von Neumann algebras, $I I_{1}$ factors, and
their subfactors
V.S. Sunder (IMSc, Chennai) *

Lecture 3 at IIT Mumbai, April 24th, 2007

Finite-dimensional C^{*}-algebras:
Recall:
Definition: A linear functional 'tr' on an algebra A is said to be

- a trace if $\operatorname{tr}(x y)=\operatorname{tr}(y x)$ forall $x, y \in A$;
- normalised if A is unital and $\operatorname{tr}(1)=1$;
- positive if A is a $*$-algebra and $\operatorname{tr}\left(x^{*} x\right) \geq$ $0 \forall x \in A$;
- faithful and positive if A is a *-algebra and $\operatorname{tr}\left(x^{*} x\right)>0 \forall 0 \neq x \in A$.

For example, $M_{n}(\mathbb{C})$ admits a unique normalised trace $\left(\operatorname{tr}(x)=\frac{1}{n} \sum_{i=1}^{n} x_{i i}\right)$ which is automatically faithful and positive.

Proposition FDC*: The following conditions on a finite-dimensional unital ${ }^{*}$-algebra A are equivalent:

1. There exists a unital $*$-monomorphism π : $A \rightarrow M_{n}(\mathbb{C})$ for some n.
2. There exists a faithful positive normalised trace on A.

For a finite-dimensional C^{*}-algebra M with faithful positive normalised* trace 'tr', let us write $L^{2}(M, \operatorname{tr})=\{\hat{x}: x \in M\}$, with $\langle\hat{x}, \hat{y}\rangle=\operatorname{tr}\left(y^{*} x\right)$, as well as $\pi_{l}, \pi_{r}: M \rightarrow B\left(L^{2}(M, t r)\right)$ for the maps (injective unital *-homomorphism and *antihomomorphism, repectively) defined by

$$
\pi_{l}(x)(\widehat{y})=\widehat{x y}=\pi_{r}(y)(\widehat{x}) .
$$

We shall usually identify $x \in M$ with the operator $\pi_{l}(x)$ and thus think of M as a subset of $B\left(L^{2}(M, t r)\right)$.

Fact: $\pi_{l}(M)^{\prime}=\pi_{r}(M)$ and $\pi_{r}(M)^{\prime}=\pi_{l}(M)$, where we define the commutant S^{\prime} of any set S of operators on a Hilbert space H by

$$
\left.S^{\prime}=\left\{x^{\prime} \in B(H): x x^{\prime}=x^{\prime} x \forall x \in S\right\}\right)
$$

It is a fact that every finite-dimensional C^{}-algebra is unital.

Write $\mathcal{P}_{Z}(M)$ for the set of minimal central projections of a finite-dimensional C^{*}-algebra. It is a fact that there is a well-defined function $m: \mathcal{P}_{Z}(M) \rightarrow \mathbb{N}$, such that $M q \cong M_{m(q)}(\mathbb{C}) \forall q \in$ $\mathcal{P}_{Z}(M)$; thus the map $M \ni x \stackrel{\pi_{q}}{\longmapsto} x q$ defines an irreducible representation of M; and in fact, $\left\{\pi_{q}: q \in \mathcal{P}_{Z}(M)\right\}$ is a complete list, up to unitary equivalence, of pairwise inequivalent irreducible representations of M, and

$$
M=\sum_{q \in \mathcal{P}_{Z}(M)} M q \cong \oplus_{q \in \mathcal{P}_{Z}(M)} M_{m(q)}(\mathbb{C})
$$

Since every trace on the full matrix algebra $M_{n}(\mathbb{C})$ is a multiple of the usual trace. It follows that any trace ϕ on M is uniquely determined by the function $t_{\phi}: \mathcal{P}_{Z}(M) \rightarrow \mathbb{C}$ defined by $t_{\phi}(q)=\phi\left(q_{0}\right)$ where q_{0} is a minimal projection in $M q$. It is clear that ϕ is positive (resp., faithful, or normalised) iff $t_{\phi}(q) \geq 0 \forall q$ (resp., $t_{\phi}(q)>0 \forall q$, or $\left.\sum_{q \in \mathcal{P}_{Z}(M)} m(q) t_{\phi}(q)=1\right)$.

If $N \subset M$ is a unital C^{*}-subalgebra of M, the associated inclusion matrix \wedge is the matrix with rows and columns indexed by $\mathcal{P}_{Z}(N)$ and $\mathcal{P}_{Z}(M)$ repectively, defined by setting $\Lambda_{p q}=\sqrt{\frac{\operatorname{dim} q p M q p}{\operatorname{dim} q p N q p}}$. Alternatively, if we write ρ_{p} for the irreducible representation of N corresponding to p, then $\Lambda_{p q}$ is nothing but the 'multiplicity with which ρ_{p} occurs in the irreducible decomposition of $\left.\pi_{q}\right|_{N}$. This data is sometimes also recorded in a bipartite graph with even and odd vertices indexed by $\mathcal{P}_{Z}(N)$ and $\mathcal{P}_{Z}(M)$ repectively, with $\Lambda_{p q}$ edges joining the vertices indexed by p and q; this bipartite graph is usually called the Bratteli diagram of the inclusion.

Writing E_{N} for the tr-preserving conditional expectation of M onto N, and e_{N} for the orthogonal projection of $L^{2}(M, t r)$ onto the subspace $L^{2}\left(N,\left.t r\right|_{N}\right)$, we have the following result.

Propostion (bc): Suppose $N \subset M$ is a unital inclusion of finite dimensional C^{\star} algebras. Let tr be a faithful, unital, positive trace on M. Then,
(1) The C* algebra generated by M and e_{N} in $B\left(L^{2}(M, t r)\right)$ is $\pi_{r}(N)^{\prime}$.
(2) The central support of e_{N} in $\pi_{r}(N)^{\prime}$ is 1 .
(3) $e_{N} x e_{N}=E(x) e_{N}$ for $x \in M$.
(4) $N=M \cap\left\{e_{N}\right\}^{\prime}$.
(5) If \wedge is the inclusion matrix for $N \subset M$ then Λ^{t} is the inclusion matrix for $M \subset \pi_{r}(N)^{\prime}$.

This basic construction - i.e., the passage from $N \subset M$ to $M \subset \pi_{r}(N)^{\prime}$ extends almost verbatim from inclusions of finite-dimensional C^{*} algebras to finite-depth subfactors!
von Neumann algebras :

Introduced in - and referred to, by them, as Rings of Operators in 1936 by F.J. Murray and von Neumann, because - in their own words:
the elucidation of this subject is strongly suggested by

- our attempts to generalise the theory of unitary group-representations, and
- various aspects of the quantum mechanical formalism

Def 1: A vNa is the commutant of a unitary group representation: i.e.,

$$
M=\{x \in \mathcal{L}(\mathcal{H}): x \pi(g)=\pi(g) x \forall g \in G\}
$$

Note that $\mathcal{L}(\mathcal{H})$ is a Banach *-algebra w.r.t. $\|x\|=\sup \{\|x \xi\|: \xi \in \mathcal{H},\|\xi\|=1\}$ ('operator norm') and 'Hilbert space adjoint'.

Defs: (a) $S^{\prime}=\left\{x^{\prime} \in \mathcal{L}(\mathcal{H}): x x^{\prime}=x^{\prime} x \forall x \in S\right\}$, for $S \subset \mathcal{L}(\mathcal{H})$
(b) SOT on $\mathcal{L}(\mathcal{H}): x_{n} \rightarrow x \Leftrightarrow\left\|x_{n} \xi-x \xi\right\| \rightarrow 0 \forall \xi$ (i.e., $x_{n} \xi \rightarrow x \xi$ strongly $\forall \xi$)
(c) WOT on $\mathcal{L}(\mathcal{H}): x_{n} \rightarrow x \Leftrightarrow\left\langle x_{n} \xi-x \xi, \eta\right\rangle \rightarrow$ $0 \forall \xi, \eta$ (i.e., $x_{n} \xi \rightarrow x \xi$ weakly $\forall \xi$)
(Our Hilbert spaces are always assumed to be separable.)
von Neumann's double commutant theorem (DCT: Let M be a unital self-adjoint subalgebra of $\mathcal{L}(\mathcal{H})$. TFAE:
(i) M is SOT-closed
(ii) M is WOT-closed
(iii) $M=M^{\prime \prime}=\left(M^{\prime}\right)^{\prime}$ \square

Def 2: A vNa is an M as in DCT above.

The equivalence of definitions 1 and 2 is a consequence of the spectral theorem and the fact that any norm-closed unital $*_{\text {-subalgebra } A}$ of $\mathcal{L}(\mathcal{H})$ is linearly spanned by the $\operatorname{set} \mathcal{U}(A)=\{u \in$ $\left.A: u^{*} u=u u^{*}=1\right\}$ of its unitary elements.

Some consequences of DCT:

(a) A von Neumann algebra is closed under all 'canonical constructions':
for instance, if $x \rightarrow\left\{1_{E}(x): E \in \mathcal{B}_{\mathbb{C}}\right\}$ is the spectral measure associated with a normal operator x, then $x \in M \Leftrightarrow 1_{E}(x) \in M \forall E \in \mathcal{B}_{\mathbb{C}}$.
(Reason: $1_{E}\left(u x u^{*}\right)=u 1_{E}(x) u^{*}$ for all unitary u; so implication \Rightarrow follows from
$x \in M, u^{\prime} \in \mathcal{U}\left(M^{\prime}\right) \Rightarrow u^{\prime} 1_{E}(x) u^{*}=1_{E}\left(u^{\prime} x u^{* *}\right)$

$$
\left.\Rightarrow \quad 1_{E}(x) \in\left(\mathcal{U}\left(M^{\prime}\right)\right)^{\prime}=M \quad\right)
$$

(b) For implication \Leftarrow, uniform approximability of bounded measurable functions implies (by the spectral theorem) that

$$
M=[\mathcal{P}(M)]=(\operatorname{span} \mathcal{P}(M))^{-} \quad(*),
$$

where $\mathcal{P}(M)=\left\{p \in M: p=p^{2}=p^{*}\right\}$ is the set of projections in M.

Suppose $M=\pi(G)^{\prime}$ as before. Then

$$
p \leftrightarrow \operatorname{ran} p
$$

establishes a bijection

$$
\mathcal{P}(M) \leftrightarrow G \text {-stable subspaces }
$$

So, for instance, eqn. (*) shows that

$$
(\pi(G))^{\prime \prime}=\mathcal{L}(\mathcal{H}) \Leftrightarrow M=\mathbb{C} \Leftrightarrow \pi \text { is irreducible }
$$

Under the correspondence, of sub-reps of π to $\mathcal{P}(M)$, (unitary) equivalence of sub-repreps of π translates to Murray-von Neumann equivalence on $\mathcal{P}(M)$:
$p \sim_{M} q \Leftrightarrow \exists u \in M$ such that $u^{*} u=p, u u^{*}=q$

More generally, define

$$
p \preceq_{M} q \Leftrightarrow \exists p_{0} \in \mathcal{P}(M) \text { such that } p \sim_{M} p_{0} \leq q
$$

Proposition: TFAE:

1. Either $p \preceq_{M} q$ or $q \preceq_{M} p, \quad \forall p, q \in \mathcal{P}(M)$.
2. M has trivial center: $Z(M)=M \cap M^{\prime}=\mathbb{C}$

Such an M is called a factor.

If $M=\pi(G)^{\prime}$, with G finite, then M is a factor iff π is isotypical.

In general, any vNa is a 'direct integral' of factors.

Say a projection $p \in \mathcal{P}(M)$ is infinite rel M if $\exists p_{0} \neq p \in \mathcal{P}(M)$ such that $p \sim_{M} p_{0} \leq p$; otherwise, call p finite (rel M).

Say M is finite if 1 is finite.

Murray von-Neumann classification of factors: A factor M is said to be of type:

1. I if there is a minimal non-zero projection in M.
2. II if it contains non-zero finite projections, but no minimal non-zero projection.
3. III if it contains no non-zero finite projection.

Def. 3: (Abstract Hilbert-space-free def) M is a vNa if

- M is a C^{*}-algebra (i.e., a Banach ${ }^{*}$-algebra satisfying $\left.\|x * x\|=\|x\|^{2} \forall x\right)$
- M is a dual Banach space: i.e., \exists a Banach space M_{*} such that $M \cong M_{*}^{*}$ as a Banach space.

Example: $M=L^{\infty}(\Omega, \mathcal{B}, \mu)$. Can also view it as acting on $L^{2}(\Omega, \mathcal{B}, \mu)$ as multiplication operators. (In fact, every commutative vNa is isomorphic to an $L^{\infty}(\Omega, \mathcal{B}, \mu)$.)

Fact: The predual M_{*} of M is unique up to isometric isomorphism. (So, (by Alaoglu), \exists a canonical loc. cvx. (weak-*) top. on M w.r.t. which the unit ball of M is compact. This is called the σ-weak topology on M.

A linear map between vNa's is called normal if it is continuous w.r.t. the σ-weak topologies on domain and range.

The morphisms in the category of vNa 's are unital normal *-homomorphisms.

The algebra $\mathcal{L}(\mathcal{H})$, for any Hilbert space \mathcal{H}, is a vNa - with pre-dual being the space $\mathcal{L}_{*}(\mathcal{H})$ of trace-class operators.

Any σ-weakly closed $*$-subalgebra of a vNa is a vNa.

Gelfand-Naimark theorem: Any vNa is isomorphic to a vN-subalgebra of some $\mathcal{L}(\mathcal{H})$. (So the abstract and concrete ($=$ tied down to Hilbert space) definitions are equivalent.)

In some sense, the most interesting factors are the so-called type $I I_{1}$ factors ($=$ finite type $I I$ factors).

Theorem: Let M be a factor. TFAE:

1. M is finite.
2. \exists a trace tr_{M} on M - i.e., linear functional satisfying:

- $\operatorname{tr}_{M}(x y)=\operatorname{tr}_{M}(y x) \forall x, y \in M$ (trace)
- $\operatorname{tr}_{M}\left(x^{*} x\right) \geq 0 \forall x \in M$ (positive)
- $\operatorname{tr}_{M}(1)=1$ (normaliised)

Such a trace is automatically unique, and faithful - i.e., it satisfies $\operatorname{tr}_{M}\left(x^{*} x\right)=0 \Leftrightarrow x=0$

For $p, q \in \mathcal{P}(M), M$ a finite factor, TFAE:

1. $p \sim_{M} q$
2. $\operatorname{tr}_{M} p=t r_{M} q$
3. $\exists u \in \mathcal{U}(M)$ such that $u p u^{*}=q$.

If $\operatorname{dim}_{\mathbb{C}} M<\infty$, then $M \cong M_{n}(\mathbb{C})=\mathcal{L}\left(\mathbb{C}^{n}\right)$ for a unique n.

If $\operatorname{dim}_{\mathbb{C}} M=\infty$, then M is a $I I_{1}$ factor, and in this case, $\left\{\operatorname{tr}_{M} p: p \in \mathcal{P}(M)\right\}=[0,1]$.

So $I I_{1}$ factors are the arena for continuously varying dimensions; they got von Neumann looking at continuous geometries.

Henceforth, M will be a $I I_{1}$ factor.

Def: An M-module is a separable Hilbert space \mathcal{H}, equipped with a vNa morphism $\pi: M \rightarrow$ $\mathcal{L}(\mathcal{H})$. Two M-modules are isomorphic if there exists an invertible (equivalently, unitary) M linear map between them.

Proposition: There exists a complete isomorphism invariant

$$
\mathcal{H} \mapsto \operatorname{dim}_{M} \mathcal{H} \in[0, \infty]
$$

of M-modules such that:

1. $\mathcal{H} \cong \mathcal{K} \Leftrightarrow \operatorname{dim}_{M} \mathcal{H}=\operatorname{dim}_{M} \mathcal{K}$.

2, $\operatorname{dim}_{M}\left(\oplus_{n} \mathcal{H}_{n}\right)=\sum_{n} \operatorname{dim}_{M} \mathcal{H}_{n}$.
3. For each $d \in[0, \infty], \exists$ an M-module \mathcal{H}_{1} with $\operatorname{dim}_{M} \mathcal{H}_{d}=d$.

The equation

$$
\langle x, y\rangle=\operatorname{tr}_{M}\left(y^{*} x\right)
$$

defines an inner-product on M. Call the completion $L^{2}\left(M, t r_{M}\right)$. Then $L^{2}\left(M, t r_{M}\right)$ is an $M-M$ bimodule with left- and right- actions given by multiplication.
$\mathcal{H}_{1}=L^{2}\left(M, \operatorname{tr}_{M}\right)$.

If $0 \leq d \leq 1$, then $\mathcal{H}_{d}=L^{2}\left(M, \operatorname{tr}_{M}\right)$.p where $p \in \mathcal{P}(M)$ satisfies $\operatorname{tr}_{M} p=d$.
\mathcal{H}_{d} is a finitely generated projective module if $d<\infty$.

In particular $K_{0}(M) \cong \mathbb{R}$.

The hyperfinite $I I_{1}$ factor R : Among $I I_{1}$ factors, pride of place goes to the ubiquitous hyperfinite $I I_{1}$ factor R. It is characterised as the unique $I I_{1}$ factor which has any of many properties, such as injectivity and approximate finite-dimensionality (= hyperfiniteness).

Thus, \exists a unique $I I_{1}$ factor R which contains an increasing sequence

$$
A_{1} \subset A_{2} \subset \cdots \subset A_{n} \subset \cdots
$$

such that $\cup_{n} A_{n}$ is σ-weakly dense in R.

Examples of $I I_{1}$ factors: Let $\lambda: G \rightarrow \mathcal{U}\left(\mathcal{L}\left(\ell^{2}(G)\right)\right)$ denote the 'left-regular representation' of a countable infinite group G, and let $L G=(\lambda(G))^{\prime \prime}$. Then $L G$ is a $I I_{1}$ factor iff every conjugacy class of G other than $\{1\}$ is infinite.
$L \Sigma_{\infty} \cong R$, while $L \mathbb{F}_{2}$ is not hyperfinite.
Big open problem: is $L \mathbb{F}_{2} \cong L \mathbb{F}_{3}$?

The study of bimodules over $I I_{1}$ factors is essentially equivalent to that of 'subfactors'.
(The bimodule ${ }_{N} \mathcal{H}_{M}$ corresponds to $\pi_{l}(N) \subset$ $\left.\pi_{r}(M)^{\prime}.\right)$

A subfactor is a unital inclusion $N \subset M$ of $I I_{1}$ factors. For a subfactor as above, Jones defined the index of the subfactor to be

$$
[M: N]=\operatorname{dim}_{N} L^{2}(M, \operatorname{tr} M)
$$

and proved:

$$
[M: N] \in[4, \infty] \cup\left\{4 \cos ^{2}\left(\frac{\pi}{n}: n \geq 3\right\}\right.
$$

A subfactor N is said to be irreducible if $N^{\prime} \cap$ $M=\mathbb{C}$ - or equivalently, $L^{2}\left(M, \operatorname{tr}_{M}\right)$ is irreducible as an $N-M$ bimodule.

It is known that if a subfactor $N \subset M$ has finite index, then N is hyperfinite if and only if M is. In this case, call the subfactor hyperfinite.

Very little is known about the set \mathcal{I}_{R}^{0} of possible index values of irreducible hyperfinite subfactors.

Some known facts:
(a) (Jones) $\mathcal{I}_{R}=[4, \infty] \cup\left\{4 \cos ^{2}\left(\frac{\pi}{n}\right): n \geq 3\right\}$ and $\mathcal{I}_{R}^{0} \supset\left\{4 \cos ^{2}\left(\frac{\pi}{n}: n \geq 3\right\}\right.$
(b) $\left(\frac{N+\sqrt{N^{2}+4}}{2}\right)^{2},\left(\frac{N+\sqrt{N^{2}+8}}{2}\right)^{2} \in \mathcal{I}_{R}^{0} \forall N \geq 1$
(c) $\left(N+\frac{1}{N}\right)^{2}$ is the limit of an increasing sequence in \mathcal{I}_{R}^{0}.

What is relevant for us is that if $N \subset M$ is a subfactor of finite index, then the 'basic construction' goes through exactly as in finite dimensions.

Proposition: (subf1) Let $L^{2}\left(M, t r_{M}\right)$ denote the completion of the inner-product space $V=$ $\{\hat{x}: x \in M\}$ (with inner-product defined by $\left.\langle\hat{x}, \hat{y}\rangle=\operatorname{tr}\left(y^{*} x\right)\right)$, let $L^{2}\left(N, \operatorname{tr}_{N}\right)$ be identified with the subspace defined as the closure of $V_{0}=\{\hat{x}: x \in N\}$, and let e_{N} denote the orthogonal projection of $L^{2}\left(M, t r_{M}\right)$ onto $L^{2}\left(N, t r_{N}\right)$.
(1) Then there exists a map $E_{N}: M \rightarrow N$ satisfying, for all $x \in M, a, b \in N$:
(i) $E_{N}(a x b)=a E_{N}(x) b$
(ii) $E_{N}(a)=a$
(iii) $\left.\operatorname{tr}\right|_{N} \circ E_{N}=t r$
(iv) $e_{N} x e_{N}=\left(E_{N} x\right) e_{N}$
(2) Further, if we write π_{l} and π_{r} for the maps defined earlier, if we identify M with $\pi_{l}(M)$, then,
(a) $\pi_{r}(M)^{\prime}=\pi_{l}(M)=M$
(b) $\pi_{r}(N)^{\prime}=\left\langle M, e_{N}\right\rangle=\left(M \cup\left\{e_{N}\right\}\right)^{\prime \prime}$ is also a $I I_{1}$ factor, and $\left[\left\langle M, e_{N}\right\rangle: M\right]=[M: N]$
(c) $\operatorname{tr}_{\left\langle M, e_{N}\right\rangle}\left(x e_{N}\right)=\operatorname{\tau tr}_{M}(x)$ for all $x \in M$, where we write $\tau=[M: N]^{-1}$.
(d) $N=M \cap\left\{e_{N}\right\}^{\prime}$ \square

All the necessary ingredients are in place for us to build the Jones tower

$$
M_{0} \subset M_{1} \subset^{e_{1}} M_{2} \subset^{e_{2}} M_{3} \cdots
$$

where e_{n} is the Jones projection implementing the 'tr'-preserving conditional expectation $E_{M_{n-1}}$ of M_{n} onto M_{n-1} and $M_{n} \subset M_{n+1}$ is the basic construction for $M_{n-1} \subset M_{n}$ (so that $\left.M_{n+1}=\left\langle M_{n}, e_{n}\right\rangle\right)$.

It is easy to deduce from the preceding proposition (applied to appropriate members of the Jones tower) that

$$
\begin{aligned}
e_{i}^{2} & =e_{i} \quad \forall i \\
e_{i} e_{j} & =e_{j} e_{i} \text { if }|i-j| \geq 2 \\
e_{i} e_{j} e_{i} & =\tau e_{i} \quad \text { if }|i-j|=1
\end{aligned}
$$

where $\tau=[M: N]^{-1}$. In fact, more generally than the last equation above, it is true that:

$$
\begin{aligned}
e_{n} x e_{n} & =\left(E_{M_{n-1}} x\right) e_{n} \forall x \in M_{n} \\
\operatorname{tr}_{M_{n+1}}\left(x e_{n}\right) & =\tau \operatorname{tr}_{M_{n}}(x) \forall x \in M_{n}
\end{aligned}
$$

In fact, since there is a unique normalised trace on a $I I_{1}$ factor, we can unambiguously use the symbol 'tr' for the functional on $\cup_{n} M_{n}$ which restricts on M_{n} to $\operatorname{tr}_{M_{n}}$.

