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Basics of E0-semigroups

.

Definition

.

.

.

. ..

.

.

Let H be a separable infinite dimensional Hilbert space.
A semigroup α = {αt}t≥0 of unital endomorphisms of B(H) is said
to be an E0-semigroup if the map [0,∞) ∋ t 7→ αt(A) ∈ B(H) is
weakly continuous for every A ∈ B(H).

.

Example (CAR flows)

.

.

.

. ..

.

.

Let {St} be the shift semigroup of L2((0,∞),CN).
The CAR flow of index N is an E0-semigroup α acting on
B(Γa(L2((0,∞),CN))), which is determined by

αt(a(f)) = a(Stf), f ∈ L2((0,∞),CN).

where Γa(L2((0,∞),CN)) is the antisymmetric Fock space.
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Two E0-semigroups α acting on B(H) and β acting on B(K) are
conjugate if there exists a unitary U : H → K satisfying
AdU ◦ αt ◦ AdU∗ = βt.

An α-cocycle U is a weakly continuous map [0,∞) ∋ t 7→ Ut ∈ U(H)
satisfying the cocycle relation Utαt(Us) = Us+t.
The cocycle perturbation {αU

t = AdUt ◦ αt}t≥0 of α by U is again
an E0-semigroup.

α and β are cocycle conjugate if a cocycle perturbation of α is
conjugate to β.

Goal To classify E0-semigroups up to cocycle conjugacy.
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.

Definition

.

.

.

. ..

.

.

A unit of an E0-semigroup α acting on B(H) is a C0-semigroup of
isometries V = {Vt}t≥0 on H satisfying VtA = αt(A)Vt for all t ≥ 0.
An E0-semigroup is said to be of

type I if it has enough units.

type II if it has a units, but they are not enough.

type III (or unitless) if there is no unit.

An E0-semigroup of either of type I or type II is called spatial.

.

Theorem (Arveson 89)

.

.

.

. ..

.

.

The CAR flows exhaust all type I E0-semigroups up to cocycle
conjugacy.
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Type III Examples

Powers 87
First example of type III E0-semigroup.
Ingredient: Quasi-free representation of CAR algebra.

Tsirelson 01
Uncountably many type III examples.
Ingredient: Off white noise.
c.f. CAR flows ∼= CCR flows. Γs(L2(0,∞)) ∼= L2(white noise).

I.-Srinivasan 08
Generalized CCR flows.
There exist uncountably many type III examples, which can not be
distinguished from the CCR flow of index 1 by Tsirelson’s invariant.
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Toeplitz CAR flows

Let K be a complex Hilbert space.
The CAR algebra A(K) is the C∗-algebra generated by {a(f)}f∈K
such that K ∋ f 7→ a(f) ∈ A(K) is linear and

a(f)a(g) + a(g)a(f) = 0

a(f)a(g)∗ + a(g)∗a(f) = ⟨f, g⟩1.

A (gauge invariant) quasi-free state ωA ∈ S(A(K)) associated with a
positive contraction A ∈ B(K) is determined by

ωA(a(fn) · · · a(f1)a(g1)∗ · · · a(gm)∗) = δm,n det(⟨Afi, gj⟩).

We denote by (πA, HA,ΩA) the GNS triple of ωA, and set
MA = πA(A(K))′′.
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ωA is a factor state.

ωA is a type I state if and only if tr(A− A2) < ∞.

πA and πB are quasi-equivalent if and only if A1/2 −B1/2 and
(1− A)1/2 − (1−B)1/2 are Hilbert-Schmidt operators.

When P ∈ B(H) is a projection, the restriction of πA to
A(PK) is quasi-equivalent to πPAP .

Let K = L2((0,∞),CN), and let {St}t≥0 be the shift semigroup.
There exists a continuous semigroup {ρt}t≥0 ⊂ End(A(K))
determined by ρt(a(f)) = a(Stf).

If ωA ◦ ρt = ωA (i.e S∗
tASt = A), ρt extends to MA.

If moreover tr(A− A2) < ∞, then {ρt}t≥0 extends to an
E0-semigroup acting on the type I factor MA.
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Let K̃ = L2(R,CN), and let P+ : K̃ → K be the projection K.
For Φ ∈ L∞(R)⊗MN(C), we denote by CΦ ∈ B(K̃) the Fourier
multiplier multiplier

ĈΦf(p) = Φ(p)f̂(p), f ∈ K̃.

The Toeplitz operator TΦ ∈ B(K) with symbol Φ is defined by

TΦf = P+CΦf f ∈ K.

The Hankel operator HΦ ∈ B(K,K⊥) with symbol Φ is defined by

HΦf = (1− P+)CΦf, f ∈ K.
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.

Lemma (Arveson)

.

.

.

. ..

.

.

Let A be a positive contraction of K.
Then A satisfies S∗

tASt = A and tr(A− A2) < ∞ if and only if
there exists a projection Φ ∈ L∞(R)⊗MN(C) such that A = TΦ

and HΦ is Hilbert-Schmidt.

Proof.
Assume S∗

tASt = A and tr(A− A2) < ∞.

S∗
tASt = A implies that there exists a positive contraction

Φ ∈ L∞(R)⊗MN(C) satisfying A = TΦ.

Since A− A2 is compact and A− A2 = TΦ − T 2
Φ ≥ TΦ−Φ2 , we get

Φ = Φ2.

Now tr(H∗
ΦHΦ) = tr(A− A2) < ∞ implies that HΦ is

Hilbert-Schmidt.
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.

Definition

.

.

.

. ..

.

.

An admissible symbol Φ is a projection Φ ∈ L∞(R)⊗MN(C) with
Hilbert-Schmidt Hankel operator HΦ.
The Toeplitz CAR flow associated with an admissible symbol Φ,
denoted by αΦ, is the E0-semigroup acting on MTΦ

extending
{ρt}t≥0.

If Φ ∈ L∞(R)⊗MN(C) is a constant projection, the Toeplitz CAR
flow αΦ is the CAR flow of index N .

.

Theorem (Powers 87)

.

.

.

. ..

.

.

Let Φ(p) = 1
2

(
1 eiθ(p)

e−iθ(p) 1

)
with θ(p) = 1

(1+p2)1/5
.

Then Φ is admissible and αΦ is of type III.
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For φ ∈ L∞(T), it is well-known that Hφ and Hφ are

Hilbert-Schmidt iff φ is in the Sobolev space W
1/2
2 (T), that is,∫

T2

|φ(eis)− φ(eit)|2

|eis − eit|2
dsdt < ∞.

.

Lemma

.

.

.

. ..

.

.

Let Φ ∈ L∞(R)⊗MN(C) be a projection.

Φ is admissible iff∫
R2

∥Φ(p)− Φ(q)∥22
|p− q|2

dpdq < ∞.

If Φ is admissible,
∫
R ∥Φ(2p)− Φ(p)∥22

dp
|p| < ∞.

If Φ is an even differential function satisfying∫∞
0

∥Φ′(p)∥22pdp < ∞, then Φ is admissible.
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.

Corollary

.

.

.

. ..

.

.

Let θ be a even differential real function on R satisfying∫∞
0

|θ′(p)|2pdp < ∞.

Then Φ(p) = 1
2

(
1 eiθ(p)

e−iθ(p) 1

)
is an admissible symbol.

θ(p) = log log(r + p2) with r > 1 satisfies the above condition.

θ(p) = 1
(1+p2)λ

with λ > 0 satisfies the above condition.

We denote by αλ the corresponding Toeplitz CAR flows.
α1/5 is Powers’s example of type III E0-semigroup.

.

Questions

.

.

.

. ..

.

.

What is the type of αλ ?
If λ1 ̸= λ2 and αλ1 and αλ2 are of type III, are they different?
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Main result

.

Theorem (I.-Srinivasan 2010)

.

.

.

. ..

.

.

Let λ > 0, and let αλ be the Toeplitz CAR flow with symbol

Φ(p) = 1
2

(
1 eiθ(p)

e−iθ(p) 1

)
, θ(p) = 1

(1+p2)λ
.

Then

If λ > 1/4, αλ is cocycle conjugate to the CAR flows of index 2.

If λ ≤ 1/4, αλ is of type III.

If 0 < λ1 < λ2 ≤ 1/4, αλ1 and αλ2 are not cocycle conjugate.
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Type I Criterion

.

Theorem (Powers 87, Arveson 2003)

.

.

.

. ..

.

.

If admissible Φ ∈ L∞(R)⊗MN(C) has limit at ∞, and αΦ is spatial,∫
R
∥Φ(p)− Φ(∞)∥22dp < ∞.

.

Lemma (I.-Srinivasan 2010)

.

.

.

. ..

.

.

If two admissible symbols Φ,Ψ ∈ L∞(R)⊗MN(C) satisfy∫
R
∥Φ(p)−Ψ(p)∥22dp < ∞,

αΦ and αΨ are cocycle conjugate.
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.

Theorem (I.-Srinivasan 2010)

.

.

.

. ..

.

.

Let Φ ∈ L∞(R)⊗MN(C) be an admissible symbol.
The following 3 conditions are equivalent:

αΦ is cocycle conjugate to the CAR flow of index N .

αΦ is spatial.

There exists a constant projection Q ∈ MN(C) such that∫
R
∥Φ(p)−Q∥22dp < ∞.
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Invariant

A type I factorization of B(H) is a family {Mλ}λ∈Λ of type I
subfactors of B(H) such that Mλ commutes with Mµ for λ ̸= µ,
and B(H) =

∨
λ∈ΛMλ.

A type I factorization {Mλ}λ∈Λ of B(H) is said to be a complete
atomic Boolean algebra of type I factors (CABATIF) if

∨
λ∈Γ Mλ is a

type I factor for every Γ ⊂ Λ.

.

Theorem (Araki-Woods 66)

.

.

.

. ..

.

.

For a type I factorization {Mλ}λ∈Λ of B(H), the following 3
conditions are equivalent:

{Mλ}λ∈Λ is a CABATIF.

{Mλ}λ∈Λ has a factorizable vector.

{Mλ}λ∈Λ is a tensor product factorization.
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Let α be an E0-semigroup acting on B(H).

For 0 ≤ s < t, we set Aα(s, t) = αs(B(H)) ∩ αt(B(H))′, which is a
type I factor.

Let {an}∞n=0 be a strictly increasing sequence of numbers with a0 = 0
converging to a < ∞.

{Aα(an, an+1)}∞n=0 is a type I factorization of Aα(0, a).

For a fixed {an}∞n=0, whether {Aα(an, an+1)}∞n=0 is a CABATIF or
not is a cocycle conjugacy invariant for α.
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.

Theorem (I.-Srinivasan 2010)

.

.

.

. ..

.

.

Let Φ ∈ L∞(R)⊗MN(C) be an admissible symbol satisfying
Φ(p) = Φ(−p), and let 0 < µ < 1.

We set a0 = 0, an =
n∑

k=1

1

k1/(1−µ)
for n ∈ N, and a = lim

n→∞
an.

Then the following two conditions are equivalent

(1) {AαΦ
(an, an+1)}∞n=0 is a CABATIF.

(2)
∫
R2

∥Φ(p)−Φ(q)∥22
|p−q|1+µ dpdq < ∞.

Moreover,

If {AαΦ
(an, an+1)}∞n=0 is a CABATIF,∫∞

0
∥Φ(2p)− Φ(p)∥22

dp
pµ

< ∞.

If Φ is differential and
∫∞
0

∥Φ′(p)∥22p2−µdp < ∞,

{AαΦ
(an, an+1)}∞n=0 is a CABATIF.
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