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Abstract

The purpose of this short note is to point out the follow-
ing fact and some of its pleasant ‘consequences’: the so-called
double-cones in (4-dimensional) Minkowski space are nothing
but the intervals (A,B) = {C ∈ H2 : (C − A) and (B −
C) are both positive-definite} in the space H2 of 2 × 2 com-
plex Hermitian matrices.

1 Introduction

This short note is a result of two events: (i) I was recently approached
by the editors of a volume being brought out in the memory of Paul
Halmos, and I certainly wanted to contribute some token of many
fond memories of Paul; and (ii) some time ago, I learnt something
with considerable pleasure which, I am sure, is just the kind of ‘fun
and games with matrices’ that brought a gleam into Paul’s eye. The
one other reason for presuming to think that this note might interest
other people is that when I communicated this ‘discovery’ to some of
my colleagues - a harmonic analyst and a physicist, each with some
30 years exposure to the standard facts about Minkowski metrics,
etc. - I was greeted with a response along the lines of : ‘How pretty’ !

2 The (H2, | · |) model of Minkowski space

It must be stated that most of what follows is probably ‘old hat’
and the many things put down here are for the sake of setting up
notation preparatory to justifying the assertion of the abstract.

In the language of the first pages of a physics text on relativity,
Minkowski space is nothing but 4 (= 1 + 3)-dimensional real space
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R
4 = {x = (x0, x1, x2, x3) : xi ∈ R ∀i} equipped with the form

defined by q(x) = x2
0 − x2

1 − x2
2 − x2

3. We shall prefer to work with a
‘matricial’ model (which might appeal more to an operator-theorist).

Thus we wish to consider the real Hilbert space

H2 = {

(

a z
z̄ b

)

: a, b ∈ R, z ∈ C}

of 2×2 complex Hermitian matrices, and observe that the assignment

R
4 ∋ x = (x0, x1, x2, x3)

φ
7→ X =

(

x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)

∈ H2

(2.1)
defines a (real-)linear isomorphism, and that we have the following
identities:

q(x) = |X| , x0 = tr(X)

where |X| denotes the determinant of the matrix X and tr(X) =
1

2
Tr(X) denotes the normalised trace (= the familiar matrix trace

scaled so as to assign the value 1 to the identity matrix I).
It should be noted that the isomorphism φ of equation (2.1) can

be alternatively written as

φ(x) =
3

∑

i=0

xiσi

where σ0 is the identity matrix, I and σ1, σ2, σ3 are the celebrated
Pauli matrices and that {σ0, σ1, σ2, σ3} is an orthonormal basis for
H2 with respect to the normalised Hilbert- Schmidt inner product
given by 〈X, Y 〉 = tr(Y ∗X), so φ is even a (real) unitary isomor-
phism.

Recall that the so-called positive and negative light cones (at the
origin) are defined as

C+(0) = {x ∈ R
4 : x0 > 0, q(x) > 0}

C−(0) = {x ∈ R
4 : x0 < 0, q(x) > 0}

= −C+(0)

while the ‘positive light cone’ and the ‘negative light cone’ at x ∈ R
4

are defined as

C+(x) = {y ∈ R
4 : (y0 − x0) > 0, q(y − x) > 0}

= x + C+(0)

C−(x) = {y ∈ R
4 : (y0 − x0) < 0, q(y − x) > 0}

= x − C+(0) .
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Finally, a double-cone is a set of the form D(x, y) = C+(x) ∩ C−(y)
(which is non-empty precisely when y ∈ C+(x)).

The key observation for us is the following

Remark 2.1.
φ(C+(0)) = P (2.2)

where P is the subset of H2 consisting of positive-definite matrices.

Reason: Any X ∈ H2 has two real eigenvalues λ∗(X) and λ∗(X)
satisfying λ∗(X) ≤ λ∗(X) and

1

2
(λ∗(X) + λ∗(X)) = tr(X), λ∗(X) · λ∗(X) = |X|

so
X ∈ P ⇔ λ∗(X), λ∗(X) > 0 ⇔ tr(X), |X| > 0.

Thus we do indeed find that

C+(X) = X + P

C−(Y ) = Y − P

D(X, Y ) = (X, Y ) = {Z ∈ H2 : X < Z < Y } ,

where we write A < C ⇔ C − A ∈ P . (It should be emphasised
that A < C implies that C − A is invertible, not merely positive
semi-definite.) �

It should be observed that the relative compactness of these dou-
ble cones is an easy corollary of the above remark. (I am told that
this fact is of some physical significance.)

3 Some Applications

This section derives some known facts using our Remark 2.1.

Proposition 3.1. The collection {D(x, y) : y − x ∈ C+(0)} (resp.,
{(X, Y ) : Y − X ∈ P}) forms a base for the topology of R

4 (resp.,
H2).
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Proof: Suppose U is an open neighbourhood of a Z ∈ H2. By
definition, we can find ǫ > 0 such that W ∈ H2, ‖W − Z‖ < 2ǫ ⇒
W ∈ U , where we write ‖A‖ = max{‖Av‖ : v ∈ C

2, ‖v‖ = 1}. Then
X = Z − ǫI, Y = Z + ǫI satisfy Z ∈ (X, Y ) ⊂ U . �

Thus the usual topology on R
4 has a basis consisting of ‘intervals’.

Recall next that the causal complement O⊥ of a set O ⊂ R
4

(resp., H2) is defined by

O⊥ = {z ∈ R
4 : q(z − w) < 0 ∀w ∈ O}

(resp.,
O⊥ = {Z ∈ H2 : |Z − W | < 0 ∀W ∈ O}. )

Proposition 3.2.

(X, Y )⊥⊥ = (X, Y ) ∀X < Y.

Proof: We shall find it convenient to write P0 for the set of posi-
tive semi-definite matrices (i.e., Z ∈ P0 ⇔ λ∗(Z) ≥ 0).

We assert now that

Z ∈ (X, Y )⊥ ⇔ there exist unit vectors v1, v2 such that

〈Zv1, v1〉 ≤ 〈Xv1, v1〉 and 〈Zv2, v2〉 ≥ 〈Y v2, v2〉

(3.3)

Notice first that, by definition,

Z ∈ (X, Y )⊥ ⇔ |Z − W | < 0 whenever W ∈ (X, Y )

Choose ǫ > 0 such that Y −X > ǫI; so also X + ǫI ∈ (X, Y ) and
Y −ǫI ∈ (X, Y ). If Z ∈ (X, Y )⊥, we find that |Z−(X +ǫI)| ≤ 0 and
|Z − (Y − ǫI)| ≤ 0. Now a 2 × 2 Hermitian matrix C has negative
determinant if and only if we can find unit vectors v1 and v2 such that
〈Cv1, v1〉 < 0 < 〈Cv2, v2〉. Applying this to our situation, we can find
unit vectors v1(ǫ), v2(ǫ) such that 〈Zv1(ǫ), v1(ǫ)〉 < 〈Xv1(ǫ), v1(ǫ)〉+ǫ
and 〈Zv2(ǫ), v2(ǫ)〉 > 〈Y v2(ǫ), v2(ǫ)〉− ǫ. By compactness of the unit
sphere in C

2, we find, letting ǫ ↓ 0, that the condition (3.3) is indeed
met.

Conversely, suppose condition (3.3) is met. If W ∈ (X, Y ),
observe that 〈Zv1, v1〉 ≤ 〈Xv1, v1〉 < 〈Wv1, v1〉 and 〈Zv2, v2〉 ≥
〈Y v2, v2〉 > 〈Wv2, v2〉 from which we may conclude that indeed
|Z − W | < 0.
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Since O ⊂ O⊥⊥ ∀O, we only need to prove that

W /∈ (X, Y ) ⇒ ∃Z ∈ (X, Y )⊥ such that|W−Z| ≥ 0 (⇒ W /∈ (X, Y )⊥⊥) .

If W /∈ (X, Y ), we can find orthonormal vectors {v1, v2} such
that either 〈Wv1, v1〉 ≤ 〈Xv1, v1〉 or 〈Wv2, v2〉 ≥ 〈Y v2, v2〉. Suppose
the former holds. (The other case is settled in the same manner.)
Define the operator Z by Z = W + N |v2〉〈v2| for some N chosen
so large as to ensure that 〈Zv2, v2〉 > 〈Y v2, v2〉. We then find that
also 〈Zv1, v1〉 = 〈Wv1, v1〉 ≤ 〈Xv1, v1〉, and so we may deduce from
condition (3.3) that Z ∈ (X, Y )⊥. Since the construction ensures
that (Z −W )v1 = 0, we find that |Z −W | = 0, and the proof of the
proposition is complete. �

We close with a minimal bibliography; all the background for the
mathematics here can be found in [PRH], while physics-related topics
such as Minkowski metric, double cones, etc., are amply treated in
[BAU].
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