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1 Introduction

These notes were the basis of a course of (four) lectures given by the author at
a Winter School on Group Representations and Function Theory conducted
by the Indian Statistical Institute at Bangalore in October 1995. The author
is particularly happy to be able to have these notes appear in a volume in
honour of Professor K.R. Parthasarathy, since the author first learnt about
the inducing construction and the imprimitivity theorem from his lecture
notes which are referred to in the references. While there is nothing in
these notes which is not already to be found in the lecture notes referred
to above, it is hoped that these notes might serve some purpose as they
restrict themselves to just these notions and a prospective reader who does
not want to necessarily read about the mathematical foundations of quantum
mechanics might be able to get directly to the imprimitivity theorem.

The importance of induced representations was recognised and empha-
sised by George Mackey, who first proved the imprimitivity theorem and
used that to analyse the representation theory of some important classes of
groups (which include the Heisenberg group and semi-direct products where
the normal summand is abelian). Broadly speaking, the philosophy is that
the inducing construction enables one, in favourable cases, to ‘reduce’ the
problem of constructing irreducible representations of a group to those of
‘smaller subgroups whose representation theory is known’.

These notes are organised as follows: after an initial section on measure-
theoretic preliminaries, we prove the Hahn-Hellinger theorem which classifies
separable *-representations of the commutative algebra C0(X) (where X de-
notes a locally compact space satisfying the second axiom of countability, and
C0(X) denotes the space of continuous functions on X which vanish at infin-
ity); the third section discusses the constructon of induced representations
and proves the imprimitivity theorem (modulo some measure-theoretic ar-
guments which are omitted here in the hope of ‘greater transparency’); the
final section discusses some examples.

Finally, two remarks are probably in order: (a) since the material dis-
cussed here is very old and ‘standard’, the author has almost surely been
more than remiss in the matter of references and giving credit where it is due;
the reader, who is desirous of getting bibliographic details and references, is
referred to such standard treatises on the subject as [Kir] or [Var], for in-
stance; and (b) the definition, given here, of the induced representation is
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neither the most commonly seen one, nor is it perhaps the aesthetically most
pleasing one; but it does possess the virtue of being a reasonably ‘amenable’
and efficient one, and that is the reason for using it here; the reader must
augment this treatment with more standard (and meaty) ones.

2 Some measure-theoretic generalities

In what follows, (X,B, µ) will denote a separable σ-finite measure space. (To
say that (X,B, µ) is separable amounts to requiring that the Hilbert space
L2(X,B, µ) is separable; and to say that µ is σ-finite means that there exists
a sequence {En} ⊂ B such that X =

⋃

nEn and µ(En) <∞ ∀ n.)
We begin with the proposition that governs ‘change of variables’ in Lebesgue

integration - which we only state for non-negative functions, because that is
the only case we will need. The reader should have no trouble formulating
the most general case.

Proposition 2.1 Let (X,BX , µ) be a measure space, and let (Y,BY ) be a
‘measurable space’. Let T : X → Y be a measurable map - i.e., E ∈
BY ⇒ T−1(E) ∈ BX . Consider the measure µ ◦ T−1 defined on BY by
the obvious formula

µ ◦ T−1(F ) = µ( T−1(F ) ).

If f : Y → IR is a measurable non-negative real-valued function on Y, then

∫

f d(µ ◦ T−1) =
∫

(f ◦ T )dµ.

Proof: The assertion is true for indicator functions of sets by definition;
hence the assertion holds for simple functions; the general case follows from
the fact that any measurable non-negative function is a monotone limit of a
sequence of simple functions (and from the monotone convergence theorem).

2

Recall that if µ, ν are σ-finite measures defined on B, then ν is said
to be absolutely continuous with respect to µ if every µ-null set is also a
ν-null set - i.e., E ∈ BX , µ(E) = 0 ⇒ ν(E) = 0. In this case there exists
a non-negative measurable function, which is uniquely determined a.e. (µ),
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denoted by dν
dµ

and called the Radon-Nikodym derivative of ν with respect
to µ, such that

∫

f

(

dν

dµ

)

dµ =
∫

f dν

for all non-negative measurable functions f.
Measures µ, ν are said to be equivalent (or mutually absolutely contin-

uous), written µ ∼= ν, if the class of µ-null sets coincides with the class of
ν-null sets; in this case, dν

dµ
> 0 a.e. (µ).

Definition 2.2 An automorphism of the measure space (X,B, µ) is a
measurable self-map T : X → X such that (a) there exists another measur-
able mapping T−1 : X → X such that T ◦ T−1 = T−1 ◦ T = idX a.e.(µ),
and (b) µ ◦ T ∼= µ (∼= µ ◦ T−1). The set of automorphisms of (X,B, µ) will
be denoted by Aut(X,B, µ).

As is customary, we identify any two maps which agree a.e.; with this
convention, it must be clear that Aut(X,B, µ) is naturally a group (with
respect to the composition product).

We now state the useful chain rule for Radon-Nikodym derivatives.

Proposition 2.3 If S, T ∈ Aut(X,B, µ), then

d(µ ◦ (S ◦ T )−1)

dµ
=

(

d(µ ◦ T−1)

dµ
◦ S−1

)

d(µ ◦ S−1)

dµ
a.e. (µ)

Proof: If f is any non-negative measurable function on X, then, by
repeated use of ‘change of variables’, we find that

∫

f

(

d(µ ◦ T−1)

dµ
◦ S−1

)

d(µ ◦ S−1)

dµ
dµ =

∫

f

(

d(µ ◦ T−1)

dµ
◦ S−1

)

d(µ ◦ S−1)

=
∫

(f ◦ S)
d(µ ◦ T−1)

dµ
dµ

=
∫

(f ◦ S) d(µ ◦ T−1)

=
∫

(f ◦ S ◦ T ) dµ

and the uniqueness of the Radon-Nikodym derivative completes the proof.
2
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Proposition 2.4 If T ∈ Aut(X,B, µ), then define

UTf =

(

d(µ ◦ T−1)

dµ

)
1

2 (

f ◦ T−1
)

.

Then the mapping T 7→ UT defines a group-homomorphism from the group
Aut(X,B, µ) into the group of unitary operators on the Hilbert space L2(X,µ;H)
of measurable functions f : X → H such that ||f ||2 =

∫ ||f(x)||2dµ(x) <∞,
where H is some auxiliary Hilbert space.

Proof: Note first, thanks to the definition of the Radon-Nikodym deriva-
tive and the change of variables formula, that

||UTf ||2 =
∫

||f ◦ T−1||2d(µ ◦ T−1) = ||f ||2 ,

so that UT is an isometric operator.
Next, if S, T ∈ Aut(X,B, µ), then

US(UTf) =

(

d(µ ◦ S−1)

dµ

)
1

2

(UTf) ◦ S−1

=

(

d(µ ◦ S−1)

dµ

)
1

2

(

d(µ ◦ T−1)

dµ
◦ S−1

)
1

2

f ◦ (S ◦ T )−1

= US◦Tf

by the chain rule. Since UidX
= idL2(X,µ;H), it follows that each UT is

necessarily unitary and the proof of the proposition is complete.
2

3 Representations of C0(X)

Suppose X is a locally compact Hausdorff space, which we shall assume
is ‘second countable’. Let C0(X) denote the space of continuous complex-
valued functions on X which ‘vanish at ∞’ - i.e., which are uniformly approx-
imable by continuous functions of compact support. If f, g ∈ C0(X), α ∈ C
let f + g, αf and fg be the functions defined by pointwise sum, scalar
multiplication and product, respectively; also define f ∗(x) = f(x), and
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||f || = supx|f(x)|. Then, these definitions of addition, scalar multiplica-
tion, product, ‘adjoint’ and norm, endow C0(X) with the structure of the
prototypical commutative C∗-algebra .

We will be interested in *-representations of C0(X) - by which we mean
a map C0(X) ∋ φ

π7→ π(φ) ∈ L(H) which is a homomorphism of *-
algebras (where the *-operation in the algebra L(H) of bounded operators
on the Hilbert space H is given by the familiar adjoint). More specifically,
we will be interested in classifying all such *-representations up to (unitary)
equivalence, where representations π, π′ on Hilbert spaces H,H′ are said to
be equivalent if there exists a unitary operator W : H → H′ such that
W ∗π′(φ)W = π(φ) ∀φ ∈ C0(X).

One example of such a *-representation is obtained thus: let µ be any
positive measure on X; set H = L2(X,µ), and define ((πµ(φ)f) (x) =
φ(x)f(x) ∀φ ∈ C0(X), f ∈ H, x ∈ X. It is a direct consequence of the Riesz
Representation theorem that a representation is equivalent to a representa-
tion of this type (for some choice of measure µ) if and only if the representa-
tion is cyclic - meaning that there exists a (‘cyclic’) vector f0 in the under-
lying Hilbert space H such that the set of vectors {π(φ)f0 : φ ∈ C0(X)} is
dense in H. (By choosing a cyclic vector of norm one, we can even ensure
that µ is a probability measure - i.e., is a Borel measure with µ(X) = 1.
Here and in the sequel, by a Borel measure on X, we shall mean a σ-finite
measure defined on BX , the smallest σ-algebra containing every open set in
X.)

An immediate consequence of the analysis of the preceding paragraph is
the fact that if π is any representation of C0(X) on a separable Hilbert
space, then there exists a (finite or countably infinite) sequence {µn} of
probability measures on X such that π ∼= ⊕nπµn .

Lemma 3.1 Let π : C0(X) → L(H) denote any separable *-representation.
(a) Then there exists a probability measure µ on X and a *-representation

π̃ : L∞(X,µ) → L(H) such that:
(i) π̃ is isometric - i.e., ||π̃(φ)||L(H) = ||φ||L∞(X,µ);
(ii) π̃ ‘respects bounded convergence’, meaning that if φn → φ a.e.(µ)

and if supn||φn||L∞(X,µ) <∞, then (π̃(φn))ξ → (π̃(φ))ξ ∀ξ ∈ H; and
(iii) π̃ ‘extends’ π in the obvious sense.
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(b) If πi : C0(X) → L(Hi), i = 1, 2, are *-representations, and if µi is
a measure associated with πi as in (a) above, and if π1

∼= π2, then µ1
∼= µ2.

Proof: (a) Let {µn : n ∈ I} be probability measures as in the paragraph
preceding the lemma, where I is at most countable. In fact, we may clearly
assume, without loss of generality, that actually π = ⊕n∈I πµn (so that
H = ⊕n∈I L

2(X,µn) ).
Fix (strictly) positive numbers ǫn, n ∈ I such that

∑

n∈I ǫn = 1,
and define µ =

∑

n∈I ǫnµn. The definition implies that µ is a probability
measure, and that any Borel set is a µ-null set if and only if it is a µn-null
set for every n ∈ I. Define

(π̃(φ))(⊕nξn) = ⊕nφξn ∀φ ∈ L∞(X,µ).

It is easy to see that this π̃ does everything it is supposed to.
(b) Suppose U : H1 → H2 is a unitary operator such that Uπ1(φ)U∗ =

π2(φ) ∀φ ∈ C0(X). Consider the class C consisting of bounded Borel func-
tions on X such that (in the notation of (a) above) Uπ̃1(φ)U∗ = π̃2(φ). It
follows from (a) that C0(X) ⊂ C and that if {φn} ⊂ C, if sup{|φn(x)| : x ∈
X,n ≥ 1} <∞, and if φn(x) → φ(x) ∀ x ∈ X, then φ ∈ C. This implies that
C contains every bounded Borel function; in particular, E ∈ BX ⇒ 1E ∈ C;
hence if E ∈ BX , then µ1(E) > 0 ⇔ µ2(E) > 0, and the proof is complete.

2

Corollary 3.2 If µ, ν are arbitrary σ-finite Borel measures on X, then

πµ
∼= πν ⇔ µ ∼= ν .

Proof: If µ ∼= ν, it is easily checked that the equation Uf =
(

dµ
dν

)
1

2 f de-

fines a unitary operator U : L2(X,µ) → L2(X, ν) which implements the
desired unitary equivalence πµ

∼= πν .
Conversely, note that if we start with π = πλ, then λ itself is a measure

which ‘works for π’ in the sense of Lemma 3.1; and the desired implication
is a consequence of Lemma 3.1 (b).

2

We begin with a few results needed in the proof of the main theorem of
this section.
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If µ is a σ-finite Borel measure on X, and if Hn denotes an n-
dimensional Hilbert space, where 1 ≤ n ≤ ℵ0, define the *-representation
πn

µ : C0(X) → L(L2(X,µ;Hn)) by (πn
µ(φ)f)(x) = φ(x)f(x).

The proof of the next lemma is a routine verification which we omit.

Lemma 3.3 Let 1 ≤ n ≤ ℵ0, let H be a Hilbert space of dimension n, and
let µ be a Borel measure on X. Fix an orthonormal basis {ηj : j ∈ I} for
H, where I is some index set (of cardinality n). Define the Hilbert spaces

H1 = ⊕j∈IL
2(X,µ), H2 = L2(X,µ;H), H3 = L2(X,µ) ⊗H .

Then the equations

(W (⊕j∈Ifj)) (x) =
∑

j∈I

fj(x)ηj, V (⊕j∈Ifj) =
∑

j∈I

fj ⊗ ηj

define unitary operators W : H1 → H2, V : H1 → H3 such that

W ∗πn
µ(φ)W = ⊕j∈I πµ(φ) = V ∗(πµ(φ) ⊗ idH)V

for all φ ∈ C0(X).

2

Lemma 3.4 Let µ be a Borel measure on X. The following conditions on
an operator T ∈ L(L2(X,µ)) are equivalent:

(a) Tπµ(ψ) = πµ(ψ)T ∀ψ ∈ C0(X);
(b) there exists φ ∈ L∞(X,µ) such that Tf = φf ∀f ∈ L2(X,µ).

Proof: We only prove (a) ⇒ (b), since the other implication is obvious.
Also, since every Borel measure is equivalent to a probability measure and
since the representations associated with equivalent measures are equivalent
- see Corollary 3.2 - we may, without loss of generality, assume that µ is a
probability measure; hence the constant function ξ0 = 1 is a unit vector in
L2(X,µ). Define φ = Tξ0.

Notice now that for arbitrary ψ ∈ C0(X), we have:

Tψ = Tπµ(ψ)ξ0 = ψφ .
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Hence, we see that

||φψ||2 ≤ ||T || ||ψ||2 ∀ψ ∈ C0(X) .

This last statement implies that necessarily φ ∈ L∞(X,µ) and that
Tf = φf ∀f ∈ L2(X,µ).

2

Proposition 3.5 Let µ,H, n,Hi, i = 1, 2, 3, V,W be as in Lemma 3.3.
For i = 1, 2, 3, define πi : C0(X) → L(Hi) by π1(φ) = ⊕j∈Iπµ(φ), π2(φ) =
πn

µ(φ), π3(φ) = πµ(φ) ⊗ idH. The following conditions on an operator T ∈
L(H1) are equivalent:

(a) Tπ1(φ) = π1(φ)T ∀φ ∈ C0(X);
(b) there exist φij ∈ L∞(X,µ), i, j ∈ I such that T is represented

by the matrix ((πµ(φij) )), meaning that if T (⊕jfj) = ⊕igi, then gi =
∑

j πµ(φij)fj ∀i.
(c) there exists a measurable mapping X ∋ x→ T (x) ∈ L(H) such that

(WTW ∗f)(x) = T (x)f(x) a.e.(µ) ∀f ∈ H2.

Proof: (a) ⇒ (b) : Let ((Tij)) denote the matrix (with Tij ∈ L(L2(X,µ)) ∀i, j)
which ‘represents’ T in the sense described in the statement of (b). Since
π1(φ) is ‘represented’ by the diagonal matrix ((δijπµ(φ))), it is clear that the
condition (a) translates into the condition that Tijπµ(φ) = πµ(φ)Tij ∀φ ∈
C0(X). It follows now from Lemma 3.4 that there exist φij ∈ L∞(X,µ) such
that Tij = πµ(φij) ∀ i, j ∈ I.

(b) ⇒ (c) : If the bounded operator T is related to the functions φij as
in (b), it is a pleasant exercise (of one’s facility with arguments of a measure
theoretic nature) to show that it is necessarily the case that the matrix
(( φij(x) )) represents a bounded operator on H (with respect to the
orthonormal basis {ηj}) - call it T (x) - for µ-almost all x ∈ X, and that the
mapping X ∈ x 7→ T (x) ∈ L(H) is measurable. It is clear that (c) holds.

(c) ⇒ (a) : If (c) holds, it is immediate that WTW ∗ commutes with
πn

µ(φ) ∀φ ∈ C0(X), whence the validity of (a) follows from Lemma 3.3.
2

Lemma 3.6 Let 1 ≤ n ≤ ℵ0, H = L2(X,µ;Hn), π = πn
µ as above. Suppose

{Pi : i ∈ I} is a collection of projections in L(H) - where I is some
countable set - satisfying the following conditions:
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(i) Piπ(φ) = π(φ)Pi ∀ φ ∈ C0(X);
(ii) PiPj = 0 ∀ i 6= j, i, j ∈ I;
(iii) Piπ̃(1F ) 6= 0 whenever µ(F ) > 0.

Then |I| ≤ n.
Further, there exists a collection {Pi : i ∈ Ĩ} of projections which

satisfies (i) - (iii) above, such that |Ĩ| = n.

Proof: If {Pi : i ∈ I} satisfies (i) and (ii) above, it follows first from
Lemma 3.5 that there exist measurable maps Pi : X → L(H) such that
(Pif)(x) = Pi(x)f(x) a.e. A few moments’ thought shows then that there
exists a µ-null set N such that whenever x /∈ N, the following conditions
are satisfied:

(a) Pi(x) is a non-zero projection in L(Hn) for each i ∈ I;
(b) Pi(x)Pj(x) = 0 whenever i, j ∈ I, i 6= j;

The fact that dim Hn = n now guarantees that |I| ≤ n, as desired.
For existence, just pick pairwise orthogonal non-zero projections P 0

i , 1 ≤
i ≤ n in L(Hn) such that

∑

i P
0
i = idHn , and define (Pif)(x) = P 0

i f(x).
2

Notice, before we proceed further, that if ν, µ are measures such that
ν is absolutely continuous with respect to µ, if E = {x : dν

dµ
(x) > 0}, and

if we define the measure µ|E by µ|E(A) = µ(A∩E), then µ|E is absolutely

continuous with respect to µ, dµ|E
dµ

= 1E, and µ|E ∼= ν.

Theorem 3.7 (The Hahn-Hellinger theorem)
Let π : C0(X) → L(H) be a *-representation of C0(X) on a separable

Hilbert space.
(a) Then, there exists a Borel measure µ on X, and a sequence {En :

1 ≤ n ≤ ℵ0} of pairwise disjoint Borel sets in X, and Hilbert spaces
Hn, 1 ≤ n ≤ ℵ0 with dim Hn = n ∀n, such that µ(X − UnEn) = 0, and

π ∼= ⊕1≤n≤ℵ0
πn

µ|En
.

(b) Further, if π′ is another representation of C0(X), and if µ′ is a
measure and if {E ′

n : 1 ≤ n ≤ ℵo} is a sequence of pairwise disjoint Borel
sets such that π′ ∼= ⊕1≤n≤ℵ0

πn
µ′|E′

n

, and if π ∼= π′, then µ ∼= µ′ and

µ(En∆E ′
n) = 0 ∀n, where ∆ denotes ‘symmetric difference’: A∆B = (A−

B) ∪ (B − A).
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Proof: (a) As in the proof of Lemma 3.1, there exists (at most countably
many) probability measures νn such that π ∼= ⊕nπνn ; let µ =

∑

n ǫnνn be
as in the proof of Lemma 3.1. It then follows that each νn is absolutely
continuous with respect to µ. Hence, if An = {x : dνn

dµ
(x) > 0}, it follows

from the preceding paragraph and Lemma 3.2 that

π ∼= ⊕nπµ|An
.

For 1 ≤ l ≤ k ≤ ℵ0, define Ek = {x :
∑

n 1An(x) = k} and define
An,k,l = {x ∈ An ∩ Ek :

∑n
j=1 1Aj

(x) = l}. (Thus, x ∈ Ek precisely when
x belongs to exactly k An’s; while x ∈ An,k,l precisely when x ∈
An ∩ Ek and x ∈ Aj ∩ Ek for precisely l j’s which are ≤ k.)

A moment’s thought should convince the reader that An∩Ek =
∐k

l=1An,k,l

for all n, k and that
∐

nAn,k,l = Ek ∀ 1 ≤ l ≤ k, where the symbol
∐

de-
notes ‘(pairwise) disjoint union’. It follows that

π ∼= ⊕n πνn

∼= ⊕n πµ|An

∼= ⊕n,k πµ|An∩Ek∼= ⊕n,k,l πµ|An,k,l

∼= ⊕k,l (⊕nπµ|An,k,l
)

∼= ⊕k,l πµ|Ek

∼= ⊕k π
k
µ|Ek

thereby completing the proof of the first half (the existence part) of the
theorem.

(b) In view of Lemma 3.1, we may assume that µ = µ′. Thus we have to
prove that if µ is a Borel measure on X, and if {Ei

n : 1 ≤ n ≤ ℵ0}, i =
1, 2 are two sequences of pairwise disjoint Borel subsets of X such that
(i) µ(X − ∪nE

i
n) = 0, for i = 1, 2, and (ii) ⊕n πn

µ|
E1

n

∼= ⊕n πn
µ|

E2
n

, then

µ(E1
n∆E2

n) = 0 ∀ n.
To see this, let us write πi = ⊕n π

n
µ|

Ei
n

,Hi = L2(Ei
n, µ;Hn), for i = 1, 2

and suppose U : H1 → H2 is a unitary operator such that Uπ1(φ) = π2(φ)U for
all φ ∈ C0(X). In the ( π 7→ π̃) notation of Lemma 3.1, it follows that

Uπ̃1(φ) = π̃2(φ)U ∀φ ∈ L∞(X,µ).
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In particular,

Uπ̃1(1E1
n
)U∗ = π̃2(1E1

n
) , 1 ≤ n ≤ ℵ0. (3.1)

Notice, now, that Lemma 3.6 has the following consequence: fix i ∈ {1, 2},
and suppose A ∈ BX , µ(A) > 0, and suppose there exist projections Pj ∈
L(H), j ∈ I satisfying the following properties:

(i) Pj = Pjπ̃
i(1A), ∀ j ∈ I;

(ii) PjPk = 0 for distinct j, k ∈ I;
(iii) F ∈ BX , F ⊂ A, µ(F ) > 0 ⇒ Pjπ̃

i(F ) 6= 0 ∀j ∈ I.
It follows then from Lemma 3.6 that µ(A ∩ Ei

j) = 0 ∀ 1 ≤ j < |I|.
Now, fix 1 ≤ n ≤ ℵ0, and note, by Lemma 3.6, that there exists a set

In of cardinality n and projections Pj, j ∈ In satisfying (i) - (iii) of the
preceding paragraph with A = E1

n, i = 1. Deduce from equation 3.1 that the
projections UPjU

∗, j ∈ In satisfy (i)-(iii) with i = 2, A = E1
n; conclude

from the preceding paragraph that µ(E1
n ∩ E2

j ) = 0 ∀ 1 ≤ j < n.
Since the roles of 1 and 2 are interchangeable, we may conclude that

µ(E1
n ∩ E2

m) = 0 if m < n, and the proof is complete.
2

In the notation of Theorem 3.7 and Lemma 3.1, if we define P (E) = π̃(1E),
then it is easy to see that the assignment E 7→ P (E) defines a projection-
valued measure in the sense that (a) each P (E) is a (self-adjoint) projection,
and (b) this assignment is ‘countably additive’ meaning that if if {En} is a
sequence of pairwise disjoint Borel sets in X, then P (

∐

nEn)ξ =
∑

n P (En)ξ
for all ξ ∈ H. Such a projection-valued measure is also sometimes referred
to as a spectral measure on X.

Conversely, it is equally clear that if E 7→ P (E) is a spectral mea-
sure, then there exists a unique representation π of C0(X) such that
P (E) = π̃(1E).

Thus, Theorem 3.7 can also be interpreted as a ‘classification of unitary
equivalence classes of spectral measures on X’.

4 The imprimitivity theorem

In the sequel, we shall assume that G is a locally compact second countable
group and that H is a closed subgroup of G. We shall write G/H = {gH :
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g ∈ G} for the set of left-cosets of H. Also, if g ∈ G, we shall denote by
g 7→ Lg the action of G on G/H; thus, Lg(g

′H) = gg′H.
The Borel σ-algebra of the homogeneous space G/H is defined by

BG/H = {E ⊆ G/H : p−1(E) ∈ BG}, where p : G → G/H is the
natural quotient map. One fact that we shall need is the following:

FACT 1: There exists a measurable map s : G/H → G such that
p ◦ s = idG/H .

(A map s as above is sometimes called a measurable cross-section.)
A measure µ defined on BG/H is said to be quasi-invariant if µ ◦

Lg
∼= µ ∀g.
The second fact that we shall need is the following : (see [Mac] for details

concerning both these facts)

FACT 2: There exists a σ-finite quasi-invariant measure on BG/H ; fur-
ther, any two such measures are mutually absolutely continuous.

Existence of a quasi-invariant measure is easy to establish, as follows: let
ν be a finite measure on G which is equivalent to Haar measure, and set
µ = ν ◦ p−1.

We are now ready to define induced representations.

Proposition 4.1 Let µ be ‘the’ quasi-invariant measure on G/H.. Let
h 7→ Vh be a unitary representation of H on a Hilbert space K. Let
H = L2(G/H, µ;K). Fix a measurable cross-section s as in Fact 1, and
define

(Ugf) (x) =

(

d(µ ◦ L−1
g )

dµ
(x)

)
1

2

Vh(f(L−1
g x)) ,

where h ∈ H is defined by gs(L−1
g x) = s(x)h.

Then g 7→ Ug is a unitary representation of G on H , and is called the
representation induced by the representation V of the subgroup H.

Proof: First note that

||Ugf ||2 =
∫

||f ◦ L−1
g ||2

(

d(µ ◦ L−1
g )

dµ

)

dµ

13



=
∫

||f ||2 dµ
= ||f ||2

whence each Ug is an isometric operator. In view of the measurability of the
section s, it is quite easy to see that the mapping g 7→ Ug is a measurable
one. Since a group homomorphism of a second countable locally compact
into the group of unitary operators of a separable Hilbert space is known to
be strongly continuous if and only if it is measurable, we only need to verify
that Ug1g2

= Ug1
Ug2

∀ g1, g2 ∈ G. (This, together with the obvious identity
UidG/H

= idH, also shows that each Ug is not just isometric, but actually
unitary.)

Next, if g, g′ ∈ G, and if x ∈ G/H, let h, h′ ∈ H be defined by
gs(L−1

g x) = s(x)h and g′s(L−1
g′ L

−1
g x) = s(L−1

g x)h′ respectively; then it

follows that s(x)hh′ = gg′s(L−1
gg′x); hence we find that

(UgUg′f)(x) =

(

d(µ ◦ L−1
g )

dµ
(x)

)
1

2

Vh( (Ug′f)(L−1
g x) )

=

(

d(µ ◦ L−1
g )

dµ
(x)

)
1

2

(

d(µ ◦ L−1
g′ )

dµ
(L−1

g x)

)

1

2

VhVh′ f(L−1
gg′x)

=

(

d(µ ◦ L−1
gg′)

dµ
(x)

)

1

2

Vhh′ f(L−1
gg′x)

= (Ugg′f)(x)

and the proposition follows.
2

Remark 4.2 Suppose Vi : H → L(Hi) are unitary representations, and let
V = V1 ⊕ V2. Let U (resp., U1, U2) be the representation of G obtained
by inducing the representation V (resp., V1, V2). Then the definitions easily
show that U ∼= U1 ⊕ U2.

Recall that a unitary representation is said to be irreducible if it is not
expressible as the direct sum of two unitary representations. The preced-
ing remarks show that if V,H,U,G are as in Proposition 4.1, then the
irreducibility of the representation V is a necessary condition for the irre-
ducibility of U.

14



While the construction we have given for the induced representation seems
to depend upon the choices of µ, s that we have made, it is true that the
construction is, in fact, independent of these choices (up to unitary equiva-
lence). One way to see this is via a characterisation, called the imprimitivity
theorem, of the inducing construction.

(In the following theorem, the space G/H is given the quotent topology:
thus, a set E is open in G/H if and only if p−1(E) is open in G. Since p is
continuous and open, it is clear that this defines a locally compact topology
on G/H. )

Theorem 4.3 (The Imprimitivity Theorem)
(a) Let G,H, V,K, U,H be as in Proposition 4.1. Consider the repre-

sentation of C0(G/H) on H defined by π = πn
µ. Then,

Ugπ(φ)U−1
g = π(φ ◦ L−1

g ) ∀φ, g. (4.2)

(b) Conversely, if g 7→ Ug is a unitary representation of G on some
separable Hilbert space H, and if there exists a representation C0(G/H) ∋
φ 7→ π(φ) ∈ L(H), and if these two representations satisfy the so-called
imprimitivity condition given by equation 4.2, then there exists a unitary
representation h 7→ U0

h of H on a Hilbert space K and a unitary operator
W : H → L2(G/H, µ;K) such that Wπ(φ)W ∗ = πdimK

µ (φ) for all φ ∈
C0(G/H), and such that g 7→ WUgW

∗ is the unitary representation of
G which is induced by the representation U0 of the closed subgroup H.

Proof: The proof of (a) is an easy verification.
(b) To start with, we may assume, thanks to (the proof of) Theorem

3.7 that there exists a sequence {En : 1 ≤ n ≤ ℵ0} of pairwise disjoint
sets in G/H, and a Borel measure µ on G/H such that H = ⊕1≤n≤ℵ0

L2(En, µ;Hn) and π = ⊕1≤n≤ℵ0
πn

µEn
for all φ ∈ C0(G/H).

It is easy to see that if the measure µ is associated with the representation
π (as above and) as in Lemma 3.1, and if T is a homeomorphism of
X, then the measure µ ◦T−1 is associated to the representation defined by
π̃(φ) = π(φ ◦ T ).

Since the representations φ 7→ π(φ) and φ 7→ π(φ ◦ L−1
g ) are given to

be unitarily equivalent, it follows from the uniqueness half of Theorem 3.7
that µ ∼= µ ◦ Lg and that µ(En∆L−1

g (En) = 0 ∀n. Since this is true for
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all g and since the G-action on G/H is transitive, it is clear that (i) there
exists an n such that µ(Em) = 0 ∀ m 6= n; and (ii) the measure µ is
(supported in En and is) quasi-invariant.

Hence, we may assume, without loss of generality that H = L2(G/H, µ;K)
and that M = πn

µ where n = dim K. (Here, we have replaced the given
representation by a unitarily equivalent one, and used the uniqueness of the
quasi-invariant measure up to equivalence.)

According to Proposition 2.4, we have another unitary representation
g 7→ Vg of G on H, defined by

Vgf =

(

d(µ ◦ L−1
g )

dµ

)
1

2
(

f ◦ L−1
g

)

.

It is then easliy seen that, for arbitrary φ ∈ C0(G/H) and g ∈ G, we
have

Ugπ(φ)U−1
g = π(φ ◦ L−1

g ) = Vgπ(φ)V −1
g .

On the other hand, it follows from Lemma 3.5 that the only unitary operators
on H which commute with πn

µ(φ) for every φ ∈ C0(G/H) are those of
the form

(Wf)(x) = W (x)f(x) (4.3)

for some measurable map G/H ∋ x 7→ W (x) ∈ L(K), such that W (x) is
a unitary operator on K for µ-almost all x ∈ G/H.

Hence, if we let Wg = V ∗
g Ug, then there exists a measurable mapping

x 7→ Wg(x) from G/H into the group of unitary operators on K, such that

(Wgf)(x) = Wg(x)f(x) . (4.4)

The definitions imply that

(Ugf)(x) = (VgWgf)(x)

=

(

d(µ ◦ L−1
g )

dµ
(x)

)
1

2

Wg(L
−1
g x)f(L−1

g x) . (4.5)

Since both U and V are unitary representations, it follows that

Wgg′ = V ∗
gg′Ugg′

= V ∗
g′V

∗
g UgUg′

= V ∗
g′WgVg′ Wg′ .
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On the other hand, an easy computation reveals that we have

(V ∗
g′WgVg′f)(x) = Wg(Lg′x)f(x) .

Thus, we find that

Wgg′(x) = Wg(Lg′x)Wg′(x) . (4.6)

Strictly speaking, most of the preceding equations are valid only µ-almost
everywhere. Thus, for instance, the precise formulation of equation 4.4 is that
for each g ∈ G and f ∈ H, the equation 4.4 is valid for µ-almost all x ∈ G/H.

We shall present the rest of the proof under the (not quite justified)
assumption that the equations 4.4, 4.5 and 4.6 are valid for every g, g′ ∈
G, f ∈ H and for every x ∈ G/H. (For the proof to be rigorously complete,
we have to go through some measure theoretic calisthenics to justify this sort
of assumption. The interested reader can find a complete proof in [KRP], for
instance; actually, in that reference, the slightly more general situation of a
‘projective representation taking values in unitary or antiunitary operators’
is considered.’)

Returning to the proof, let x0 = eH = H denote the identity coset in
X. It follows from equation 4.6 that

Wg(Lg′x0) = Wgg′(x0)Wg′(x0)
−1 . (4.7)

Since H fixes x0, we see (from equation 4.6) that if we define U0
h =

Wh(x0), then h→ U0
h defines a unitary representation of H on K.

Now fix a measurable cross-section s : G/H → G as in FACT 1, and note
that any g ∈ G admits a unique factorisation of the form g = s(x)h for
some (uniquely determined) x ∈ G/H, h ∈ H. (In fact, we must have x =
gH, h = s(gH)−1g.)

We may now deduce from equation 4.7 and equation 4.6 that if g ∈
G, x ∈ G/H, then

Wg(x) = Wg(Ls(x)x0)

= Wgs(x)(x0)Ws(x)(x0)
−1

= Ws(Lgx)(x0)Wh(x0)Ws(x)(x0)
−1 ,

where h ∈ H is defined by the equation gs(x) = s(Lgx)h.
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Hence, if we write Bx = Wx(x0), then we find that

Wg(x) = BLgxU
0
hB

−1
x ,

where gs(x) = s(Lgx)h. Substituting this into equation 4.5, we thus find
that

(Ugf)(x) =

(

d(µ ◦ L−1
g )

dµ
(x)

)
1

2

Wg(L
−1
g x)f(L−1

g x)

=

(

d(µ ◦ L−1
g )

dµ
(x)

)
1

2

BxU
0
hB

−1
L−1

g x
f(L−1

g x)

where gs(L−1
g x) = s(x)h.

Finally, define the (obviously unitary) operator B ∈ L(H) by

(Bf)(x) = Bxf(x)

and notice that

(B−1UgBf)(x) = B−1
x (UgBf)(x)

=

(

d(µ ◦ L−1
g )

dµ
(x)

)
1

2

U0
hB

−1
L−1

g x
(Bf)(L−1

g x)

=

(

d(µ ◦ L−1
g )

dµ
(x)

)
1

2

U0
hf(L−1

g x)

where gs(L−1
g x) = s(x)h.

In other words, we see that g 7→ B−1UgB is indeed induced by the
representation U0 of H, and the proof of the theorem is complete.

2

5 Semi-direct products

This section is devoted to a discussion of semi-direct products, and how
their representations are related to induced representations. All groups in
this section will be locally compact second contable groups.

Recall that an action of a groupK on a groupH is a group homomorphism
k 7→ αk from K into the group Aut H of automorphisms of H, such that the
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map H ×K ∋ (h, k) 7→ αk(h) ∈ H is continuous. Given such an action,
the semi-direct product H ×α K is the group G defined as follows: G is
the Cartesian product H×K as a topological space; and the group product
is defined by (h1, k1)(h2, k2) = (h1αk1

(h2), k1k2). It is easily verified that
{1H}×K is a closed subgroup of G, and that H×{1K} is a closed normal
subgroup of G; in fact, we have: (1H , k)(h, 1K)(1H , k)

−1 = (αk(h), 1H).
In practice, it is customary to think of H and K as subgroups of the

semi-direct product via the natural identifications.
Here are some examples of semi-direct products:
(a) The group Z2 acts on any abelian group A in such a way that the

non-identity element acts on A as the (necessarily involutory) automorphism
a 7→ a−1. If we denote this action by i, it is easy to see, for instance, that
Zn×iZ2 is isomorphic to the dihedral group D2n; in particular, Z3×iZ2

∼= S3.
(b) The group GLn(IR) (of non-singular n × n real matrices acts on

IRn via the action αT (v) = Tv, where we think of IRn as a set of column
vectors. Then the semi-direct product IRn ×α GLn(IR) can be identified
with the subgroup of GLn+1(IR) consisting of matrices with block-form
(

T v
0 1

)

.

Our goal in this section is to analyse irreducible unitary representations
of a semi-direct product A×αK, where the normal subgroup A is abelian.
Before doing so, it will be prudent to gather some facts about locally compact
abelian groups.

If A is a locally compact abelian group, a character on A is, by
definition, a continuous homomorphism χ : A → T (= {z ∈ C : |z| = 1}).
The set Â of characters on A is an abelian group with respect to point-wise
product: (χ1 ·χ2)(a) = χ1(a)χ2(a). In fact, Â becomes a locally compact
group with respect to the topology of uniform convergence on compact sets.
The content of the celebrated Pontrjagin duality theorem is that the character

group
ˆ̂
A of Â can naturally be identified (as a topological group) with A.

The equation f̂(χ) =
∫

A f(a)χ(a)dmA(a), where we write mA for the
Haar measure onA, is known to define a linear injective mapping L1(A,mA) ∋
f 7→ f̂ ∈ C0(Â) onto a dense subalgebra - call it F(Â) - of C0(Â), which
is contractive in the sense that ||f̂ ||C0(Â) ≤ ||f ||L1(A,mA). The mapping

f 7→ f̂ is called the Fourier transform, because of the ‘classical examples’
described in the next paragraph.
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For example, with A = IR (resp., Z), it is true that χ ∈ ÎR (resp.,
χ ∈ T̂) if and only if there exists t ∈ IR (resp., z ∈ T) such that χ = χt

(resp., χ = χz), where χt(s) = exp(
√
−1st) (resp., χz(n) = zn). Thus,

R̂ ∼= IR (resp., Ẑ ∼= T).
It is a fact that if π : A → L(H) is a unitary representation of a

locally compact abelian group, then there exists a unique *-representation
π̂ : C0(Â) → L(H) such that π̂(f̂) =

∫

A f(a)π(a)dmA(a) ∀ f ∈ L1(A,mA).
It follows that, with the above notation and the notation of Lemma 3.1,
that π(a) = ˜̂π(â), where â is the function on Â defined by â(χ) = χ(a).
Thus, Theorem 3.7 yields, via the preceding discussion, a classification, up to
equivalence, of the (separable) unitary representations of a locally compact
abelian group.

Suppose now that G = A ×α K is a semi-direct product, where A is
abellian. Then the action α : K → Aut A induces an action α̂ : K →
Aut Â thus: α̂k(χ) = χ ◦ α−1

k . Suppose now that π : G → L(H) is a
unitary representation. By restricting the representation to A, we obtain, as
above, a ‘spectral measure’ BÂ ∋ E 7→ P (E) (taking values in projection
operators on H). It is clear that if E ∈ BÂ, the range of P (E) is an
invariant subspace for each π(a), a ∈ A. Also, it is not hard to show that the
range of P (E) is an invariant subspace for each π(k), k ∈ K if and only
if µ(E∆α̂k(E)) = 0 ∀k ∈ K, where µ is a measure associated with the
representation of C0(Â) obtained as above from the restriction to A of π.
It follows that if the representation π of G is irreducible, then the measure
µ (as above) is ergodic for the action α̂ of K on Â - meaning that the
only Borel sets E ∈ BÂ which satisfy µ(E∆α̂k(E)) = 0 ∀k ∈ K are the

ones for which either µ(E) = 0 or µ(Â− E) = 0.
On the other hand, it is known - and not hard to prove - that if a locally

compact second countable group K acts as automorphisms of a standard
measure space (X,BX , µ) - i.e., µ is a Borel measure defined on the Borel
σ-algebra BX of a complete separable metric space X - and if the action is
ergodic (in the above sense) and regular - meaning that there exists a Borel
set C ∈ BX such that C meets µ- almost every G-orbit in exactly one
point - then the measure is concentrated on one orbit - meaning that there
exists x0 ∈ X such that µ(X −G · x0) = 0.

(The assumption of regularity may be reformulated thus: if X/G denotes
the set of G-orbits, and if B = {E ⊂ X/G : p−1(E) ∈ BX} denotes the

20



natural ‘quotient σ-algebra’ on X/G, (where p(x) = G · x), then regularity
of the action is equivalent to the existence of a ‘measurable cross-section’,
i.e., a measurable map s : X/G→ X such that p ◦ s = idX/G a.e.(µ ◦ p−1.)

Also note that if χ ∈ Â, then the orbit K ·χ may be identified with the
coset space K/Kχ, where Kχ = {k ∈ K : α̂k(χ) = χ}. Further, it should be
clear that if we define Hχ = A×α|Kχ

Kχ, then we have a natural identification
G/Hχ

∼= K/Kχ. Putting all the above analysis together, and invoking the
imprimitivity theorem, it is not hard now to write down a complete proof of
part (b) of the following result. (The proof of part (a) is not very difficult,
either.)

Theorem 5.1 Let G = A×αK be a semi-direct product, with A abelian.
Let α̂ : K → Aut Â be as above. Assume that the action α̂ of K on Â is
regular in the sense described above (of ‘admitting a Borel cross section’).

(a) If χ ∈ Â, if Kχ, Hχ are as above, and if θ : Kχ → L(H0) is an irre-
ducible representation of Kχ, then the equation π0

χ,θ(a, kχ) = χ(a)θ(kχ) de-
fines an irreducible representation π0

χ,θ : Hχ → L(H0); further, the result
πχ,θ of inducing the representation π0

χ,θ up to G is an irreducible repre-
sentation of G.

(b) Conversely, if π is an irreducible representation of G, then there
exists a χ ∈ Â and an irreducible representation θ of Kχ such that
π ∼= πχ,θ (as in (a) above).

2

In order to ensure that (s)he has really understood what the preceding
theorem (as well as the imprimitivity theorem) says, the reader will do well
to try and apply this theorem to the examples (a) and (b) of semi-direct
products listed at the start of this section, to list out all possible irreducible
representations of those groups (up to equivalence, that is).

( After these notes were prepared, the author learnt that Professor K.R.
Parthasarathy has himself written an expository article on the imprimitivity
theorem, and the reader is urged to also look at [KRP1].)
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