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Finite-dimensional C∗-algebras:

Recall:

Definition: A linear functional ‘tr’ on an alge-

bra A is said to be

• a trace if tr (xy) = tr (yx) forall x, y ∈ A;

• normalised if A is unital and tr(1) = 1;

• positive if A is a *-algebra and tr (x∗x) ≥
0∀x ∈ A;

• faithful and positive if A is a *-algebra and

tr (x∗x) > 0 ∀ 0 6= x ∈ A.

For example, Mn(C) admits a unique normalised

trace (tr(x) = 1
n

∑n
i=1 xii) which is automati-

cally faithful and positive.
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Proposition FDC*: The following conditions

on a finite-dimensional unital *-algebra A are

equivalent:

1. There exists a unital *-monomorphism π :

A → Mn(C) for some n.

2. There exists a faithful positive normalised

trace on A.

�
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For a finite-dimensional C∗-algebra M with faith-

ful positive normalised∗ trace ‘tr’, let us write

L2(M, tr) = {x̂ : x ∈ M}, with 〈x̂, ŷ〉 = tr(y∗x),
as well as πl, πr : M → B(L2(M, tr)) for the

maps (injective unital *-homomorphism and *-

antihomomorphism, repectively) defined by

πl(x)(ŷ) = x̂y = πr(y)(x̂) .

We shall usually identify x ∈ M with the oper-

ator πl(x) and thus think of M as a subset of

B(L2(M, tr)).

Fact: πl(M)′ = πr(M) and πr(M)′ = πl(M),

where we define the commutant S′ of any set

S of operators on a Hilbert space H by

S′ = {x′ ∈ B(H) : xx′ = x′x ∀x ∈ S})

∗It is a fact that every finite-dimensional C∗-algebra is
unital.
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Write PZ(M) for the set of minimal central

projections of a finite-dimensional C∗-algebra.

It is a fact that there is a well-defined function

m : PZ(M) → N, such that Mq ∼= Mm(q)(C) ∀q ∈
PZ(M); thus the map M ∋ x

πq7→ xq defines an

irreducible representation of M ; and in fact,

{πq : q ∈ PZ(M)} is a complete list, up to uni-

tary equivalence, of pairwise inequivalent irre-

ducible representations of M , and

M =
∑

q∈PZ(M)

Mq ∼= ⊕q∈PZ(M)Mm(q)(C)

Since every trace on the full matrix algebra

Mn(C) is a multiple of the usual trace. It fol-

lows that any trace φ on M is uniquely deter-

mined by the function tφ : PZ(M) → C defined

by tφ(q) = φ(q0) where q0 is a minimal projec-

tion in Mq. It is clear that φ is positive (resp.,

faithful, or normalised) iff tφ(q) ≥ 0 ∀q (resp.,

tφ(q) > 0 ∀q, or
∑

q∈PZ(M) m(q)tφ(q) = 1).
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If N ⊂ M is a unital C∗-subalgebra of M , the

associated inclusion matrix Λ is the matrix with

rows and columns indexed by PZ(N) and PZ(M)

repectively, defined by setting Λpq =

√
dim qpMqp
dim qpNqp

.

Alternatively, if we write ρp for the irreducible

representation of N corresponding to p, then

Λpq is nothing but the ‘multiplicity with which

ρp occurs in the irreducible decomposition of

πq|N ’. This data is sometimes also recorded

in a bipartite graph with even and odd vertices

indexed by PZ(N) and PZ(M) repectively, with

Λpq edges joining the vertices indexed by p and

q; this bipartite graph is usually called the Brat-

teli diagram of the inclusion.

Writing EN for the tr-preserving conditional ex-

pectation of M onto N , and eN for the orthog-

onal projection of L2(M, tr) onto the subspace

L2(N, tr|N), we have the following result.
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Propostion (bc): Suppose N ⊂ M is a unital

inclusion of finite dimensional C⋆ algebras. Let

tr be a faithful, unital, positive trace on M .

Then,

(1) The C⋆ algebra generated by M and eN in

B(L2(M, tr)) is πr(N)′.

(2) The central support of eN in πr(N)′ is 1.

(3) eNxeN = E(x)eN for x ∈ M .

(4) N = M ∩ {eN}′.

(5) If Λ is the inclusion matrix for N ⊂ M then

Λt is the inclusion matrix for M ⊂ πr(N)′. �

This basic construction - i.e., the passage from

N ⊂ M to M ⊂ πr(N)′ extends almost verba-

tim from inclusions of finite-dimensional C∗-
algebras to finite-depth subfactors!
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von Neumann algebras :

Introduced in - and referred to, by them, as -

Rings of Operators in 1936 by F.J. Murray and

von Neumann, because - in their own words:

the elucidation of this subject is strongly sug-

gested by

• our attempts to generalise the theory of

unitary group-representations, and

• various aspects of the quantum mechanical

formalism
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Def 1: A vNa is the commutant of a unitary

group representation: i.e.,

M = {x ∈ L(H) : xπ(g) = π(g)x ∀g ∈ G}

Note that L(H) is a Banach *-algebra w.r.t.

‖x‖ = sup{‖xξ‖ : ξ ∈ H, ‖ξ‖ = 1} (‘operator

norm’) and ‘Hilbert space adjoint’.

Defs: (a) S′ = {x′ ∈ L(H) : xx′ = x′x ∀x ∈ S},
for S ⊂ L(H)

(b) SOT on L(H): xn → x ⇔ ‖xnξ−xξ‖ → 0 ∀ξ

(i.e., xnξ → xξ strongly ∀ξ)

(c) WOT on L(H): xn → x⇔〈xnξ − xξ, η〉 →
0∀ξ, η (i.e., xnξ → xξ weakly ∀ξ)

(Our Hilbert spaces are always assumed to be

separable.)
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von Neumann’s double commutant theo-

rem (DCT: Let M be a unital self-adjoint

subalgebra of L(H). TFAE:

(i) M is SOT-closed

(ii) M is WOT-closed

(iii) M = M ′′ = (M ′)′ �

Def 2: A vNa is an M as in DCT above.

The equivalence of definitions 1 and 2 is a con-

sequence of the spectral theorem and the fact

that any norm-closed unital *-subalgebra A of

L(H) is linearly spanned by the set U(A) = {u ∈
A : u∗u = uu∗ = 1} of its unitary elements.
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Some consequences of DCT:

(a) A von Neumann algebra is closed under all

‘canonical constructions’:

for instance, if x → {1E(x) : E ∈ BC} is the

spectral measure associated with a normal op-

erator x, then x ∈ M⇔1E(x) ∈ M ∀ E ∈ BC.

(Reason: 1E(uxu∗) = u1E(x)u∗ for all unitary

u; so implication ⇒ follows from

x ∈ M, u′ ∈ U(M ′) ⇒ u′1E(x)u′∗ = 1E(u′xu′∗)
⇒ 1E(x) ∈

(
U(M ′)

)′
= M )

(b) For implication ⇐, uniform approximability

of bounded measurable functions implies (by

the spectral theorem) that

M = [P(M)] = (span P(M))− (∗),
where P(M) = {p ∈ M : p = p2 = p∗} is the set

of projections in M .
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Suppose M = π(G)′ as before. Then

p↔ran p

establishes a bijection

P(M)↔G-stable subspaces

So, for instance, eqn. (*) shows that

(π(G))′′ = L(H)⇔M = C ⇔ π is irreducible

Under the correspondence, of sub-reps of π to

P(M), (unitary) equivalence of sub-repreps of

π translates to Murray-von Neumann equiva-

lence on P(M):

p ∼M q⇔∃u ∈ M such that u∗u = p, uu∗ = q

More generally, define

p �M q⇔∃p0 ∈ P(M) such that p ∼M p0 ≤ q
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Proposition: TFAE:

1. Either p �M q or q �M p, ∀p, q ∈ P(M).

2. M has trivial center: Z(M) = M ∩ M ′ = C

Such an M is called a factor. �

If M = π(G)′, with G finite, then M is a factor

iff π is isotypical.

In general, any vNa is a ‘direct integral’ of fac-

tors.
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Say a projection p ∈ P(M) is infinite rel M

if ∃p0 6= p ∈ P(M) such that p ∼M p0 ≤ p;

otherwise, call p finite (rel M).

Say M is finite if 1 is finite.

Murray von-Neumann classification of fac-

tors: A factor M is said to be of type:

1. I if there is a minimal non-zero projection

in M .

2. II if it contains non-zero finite projections,

but no minimal non-zero projection.

3. III if it contains no non-zero finite projec-

tion.
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Def. 3: (Abstract Hilbert-space-free def) M is

a vNa if

• M is a C∗-algebra (i.e., a Banach *-algebra

satisfying ‖x ∗ x‖ = ‖x‖2 ∀ x)

• M is a dual Banach space: i.e., ∃ a Banach

space M∗ such that M ∼= M∗∗ as a Banach

space.

Example: M = L∞(Ω,B, µ). Can also view it

as acting on L2(Ω,B, µ) as multiplication op-

erators. (In fact, every commutative vNa is

isomorphic to an L∞(Ω,B, µ).)

Fact: The predual M∗ of M is unique up to

isometric isomorphism. (So, (by Alaoglu), ∃ a

canonical loc. cvx. (weak-*) top. on M w.r.t.

which the unit ball of M is compact. This is

called the σ-weak topology on M .
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A linear map between vNa’s is called normal

if it is continuous w.r.t. the σ-weak topologies

on domain and range.

The morphisms in the category of vNa’s are

unital normal ∗-homomorphisms.

The algebra L(H), for any Hilbert space H, is

a vNa - with pre-dual being the space L∗(H)

of trace-class operators.

Any σ-weakly closed ∗-subalgebra of a vNa is

a vNa.

Gelfand-Naimark theorem: Any vNa is iso-

morphic to a vN-subalgebra of some L(H). (So

the abstract and concrete (= tied down to

Hilbert space) definitions are equivalent.)
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In some sense, the most interesting factors are

the so-called type II1 factors (= finite type II

factors).

Theorem: Let M be a factor. TFAE:

1. M is finite.

2. ∃ a trace trM on M - i.e., linear functional

satisfying:

• trM(xy) = trM(yx) ∀x, y ∈ M (trace)

• trM(x∗x) ≥ 0∀x ∈ M (positive)

• trM(1) = 1 (normaliised)

Such a trace is automatically unique, and faith-

ful - i.e., it satisfies trM(x∗x) = 0⇔x = 0
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For p, q ∈ P(M), M a finite factor, TFAE:

1. p ∼M q

2. trMp = trMq

3. ∃u ∈ U(M) such that upu∗ = q.

If dimCM < ∞, then M ∼= Mn(C) = L(Cn) for

a unique n.

If dimCM = ∞, then M is a II1 factor, and in

this case, {trMp : p ∈ P(M)} = [0,1].

So II1 factors are the arena for continuously

varying dimensions; they got von Neumann look-

ing at continuous geometries.
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Henceforth, M will be a II1 factor.

Def: An M-module is a separable Hilbert space

H, equipped with a vNa morphism π : M →
L(H). Two M-modules are isomorphic if there

exists an invertible (equivalently, unitary) M-

linear map between them.

Proposition: There exists a complete isomor-

phism invariant

H 7→ dimMH ∈ [0,∞]

of M-modules such that:

1. H ∼= K⇔dimMH = dimMK.

2, dimM(⊕nHn) =
∑

n dimMHn.

3. For each d ∈ [0,∞], ∃ an M-module H1 with

dimMHd = d.
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The equation

〈x, y〉 = trM(y∗x)

defines an inner-product on M . Call the com-

pletion L2(M, trM). Then L2(M, trM) is an

M − M bimodule with left- and right- actions

given by multiplication.

H1 = L2(M, trM).

If 0 ≤ d ≤ 1, then Hd = L2(M, trM).p where

p ∈ P(M) satisfies trMp = d.

Hd is a finitely generated projective module if

d < ∞.

In particular K0(M) ∼= R.
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The hyperfinite II1 factor R: Among II1

factors, pride of place goes to the ubiquitous

hyperfinite II1 factor R. It is characterised as

the unique II1 factor which has any of many

properties, such as injectivity and approximate

finite-dimensionality (= hyperfiniteness).

Thus, ∃ a unique II1 factor R which contains

an increasing sequence

A1 ⊂ A2 ⊂ · · · ⊂ An ⊂ · · ·

such that ∪nAn is σ-weakly dense in R.

Examples of II1 factors: Let λ : G → U(L(ℓ2(G)))

denote the ‘left-regular representation’ of a count-

able infinite group G, and let LG = (λ(G))′′.
Then LG is a II1 factor iff every conjugacy

class of G other than {1} is infinite.

LΣ∞ ∼= R, while LF2 is not hyperfinite.

Big open problem: is LF2
∼= LF3?

20



The study of bimodules over II1 factors is es-

sentially equivalent to that of ‘subfactors’.

(The bimodule NHM corresponds to πl(N) ⊂
πr(M)′.)

A subfactor is a unital inclusion N ⊂ M of

II1 factors. For a subfactor as above, Jones

defined the index of the subfactor to be

[M : N ] = dimNL2(M, trM)

and proved:

[M : N ] ∈ [4,∞] ∪ {4cos2(
π

n
: n ≥ 3}

A subfactor N is said to be irreducible if N ′ ∩
M = C - or equivalently, L2(M, trM) is irre-

ducible as an N − M bimodule.
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It is known that if a subfactor N ⊂ M has finite

index, then N is hyperfinite if and only if M is.

In this case, call the subfactor hyperfinite.

Very little is known about the set I0
R of possible

index values of irreducible hyperfinite subfac-

tors.

Some known facts:

(a) (Jones) IR = [4,∞] ∪ {4cos2(π
n
) : n ≥ 3}

and I0
R ⊃ {4cos2(π

n
: n ≥ 3}

(b)

(
N+

√
N2+4
2

)2

,

(
N+

√
N2+8
2

)2

∈ I0
R ∀N ≥ 1

(c) (N + 1
N

)2 is the limit of an increasing se-

quence in I0
R.
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What is relevant for us is that if N ⊂ M is a

subfactor of finite index, then the ‘basic con-

struction’ goes through exactly as in finite di-

mensions.

Proposition: (subf1) Let L2(M, trM) denote

the completion of the inner-product space V =

{x̂ : x ∈ M} (with inner-product defined by

〈x̂, ŷ〉 = tr(y∗x)), let L2(N, trN) be identified

with the subspace defined as the closure of

V0 = {x̂ : x ∈ N}, and let eN denote the orthog-

onal projection of L2(M, trM) onto L2(N, trN).

(1) Then there exists a map EN : M → N

satisfying, for all x ∈ M, a, b ∈ N :

(i) EN(axb) = aEN(x)b

(ii) EN(a) = a

(iii) tr|N ◦ EN = tr

(iv) eNxeN = (ENx)eN
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(2) Further, if we write πl and πr for the maps

defined earlier, if we identify M with πl(M),

then,

(a) πr(M)′ = πl(M) = M

(b) πr(N)′ = 〈M, eN〉 = (M ∪ {eN})′′ is also a

II1 factor, and [〈M, eN〉 : M ] = [M : N ]

(c) tr〈M,eN〉(xeN) = τtrM(x) for all x ∈ M ,

where we write τ = [M : N ]−1.

(d) N = M ∩ {eN}′ �

All the necessary ingredients are in place for us

to build the Jones tower

M0 ⊂ M1 ⊂e1 M2 ⊂e2 M3 · · ·
where en is the Jones projection implement-

ing the ‘tr’-preserving conditional expectation

EMn−1
of Mn onto Mn−1 and Mn ⊂ Mn+1 is

the basic construction for Mn−1 ⊂ Mn (so that

Mn+1 = 〈Mn, en〉).
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It is easy to deduce from the preceding propo-

sition (applied to appropriate members of the

Jones tower) that

e2i = ei ∀i

eiej = ejei if |i − j| ≥ 2

eiejei = τei if |i − j| = 1

where τ = [M : N ]−1. In fact, more generally

than the last equation above, it is true that:

enxen = (EMn−1
x)en ∀x ∈ Mn

trMn+1
(xen) = τtrMn

(x) ∀x ∈ Mn

In fact, since there is a unique normalised trace

on a II1 factor, we can unambiguously use the

symbol ‘tr’ for the functional on ∪nMn which

restricts on Mn to trMn
.
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