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Genesis

The goal is to give a flavour of the world of non-commutativity, by touching on
various aspects of operator algebras - the natural arena for such a discussion.
Operator algebras were born at the hands of von Neumann in order to tackle
several requirements of the mathematical foundations of (the then fledgeling)
Quantum Mechanics.

It was shown (by Heisenborg, Born, Jordan, Schrödinger,...) that the algebra of
observables which, in classical mechanics, was the (commutative) algebra of
functions on phase space, had to be replaced, in the new matrix mechanics, by
the non-commutative algebra of matrices.

Operator algebras are the arena to tackle matrices involving infinitely many
degrees of freedom.
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Outline of talks

Our course of lectures is broadly structured as follows:

The Gelfand Naimark theorems (non-commutative general topology)

K-theory of C∗-algebras (non-commutative algebraic topology)

von Neumann algebras (non-commutative measure theory)

II1 factors and subfactors (the bridge to low-dimensional topology,
conformal field theory, ...)

The Jones polynomial invariant of knots

The slides of all tnese talks can be found on my home-page at

http://www.imsc.res.in/∼sunder/
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The Gelfand-Naimark theorems

The Gelfand-Naimark theorems lead to the ‘philosophy’ of regarding
C∗-algebras as non-commutative analogues of topological spaces.

(commutative G-N th) A is a unital commutative C∗-algebra if and only if
A ∼= C(X ) (the C∗-algebra of continuous functions on a compact Hausdorff
space).

(non-commutative G-N th) A is a C∗-algebra if and only if A is isomorphic to
a closed *-subalgebra of L(H) (the C∗-algebra of bounded operators on Hilbert
space).
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Banach algebras

A Banach algebra is a triple (A, ‖ · ‖, ·), where:

(A, ‖ · ‖) is a Banach space

(A, ·) is a ring

The map A 3 x 7→ Lx ∈ L(A) defined by Lx(y) = xy is a linear map and a
ring-homomorphism satisfying

‖xy‖ ≤ ‖x‖‖y‖

(or equivalently, ‖Lx‖ ≤ ‖x‖ ∀x ∈ A).

A is unital if it has a multiplicative identity 1; we always assume it satisfies
‖1‖ = 1. (This turns out to be little loss of generality.) We only consider unital
algebras here.
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Invertibility

Define GL(A) = {x ∈ A : x is invertible}

Good example to keep in mind: A = Mn(C), GL(A) = GLn(C).

Lemma: ‖x‖ < 1⇒
1− x ∈ GL(A)

(1− x)−1 =
P∞

n=0 xn

‖(1− x)−1 − 1‖ ≤ ‖x‖(1− ‖x‖)−1

Corollary: GL(A) is open, and x 7→ x−1 is a continous self-map of GL(A) of
order two, hence a homeomorphism.

Proof: The lemma says 1 is an interior point of GL(A) and x 7→ x−1 is
continuous at 1; and if x ∈ GL(A), then Lx is a homoemorphism of GL(A) onto
itself.
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The spectrum

Define the spectrum of an element x ∈ A by

sp(x) = {λ ∈ C : x − λ /∈ GL(A)}

and its spectral radius by

r(x) = sup{|λ| : λ ∈ sp(x)}

When A = MN(C), sp(x) is just the set of eigenvalues of the complex matrix x .

Theorem: (spectral radius formula )
The spectrum is always non-empty, and we have

r(x) = lim
n→∞

‖xn‖
1
n .
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Unambiguity of spectrum

Caution: We must exercise some caution and talk about spA(x), since if D is a
unital Banach subalgebra of A and if x ∈ D, it may be the case that
spD(x) 6= spA(x). For example, by the maximum modulus principle, it is seen
that

D = {f ∈ C(D) : f |D is holomorphic}

imbeds isometrically as a Banach subalgebra of A = C(∂D), and

f ∈ D ⇒ spD(f ) = f (D), spA(f ) = f (∂D) .

But it turns out that there is no such pathology if our Banach algebras are
C∗-algebras.
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Maximal ideals

Assume henceforth that A is a unital commutative Banach algebra.

Let M(A) denote the collection of maximal ideals in A.

(Conventions: (a) {0} ∈ M(C), but (b) if A 6= C, then
J ∈M(A)→ {0} 6= J 6= A.)

Lemma: Let x ∈ A. T.F.A.E.:

1 x /∈ GL(A)

2 ∃J ∈M(A) such that x ∈ J.

Proof: For (1) ⇒ (2), note that I = Ax is a proper ideal; pick J ∈M(A) such
that I ⊂ J.
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vs. complex homomorphisms

Note that maximal ideals are closed (since 1 is in the exterior of any proper
ideal). This implies:

Proposition: Write Â for the collection of unital homomorphisms φ : A→ C.
Then

(a)
J ∈M(A)⇔∃φ ∈ Â such that J = ker φ.

(b)
φ ∈ Â⇒ φ(x) ∈ sp(x)⇒ |φ(x)| ≤ r(x) ≤ ‖x‖ ,

so Â ⊂ ball(A∗).

V.S. Sunder IMSc, Chennai Operator algebras - stage for non-commutativity (Panorama Lectures Series) I. C∗-algebras: the Gelfand Naimark Theorems



vs. complex homomorphisms

Note that maximal ideals are closed (since 1 is in the exterior of any proper
ideal). This implies:
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The Gelfand transform

Â is closed and hence compact in the weak-* topology of ball(A∗).

Proposition: The Gelfand transform of A, which is the map Γ : A→ C(Â)
defined by

(Γ(x)) (φ) = φ(x) ∀φ ∈ Â

is a contractive homomorphism of Banach algebras.

(x̂ = Γ(x) is the Gelfand transform of x .)

Question: When is Γ an isometric isomorphism onto C(Â)?

Answer: Precisely when A is a C∗-algebra!
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C ∗-algebras

A C∗-algebra is a Banach algebra A equipped with an involution - i.e., a
self-map a 3 x 7→ x∗ ∈ A satisfying

(αx + y)∗ = ᾱx∗ + y∗

(xy)∗ = y∗x∗

(x∗)∗ = x

‖x‖2 = ‖x∗x‖. (C∗-identity)

The commutative G-N theorem:

The Gelfand transform of a commutative Banach algebra A is an isometric
surjection if and only if A has the structure of a commutative C∗-algebra.
In this case, Γ is automatically an isomorphism of C∗-algebras.
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Proof of commutative GN thm

Sketch of Proof: Suppose A is a C∗-algebra and x = x∗ is ‘self-adjoint’. For
t ∈ R, define ut = e itx =

P∞
n=0

(itx)n

n!
and note that u∗t = u−t = u−1

t . So, by the
C∗-identity,

‖ut‖2 = ‖u∗t ut‖ = 1.

Hence
φ ∈ Â⇒ 1 ≥ |φ(ut)| = |e itφ(x)| .

Since t ∈ R is arbitrary, deduce that φ(x) ∈ R.
Also, for self-adjoint x , note that

‖x‖ = ‖x∗x‖
1
2 = ‖x2‖

1
2

so
‖x‖ = ‖x2‖

1
2 = · · · = lim

n→∞
‖x2n

‖
1

2n = r(x) = ‖Γ(x)‖
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Continuous functional calculus

For a (possibly non-commutative) unital C∗-algebra A, and x ∈ A, let C∗(x)
be the C∗-subalgebra of A generated by the set {1, x}.

Proposition:
The following conditions on x ∈ A are equivalent:

1 C∗(x) is commutative

2 x∗x = xx∗ (such x ’s are called normal).

3 If x is normal, there exists a unique unital C∗-algebra isomorphism
θx : C(sp(x))→ C∗(x) such that θx(idsp(x)) = x .

It is customary to write θx(f ) = f (x) and call θx the continuous functional
calculus for x .
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Sub-classes of normal elements

Proposition: An element satisfies the algebraic condition in the second column
of the table below if and only if it is normal and its spectrum is contained in
the set listed in the third column.

Name Alg. def. sp(x) ⊂?
self-adjoint x = x∗ R
unitary x∗x = xx∗ = 1 T
projection x2 = x∗ = x {0, 1}

Study of general C∗-algebras is facilitated by applying the commutative theory
to normal elements of these types. Normal elements can be dealt with as easily
as functions. Here is a sample of such results:

(Cartesian decomposition) Every element z ∈ A admits a unique
deomposition z = x + iy , with x , y self-adjoint; in fact,
x = z+z∗

2
, y = z−z∗

2i

Every self-adjoint element x ∈ A admits a unique decomposition
x = x+ − x−, where x± are self-adjoint and satisfy x+x− = 0; in fact,
x± = f ±(x), where f ± ∈ C(R) are defined by f ±(t) = t±|t|

2
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Positivity

One of the most important notions in the theory concerns positivity. Its main
features are listed in the next two results.

Theorem: (a) The following conditions on an element x ∈ A are equivalent:

1 x = x∗ and sp(x) ⊂ [0,∞)

2 ∃y = y∗ ∈ A such that x = y 2

3 ∃z ∈ A such that x = z∗z

Such x ’s are said to be ‘positive’; the set A+ of positive elements of A is a
‘positive cone’ (proved using (1) above).

(b) If x ∈ A+, then the y of (2) above may be chosen to be positive, and such

a ‘positive square root of x ’ is unique, and in fact y = x
1
2 .

Proposition: The following conditions on a φ ∈ A∗ are equivalent:

1 φ(A+) ⊂ R+

2 ‖φ‖ = φ(1)

Such φ’s are said to be positive (linear functionals); the set A∗+ of of positive
elements of A∗ is a ‘positive cone’. A positive functional φ is said to be a state
if it is normalised so that φ(1)(= ‖φ‖) = 1.
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On representations

Definition: A representation of a unital C∗-algebra A is a a morphism
π : A→ L(H) of unital C∗-algebras.

En route to proving the non-commutative GN theorem, we will need the
following fact about representations.

Proposition:(repprop)

1 Every representation is contractive, i.e., ‖π(x)‖ ≤ ‖x‖ ∀x ∈ A. (In fact,
an injective representation is automatically norm-preserving.)

2 For each x ∈ A, there exists a representation π such that ‖π(x)‖ = ‖x‖.

To prove (1) above, note first that if x is invertible, so should be π(x); in other
words, sp(π(x)) ⊂ sp(x). The assertion (1) is a consequence of (i) the fact
that ‖x‖ = r(x) for self-adjoint x , and (ii) the C∗-identity.
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From positive functionals to representations

As for (2), a clue to constructing representations is given by the following
observation, regarding the commutative case A = C(X ):

1 States on A are identifiable with probability measures µ defined on the
σ-algebra BX of Borel sets in X , via φµ(f ) =

R
f dµ.

2 C(X ) is ‘dense’ in L2(µ); more accurately, L2(µ) is the completion of

C(X ) with respect to the semi-norm ‖f ‖µ =
`R
|f |2dµ

´ 1
2 ; and

3 the equation πµ(f )g = fg defines a (cyclic) representation πµ of C(X ).

The first step towards generalising all this to non-commutative A is given by:

Cauchy-Schwarz inequality

|φ(y∗x)|2 ≤ φ(x∗x)φ(y∗y) ∀φ ∈ A∗+, x , y ∈ A .

Proof: The equation
〈x , y〉φ = φ(y∗x)

defines a semi-inner product on A ,i.e., satisfies all requirements of an inner
product except possibly positive - definiteness, and the CS-inequality is valid in
any semi-inner-product space.
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Gelfand-Naimark-Segal (GNS) construction

Theorem: T.F.A.E.:

1 φ is a state on A;
2 there exists a triple (H, π,Ω) (essentially unique) consisting of and a unit

vector Ω ∈ H such that
a Hilbert space H,
a representation π of A on H, and
a unit vector Ω which is cyclic in the sense that H = {π(x)Ω : x ∈ A}−

such that φ(x) = 〈π(x)Ω,Ω〉 ∀x ∈ A.

Sketch of proof: The fact that φ satisfies Cauchy-Schwarz inequality implies
that the radical of φ defined by

Nφ = {x ∈ A : ‖x‖2
φ = 〈x , x〉φ = 0}

is a left-ideal in A (i.e., a subspace closed under left multiplication by elements
of A). Then A/Nφ is a genuine inner product space, whose completion is the
desired Hφ, while the equation

π0(x)(y +Nφ) = xy +Nφ

happens to define a bounded operator π0(x) on A/Nφ which has a unique
continuous extension πφ(x) to Hφ.
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An overdue proof

Lemma 1: Let x = x∗ ∈ A. Then there exists a state φ ∈ A∗+ such that
|φ(x)| = ‖x‖.

Proof: Let A0 = C∗({x}). Then pick φ0 ∈ cA0 ⊂ ball(A∗0 ) such that
|φ0(x)| = ‖x‖. Use Hahn-Banach theorem to find a φ ∈ A∗ such that φ|A0 = φ0

and ‖φ‖ = ‖φ0‖(= φ0(1) = φ(1)). It follows that this φ ∈ A∗+ does the job.

Proof of Prop (repprop) (2): Fix x ∈ A. Apply the previous Lemma to find a
φ ∈ A∗+ such that |φ(x∗x)| = ‖x‖2, and let (Hx , πx ,Ωx) be ‘the GNS triple’
associated to φ. First observe that

‖Ωx‖2 = 〈πx(1)Ωx ,Ωx〉 = φ(1) = 1

and then deduce that

‖πx(x)‖2 = ‖πx(x)πx(x)∗‖ = ‖πx(x∗x)‖ ≥ 〈πx(x∗x)Ωx ,Ωx〉 = ‖x‖2.

The reverse inequality follows from Proposition (repprop) (1).
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The non-commutative Gelfand-Naimark theorem

Theorem:
Every (separable) C∗-algebra admits an isometric representation on (separable)
Hilbert space.

Proof: Fix a (countable) dense set D in A. For each 0 6= x ∈ D, appeal to
Proposition (repprop) to find a cyclic representation πx : A→ L(Hx) such that

‖πx(x)‖ = ‖x‖. (†)

Next, it follows from Proposition (repprop) (1) that the equation

π(y) = ⊕x∈Dπx(y)

meaningfully defines a representation π of A on H = ⊕x∈DHx which is
contractive on the one hand (by Proposition (repprop) (1)), and which is
isometric on a dense set on the other, by (†). Consequently π is an isometric
isomorphism.
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Finally, notice that πx(D)Ωx is dense in Hx . Hence if D is countable, then each
Hx is separable, and so also is H.

Notice that the proof shows that any GNS representation of a separable
C∗-algebra ‘lands’ in separable Hilbert space.

Several details, which might have been omitted here, can be found in my book

Functional Analysis: Spectral Theory, TRIM Series No. 13, Hindustan Book
Agency, Delhi, 1997; international edition: Birkhaüser Advanced Texts, Basel,
1997.
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