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Basic construction tower for finite-dimensional

C∗-algebras:

Definition: Suppose N ⊂ M is a unital inclu-

sion of finite-dimensional C∗-algebras. A trace

‘tr’ is called a Markov trace with modulus τ

for the inclusion N ⊂ M iff it can be extended

to a trace ‘Tr’ on πr(N)′ with the property that

Tr(eNx) = τ tr(x) ∀x ∈M.

Recall that πr(N)′ = 〈M, eN〉 is the *-algebra

generated by M and eN in B(L2(M, tr)); it is

linearly spanned by M ∪ {xeNy : x, y ∈ M}, and

consequently, the extension Tr of ‘tr’ to πr(N)′

is uniquely determined by the modulus τ condi-

tion. It is existence which requires some work.
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Begin by recalling that if Λ denotes the in-

clusion matrix for N ⊂ M , then the inclusion

matrix for M ⊂ 〈M, eN〉 is identifiable with Λt -

with respect to a certain natural identification

of PZ(N) with PZ(〈M, eN〉).

Proposition (PF): (a) If φ and ψ are traces

on M and N respectively, then

ψ = φ|N ⇒ Λtφ = tψ,

where we think of tφ and tψ as column vectors.

(b) Let ‘tr’ be a positive faithful trace on M ;

write t = ttr and s = ttr|N (= Λt). Then, ‘tr’

is a Markov trace of modulus τ iff ΛtΛt = τ−1t

iff ΛΛts = τ−1s ; ie., t and s are the ‘Perron-

Frobenius eigenvectors’ of ΛtΛ and of ΛΛt re-

spectively, and τ−1 is the ‘Perron-Frobenius

eigenvalue’ of both these matrices.
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Suppose M0 = N ⊂ M = M1 is a ‘connected

inclusion’ of finite-dimensional C∗-algebras (mean-

ing their Bratteli diagram is a connected graph).

Let τ−1 be the Perron-Frobenius eigenvalue of

ΛtΛ and t be the unique associated Perron-

Frobenius eigenvector satisfying the normali-

sation that tr(1) = 1 where ttr = t. Then, the

previous Proposition guarantees that:

(i) ‘tr’ is a Markov trace of modulus τ for M0 ⊂

M1;

(ii) there is a unique extension of ‘tr’ to a trace

‘Tr’ on M2 = 〈M1, e1〉 (where e1 = eM0
) with

the property that tr(x1e1) = τtr(x1) ∀x1 ∈M1;

(iii) ‘Tr’ is a Markov trace of modulus τ for

M1 ⊂M2; and
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(iv) we may repeat the process ad infinitum to

obtain the tower

M0 ⊂M1 ⊂e1 M2 ⊂e2 M3 · · ·

where en is the Jones projection implement-

ing the ‘tr’-preserving conditional expectation

EMn−1
of Mn onto Mn−1 and Mn ⊂ Mn+1 is

the basic construction for Mn−1 ⊂Mn (so that

Mn+1 = 〈Mn, en〉 is the *-algebra generated by

Mn ∪ {en}).

It is a consequence of the baic construction

that the en’s satisfy the relations:

e2i = ei ∀i
eiej = ejei if |i− j| ≥ 2

eiejei = τei if |i− j| = 1
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But for the foregoing analysis to work as out-

lined, τ−1 must be the largest eigenvalue of

ΛtΛ for some non-negative integer valued rect-

angular matrix Λ which describes the adjacency

relations in a connected bipartite graph Γ. See

[GHJ] for the following classical result:

Theorem:(Kronecker) For Λ,Γ as above, we

must have

‖Λ‖ ∈ [2,∞] ∪ {2cos(
π

n
) : n = 3,4,5, · · ·}

Further if ‖Λ‖ < 2, then Γ must be a Coxeter

graph of the following type: An, Dn, E6, E7, E8,

and ‖Λ‖ = 2cos(πh), where h is the ‘Coxeter

number’ of Γ. (h = l+ 1 for Al, 2l − 2 for Dl,

and 12, 18, 30 for E6, E7, E8.)

To be able to ‘handle’ the continuous range of

τ ’s, we need II1 factors.
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The symbols M,N,Mi will always denote II1
factors.

Proposition 1:

(a) If [M : N ] < ∞, then N ′ ∩ M is finite-

dimensional; in fact, dim(N ′ ∩M) ≤ [M : N ];

and

[M : N ] < 4 ⇒ N ′ ∩M = C.

(b) If Mi ⊂ Mj ⊂ Mk and [Mj : Mi] < ∞ and

[Mk : Mj] <∞, then

[Mk : Mi] = [Mk : Mj][Mj : Mi](< ∞).
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Corollary: If

M0 ⊂M1 ⊂e1 M2 ⊂e2 M3 · · ·

is the tower of the basic construction associ-

ated with a finite index subfactor M0 ⊂ M1,

the following is a grid of finite-dimensional C∗-

algebras:

C = M ′
0 ∩M0 ⊂ M ′

0 ∩M1 ⊂ M ′
0 ∩M2 ⊂ · · ·

∪ ∪ · · ·
C = M ′

1 ∩M1 ⊂ M ′
1 ∩M2 ⊂ · · ·

Further, this comes equipped with a consistent

trace (which, on M ′
i ∩Mj is the restriction of

trMj
). This grid, with this trace, is called the

standard invariant of M0 ⊂M1.

This turns out to be a complete invariant for

a ‘good class’ of subfactors - the so-called ex-

tremal ones.
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To better understand this standard invariant,

start by observing that the tower in the first

row of the grid is described by the total Brat-

teli diagram obtained by glueing the several

individual Bratteli diagrams together. We il-

lustrate varous features of this tower in an ex-

ample:
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Here, we have written Pk = M ′
0∩Mk. This dia-

gram illustrates the following features present

in the corresponding diagram of relative com-

mutants for every subfactor:
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(a) The part of the diagram between the nth

and (n+1)-th floors consists of two parts: (i) a

(horizontal) mirror-reflection of the part of the

diagram between the (n−1)-th and nth floors,

and (ii) a ‘new part’. In fact, new verices, if

any, on the (n+1)-th floor are connected only

to new vertices on the n-th floor.

(b) The (red) graph comprising all the ‘new

parts’ is called the principal graph Γ of the

subfactor M0 ⊂ M1. (It follows from (a) that

the Bratteli diagram for the entire tower {M ′
0∩

Mk : k ≥ 0} is determined by the principal

graph.)

(c) In fact, the Bratteli diagram for the entire

tower {M ′
1 ∩ Mk : k ≥ 0} is recovered in the

same fashion from the so-called dual principal

graph Γ̃, which is just the principal graph of

M1 ⊂M2.
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(d) In the exhibited example, the principal graph

is the finite graph A6, and the dual principal

graph turns out to be the same. It is fact that

Γ is finite iff Γ̃ is finite, in which case the sub-

factor is said to have finite depth.

(e) In addition to the two principal graphs,

which only describe the two towers of rela-

tive commutants, one also needs to encode

the data of how one tower is embedded into

the next. This has been done in at least three

ways: in a paragroup (Ocneanu), a λ-lattice

(Popa), or in a planar algebra (Jones). (We

shall elaborate later on the last.) Any one of

these notions is equivalent to the ‘standard in-

variant, and is a complete invariant, provided

the subfactor is extremal. (Finite depth sub-

factors are known to be extremal, and thus

determined by their standard invariant.)
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The richness of the theory of subfactors may

be surmised from the following facts:

(a) To every finite group G is associated a

canonical subfactor RG ⊂ R such that

(RG1 ⊂ R) ∼= (RG2 ⊂ R)⇔G1
∼= G2

(b) More generally, to every finite-dimensional

Hopf C∗-algebra H is associated a canonical

subfactor RH ⊂ R such that

(RH1 ⊂ R) ∼= (RH2 ⊂ R)⇔H1
∼= H2

(c) In fact, subfactors as in (b) are charac-

terise by the property that they have ‘depth

2’; the principal graph of RH ⊂ R is the bipar-

tite graph with even vertices indexed by Ĥ (the

set of irreducible *-algebra representations of

H), with one odd vertex, and with the degree

of the odd vertex indexed by π ∈ Ĥ being given

by the degree dπ of the representation π.
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Planar algebras (PAs):

A planar algebra is a collection {Pn : n ≥ 0} of

C-vector spaces which admits an action by the

coloured operad of planar tangles. Here is an

example of a planar tangle:
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Figure 1: Tangle T

A planar tangle T has the following features:

(a) its boundary consists of an external box

(labelled B0), and some number b (which is 3

in this example, and can, in general, even be

0) of internal boxes (labelled B1, · · ·Bb).
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(b) each box Bi has an even number 2ki of

marked points, and is said to be of colour ki.

In this example,

k0 = 3, k1 = 4, k2 = 0, k3 = 3.

(c) There are a number of non-crossing ‘strings’

which are either closed curves or have their two

ends on a marked point of one of the boxes,

in such a way that every marked point is the

end-point of some string.

(d) The entire configuration comes with a checker-

board shading.

(e) One special marked point on each box of

non-zero colour is labelled with a ‘*’ in such

a way that as one travels outward (resp., in-

ward) from the *-point of an internal (resp.,

the external) box, the black region is to the

right.
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The one thing one can do with tangles is com-

position, when that makes sense: thus, if S

and T are tangles, such that the external box

of S has the same colour as the i-th internal

box of T , then we may form a new tangle T ◦iS

by ‘glueing S into the i-th internal box of T in

such a way that the *-points and the strings

at the common boundary are aligned.

A tangle T with boxes coloured k0, · · · , kb is

required to induce a linear map

(ZPT =)ZT : ⊗bi=1Pki → Pk0

and these maps are to satisfy some natural

compatibility requirements, the most impor-

tant being compatibility with composition of

tangles:
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Rather than going through all the requirements

of a planar algebra, let us look at one of the

most elementary examples, the Temperley-Lieb

planar algebra. Fix 0 < τ < 1/4, and let

P0 = C, and Pn = TLn(τ), the C-vector space

with basis Kn, the set of Kauffman diagrams.

We define the action of a tangle on ‘basis vec-

tors’: thus, for example, if T denotes the tan-

gle of Figure 1, and if S0 ∈ K3, S1 ∈ K4 and

S3 ∈ K3 are the Kauffman diagrams shown in

Figure 2, and 1 ∈ C = TL0(τ), then

ZT (S1 ⊗ 1 ⊗ S3) = β2S0,

where β = τ−2 (since each loop counts for a

multiplicative factor of β).
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Figure 2: tangle action in TLn
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By a homomorphism π between planar algebras

P = {Pk : k ≥ 0} and Q = {Qk : k ≥ 0}, one

understands a collection of C-linear maps πk :

Pk → Qk which are ‘equivariant’ with respect

to the tangle actions: thus, if T is a k0-tangle

with internal boxes of colours k1, · · · , kb, then

we must have

πk0 ◦ ZPT = Z
Q
T ◦ (⊗bi=1πki)

The generators-and-relations approach to pla-

nar algebras:

For any ‘graded set’ L =
∐
n≥0Ln - where some

Ln’s may be empty, define an L-labelled tangle

T to be a tangle equipped with a labelling of

each internal box of colour k by an element of

Lk. (In particular, if Lk = ∅ for some k, then

an L-labelled tangle cannot have an internal

k-box.)
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The universal PA on label set L:

Let Pk(L) be a C-vector space with basis in-

dexed by the set of all L-labelled k-tangles (=

tangles with external box of colour k). It is not

hard to see that P(L) = {Pk(L) : k ≥ 0} has a

natural struture of a planar algebra; this is the

universal planar algebra on label set L in the

sense that: given set functions fk : Lk → Pk,
for some planar algebra P , there is a unique

planar algebra homomorphism π : P(L) → P
such that ‘πk extends fk’ for each k.

Definition: A planar ideal I of a PA P is a

collection I = {Ik : k ≥ 0} of subspaces of

P = {Pk : k ≥ 0} such that ZT (⊗bi=1xi) ∈ Ik0
whenever T is a tangle and xi ∈ Pki ∀ 1 ≤ i ≤ b
provided xj ∈ Ikj for at least one j.

It is easily shown that I is a planar ideal in P
iff there is a PA homomorphism π : P → Q (for

some PA Q) such that Ij = ker(πj) ∀j. (This

Q may be chosen as P/|CI = {Pk/Ik : k ≥ 0}
with its natural PA structure.)
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It is another routine matter to verify that given

any ‘subset’ R = {Rk : k ≥ 0} of a PA P , there

exists a smallest planar ideal I(R) of P with

the property that Rk ⊂ Ik ∀k.

Finally, given a label set L =
∐
k Lk and a ‘sub-

set’ R = {Rk : k ≥ 0} of the PA P(L), define

P(〈L,R〉) = P(l)/I(R). This is the PA with

presentation given by label set L and relations

R.

We shall conclude with some examples of pre-

sentations of planar algebras:
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Temperley-Lieb Planar algebra, for τ < 1/4:

This has label set L = ∅, and the two relations

listed below. (Taking a cue from group theory,

we think of relations as equations; thus, we say

X = 0 is a relation if X ∈ R.)

== δ

The PA for RG ⊂ R:

For a finite group G, the label set is taken as

Lk =

{
G if k = 2
∅ otherwise

and the relations are as follows (where we write

β =
√
|G| and use δ for the ‘Kronecker delta’):
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(e)

= δ =(modulus)

(unit) =idG

=g−1 g

* *

*

*

*

*

*

(inverse)

g g= =δg,1β(trace)

*
*

* *

*
*

*

*

*
*

g

g
h

gh

(multiplication)

;

=

Σ
g

g = β
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