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Motivation

Though many probabilistic symmetries are conceivable [...], four of
them - stationarity, contractability, exchangeablity [and
rotatability] - stand out as especially interesting and important in
several ways: Their study leads to some deep structural
theorems of great beauty and significance [...].

Olav Kallenberg (2005)

Quest

• Transfer related concepts to noncommutative probability

• Show that these concepts are fruitful in the study of operator
algebras and quantum dynamics

Remark
Noncommutative probability = classical & quantum probability
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Claus Köstler Symmetries and independence



Foundational result on distributional symmetries and
invariance principles in classical probability

The random variables (Xn)n≥0 are said to be exchangeable if

E
(
Xi(1) · · ·Xi(n)

)
= E

(
Xσ(i(1)) · · ·Xσ(i(n))

)
(σ ∈ S∞)

for all n-tuples i : {1, 2, . . . , n} → N0 and n ∈ N.

Theorem (De Finetti 1931,. . . )

The law of an exchangeable sequence (Xn)n≥0 is given by a unique
convex combination of infinite product measures.

”Any exchangeable process is an average of i.i.d. processes.”
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Claus Köstler Symmetries and independence



Foundational result on distributional symmetries and
invariance principles in classical probability

The random variables (Xn)n≥0 are said to be exchangeable if

E
(
Xi(1) · · ·Xi(n)

)
= E

(
Xσ(i(1)) · · ·Xσ(i(n))

)
(σ ∈ S∞)

for all n-tuples i : {1, 2, . . . , n} → N0 and n ∈ N.

Theorem (De Finetti 1931,. . . )

The law of an exchangeable sequence (Xn)n≥0 is given by a unique
convex combination of infinite product measures.

”Any exchangeable process is an average of i.i.d. processes.”
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Foundational result on distributional symmetries and
invariance principles in free probability

Replacing permutation groups by Wang’s quantum permutation
groups . . .

Theorem (K. & Speicher 2008)

The following are equivalent for an infinite sequence of random
variables x1, x2, . . . in a W*-algebraic probability space (A, ϕ):

(a) the sequence is quantum exchangeable

(b) the sequence is identically distributed and freely
independent with amalgamation over T

(c) the sequence canonically embeds into FN
T vN(x1, T ), a von

Neumann algebraic amalgamated free product over T
Here T denotes the tail algebra T =

⋂
n∈N vN(xk |k ≥ n).

See talks of Curran and Speicher for more recent developments.
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Foundational result on the representation theory
of the infinite symmetric group S∞

S∞ is the inductive limit of the symmetric group Sn as n→∞,
acting on {0, 1, 2, . . .}. A function χ : S∞ → C is a character if it
is constant on conjugacy classes, positive definite and normalized
at the unity.

Elementary observation

Let γi := (0, i). Then the sequence (γi )i∈N is exchangeable, i.e.

χ
(
γi(1)γi(2) · · · γi(n)

)
= χ

(
γσ(i(1))γσ(i(2)) · · · γσ(i(n))

)
for σ ∈ S∞ with σ(0) = 0, n-tuples i : {1, . . . , n} → N and n ∈ N.

Task
Identify the convex combination of extremal characters of S∞. In
other words: prove a noncommutative de Finetti theorem!
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Thoma’s theorem as a noncommutative de Finetti theorem

Theorem (Thoma 1964)

An extremal character of the group S∞ is of the form

χ(σ) =
∞∏

k=2

 ∞∑
i=1

ak
i + (−1)k−1

∞∑
j=1

bk
j

mk (σ)

.

Here mk(σ) is the number of k-cycles in the permutation σ and
the two sequences (ai )

∞
i=1, (bj)

∞
j=1 satisfy

a1 ≥ a2 ≥ · · · ≥ 0, b1 ≥ b2 ≥ · · · ≥ 0,
∞∑
i=1

ai +
∞∑
j=1

bj ≤ 1.

Alternative proofs
Vershik & Kerov 1981: asymptotic representation theory
Okounkov 1997: Olshanski semigroups and spectral theory
Gohm & K. 2010: operator algebraic proof (see next talk)
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Towards a braided version of Thoma’s theorem

The Hecke algebra Hq(∞) over C with parameter q ∈ C is the
unital algebra with generators g0, g1, . . . and relations

g2
n = (q − 1)gn + q;

gmgn = gngm if | n −m |≥ 2;

gngn+1gn = gn+1gngn+1.

If q is a root of unity there exists an involution and a trace on
Hq(∞) such that the gn are unitary. Now let

γ1 := g1, γn := g1g2 · · · gn−1gng−1
n−1 · · · g

−1
2 g−1

1

Replacing the role of S∞ by the braid group B∞ turns
exchangeability into braidability....

Theorem (Gohm & K.)

The sequence (γn)n∈N is braidable.

This will become more clear later . . . see talk of Gohm
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Noncommutative random variables

A (noncommutative) probability space (A, ϕ) is a von Neumann
algebra A (with separable predual) equipped with a faithful normal
state ϕ.

A random variable ι : (A0, ϕ0)→ (A, ϕ) is is an injective
*-homomorphism from A0 into A such that ϕ0 = ϕ ◦ ι and the
ϕ-preserving conditional expectation from A onto ι(A0) exists.

Given the sequence of random variables

(ιn)n≥0 : (A0, ϕ0)→ (A, ϕ),

fix some a ∈ A0. Then xn := ιn(a) defines the operators
x0, x1, x2, . . . (now random variables in the operator sense).
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Noncommutative distributions

Two sequences of random variables (ιn)n≥0 and
(ι̃n)n≥0 : (A0, ϕ0)→ (A, ϕ) have the same distribution if

ϕ
(
ιi(1)(a1)ιi(2)(a2) · · · ιi(n)(an)

)
= ϕ

(
ι̃i(1)(a1) ι̃i(2)(a2) · · · ι̃i(n)(an)

)
for all n-tuples i : {1, 2, . . . , n} → N0, (a1, . . . , an) ∈ An

0 and n ∈ N.

Notation (ι0, ι1, ι2, . . .)
distr
= (ι̃0, ι̃1, ι̃2, . . .)
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Noncommutative distributional symmetries

Just as in the classical case we can now talk about distributional
symmetries. A sequence (xn)n≥0 is

• exchangeable if (ι0, ι1, ι2, . . .)
distr
= (ιπ(0), ιπ(1), ιπ(2), . . .) for

any (finite) permutation π ∈ S∞ of N0.

• spreadable if (ι0, ι1, ι2, . . .)
distr
= (ιn0 , ιn1 , ιn2 , . . .) for any

subsequence (n0, n1, n2, . . .) of (0, 1, 2, . . .).

• stationary if (ι0, ι1, ι2, . . .)
distr
= (ιk , ιk+1, ιk+2, . . .) for all

k ∈ N.

Lemma (Hierarchy of distributional symmetries)

exchangeability ⇒ spreadability ⇒ stationarity ⇒ identical distr.
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Noncommutative conditional independence

Let A0,A1,A2 be three von Neumann subalgebras of A with
ϕ-preserving conditional expectations Ei : A → Ai (i = 0, 1, 2).

Definition
A1 and A2 are A0-independent if

E0(xy) = E0(x)E0(y) (x ∈ A0 ∨ A1, y ∈ A0 ∨ A2)

Remarks

• A0 ⊂ A0 ∨ A1,A0 ∨ A2 ⊂ A is a commuting square

• A0 ' C: Kümmerer’s notion of n.c. independence

• A = L∞(Ω,Σ, µ): cond. independence w.r.t. sub-σ-algebra

• Many different forms of noncommutative independence!

• C-independence & Speicher’s universality rules
 tensor independence or free independence
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Conditional independence of sequences

A sequence of random variables (ιn)n∈N0 : (A0, ϕ0)→ (A, ϕ) is
(full) B-independent if∨

{ιi (A0) | i ∈ I} ∨ B and
∨
{ιj(A0) | j ∈ J} ∨ B

are B-independent whenever I ∩ J = ∅ with I , J ⊂ N0.

Remark
Many interesting notions are possible for sequences:

1. conditional top-order independence

2. conditional order independence

3. conditional full independence

4. discrete noncommutative random measure factorizations

Claus Köstler Symmetries and independence



Conditional independence of sequences

A sequence of random variables (ιn)n∈N0 : (A0, ϕ0)→ (A, ϕ) is
(full) B-independent if∨

{ιi (A0) | i ∈ I} ∨ B and
∨
{ιj(A0) | j ∈ J} ∨ B

are B-independent whenever I ∩ J = ∅ with I , J ⊂ N0.

Remark
Many interesting notions are possible for sequences:

1. conditional top-order independence

2. conditional order independence

3. conditional full independence

4. discrete noncommutative random measure factorizations

Claus Köstler Symmetries and independence



Noncommutative extended De Finetti theorem

Let (ιn)n≥0 be random variables as before with tail algebra

Atail :=
⋂
n≥0

∨
k≥n

{ιk(A0)},

and consider:

(a) (ιn)n≥0 is exchangeable

(c) (ιn)n≥0 is spreadable

(d) (ιn)n≥0 is stationary and Atail-independent

(e) (ιn)n≥0 is identically distributed and Atail-independent

Theorem (K. ’07-’08

, Gohm & K. ’08

)

(a) ⇒ (c) ⇒ (d) ⇒ (e),

but (a) 6⇐ (c) 6⇐ (d) 6⇐ (e)

Remark
(a) to (e) are equivalent if the operators xn mutually commute.
[De Finetti ’31, Ryll-Nardzewski ’57,. . . , Størmer ’69,... Hudson
’76, ... Petz ’89,. . . , Accardi&Lu ’93, . . . ]
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An ingredient for proving full cond. independence

Localization Preserving Mean Ergodic Theorem (K ’08)

Let (M, ψ) be a probability space and suppose {αN}N∈N0 is a
family of ψ-preserving completely positive linear maps of M
satisfying

1. MαN ⊂MαN+1 for all N ∈ N0;

2. M =
∨

N∈N0
MαN .

Further let

M
(n)
N :=

1

n

n−1∑
k=0

αk
N and TN :=

~∏N

l=0
αlN

l M
(N)
l .

Then we have
sot- lim

N→∞
TN(x) = EMα0 (x)

for any x ∈M.
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Discussion

• Noncommutative conditional independence emerges from
distributional symmetries in terms of commuting squares

• Exchangeability is too weak to identify the structure of the
underlying noncommutative probability space

• All reverse implications in the noncommutative extended de
Finetti theorem fail due to deep structural reasons!

• This will become clear from braidability...

For further details see:

C. Köstler. A noncommutative extended de Finetti theorem. J. Funct. Anal.
258, 1073-1120 (2010)

R. Gohm & C. Köstler. Noncommutative independence from the braid group
B∞. Commun. Math. Phys. 289, 435–482 (2009)
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Claus Köstler Symmetries and independence



Discussion

• Noncommutative conditional independence emerges from
distributional symmetries in terms of commuting squares

• Exchangeability is too weak to identify the structure of the
underlying noncommutative probability space

• All reverse implications in the noncommutative extended de
Finetti theorem fail due to deep structural reasons!

• This will become clear from braidability...

For further details see:
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R. Gohm & C. Köstler. Noncommutative independence from the braid group
B∞. Commun. Math. Phys. 289, 435–482 (2009)

Claus Köstler Symmetries and independence



Artin braid groups Bn

Algebraic Definition (Artin 1925)

Bn is presented by n − 1 generators σ1, . . . , σn−1 satisfying

σiσjσi = σjσiσj if | i − j |= 1 (B1)

σiσj = σjσi if | i − j |> 1 (B2)

p p p p p p0 1 i-1 i p p p p p p0 1 i-1 i

Figure: Artin generators σi (left) and σ−1
i (right)

B1 ⊂ B2 ⊂ B3 ⊂ . . . ⊂ B∞ (inductive limit)
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Braidability

Definition (Gohm & K. ’08)

A sequence (ιn)n≥0 : (A0, ϕ0)→ (A, ϕ) is braidable if there exists
a representation ρ : B∞ → Aut(A, ϕ) satisfying:

ιn = ρ(σnσn−1 · · ·σ1)ι0 for all n ≥ 1;

ι0 = ρ(σn)ι0 if n ≥ 2.

Braidability extends exchangeability

• If ρ(σ2
n) = id for all n, one has a representation of S∞.

• (ιn)n≥0 is exchangeable ⇔
{ (ιn)n≥0 is braidable and
ρ(σ2

n) = id for all n.
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Claus Köstler Symmetries and independence



Braidability implies spreadability

Consider the conditions:

(a) (xn)n≥0 is exchangeable

(b) (xn)n≥0 is braidable

(c) (xn)n≥0 is spreadable

(d) (xn)n≥0 is stationary and Atail-independent

Theorem (Gohm & K. ’08)

(a) ⇒ (b) ⇒ (c) ⇒ (d), but (a) 6⇐ (b) 6⇐ (d)

Observation
Large and interesting class of spreadable sequences is obtained
from braidability.
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Remarks

There are many examples of braidability!

• subfactor inclusion with small Jones index
(’Jones-Temperley-Lieb algebras and Hecke algebras’)

• left regular representation of B∞
• vertex models in quantum statistical physics (‘Yang-Baxter

equations’)

• . . .

• representations of the symmetric group S∞

For further details see next talk by Gohm and:

R. Gohm & C. Köstler. Noncommutative independence from the braid group

B∞. Commun. Math. Phys. 289, 435–482 (2009)
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