Symmetries and independence in noncommutative probability

Claus Köstler Institute of Mathematics and Physics Aberystwyth University

cck@aber.ac.uk

ICM Satellite Conference on Operator Algebras The Institute of Mathematical Sciences (IMSc) Chennai

August 10, 2010

Claus Köstler

Symmetries and independence

Motivation

Though many probabilistic symmetries are conceivable [...], four of them - stationarity, contractability, exchangeablity [and rotatability] - stand out as especially interesting and important in several ways: Their study leads to some deep structural theorems of great beauty and significance [...].

Olav Kallenberg (2005)

Motivation

Though many probabilistic symmetries are conceivable [...], four of them - stationarity, contractability, exchangeablity [and rotatability] - stand out as especially interesting and important in several ways: Their study leads to some deep structural theorems of great beauty and significance [...].

Olav Kallenberg (2005)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

Quest

- Transfer related concepts to noncommutative probability
- Show that these concepts are fruitful in the study of **operator algebras** and **quantum dynamics**

Motivation

Though many probabilistic symmetries are conceivable [...], four of them - stationarity, contractability, exchangeablity [and rotatability] - stand out as especially interesting and important in several ways: Their study leads to some deep structural theorems of great beauty and significance [...].

Olav Kallenberg (2005)

Quest

- Transfer related concepts to noncommutative probability
- Show that these concepts are fruitful in the study of **operator algebras** and **quantum dynamics**

Remark

Noncommutative probability = classical & quantum probability

The random variables $(X_n)_{n\geq 0}$ are said to be **exchangeable** if

$$\mathbb{E}(X_{\mathbf{i}(1)}\cdots X_{\mathbf{i}(n)}) = \mathbb{E}(X_{\sigma(\mathbf{i}(1))}\cdots X_{\sigma(\mathbf{i}(n))}) \qquad (\sigma \in \mathbb{S}_{\infty})$$

for all *n*-tuples i: $\{1, 2, \ldots, n\} \rightarrow \mathbb{N}_0$ and $n \in \mathbb{N}$.

The random variables $(X_n)_{n\geq 0}$ are said to be **exchangeable** if

$$\mathbb{E}(X_{\mathbf{i}(1)}\cdots X_{\mathbf{i}(n)}) = \mathbb{E}(X_{\sigma(\mathbf{i}(1))}\cdots X_{\sigma(\mathbf{i}(n))}) \qquad (\sigma \in \mathbb{S}_{\infty})$$

for all *n*-tuples i: $\{1, 2, \ldots, n\} \rightarrow \mathbb{N}_0$ and $n \in \mathbb{N}$.

Theorem (De Finetti 1931,...)

The law of an exchangeable sequence $(X_n)_{n\geq 0}$ is given by a unique convex combination of infinite product measures.

The random variables $(X_n)_{n\geq 0}$ are said to be **exchangeable** if

$$\mathbb{E}(X_{\mathbf{i}(1)}\cdots X_{\mathbf{i}(n)}) = \mathbb{E}(X_{\sigma(\mathbf{i}(1))}\cdots X_{\sigma(\mathbf{i}(n))}) \qquad (\sigma \in \mathbb{S}_{\infty})$$

for all *n*-tuples i: $\{1, 2, \ldots, n\} \rightarrow \mathbb{N}_0$ and $n \in \mathbb{N}$.

Theorem (De Finetti 1931,...)

The law of an exchangeable sequence $(X_n)_{n\geq 0}$ is given by a unique convex combination of infinite product measures.

"Any exchangeable process is an average of i.i.d. processes."

Replacing permutation groups by Wang's quantum permutation groups

Theorem (K. & Speicher 2008)

The following are equivalent for an infinite sequence of random variables $x_1, x_2, ...$ in a W*-algebraic probability space (\mathcal{A}, φ) :

Replacing permutation groups by Wang's quantum permutation groups

Theorem (K. & Speicher 2008)

The following are equivalent for an infinite sequence of random variables x_1, x_2, \ldots in a W*-algebraic probability space (\mathcal{A}, φ) :

(a) the sequence is quantum exchangeable

Replacing permutation groups by Wang's quantum permutation groups

Theorem (K. & Speicher 2008)

The following are equivalent for an infinite sequence of random variables x_1, x_2, \ldots in a W*-algebraic probability space (\mathcal{A}, φ) :

(a) the sequence is quantum exchangeable

(b) the sequence is identically distributed and freely independent with amalgamation over ${\cal T}$

Here \mathcal{T} denotes the **tail algebra** $\mathcal{T} = \bigcap_{n \in \mathbb{N}} v N(x_k | k \ge n)$.

Replacing permutation groups by Wang's quantum permutation groups

Theorem (K. & Speicher 2008)

The following are equivalent for an infinite sequence of random variables x_1, x_2, \ldots in a W*-algebraic probability space (\mathcal{A}, φ) :

(a) the sequence is quantum exchangeable

(b) the sequence is identically distributed and freely independent with amalgamation over ${\cal T}$

Here \mathcal{T} denotes the **tail algebra** $\mathcal{T} = \bigcap_{n \in \mathbb{N}} v N(x_k | k \ge n)$.

Replacing permutation groups by Wang's quantum permutation groups

Theorem (K. & Speicher 2008)

The following are equivalent for an infinite sequence of random variables x_1, x_2, \ldots in a W*-algebraic probability space (\mathcal{A}, φ) :

- (a) the sequence is quantum exchangeable
- (b) the sequence is identically distributed and freely independent with amalgamation over ${\cal T}$
- (c) the sequence canonically embeds into $\bigstar_{\mathcal{T}}^{\mathbb{N}} vN(x_1, \mathcal{T})$, a von Neumann algebraic **amalgamated free product over** \mathcal{T}

Here \mathcal{T} denotes the **tail algebra** $\mathcal{T} = \bigcap_{n \in \mathbb{N}} vN(x_k | k \ge n)$.

Replacing permutation groups by Wang's quantum permutation groups

Theorem (K. & Speicher 2008)

The following are equivalent for an infinite sequence of random variables x_1, x_2, \ldots in a W*-algebraic probability space (\mathcal{A}, φ) :

- (a) the sequence is quantum exchangeable
- (b) the sequence is identically distributed and freely independent with amalgamation over ${\cal T}$
- (c) the sequence canonically embeds into $\bigstar_T^{\mathbb{N}} vN(x_1, T)$, a von Neumann algebraic **amalgamated free product over** T

Here \mathcal{T} denotes the **tail algebra** $\mathcal{T} = \bigcap_{n \in \mathbb{N}} vN(x_k | k \ge n)$.

See talks of Curran and Speicher for more recent developments.

Foundational result on the representation theory of the infinite symmetric group \mathbb{S}_∞

 \mathbb{S}_{∞} is the inductive limit of the symmetric group \mathbb{S}_n as $n \to \infty$, acting on $\{0, 1, 2, \ldots\}$. A function $\chi \colon \mathbb{S}_{\infty} \to \mathbb{C}$ is a **character** if it is constant on conjugacy classes, positive definite and normalized at the unity.

Foundational result on the representation theory of the infinite symmetric group \mathbb{S}_∞

 \mathbb{S}_{∞} is the inductive limit of the symmetric group \mathbb{S}_n as $n \to \infty$, acting on $\{0, 1, 2, \ldots\}$. A function $\chi \colon \mathbb{S}_{\infty} \to \mathbb{C}$ is a **character** if it is constant on conjugacy classes, positive definite and normalized at the unity.

Elementary observation

Let $\gamma_i := (0, i)$. Then the sequence $(\gamma_i)_{i \in \mathbb{N}}$ is exchangeable, i.e.

$$\chi(\gamma_{\mathbf{i}(1)}\gamma_{\mathbf{i}(2)}\cdots\gamma_{\mathbf{i}(n)})=\chi(\gamma_{\sigma(\mathbf{i}(1))}\gamma_{\sigma(\mathbf{i}(2))}\cdots\gamma_{\sigma(\mathbf{i}(n))})$$

for $\sigma \in \mathbb{S}_{\infty}$ with $\sigma(0) = 0$, *n*-tuples i: $\{1, \ldots, n\} \to \mathbb{N}$ and $n \in \mathbb{N}$.

Foundational result on the representation theory of the infinite symmetric group \mathbb{S}_∞

 \mathbb{S}_{∞} is the inductive limit of the symmetric group \mathbb{S}_n as $n \to \infty$, acting on $\{0, 1, 2, \ldots\}$. A function $\chi \colon \mathbb{S}_{\infty} \to \mathbb{C}$ is a **character** if it is constant on conjugacy classes, positive definite and normalized at the unity.

Elementary observation

Let $\gamma_i := (0, i)$. Then the sequence $(\gamma_i)_{i \in \mathbb{N}}$ is exchangeable, i.e.

$$\chi(\gamma_{\mathbf{i}(1)}\gamma_{\mathbf{i}(2)}\cdots\gamma_{\mathbf{i}(n)})=\chi(\gamma_{\sigma(\mathbf{i}(1))}\gamma_{\sigma(\mathbf{i}(2))}\cdots\gamma_{\sigma(\mathbf{i}(n))})$$

for $\sigma \in \mathbb{S}_{\infty}$ with $\sigma(0) = 0$, *n*-tuples i: $\{1, \ldots, n\} \to \mathbb{N}$ and $n \in \mathbb{N}$.

Task

Identify the convex combination of extremal characters of $\mathbb{S}_\infty.$ In other words: prove a noncommutative de Finetti theorem!

Thoma's theorem as a noncommutative de Finetti theorem

Theorem (Thoma 1964)

An extremal character of the group \mathbb{S}_∞ is of the form

$$\chi(\sigma) = \prod_{k=2}^{\infty} \left(\sum_{i=1}^{\infty} a_i^k + (-1)^{k-1} \sum_{j=1}^{\infty} b_j^k \right)^{m_k(\sigma)}$$

Here $m_k(\sigma)$ is the number of k-cycles in the permutation σ and the two sequences $(a_i)_{i=1}^{\infty}, (b_j)_{j=1}^{\infty}$ satisfy

$$a_1 \ge a_2 \ge \cdots \ge 0,$$
 $b_1 \ge b_2 \ge \cdots \ge 0,$ $\sum_{i=1}^{\infty} a_i + \sum_{j=1}^{\infty} b_j \le 1.$

Alternative proofs

Vershik & Kerov 1981: asymptotic representation theory Okounkov 1997: Olshanski semigroups and spectral theory Gohm & K. 2010: operator algebraic proof (see next talk)

Claus Köstler

Symmetries and independence

B ()

The Hecke algebra $H_q(\infty)$ over \mathbb{C} with parameter $q \in \mathbb{C}$ is the unital algebra with generators g_0, g_1, \ldots and relations

$$g_n^2 = (q-1)g_n + q;$$

$$g_m g_n = g_n g_m \quad \text{if } | n-m | \ge 2;$$

$$g_n g_{n+1} g_n = g_{n+1} g_n g_{n+1}.$$

・ロ・・日・・日・・日・ 日・ うへつ

The Hecke algebra $H_q(\infty)$ over \mathbb{C} with parameter $q \in \mathbb{C}$ is the unital algebra with generators g_0, g_1, \ldots and relations

$$g_n^2 = (q-1)g_n + q;$$

$$g_m g_n = g_n g_m \quad \text{if } | n-m | \ge 2;$$

$$g_n g_{n+1} g_n = g_{n+1} g_n g_{n+1}.$$

If q is a **root of unity** there exists an involution and a trace on $H_q(\infty)$ such that the g_n are unitary.

The Hecke algebra $H_q(\infty)$ over \mathbb{C} with parameter $q \in \mathbb{C}$ is the unital algebra with generators g_0, g_1, \ldots and relations

$$g_n^2 = (q-1)g_n + q;$$

$$g_m g_n = g_n g_m \quad \text{if } | n-m | \ge 2;$$

$$g_n g_{n+1} g_n = g_{n+1} g_n g_{n+1}.$$

If q is a **root of unity** there exists an involution and a trace on $H_q(\infty)$ such that the g_n are unitary. Now let

$$\gamma_1 := g_1, \quad \gamma_n := g_1 g_2 \cdots g_{n-1} g_n g_{n-1}^{-1} \cdots g_2^{-1} g_1^{-1}$$

(ロ) (同) (目) (日) (日) (の)

The Hecke algebra $H_q(\infty)$ over \mathbb{C} with parameter $q \in \mathbb{C}$ is the unital algebra with generators g_0, g_1, \ldots and relations

$$g_n^2 = (q-1)g_n + q;$$

$$g_m g_n = g_n g_m \quad \text{if } | n-m | \ge 2;$$

$$g_n g_{n+1} g_n = g_{n+1} g_n g_{n+1}.$$

If q is a **root of unity** there exists an involution and a trace on $H_q(\infty)$ such that the g_n are unitary. Now let

$$\gamma_1 := g_1, \quad \gamma_n := g_1 g_2 \cdots g_{n-1} g_n g_{n-1}^{-1} \cdots g_2^{-1} g_1^{-1}$$

Replacing the role of \mathbb{S}_{∞} by the braid group \mathbb{B}_{∞} turns exchangeability into **braidability**....

Theorem (Gohm & K.)

The sequence $(\gamma_n)_{n \in \mathbb{N}}$ is braidable. This will become more clear later ... see talk of Gohm $(z) \in \mathbb{R}$

Claus Köstler

Symmetries and independence

A (noncommutative) **probability space** (\mathcal{A}, φ) is a von Neumann algebra \mathcal{A} (with separable predual) equipped with a faithful normal state φ .

A random variable $\iota: (\mathcal{A}_0, \varphi_0) \to (\mathcal{A}, \varphi)$ is is an injective *-homomorphism from \mathcal{A}_0 into \mathcal{A} such that $\varphi_0 = \varphi \circ \iota$ and the φ -preserving conditional expectation from \mathcal{A} onto $\iota(\mathcal{A}_0)$ exists.

Given the sequence of random variables

$$(\iota_n)_{n\geq 0}\colon (\mathcal{A}_0,\varphi_0)\to (\mathcal{A},\varphi),$$

fix some $a \in A_0$. Then $x_n := \iota_n(a)$ defines the operators x_0, x_1, x_2, \ldots (now random variables in the operator sense).

Noncommutative distributions

Two sequences of random variables $(\iota_n)_{n\geq 0}$ and $(\tilde{\iota}_n)_{n\geq 0}$: $(\mathcal{A}_0, \varphi_0) \to (\mathcal{A}, \varphi)$ have the same **distribution** if

$$\begin{split} \varphi\big(\iota_{\mathbf{i}(1)}(a_1)\iota_{\mathbf{i}(2)}(a_2)\cdots\iota_{\mathbf{i}(n)}(a_n)\big) &= \varphi\big(\tilde{\iota}_{\mathbf{i}(1)}(a_1)\,\tilde{\iota}_{\mathbf{i}(2)}(a_2)\cdots\tilde{\iota}_{\mathbf{i}(n)}(a_n)\big) \\ \text{for all }n\text{-tuples }\mathbf{i}\colon\{1,2,\ldots,n\}\to\mathbb{N}_0,\ (a_1,\ldots,a_n)\in\mathcal{A}_0^n \text{ and }n\in\mathbb{N} \end{split}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Noncommutative distributions

Two sequences of random variables $(\iota_n)_{n\geq 0}$ and $(\tilde{\iota}_n)_{n\geq 0}: (\mathcal{A}_0, \varphi_0) \to (\mathcal{A}, \varphi)$ have the same **distribution** if $\varphi(\iota_{\mathbf{i}(1)}(a_1)\iota_{\mathbf{i}(2)}(a_2)\cdots\iota_{\mathbf{i}(n)}(a_n)) = \varphi(\tilde{\iota}_{\mathbf{i}(1)}(a_1)\tilde{\iota}_{\mathbf{i}(2)}(a_2)\cdots\tilde{\iota}_{\mathbf{i}(n)}(a_n))$ for all *n*-tuples $\mathbf{i}: \{1, 2, \dots, n\} \to \mathbb{N}_0, (a_1, \dots, a_n) \in \mathcal{A}_0^n \text{ and } n \in \mathbb{N}.$

Notation
$$(\iota_0, \iota_1, \iota_2, \ldots) \stackrel{\text{distr}}{=} (\tilde{\iota}_0, \tilde{\iota}_1, \tilde{\iota}_2, \ldots)$$

Claus Köstler Symmetries and independence

Just as in the classical case we can now talk about distributional symmetries. A sequence $(x_n)_{n>0}$ is

• exchangeable if $(\iota_0, \iota_1, \iota_2, \ldots) \stackrel{\text{distr}}{=} (\iota_{\pi(0)}, \iota_{\pi(1)}, \iota_{\pi(2)}, \ldots)$ for any (finite) permutation $\pi \in \mathbb{S}_{\infty}$ of \mathbb{N}_0 .

Just as in the classical case we can now talk about distributional symmetries. A sequence $(x_n)_{n\geq 0}$ is

- exchangeable if $(\iota_0, \iota_1, \iota_2, ...) \stackrel{\text{distr}}{=} (\iota_{\pi(0)}, \iota_{\pi(1)}, \iota_{\pi(2)}, ...)$ for any (finite) permutation $\pi \in \mathbb{S}_{\infty}$ of \mathbb{N}_0 .
- spreadable if $(\iota_0, \iota_1, \iota_2, \ldots) \stackrel{\text{distr}}{=} (\iota_{n_0}, \iota_{n_1}, \iota_{n_2}, \ldots)$ for any subsequence (n_0, n_1, n_2, \ldots) of $(0, 1, 2, \ldots)$.

Just as in the classical case we can now talk about distributional symmetries. A sequence $(x_n)_{n\geq 0}$ is

- exchangeable if $(\iota_0, \iota_1, \iota_2, ...) \stackrel{\text{distr}}{=} (\iota_{\pi(0)}, \iota_{\pi(1)}, \iota_{\pi(2)}, ...)$ for any (finite) permutation $\pi \in \mathbb{S}_{\infty}$ of \mathbb{N}_0 .
- spreadable if $(\iota_0, \iota_1, \iota_2, \ldots) \stackrel{\text{distr}}{=} (\iota_{n_0}, \iota_{n_1}, \iota_{n_2}, \ldots)$ for any subsequence (n_0, n_1, n_2, \ldots) of $(0, 1, 2, \ldots)$.
- stationary if $(\iota_0, \iota_1, \iota_2, \ldots) \stackrel{\text{distr}}{=} (\iota_k, \iota_{k+1}, \iota_{k+2}, \ldots)$ for all $k \in \mathbb{N}$.

Just as in the classical case we can now talk about distributional symmetries. A sequence $(x_n)_{n\geq 0}$ is

- exchangeable if $(\iota_0, \iota_1, \iota_2, ...) \stackrel{\text{distr}}{=} (\iota_{\pi(0)}, \iota_{\pi(1)}, \iota_{\pi(2)}, ...)$ for any (finite) permutation $\pi \in \mathbb{S}_{\infty}$ of \mathbb{N}_0 .
- spreadable if $(\iota_0, \iota_1, \iota_2, \ldots) \stackrel{\text{distr}}{=} (\iota_{n_0}, \iota_{n_1}, \iota_{n_2}, \ldots)$ for any subsequence (n_0, n_1, n_2, \ldots) of $(0, 1, 2, \ldots)$.
- stationary if $(\iota_0, \iota_1, \iota_2, \ldots) \stackrel{\text{distr}}{=} (\iota_k, \iota_{k+1}, \iota_{k+2}, \ldots)$ for all $k \in \mathbb{N}$.

Just as in the classical case we can now talk about distributional symmetries. A sequence $(x_n)_{n\geq 0}$ is

- exchangeable if $(\iota_0, \iota_1, \iota_2, ...) \stackrel{\text{distr}}{=} (\iota_{\pi(0)}, \iota_{\pi(1)}, \iota_{\pi(2)}, ...)$ for any (finite) permutation $\pi \in \mathbb{S}_{\infty}$ of \mathbb{N}_0 .
- spreadable if $(\iota_0, \iota_1, \iota_2, \ldots) \stackrel{\text{distr}}{=} (\iota_{n_0}, \iota_{n_1}, \iota_{n_2}, \ldots)$ for any subsequence (n_0, n_1, n_2, \ldots) of $(0, 1, 2, \ldots)$.
- stationary if $(\iota_0, \iota_1, \iota_2, \ldots) \stackrel{\text{distr}}{=} (\iota_k, \iota_{k+1}, \iota_{k+2}, \ldots)$ for all $k \in \mathbb{N}$.

Lemma (Hierarchy of distributional symmetries)

exchangeability \Rightarrow spreadability \Rightarrow stationarity \Rightarrow identical distr.

Let $\mathcal{A}_0, \mathcal{A}_1, \mathcal{A}_2$ be three von Neumann subalgebras of \mathcal{A} with φ -preserving conditional expectations $E_i : \mathcal{A} \to \mathcal{A}_i$ (i = 0, 1, 2).

Let $\mathcal{A}_0, \mathcal{A}_1, \mathcal{A}_2$ be three von Neumann subalgebras of \mathcal{A} with φ -preserving conditional expectations $E_i \colon \mathcal{A} \to \mathcal{A}_i \ (i = 0, 1, 2)$. Definition

 $\mathcal{A}_1 \text{ and } \mathcal{A}_2 \text{ are } \mathcal{A}_0\text{-independent}$ if

$$E_0(xy) = E_0(x)E_0(y)$$
 $(x \in \mathcal{A}_0 \lor \mathcal{A}_1, y \in \mathcal{A}_0 \lor \mathcal{A}_2)$

Let $\mathcal{A}_0, \mathcal{A}_1, \mathcal{A}_2$ be three von Neumann subalgebras of \mathcal{A} with φ -preserving conditional expectations $E_i : \mathcal{A} \to \mathcal{A}_i$ (i = 0, 1, 2). Definition

 $\mathcal{A}_1 \text{ and } \mathcal{A}_2 \text{ are } \mathcal{A}_0\text{-independent}$ if

$$E_0(xy) = E_0(x)E_0(y)$$
 $(x \in \mathcal{A}_0 \lor \mathcal{A}_1, y \in \mathcal{A}_0 \lor \mathcal{A}_2)$

Remarks

- $\mathcal{A}_0 \subset \mathcal{A}_0 \lor \mathcal{A}_1, \mathcal{A}_0 \lor \mathcal{A}_2 \subset \mathcal{A}$ is a commuting square
- $\mathcal{A}_0\simeq\mathbb{C}:$ Kümmerer's notion of n.c. independence
- $\mathcal{A} = L^{\infty}(\Omega, \Sigma, \mu)$: cond. independence w.r.t. sub- σ -algebra

Let $\mathcal{A}_0, \mathcal{A}_1, \mathcal{A}_2$ be three von Neumann subalgebras of \mathcal{A} with φ -preserving conditional expectations $E_i : \mathcal{A} \to \mathcal{A}_i$ (i = 0, 1, 2). Definition

 $\mathcal{A}_1 \text{ and } \mathcal{A}_2 \text{ are } \mathcal{A}_0\text{-independent}$ if

$$E_0(xy) = E_0(x)E_0(y)$$
 $(x \in \mathcal{A}_0 \lor \mathcal{A}_1, y \in \mathcal{A}_0 \lor \mathcal{A}_2)$

Remarks

- $\mathcal{A}_0 \subset \mathcal{A}_0 \lor \mathcal{A}_1, \mathcal{A}_0 \lor \mathcal{A}_2 \subset \mathcal{A}$ is a commuting square
- $\mathcal{A}_0\simeq\mathbb{C}:$ Kümmerer's notion of n.c. independence
- $\mathcal{A} = L^{\infty}(\Omega, \Sigma, \mu)$: cond. independence w.r.t. sub- σ -algebra
- Many different forms of noncommutative independence!

Let $\mathcal{A}_0, \mathcal{A}_1, \mathcal{A}_2$ be three von Neumann subalgebras of \mathcal{A} with φ -preserving conditional expectations $E_i : \mathcal{A} \to \mathcal{A}_i$ (i = 0, 1, 2). Definition

 $\mathcal{A}_1 \text{ and } \mathcal{A}_2 \text{ are } \mathcal{A}_0\text{-independent}$ if

$$E_0(xy) = E_0(x)E_0(y)$$
 $(x \in \mathcal{A}_0 \lor \mathcal{A}_1, y \in \mathcal{A}_0 \lor \mathcal{A}_2)$

Remarks

- $\mathcal{A}_0 \subset \mathcal{A}_0 \lor \mathcal{A}_1, \mathcal{A}_0 \lor \mathcal{A}_2 \subset \mathcal{A}$ is a commuting square
- $\mathcal{A}_0\simeq\mathbb{C}{:}$ Kümmerer's notion of n.c. independence
- $\mathcal{A} = L^{\infty}(\Omega, \Sigma, \mu)$: cond. independence w.r.t. sub- σ -algebra
- Many different forms of noncommutative independence!

(ロ) (同) (目) (日) (日) (の)

Conditional independence of sequences

A sequence of random variables $(\iota_n)_{n\in\mathbb{N}_0}$: $(\mathcal{A}_0, \varphi_0) \to (\mathcal{A}, \varphi)$ is **(full)** \mathcal{B} -independent if

 $\bigvee \{\iota_i(\mathcal{A}_0) \, | \, i \in I\} \lor \mathcal{B} \quad \text{and} \quad \bigvee \{\iota_j(\mathcal{A}_0) \, | \, j \in J\} \lor \mathcal{B}$

are \mathcal{B} -independent whenever $I \cap J = \emptyset$ with $I, J \subset \mathbb{N}_0$.

Conditional independence of sequences

A sequence of random variables $(\iota_n)_{n\in\mathbb{N}_0}$: $(\mathcal{A}_0,\varphi_0) \to (\mathcal{A},\varphi)$ is **(full)** \mathcal{B} -independent if

 $\bigvee \{\iota_i(\mathcal{A}_0) \,|\, i \in I\} \lor \mathcal{B} \quad \text{and} \quad \bigvee \{\iota_j(\mathcal{A}_0) \,|\, j \in J\} \lor \mathcal{B}$

are \mathcal{B} -independent whenever $I \cap J = \emptyset$ with $I, J \subset \mathbb{N}_0$.

Remark

Many interesting notions are possible for sequences:

- 1. conditional top-order independence
- 2. conditional order independence

3. conditional full independence

4. discrete noncommutative random measure factorizations

Let $(\iota_n)_{n\geq 0}$ be random variables as before with tail algebra

$$\mathcal{A}^{\mathsf{tail}} := \bigcap_{n \ge 0} \bigvee_{k \ge n} \{ \iota_k(\mathcal{A}_0) \},$$

and consider:

(a) (ι_n)_{n≥0} is exchangeable
(c) (ι_n)_{n≥0} is spreadable
(d) (ι_n)_{n≥0} is stationary and A^{tail}-independent
(e) (ι_n)_{n>0} is identically distributed and A^{tail}-independent

Let $(\iota_n)_{n\geq 0}$ be random variables as before with tail algebra

$$\mathcal{A}^{\mathsf{tail}} := \bigcap_{n \ge 0} \bigvee_{k \ge n} \{ \iota_k(\mathcal{A}_0) \},$$

and consider:

(a) (ι_n)_{n≥0} is exchangeable
(c) (ι_n)_{n≥0} is spreadable
(d) (ι_n)_{n≥0} is stationary and A^{tail}-independent
(e) (ι_n)_{n≥0} is identically distributed and A^{tail}-independent
Theorem (K. '07-'08)
(a) ⇒ (c) ⇒ (d) ⇒ (e),

Let $(\iota_n)_{n\geq 0}$ be random variables as before with tail algebra

$$\mathcal{A}^{\mathsf{tail}} := \bigcap_{n \ge 0} \bigvee_{k \ge n} \{ \iota_k(\mathcal{A}_0) \},$$

and consider:

(a) (\u03c0n)_{n ≥ 0} is exchangeable
(c) (\u03c0n)_{n ≥ 0} is spreadable
(d) (\u03c0n)_{n ≥ 0} is stationary and A^{tail}-independent
(e) (\u03c0n)_{n ≥ 0} is identically distributed and A^{tail}-independent
Theorem (K. '07-'08, Gohm & K. '08)
(a) ⇒ (c) ⇒ (d) ⇒ (e), but (a) ∉ (c) ∉ (d) ∉ (e)

Let $(\iota_n)_{n\geq 0}$ be random variables as before with tail algebra

$$\mathcal{A}^{\mathsf{tail}} := \bigcap_{n \ge 0} \bigvee_{k \ge n} \{ \iota_k(\mathcal{A}_0) \},$$

and consider:

(a) (ι_n)_{n≥0} is exchangeable
(c) (ι_n)_{n≥0} is spreadable
(d) (ι_n)_{n≥0} is stationary and A^{tail}-independent
(e) (ι_n)_{n≥0} is identically distributed and A^{tail}-independent

Theorem (K. '07-'08, Gohm & K. '08)

$$(a) \Rightarrow (c) \Rightarrow (d) \Rightarrow (e), \quad but (a) \neq (c) \neq (d) \neq (e)$$

Remark

(a) to (e) are equivalent if the operators x_n mutually commute.
[De Finetti '31, Ryll-Nardzewski '57,..., Størmer '69,... Hudson '76, ... Petz '89,..., Accardi&Lu '93, ...]

An ingredient for proving full cond. independence

Localization Preserving Mean Ergodic Theorem (K '08) Let (\mathcal{M}, ψ) be a probability space and suppose $\{\alpha_N\}_{N \in \mathbb{N}_0}$ is a family of ψ -preserving completely positive linear maps of \mathcal{M} satisfying

1.
$$\mathcal{M}^{\alpha_N} \subset \mathcal{M}^{\alpha_{N+1}}$$
 for all $N \in \mathbb{N}_0$;

2.
$$\mathcal{M} = \bigvee_{N \in \mathbb{N}_0} \mathcal{M}^{\alpha_N}$$
.

Further let

$$M_N^{(n)} := rac{1}{n} \sum_{k=0}^{n-1} lpha_N^k$$
 and $T_N := \prod_{l=0}^N lpha_l^{lN} M_l^{(N)}.$

Then we have

SOT-
$$\lim_{N\to\infty} T_N(x) = E_{\mathcal{M}^{\alpha_0}}(x)$$

for any $x \in \mathcal{M}$.

Claus Köstler

Symmetries and independence

• Noncommutative conditional independence emerges from distributional symmetries in terms of commuting squares

For further details see:

C. Köstler. A noncommutative extended de Finetti theorem. J. Funct. Anal. 258, 1073-1120 (2010)

Claus Köstler Symmetries and independence

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

- Noncommutative conditional independence emerges from distributional symmetries in terms of commuting squares
- Exchangeability is too weak to identify the structure of the underlying noncommutative probability space

For further details see:

C. Köstler. A noncommutative extended de Finetti theorem. J. Funct. Anal. 258, 1073-1120 (2010)

- Noncommutative conditional independence emerges from distributional symmetries in terms of commuting squares
- Exchangeability is too weak to identify the structure of the underlying noncommutative probability space
- All reverse implications in the noncommutative extended de Finetti theorem fail due to deep structural reasons!

For further details see:

C. Köstler. A noncommutative extended de Finetti theorem. J. Funct. Anal. 258, 1073-1120 (2010)

- Noncommutative conditional independence emerges from distributional symmetries in terms of commuting squares
- Exchangeability is too weak to identify the structure of the underlying noncommutative probability space
- All reverse implications in the noncommutative extended de Finetti theorem fail due to deep structural reasons!
- This will become clear from braidability...

For further details see:

C. Köstler. A noncommutative extended de Finetti theorem. J. Funct. Anal. **258**, 1073-1120 (2010)

R. Gohm & C. Köstler. Noncommutative independence from the braid group $\mathbb{B}_{\infty}.$ Commun. Math. Phys. **289**, 435–482 (2009)

Artin braid groups \mathbb{B}_n

Algebraic Definition (Artin 1925)

 \mathbb{B}_n is presented by n-1 generators $\sigma_1,\ldots,\sigma_{n-1}$ satisfying

$$\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j \qquad \text{if } |i-j| = 1 \tag{B1}$$

$$\sigma_i \sigma_j = \sigma_j \sigma_i \qquad \text{if } |i-j| > 1 \tag{B2}$$

$$\begin{bmatrix} 0 & 1 \\ & 1 & \cdots \end{bmatrix} \stackrel{i-1}{\underset{}{\overset{i}{\xrightarrow}}} \begin{bmatrix} & \cdots \\ & & \end{bmatrix} \stackrel{0}{\underset{}{\xrightarrow}} \stackrel{1}{\underset{}{\xrightarrow}} \cdots \underset{\underset{}{\overset{}{\xrightarrow}}} \stackrel{i-1}{\underset{}{\xrightarrow}} \stackrel{i}{\underset{}{\xrightarrow}} \stackrel{i}{\underset} \underset{i}{\underset} \stackrel{i}{\underset} \underset{i}{\underset} \underset{$$

Figure: Artin generators σ_i (left) and σ_i^{-1} (right)

 $\mathbb{B}_1 \subset \mathbb{B}_2 \subset \mathbb{B}_3 \subset \ldots \subset \mathbb{B}_\infty \text{ (inductive limit)}$

Braidability

Definition (Gohm & K. '08)

A sequence $(\iota_n)_{n\geq 0}$: $(\mathcal{A}_0, \varphi_0) \to (\mathcal{A}, \varphi)$ is **braidable** if there exists a representation ρ : $\mathbb{B}_{\infty} \to \operatorname{Aut}(\mathcal{A}, \varphi)$ satisfying:

$$\iota_n =
ho(\sigma_n \sigma_{n-1} \cdots \sigma_1) \iota_0$$
 for all $n \ge 1$;
 $\iota_0 =
ho(\sigma_n) \iota_0$ if $n \ge 2$.

Claus Köstler Symmetries and independence

Braidability

Definition (Gohm & K. '08)

A sequence $(\iota_n)_{n\geq 0}$: $(\mathcal{A}_0, \varphi_0) \to (\mathcal{A}, \varphi)$ is **braidable** if there exists a representation $\rho : \mathbb{B}_{\infty} \to \operatorname{Aut}(\mathcal{A}, \varphi)$ satisfying:

$$\begin{split} \iota_n &= \rho(\sigma_n \sigma_{n-1} \cdots \sigma_1) \iota_0 \qquad & \text{for all } n \geq 1; \\ \iota_0 &= \rho(\sigma_n) \iota_0 \qquad & \text{if } n \geq 2. \end{split}$$

Braidability extends exchangeability

• If $\rho(\sigma_n^2) = \text{id for all } n$, one has a representation of \mathbb{S}_{∞} .

Braidability

Definition (Gohm & K. '08)

A sequence $(\iota_n)_{n\geq 0}$: $(\mathcal{A}_0, \varphi_0) \to (\mathcal{A}, \varphi)$ is **braidable** if there exists a representation ρ : $\mathbb{B}_{\infty} \to \operatorname{Aut}(\mathcal{A}, \varphi)$ satisfying:

$$\begin{split} \iota_n &= \rho(\sigma_n \sigma_{n-1} \cdots \sigma_1) \iota_0 \qquad & \text{for all } n \geq 1; \\ \iota_0 &= \rho(\sigma_n) \iota_0 \qquad & \text{if } n \geq 2. \end{split}$$

Braidability extends exchangeability

- If $\rho(\sigma_n^2) = \text{id}$ for all *n*, one has a representation of \mathbb{S}_{∞} .
- $(\iota_n)_{n\geq 0}$ is exchangeable $\Leftrightarrow \begin{cases} (\iota_n)_{n\geq 0} & \text{is braidable and} \\ \rho(\sigma_n^2) & = \text{id for all } n. \end{cases}$

Braidability implies spreadability

Consider the conditions:

- (a) $(x_n)_{n\geq 0}$ is exchangeable
- (b) $(x_n)_{n\geq 0}$ is braidable
- (c) $(x_n)_{n\geq 0}$ is spreadable
- (d) $(x_n)_{n\geq 0}$ is stationary and $\mathcal{A}^{\text{tail}}$ -independent

Braidability implies spreadability

Consider the conditions:

- (a) $(x_n)_{n\geq 0}$ is exchangeable
- (b) $(x_n)_{n\geq 0}$ is braidable
- (c) $(x_n)_{n\geq 0}$ is spreadable
- (d) $(x_n)_{n\geq 0}$ is stationary and $\mathcal{A}^{\text{tail}}$ -independent

Theorem (Gohm & K. '08)

 $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d), \quad but (a) \notin (b) \notin (d)$

Braidability implies spreadability

Consider the conditions:

- (a) $(x_n)_{n\geq 0}$ is exchangeable
- (b) $(x_n)_{n\geq 0}$ is braidable
- (c) $(x_n)_{n\geq 0}$ is spreadable
- (d) $(x_n)_{n\geq 0}$ is stationary and $\mathcal{A}^{\text{tail}}$ -independent
- Theorem (Gohm & K. '08)

$$(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d), \quad but (a) \notin (b) \notin (d)$$

Observation

Large and interesting class of spreadable sequences is obtained from braidability.

Remarks

There are many examples of braidability!

- subfactor inclusion with small Jones index ('Jones-Temperley-Lieb algebras and Hecke algebras')
- left regular representation of \mathbb{B}_{∞}
- vertex models in quantum statistical physics ('Yang-Baxter equations')
- . . .
- representations of the symmetric group \mathbb{S}_∞

For further details see next talk by Gohm and:

R. Gohm & C. Köstler. Noncommutative independence from the braid group \mathbb{B}_{∞} . Commun. Math. Phys. **289**, 435–482 (2009)

References

C. Köstler. A noncommutative extended de Finetti theorem. J. Funct. Anal. 258, 1073-1120 (2010) (electronic: arXiv:0806.3621v1)

R. Gohm & C. Köstler. Noncommutative independence from the braid group \mathbb{B}_{∞} . Commun. Math. Phys. **289**, 435–482 (2009) (electronic: arXiv:0806.3691v2)

C. Köstler & R. Speicher. A noncommutative de Finetti theorem: Invariance under quantum permutations is equivalent to freeness with amalgamation. Commun. Math. Phys. **291**(2), 473–490 (2009) (electronic: arXiv:0807.0677v1)

C. Köstler. On Lehner's 'free' noncommutative analogue of de Finetti's theorem. 11 pages. To appear in Proc. Amer. Math. Soc. (electronic: arXiv:0806.3632v1)

R. Gohm & C. Köstler. Noncommutative independence from characters of the symmetric group \mathbb{S}_{∞} . 47 pages. Preprint (2010). (electronic: arXiv:1005.5726)

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの