i d_{x}$ and $h_{0}(x)=x_{0} \in X \forall x \in X$. Consider $\phi_{t}\left(=h_{t}^{*}=\right): C(X) \rightarrow C(X)$ defined by $\phi_{t}(f)=f \circ h_{t}$. Then $\phi_{1}=i d_{C(X)}$ while $\phi_{0}(f)$ is the constant function identically equal to $f\left(x_{0}\right)$ So, if j denotes the inclusion map $j: \mathbb{C} \rightarrow C(X)$, and if we write $f\left(x_{0}\right)=e v_{0}(f)$, we have commutative diagrams of maps:

and

$$
\begin{array}{ccc}
K_{i}(C(X)) & \stackrel{\left(\phi_{0}\right) *}{j_{*}} & K_{i}(C(X)) \\
\left(e v_{0}\right)_{*} \downarrow & \stackrel{\text { j }}{7} & \downarrow\left(e v_{0}\right)_{*} \\
K_{i}(\mathbb{C}) & \overrightarrow{i d} & K_{i}(\mathbb{C})
\end{array}
$$

Since $\phi_{0}^{*}=\phi_{i}^{*}=i d^{*}$, the second diagram shows that j^{*} is an isomorphism with inverse $e v_{0}^{*}$.

Non-unital C*-algebras

Before proceeding further, we need to discuss non-unital C^{*}-algebras. (This corresponds to studying vector bundles over locally compact non-compact spaces.) If A is any C^{*}-algebra - with or without identity - then $\tilde{A}=A \times \mathbb{C}$ becomes a unital C^{*}-algebra thus:

$$
\begin{aligned}
(x \cdot \lambda) \cdot(y, \mu) & =(x y+\lambda y+\mu x, \lambda \mu) \\
\|(x, \lambda)\| & =\sup \{\|x a+\lambda a\|: a \in A,\|a\|=1\}
\end{aligned}
$$

(Addition and involution are componentwise, and $(0,1)$ is the identity.) Further $\epsilon: \tilde{A} \rightarrow \mathbb{C}$ defined by $\epsilon(x, \lambda)=\lambda$ is a homomorphism of unital C^{*}-algebras, with $\operatorname{ker}(\epsilon)=A$; thus A is an ideal of co-dimension 1 in \tilde{A}.

Before proceeding further, we need to discuss non-unital C^{*}-algebras. (This corresponds to studying vector bundles over locally compact non-compact spaces.) If A is any C^{*}-algebra - with or without identity - then $\tilde{A}=A \times \mathbb{C}$ becomes a unital C^{*}-algebra thus:

$$
\begin{aligned}
(x \cdot \lambda) \cdot(y, \mu) & =(x y+\lambda y+\mu x, \lambda \mu) \\
\|(x, \lambda)\| & =\sup \{\|x a+\lambda a\|: a \in A,\|a\|=1\}
\end{aligned}
$$

(Addition and involution are componentwise, and $(0,1)$ is the identity.) Further $\epsilon: \tilde{A} \rightarrow \mathbb{C}$ defined by $\epsilon(x, \lambda)=\lambda$ is a homomorphism of unital C^{*}-algebras, with $\operatorname{ker}(\epsilon)=A$; thus A is an ideal of co-dimension 1 in \tilde{A}.

Example: In case $A=C_{0}(X)$ is the algebra of continuous functions on a locally compact space X which 'vanish at infinity', the 'unitisation' \tilde{A} can be identified with $C(\hat{X})$, where $\hat{X}=(X \cup\{\infty\})$ is the one-point compactification of X, and $\epsilon(f)=f(\infty)$.

Before proceeding further, we need to discuss non-unital C^{*}-algebras. (This corresponds to studying vector bundles over locally compact non-compact spaces.) If A is any C^{*}-algebra - with or without identity - then $\tilde{A}=A \times \mathbb{C}$ becomes a unital C^{*}-algebra thus:

$$
\begin{aligned}
(x . \lambda) \cdot(y, \mu) & =(x y+\lambda y+\mu x, \lambda \mu) \\
\|(x, \lambda)\| & =\sup \{\|x a+\lambda a\|: a \in A,\|a\|=1\}
\end{aligned}
$$

(Addition and involution are componentwise, and $(0,1)$ is the identity.) Further $\epsilon: \tilde{A} \rightarrow \mathbb{C}$ defined by $\epsilon(x, \lambda)=\lambda$ is a homomorphism of unital C^{*}-algebras, with $\operatorname{ker}(\epsilon)=A$; thus A is an ideal of co-dimension 1 in \tilde{A}.

Example: In case $A=C_{0}(X)$ is the algebra of continuous functions on a locally compact space X which 'vanish at infinity', the 'unitisation' \tilde{A} can be identified with $C(\hat{X})$, where $\hat{X}=(X \cup\{\infty\})$ is the one-point compactification of X, and $\epsilon(f)=f(\infty)$.)

For a possibly non-unital A, define

$$
K_{i}(A)=\operatorname{ker} K_{i}(\epsilon) .
$$

Six term exact sequence: If

$$
0 \rightarrow J \xrightarrow{j} A \xrightarrow{\pi} B \rightarrow 0
$$

is a short exact sequence of C^{*}-algebras, then there exists an associated six term exact sequence of K-groups

$$
\begin{array}{ccccc}
K_{0}(J) & \stackrel{j_{*}}{\rightarrow} & K_{0}(A) & \stackrel{\pi_{*}}{\rightarrow} & K_{0}(B) \\
\partial_{1} \uparrow & & & & \downarrow \partial_{0} \\
K_{1}(B) & \stackrel{\pi_{*}}{\leftarrow} & K_{1}(A) & \stackrel{j_{*}}{\leftarrow} & K_{1}(J)
\end{array}
$$

where the two connecting homomorphisms ∂_{i} are 'natrural'.

Six term exact sequence: If

$$
0 \rightarrow J \xrightarrow{j} A \xrightarrow{\pi} B \rightarrow 0
$$

is a short exact sequence of C^{*}-algebras, then there exists an associated six term exact sequence of K-groups

$$
\begin{array}{ccccc}
K_{0}(J) & \stackrel{j_{*}}{\rightarrow} & K_{0}(A) & \stackrel{\pi_{*}}{\rightarrow} & K_{0}(B) \\
\partial_{1} \uparrow & & & & \downarrow \partial_{0} \\
K_{1}(B) & \stackrel{\pi_{*}}{\leftarrow} & K_{1}(A) & \stackrel{j_{*}}{\leftarrow} & K_{1}(J)
\end{array}
$$

where the two connecting homomorphisms ∂_{i} are 'natrural'.
It is worth noting the special case when the short exact sequence splits - i.e., when there exists a ${ }^{*}$-homomorphism $s: B \rightarrow A$ such that $\pi \circ s=i d_{B}$; in this case, also π_{*} is surjective, whence both connecting maps must be the zero maps, so the six-term sequence above splits into two short exact sequences

$$
0 \rightarrow K_{i}(J) \xrightarrow{j_{*}} K_{i}(A) \xrightarrow{\pi_{*}} K_{i}(B) \rightarrow 0
$$

Example: Consider the short exact sequence

$$
0 \rightarrow C_{0}((0,1]) \xrightarrow{j} C([0,1]) \xrightarrow{e V_{0}} \mathbb{C} \rightarrow 0
$$

Since $K_{i}\left(e v_{0}\right): K_{i}\left(C([0,1]) \cong K_{i}(\mathbb{C})\right.$ it follows from the six term exact sequence that

$$
K_{i}\left(C_{0}((0,1])\right)=0
$$

Example: Consider the short exact sequence

$$
0 \rightarrow C_{0}((0,1]) \xrightarrow{j} C([0,1]) \xrightarrow{e V_{0}} \mathbb{C} \rightarrow 0
$$

Since $K_{i}\left(e v_{0}\right): K_{i}\left(C([0,1]) \cong K_{i}(\mathbb{C})\right.$ it follows from the six term exact sequence that

$$
K_{i}\left(C_{0}((0,1])\right)=0
$$

Next, the six term exact sequence for the short exact sequence

$$
0 \rightarrow C_{0}((0,1)) \xrightarrow{j} C((0,1]) \xrightarrow{e v_{1}} \mathbb{C} \rightarrow 0
$$

is seen to be

$$
\begin{array}{ccccc}
K_{0}\left(C_{0}((0,1))\right) & \stackrel{j_{*}}{\longrightarrow} & 0 & \stackrel{\left(e v_{1}\right)_{*}}{\longrightarrow} & \begin{array}{c}
K_{0}(\mathbb{C}) \\
\partial_{1} \uparrow
\end{array} \\
K_{1}(\mathbb{C}) & \stackrel{\left(e v_{1}\right)_{*}}{\leftarrow} & 0 & \stackrel{j_{*}}{\longleftrightarrow} & K_{1}\left(C_{0}((0,1))\right)
\end{array}
$$

so $K_{i}\left(C_{0}(\mathbb{R})\right) \cong K_{i}\left(C_{0}((0,1))\right)=K_{i+1}(\mathbb{C})(\bmod 2)$.

Example: Consider the short exact sequence

$$
0 \rightarrow C_{0}((0,1]) \xrightarrow{j} C([0,1]) \xrightarrow{\text { evo }} \mathbb{C} \rightarrow 0
$$

Since $K_{i}\left(e v_{0}\right): K_{i}\left(C([0,1]) \cong K_{i}(\mathbb{C})\right.$ it follows from the six term exact sequence that

$$
K_{i}\left(C_{0}((0,1])\right)=0
$$

Next, the six term exact sequence for the short exact sequence

$$
0 \rightarrow C_{0}((0,1)) \xrightarrow{j} C((0,1]) \xrightarrow{e V_{1}} \mathbb{C} \rightarrow 0
$$

is seen to be

$$
\begin{array}{ccccc}
K_{0}\left(C_{0}((0,1))\right) & \stackrel{j_{*}}{\longrightarrow} & 0 & \stackrel{\left(e v_{1}\right)_{*}}{\longrightarrow} & \begin{array}{c}
K_{0}(\mathbb{C}) \\
\partial_{1} \uparrow
\end{array} \\
K_{1}(\mathbb{C}) & \stackrel{\left(e v_{1}\right)_{*}}{\longleftrightarrow} & 0 & \stackrel{j_{0}}{\rightleftarrows} & K_{1}\left(C_{0}((0,1))\right)
\end{array} ;
$$

so $K_{i}\left(C_{0}(\mathbb{R})\right) \cong K_{i}\left(C_{0}((0,1))\right)=K_{i+1}(\mathbb{C})(\bmod 2)$.
Similar reasoning, applied to $C_{0}(\mathbb{R} ; A)$, essentially yields the Bott periodicity theorem:

$$
K_{i}\left(C_{0}(\mathbb{R} ; A)\right)=K_{i+1}(A) \bmod 2
$$

Applied inductively to $A=C_{0}\left(\mathbb{R}^{n}\right)$, we conclude that

$$
K_{i}\left(C_{0}\left(\mathbb{R}^{n}\right)\right) \cong \begin{cases}\mathbb{Z} & \text { if }(n-i) \text { is even } \\ 0 & \text { otherwise }\end{cases}
$$

Applied inductively to $A=C_{0}\left(\mathbb{R}^{n}\right)$, we conclude that

$$
K_{i}\left(C_{0}\left(\mathbb{R}^{n}\right)\right) \cong\left\{\begin{array}{ll}
\mathbb{Z} & \text { if }(n-i) \text { is even } \\
0 & \text { otherwise }
\end{array} .\right.
$$

The short exact sequence

$$
0 \rightarrow C_{0}\left(\mathbb{R}^{n}\right) \xrightarrow{j} C\left(S^{n}\right) \xrightarrow{e v_{\infty}} \mathbb{C} \rightarrow 0
$$

is split by the inclusion morphism $\eta: \mathbb{C} \rightarrow C\left(S^{n}\right)$, so that we have a short exact sequence

$$
\left.0 \rightarrow K_{i}\left(C_{0}\left(\mathbb{R}^{n}\right)\right)\right) \xrightarrow{j_{*}} K_{i}\left(C\left(S^{n}\right)\right) \xrightarrow{\pi_{*}} K_{i}(\mathbb{C}) \rightarrow 0
$$

which also splits and we may deduce that

$$
K_{i}\left(C\left(S^{n}\right)\right) \cong K_{i}\left(C_{0}\left(\mathbb{R}^{n}\right)\right) \oplus K_{i}(\mathbb{C})
$$

The simplest non-abelian C^{*}-algebras are the $M_{n}(\mathbb{C})$'s, and we may conclude from the 'stability' of K-groups that

$$
K_{i}\left(M_{n}(\mathbb{C})\right) \cong K_{i}(\mathbb{C}) \cong\left\{\begin{array}{ll}
\mathbb{Z} & \text { if } n=0 \\
0 & \text { if } n=1
\end{array} .\right.
$$

The simplest non-abelian C^{*}-algebras are the $M_{n}(\mathbb{C})$'s, and we may conclude from the 'stability' of K-groups that

$$
K_{i}\left(M_{n}(\mathbb{C})\right) \cong K_{i}(\mathbb{C}) \cong\left\{\begin{array}{ll}
\mathbb{Z} & \text { if } n=0 \\
0 & \text { if } n=1
\end{array} .\right.
$$

We shall give another proof that $K_{0}\left(M_{n}(\mathbb{C})\right) \cong \mathbb{Z}$. Consider the map $\tau: M_{\infty}\left(M_{n}(\mathbb{C})\right) \rightarrow \mathbb{C}$ by

$$
\tau\left(\left(x_{i j}\right)\right)=\sum_{i} \operatorname{Tr}\left(x_{i i}\right),
$$

where Tr denotes the usual trace (= sum of diagonal entries) on the matrix algebra.

The simplest non-abelian C^{*}-algebras are the $M_{n}(\mathbb{C})$'s, and we may conclude from the 'stability' of K-groups that

$$
K_{i}\left(M_{n}(\mathbb{C})\right) \cong K_{i}(\mathbb{C}) \cong \begin{cases}\mathbb{Z} & \text { if } n=0 \\ 0 & \text { if } n=1\end{cases}
$$

We shall give another proof that $K_{0}\left(M_{n}(\mathbb{C})\right) \cong \mathbb{Z}$. Consider the map $\tau: M_{\infty}\left(M_{n}(\mathbb{C})\right) \rightarrow \mathbb{C}$ by

$$
\tau\left(\left(x_{i j}\right)\right)=\sum_{i} \operatorname{Tr}\left(x_{i i}\right)
$$

where Tr denotes the usual trace (= sum of diagonal entries) on the matrix algebra.

Then τ is seen to be a positive $\left(\tau\left(X^{*} X\right) \geq 0 \forall X\right)$ faithful (i.e., $\left.X \neq 0 \Rightarrow \tau\left(X^{*} X\right)>0\right)$ and tracial $(\tau(X Y)=\tau(Y X))$ linear functional.
Further τ 'respects the inclusion of $M_{k}\left(M_{n}(\mathbb{C})\right)$ into $M_{k+1}\left(M_{n}(\mathbb{C})\right)$ in the sense that

$$
\tau(X)=\tau\left(\left[\begin{array}{ll}
X & 0 \\
0 & 0
\end{array}\right]\right.
$$

The fact that τ is a trace implies that the equation

$$
\tilde{\tau}([p])=\tau(p)
$$

gives a well defined map $\tilde{\tau}: \mathcal{K}_{0}\left(M_{n}(\mathbb{C})\right) \rightarrow \mathbb{Z}_{+}=\{0,1,2, \ldots\}$.

The fact that τ is a trace implies that the equation

$$
\tilde{\tau}([p])=\tau(p)
$$

gives a well defined map $\tilde{\tau}: \mathcal{K}_{0}\left(M_{n}(\mathbb{C})\right) \rightarrow \mathbb{Z}_{+}=\{0,1,2, \ldots\}$.
The fact that τ is faithful implies that $\tilde{\tau}$ is an isomorphism of monoids; and since the Grothendieck group of \mathbb{Z}_{+}is just \mathbb{Z}, it follows that $\tilde{\tau}$ gives rise to a unique isomorphism $\tau_{\#}: K_{0}\left(M_{n}(\mathbb{C})\right) \rightarrow \mathbb{Z}$ such that $\tau_{\#}\left(\left[p_{1}\right]\right)=1$, where $p_{1} \in \mathcal{P}_{1}\left(M_{n}(\mathbb{C})\right)$ is a rank one projection.

The fact that τ is a trace implies that the equation

$$
\tilde{\tau}([p])=\tau(p)
$$

gives a well defined map $\tilde{\tau}: \mathcal{K}_{0}\left(M_{n}(\mathbb{C})\right) \rightarrow \mathbb{Z}_{+}=\{0,1,2, \ldots\}$.
The fact that τ is faithful implies that $\tilde{\tau}$ is an isomorphism of monoids; and since the Grothendieck group of \mathbb{Z}_{+}is just \mathbb{Z}, it follows that $\tilde{\tau}$ gives rise to a unique isomorphism $\tau_{\#}: K_{0}\left(M_{n}(\mathbb{C})\right) \rightarrow \mathbb{Z}$ such that $\tau_{\#}\left(\left[p_{1}\right]\right)=1$, where $p_{1} \in \mathcal{P}_{1}\left(M_{n}(\mathbb{C})\right)$ is a rank one projection.

The above argument can be made to work in much greater generality, thus:

Suppose τ_{1} is a positive, faithful, tracial linear functional on a general C^{*}-algebra. Then, the map defineby $\tau_{n}\left(\left(x_{i j}\right)\right)=\sum_{i=1}^{n} \tau_{1}\left(x_{i i}\right)$ is seen to yield a faithful positive tracial functional τ_{n} on the C^{*}-algebra $M_{n}(A)$; and the τ_{n} 's 'patch up' to yield a positive faithful tracial functional on $M_{\infty}(A)$ which 'respects the inclusion of $M_{n}(A)$ into $M_{n+1}(A)$ ' and to consequently define an isomorphism $\tau_{\#}$ of $K_{0}(A)$ onto its image in \mathbb{R}.

We wish to discuss one non-trivial example where some of these considerations help. Given a countable group Γ, let $\ell^{2}(\Gamma)$ denote a Hilbert space with a distinguished o.n. basis $\left\{\xi_{t}: t \in \Gamma\right\}$ indexed by Γ, and let λ denote the so-called left-regular unitary representation of Γ on $\ell^{2}(\Gamma)$ defined by

$$
\lambda_{s}\left(\xi_{t}\right)=\xi_{s t} \forall s, t \in \Gamma
$$

We wish to discuss one non-trivial example where some of these considerations help. Given a countable group Γ, let $\ell^{2}(\Gamma)$ denote a Hilbert space with a distinguished o.n. basis $\left\{\xi_{t}: t \in \Gamma\right\}$ indexed by Γ, and let λ denote the so-called left-regular unitary representation of Γ on $\ell^{2}(\Gamma)$ defined by

$$
\lambda_{s}\left(\xi_{t}\right)=\xi_{s t} \forall s, t \in \Gamma
$$

Define $C_{\text {red }}^{*}(\Gamma)$, the reduced C^{*}-algebra of Γ to be the C^{*}-subalgebra of $\mathcal{L}\left(\ell^{2}(\Gamma)\right)$ generated by $\lambda(\Gamma)$.

We wish to discuss one non-trivial example where some of these considerations help. Given a countable group Γ, let $\ell^{2}(\Gamma)$ denote a Hilbert space with a distinguished o.n. basis $\left\{\xi_{t}: t \in \Gamma\right\}$ indexed by Γ, and let λ denote the so-called left-regular unitary representation of Γ on $\ell^{2}(\Gamma)$ defined by

$$
\lambda_{s}\left(\xi_{t}\right)=\xi_{s t} \forall s, t \in \Gamma
$$

Define $C_{\text {red }}^{*}(\Gamma)$, the reduced C^{*}-algebra of Γ to be the C^{*}-subalgebra of $\mathcal{L}\left(\ell^{2}(\Gamma)\right)$ generated by $\lambda(\Gamma)$.

It is a fact that the equation

$$
\tau_{1}(x)=\left\langle x \xi_{1}, \xi_{1}\right\rangle
$$

- where ξ_{1} denotes the basis vector indexed by the identity element 1 in Γ defines a faithful positive tracial state on $C_{\text {red }}^{*}(\Gamma)$.

K theory distinguishes the $C_{r e d}^{*}\left(\mathbb{F}_{n}\right) s$

We have the following beautiful result on the K-theory of some of these algebras.

K theory distinguishes the $C_{r e d}^{*}\left(\mathbb{F}_{n}^{\prime}\right) s$

We have the following beautiful result on the K-theory of some of these algebras.

Theorem:(Pimsner-Voiculescu)

Let \mathbb{F}_{n} be the free group on n generators $\left\{u_{1}, \cdots, u_{n}\right\}$, and $A_{n}=C_{r e d}^{*}\left(\mathbb{F}_{n}\right), n \geq 2$. Then,
(a) $K_{0}\left(A_{n}\right) \cong \mathbb{Z}$ is generated by $\left[1_{A_{n}}\right]$ where $1_{A_{n}} \in \mathcal{P}_{1}\left(A_{n}\right) \subset \mathcal{P}_{\infty}\left(A_{n}\right)$; and
(b) $K_{1}\left(A_{n}\right) \cong \mathbb{Z}^{n}$ is generated by $\left\{\left[u_{1}\right], \cdots,\left[u_{n}\right]\right\}$ where $u_{j} \subset \mathcal{U}_{1}\left(A_{n}\right) \subset \mathcal{U}_{\infty}\left(A_{n}\right)$.

K theory distinguishes the $C_{r e d}^{*}\left(\mathbb{F}_{n}\right) s$

We have the following beautiful result on the K-theory of some of these algebras.

Theorem:(Pimsner-Voiculescu)

Let \mathbb{F}_{n} be the free group on n generators $\left\{u_{1}, \cdots, u_{n}\right\}$, and $A_{n}=C_{r e d}^{*}\left(\mathbb{F}_{n}\right), n \geq 2$. Then,
(a) $K_{0}\left(A_{n}\right) \cong \mathbb{Z}$ is generated by $\left[1_{A_{n}}\right]$ where $1_{A_{n}} \in \mathcal{P}_{1}\left(A_{n}\right) \subset \mathcal{P}_{\infty}\left(A_{n}\right)$; and
(b) $K_{1}\left(A_{n}\right) \cong \mathbb{Z}^{n}$ is generated by $\left\{\left[u_{1}\right], \cdots,\left[u_{n}\right]\right\}$ where $u_{j} \subset \mathcal{U}_{1}\left(A_{n}\right) \subset \mathcal{U}_{\infty}\left(A_{n}\right)$.

Corollary: (i) A_{n} has no non-trivial idempotents; and
(ii) $A_{n} \cong A_{m} \Rightarrow m=n$.

Proof: (i) Assertion (a) of the theorem implies that every $p \in \mathcal{P}_{\infty}(A)$ is equivalent to the identity of some $M_{k}\left(A_{n}\right)$. If τ be the faithful trace on A_{n} defined earlier, note that $\tau(1)=1$ (since ξ_{1} is a unit vector), so

$$
p \in \mathcal{P}_{1}\left(A_{n}\right), p, 1-p \neq 0 \Rightarrow 0<\tau(p)<1
$$

this completes the proof.
(ii) follows immediately from (b) of the theorem.

Another very pretty result along these lines is:

K theory recognises genus

Another very pretty result along these lines is:

Theorem:(Kasparov)

Let Σ_{g} denote a compact surface of genus g, and $B_{g}=C_{\text {red }}^{*}\left(\pi_{1}\left(\Sigma_{g}\right)\right)$. Then
(i) B_{g} has no non-trivial idempotents; and
(ii) $B_{g} \cong B_{k} \Rightarrow g=k$.

Another very pretty result along these lines is:

Theorem:(Kasparov)

Let Σ_{g} denote a compact surface of genus g, and $B_{g}=C_{\text {red }}^{*}\left(\pi_{1}\left(\Sigma_{g}\right)\right)$. Then
(i) B_{g} has no non-trivial idempotents; and
(ii) $B_{g} \cong B_{k} \Rightarrow g=k$.

We conclude with a brief mention of Kasparov's homotopy invariant bifunctor $K K(\cdot, \cdot)$ which:
(1) assigns abelian groups to a pair of C^{*}-algebras
(2) is covariant in the second variable and contravariant in the first variable.
(3) $K_{0}(B)=K K(\mathbb{C}, B) \forall B$
(4) $K_{1}(B)=K K\left(\mathbb{C}, C_{0}(\mathbb{R}, B)\right) \forall B$

This KK-theory has led to a much better understanding of K theory and led to the computation of the K-groups of many algebras.

A few references

1. K theory, M. Atiyah.
(A classic text on topological K theory - of vector bundles on spaces.)
2. K theory for operator algebras, B. Blackadar.
(Probably the first book on the subject.)
3. Georges Skandalis, Kasparov's bivariant theory and applications, Exposit. Mat. 9 (1991) 193-250.
4. Elements of KK theory, K.K. Jensen and K. Thomsen
(A description with complete details of Kasparov's bivariate theory.).
