Wenzl's theorem

V.S. Sunder (IMSc, Chennai) *

Lectures 2, April 19th, 2007

Our goal in this lecture is to indicate a proof of the following result of Wenzl, which was inspired by the result of Jones on restriction of index values:

Theorem 1: (Wenzl) If there exists a sequence $\left\{e_{n}: n=1,2, \cdots\right\}$ of orthogonal projections on Hilbert space, which satisfy the relations defining $T L(\tau)$, then

$$
\tau \in\left(0, \frac{1}{4}\right] \cup\left\{\frac{1}{4} \sec ^{2}\left(\frac{\pi}{n}\right): n=3,4,5, \cdots\right\}
$$

But we first need a digression into traces, conditional expectations, and a variant of Tchebyshev polynomials of the second kind.

Definition: A linear functional 'tr' on an algebra A is said to be

- a trace if $\operatorname{tr}(x y)=\operatorname{tr}(y x)$ forall $x, y \in A$;
- normalised if A is unital and $\operatorname{tr}(1)=1$;
- positive if A is a $*$-algebra and $\operatorname{tr}\left(x^{*} x\right) \geq$ $0 \forall x \in A$;
- faithful and positive if A is a *-algebra and $\operatorname{tr}\left(x^{*} x\right)>0 \forall 0 \neq x \in A$.

For example, $M_{n}(\mathbb{C})$ admits a unique normalised trace $\left(\operatorname{tr}(x)=\frac{1}{n} \sum_{i=1}^{n} x_{i i}\right)$ which is automatically faithful and positive.

Proposition FDC*: The following conditions on a finite-dimensional unital ${ }^{*}$-algebra A are equivalent:

1. There exists a unital ${ }^{*}$-isomorphism from $\pi: A \rightarrow M_{n}(\mathbb{C})$ for some n.
2. There exists a faithful positive normalised trace on A.

Proof: $(1) \Rightarrow(2):$ Set $\operatorname{tr}_{A}=\operatorname{tr}_{M_{n}(\mathbb{C})} \circ \pi$
(2) \Rightarrow (1): Set $H=\{\hat{x}: x \in A\}$, define

$$
\langle\hat{x}, \widehat{y}\rangle=\operatorname{tr}\left(y^{*} x\right),
$$

and note that H becomes an inner product space.

Consider the map $\pi: A \rightarrow \operatorname{End}_{\mathbb{C}}(H)$ defined by

$$
\pi(x) \widehat{y}=\widehat{x y}
$$

Observe that π is an algebra homomorphism, such that
$\langle\pi(x) \hat{y}, \hat{z}\rangle=\operatorname{tr}\left(z^{*} x y\right)=\operatorname{tr}\left(\left(x^{*} z\right)^{*} y\right)=\left\langle\hat{y}, \pi\left(x^{*}\right) \hat{z}\right\rangle$
i.e., $\pi(x)^{*}=\pi\left(x^{*}\right)$.

The fact that A has a unit implies that π is faithful (since $\pi(x)=0 \Rightarrow \operatorname{tr}\left(x^{*} x\right)=\|\widehat{x}\|^{2}=$ $\|\pi(x) \hat{1}\|^{2}=0 \Rightarrow x=0$. Finally, setting $n=$ $\operatorname{dim}(H)=\operatorname{dim}(A)$, and realising linear operators on H as matrices with respect t some orthonormal basis of H, we may view π as a faithful *-homomorphism into $M_{n}(\mathbb{C})$.

Note: A *-algebra A as in the above Proposition is nothing but a finite-dimensional C^{*} algebra. Such an A may admit several faithful positive normalised traces in general.

Suppose $A_{0} \subset A$ is a unital inclusion of finitedimensional C^{*}-algebras, and suppose 'tr' is a faithful positive normalised trace on A. Let $H=\{\widehat{a}: a \in A\}$ be the finite-dimensional Hilbert space as above, and let us simply identify $x \in A$ with $\pi(x) \in E n d_{\mathbb{C}}(H)$ - so that $x \widehat{y}=\widehat{x y}$. (The artificial looking 'hat's were introduced in order to distinguish between x, the operator on H and \hat{x}, the vector in H.) Let $H_{0}=\left\{\widehat{a_{0}}: a_{0} \in A_{0}\right\}$ and let $e_{A_{0}}$ denote the orthogonal projection of H onto the subspace H_{0}. Since faithfulness of 'tr' translates into injectivity of the map $A \ni a \mapsto \widehat{a} \in H$, we see that there exists a uniquely defined \mathbb{C}-linear map $E_{A_{0}}: A \rightarrow A_{0}$, usually called the 'tr'-preserving conditional expectation of A onto A_{0}, such that $e_{A_{0}}(\hat{a})=\widehat{E_{A_{0}}} a$. The following facts may be verified to hold, for all $a, b \in A, a_{0}, b_{0} \in A_{0}$:

$$
\begin{aligned}
E_{A_{0}}\left(a_{0} b b_{0}\right) & =a_{0} E_{A_{0}}(b) b_{0} \\
E_{A_{0}}\left(a_{0}\right) & =a_{0} \\
\left.\operatorname{tr}\right|_{A_{0} \circ E_{A_{0}}} & =\operatorname{tr} \\
e_{A_{0}} a e_{A_{0}} & =\left(E_{A_{0}} a\right) e_{A_{0}}
\end{aligned}
$$

There is a natural $*_{\text {-structure on } T L_{n}\left(\beta^{-2}\right)=}$ $D_{n}(\beta)$ with the adjoint T^{*} of a Kauffman diagram T being defined as the diagram obtained by reflecting T about a horizontal lilne in the middle of the bounding box. Thus, E_{i} is selfadjoint for each i.

Also, there is a natural inclusion ($=$ unital $*_{-}$ algebra monomorphism) of $T L_{n}$ into $T L_{n+1}$ which maps e_{i} to e_{i} for $1 \leq i<n$. At the level of diagrams, it identifies a $T \in \mathcal{K}_{n}$ with the element of \mathcal{K}_{n+1} btained by adding on a vertical strand to the right end of T.

Although the $T L_{n}$'s are not quite C^{*}-algebras in general, they nevertheles come equipped with a consistent family of traces $\{\operatorname{tr}\}$ and consistent conditional expectations $\epsilon_{n}: D_{n+1}(\beta) \rightarrow$ $D_{n}(\beta)$ as follows:

If a is an $(n+1, n+1)$ diagram, then $\tilde{\epsilon_{n}}(a)$ is obtained by just closing up the last strand. Hence if $a \in D_{n}(\beta)$ then $\tilde{\epsilon_{n}}(a)=\beta a$. Define $\epsilon_{n}(a)=\frac{1}{\beta} \tilde{\epsilon}_{n}(a)$ for $a \in D_{n}(\beta)$. Then ϵ_{n} is a conditional expectation.

Let $\operatorname{tr}_{n}: D_{n}(\beta) \rightarrow \mathbb{C}$ be defined by $\operatorname{tr}_{n}(a)=$ $\left(\epsilon_{1} \epsilon_{2} \cdots \epsilon_{n-1}\right)(a)$. Note that $\operatorname{tr}_{n}(a)=t r_{n+1}(a)$ if $a \in D_{n}(\beta)$. Hence we can and will denote $t r_{n}$ by $t r$. If a is a diagram, let $c(a)$ be the number of loops one gets when one closes all the strands. Then $\operatorname{tr}(a)=\beta^{c(a)-n}$
$\operatorname{tr}: D_{n}(\beta) \rightarrow \mathbb{C}$ is a unital trace and satisfies the following properties:

1. $\operatorname{tr}(x)=\operatorname{tr}\left(\epsilon_{n}(x)\right) \forall x \in D_{n+1}(\beta)$.
2. $e_{n} x e_{n}=\epsilon_{n-1}(x) e_{n} \forall x \in D_{n}(\beta)$.
3. $\operatorname{tr}\left(e_{i}\right)=\tau$ where $\tau=\frac{1}{\beta^{2}}$.

The following variants of Tchebyshev polynomials of the second kind are important for us:

$$
\begin{align*}
P_{0}(x) & =P_{1}(x)=1 \tag{1}\\
P_{n+1}(x) & =P_{n}(x)-x P_{n-1}(x) \tag{2}
\end{align*}
$$

Thus,

$$
\begin{aligned}
& P_{0}(x)=1 \\
& P_{1}(x)=1 \\
& P_{2}(x)=1-x \\
& P_{3}(x)=1-2 x \\
& P_{4}(x)=1-3 x+x^{2} \\
& P_{4}(x)=1-4 x+3 x^{2} \\
& P_{5}(x)=1-5 x+6 x^{2}-x^{3} \\
& P_{6}(x)=1-6 x+10 x^{2}-4 x^{3} \\
& -----
\end{aligned}
$$

Lemma P_{n} :

If we set

$$
\sigma=\frac{1+\sqrt{1-4 x}}{2}, \bar{\sigma}=\frac{1-\sqrt{1-4 x}}{2}
$$

we have
(1) $P_{n}(x)=\frac{\sigma^{n+1}-\bar{\sigma}^{n+1}}{\sigma-\bar{\sigma}}$
(2) $P_{n}\left(\frac{1}{4} \sec ^{2} \theta\right)=\frac{\sin (n+1) \theta}{2^{n} \cos ^{n} \theta \sin \theta}$
(3) The polynomial P_{n} is of degree $m=\left[\frac{n}{2}\right]$. It's leading coefficient is $(-1)^{m}$ if $n=2 m$ and $(-1)^{m}(m+1)$ if $n=2 m+1$.
(4) The polynomial P_{n} has distinct zeros given by $\left\{\frac{1}{4} \sec ^{2}\left(\frac{\pi j}{n+1}\right): 1 \leq j \leq m\right\}$
(5) If $n \geq 2$ and if $\frac{1}{4} \sec ^{2}\left(\frac{\pi}{n+2}\right)<\lambda<\frac{1}{4} \sec ^{2}\left(\frac{\pi}{n+1}\right)$, then $P_{i}(\lambda)>0$ for $1 \leq i \leq n$ and $P_{n+1}(\lambda)<0$.

Proof: (1) Note that σ and $\bar{\sigma}$ are the roots of the equation $p^{2}-p+x=0$, so the general solution of the recurrence relation defining the P_{k} 's is seen to be $P_{n}=A \sigma^{n+1}+B \bar{\sigma}^{n+1}$; the 'boundary conditions' demand that $A+B=0$ (for $n=-1$) and $A \sigma+B \bar{\sigma}=1$ (for $n=0$); this yields (1).
(2) Setting $x=\frac{1}{4} \sec ^{2} \theta$, we find that $\sigma=r e^{i \theta}, \bar{\sigma}=$ $r e^{-i \theta}$ where $r=\frac{1}{2 \cos \theta}$, and hence $\sigma^{n+1}-\bar{\sigma}^{n+1}=$ $2 i r^{n+1} \sin (n+1) \theta, \sigma-\bar{\sigma}=2 i r \sin \theta$, thereby establishing (2).
(3) This is shown fairly easily by induction, using the recurrence relation satisfied by the P_{n} 's.
(4) It follows from (2) that the numbers $\frac{1}{4} \sec ^{2}\left(\frac{\pi j}{n+1}\right)$ yield m distinct zeros of P_{n}. Since P_{n} has degree m, this assertion is clear.
(5) It is seen from (2) that $\lim _{x \rightarrow-\infty} P_{n}(x)=$ $+\infty$ for all n; in particular, P_{n} is positive to the left of its first zero, and since the function $x \mapsto \sec ^{2}(x)$ is an increasing function in ($0, \frac{\pi}{2}$, it is seen that for all $k \leq n$ and $j \leq[$ frack 2], we have

$$
\begin{aligned}
\lambda & <\frac{1}{4} \sec ^{2}\left(\frac{\pi}{n+1}\right) \\
& <\frac{1}{4} \sec ^{2}\left(\frac{\pi}{k+1}\right) \\
& <\frac{1}{4} \sec ^{2}\left(\frac{j \pi}{k+1}\right)
\end{aligned}
$$

and consequently λ lies to the left of the first zero of P_{k}, whence $P_{k}(\lambda)>0$.

On the other hand, the inequalities
$\frac{1}{4} \sec ^{2}\left(\frac{\pi}{n+2}\right)<\lambda<\frac{1}{4} \sec ^{2}\left(\frac{\pi}{n+1}\right)<\frac{1}{4} \sec ^{2}\left(\frac{2 \pi}{n+2}\right)$
show that λ lies between the first two zeros, and we may conclude that indeed $P_{n+1}(\lambda)<0$.

Let $T L(\tau)=\cup_{n} T_{n}(\tau)$. Then $T L(\tau)$ is a \star algebra generated by $1, e_{1}, e_{2}, \ldots$ When $\tau>0, e_{i}$'s are self adjoint.

Lemma JW:(Wenzl) Let τ be a nonzero complex number such that $P_{k}(\tau) \neq 0$ for $k=$ $1,2, \cdots, n$. Define (the so-called Jones-Wenzl idempotents) f_{k} in $T L(\tau)$ recursively as follows:

$$
\begin{aligned}
f_{0}=f_{1} & =1 \\
f_{k+1} & =f_{k}-\frac{P_{k-1}(\tau)}{P_{k}(\tau)} f_{k} e_{k} f_{k}, \quad 1 \leq k \leq n
\end{aligned}
$$

Then, for $1 \leq k \leq n+1$, we have:
(1) $f_{k} \in T_{k}(\tau)$.
(2) If $k \geq 2$, then $1-f_{k}$ is in the algebra generated by $\left\{e_{1}, \cdots, e_{k-1}\right\}$
(3) $\left(e_{k} f_{k}\right)^{2}=\frac{P_{k}(\tau)}{P_{k-1}(\tau)} e_{k} f_{k},\left(f_{k} e_{k}\right)^{2}=\frac{P_{k}(\tau)}{P_{k-1}(\tau)} f_{k} e_{k}$,
(4) f_{k} is an idempotent.
(5) $f_{k} e_{i}=0, e_{i} f_{k}=0$ if $i \leq k-1$.
(6) $\operatorname{tr}\left(f_{k}\right)=P_{k}(\tau)$.

When $\tau>0, \quad f_{k}$ is selfadjoint.

Proof: The proof is by induction on k. Assertions $1-6$ are clearly true for $k \leq 2$. Now assume that $1-6$ are valid for $1 \leq k \leq l$ where $l \geq 2$. We will show the result is true for $k=l+1$.

Since f_{l} is in $T_{l}(\tau)$, it follows by definition that f_{l+1} is in the algebra generated by $1, e_{1}, e_{2}, \cdots, e_{l}$. Hence $f_{l+1} \in T_{l+1}(\tau)$. Since $1-f_{l}$ is in the algebra genrated by $e_{1}, e_{2}, \cdots, e_{l-1}$, by definition, it follows that $1-f_{l+1}$ is in the algebra generated by $e_{1}, e_{2}, \cdots, e_{l}$.

Now note that $f_{l+1} f_{l}=f_{l+1}$ and $f_{l} f_{l+1}=f_{l+1}$ since f_{l} is an idempotent. Since $f_{l} \in T_{l}(\tau), e_{l+1}$ commutes with f_{l}. Thus,

$$
\begin{aligned}
e_{l+1} f_{l+1} e_{l+1} & =e_{l+1} f_{l}-\frac{P_{l-1}(\tau)}{P_{l}(\tau)} f_{l} e_{l+1} e_{l} e_{l+1} f_{l} \\
& =\frac{P_{l+1}(\tau)}{P_{l}(\tau)} e_{l+1} f_{l}
\end{aligned}
$$

Hence $\left(e_{l+1} f_{l+1}\right)^{2}=\frac{P_{l+1}(\tau)}{P_{l}(\tau)} e_{l+1} f_{l+1}$.
The proof that $\left(f_{l+1} e_{l+1}\right)^{2}=\frac{P_{l+1}(\tau)}{P_{l}(\tau)} f_{l+1} e_{l+1}$ is similar.

Next
f_{l+1}^{2}

$$
\begin{aligned}
& =f_{l}^{2}-2 \frac{P_{l-1}(\tau)}{P_{l}(\tau)} f_{l} e_{l} f_{l}+\left(\frac{P_{l-1}(\tau)}{P_{l}(\tau)}\right)^{2} f_{l} e_{l} f_{l} e_{l} f_{l} \\
& =f_{l}^{2}-2 \frac{P_{l-1}(\tau)}{P_{l}(\tau)} f_{l} e_{l} f_{l}+\left(\frac{P_{l-1}(\tau)}{P_{l}(\tau)}\right)^{2} \frac{P_{l}(\tau)}{P_{l-1}(\tau)} f_{l} e_{l} f_{l} \\
& =f_{l}-\frac{P_{l-1}(\tau)}{P_{l}(\tau)} f_{l} e_{l} f_{l}=f_{l+1}
\end{aligned}
$$

Hence f_{l+1} is an idempotent.
Since $f_{l+1} e_{i}=f_{l+1} f_{l} e_{i}$, it follows that $f_{l+1} e_{i}=$ 0 if $i \leq l-1$. Now $f_{l+1} e_{l}=f_{l} e_{l}-\frac{P_{l-1}(\tau)}{P_{l}(\tau)}\left(f_{l} e_{l}\right)^{2}$. But $\left(f_{l} e_{l}\right)^{2}=\frac{P_{l}(\tau)}{P_{l}(\tau)} f_{l} e_{l}$, and so $f_{l+1} e_{l}=0$. Hence $f_{l+1} e_{i}=0$ for $i \leq l$. Similarly $e_{i} f_{l+1}=0$.

Next,

$$
\begin{aligned}
\operatorname{tr}\left(f_{l+1}\right) & =\operatorname{tr}\left(f_{l}\right)-\frac{P_{l-1}(\tau)}{P_{l}(\tau)} \operatorname{tr}\left(f_{l} e_{l} f_{l}\right) \\
& =\operatorname{tr}\left(f_{l}\right)-\frac{P_{l-1}(\tau)}{P_{l}(\tau)} \operatorname{tr}\left(\epsilon_{l}\left(f_{l} e_{l} f_{l}\right)\right) \\
& =\operatorname{tr}\left(f_{l}\right)-\frac{P_{l-1}(\tau)}{P_{l}(\tau)} \operatorname{tr}\left(f_{l} \epsilon_{l}\left(e_{l}\right) f_{l}\right) \\
& =\operatorname{tr}\left(f_{l}\right)-\frac{P_{l-1}(\tau)}{P_{l}(\tau)} \operatorname{tr}\left(\tau f_{l}\right) \\
& =P_{l}(\tau)-\tau P_{l-1}(\tau)=P_{l+1}(\tau)
\end{aligned}
$$

If $\tau>0$ then $P_{k}(\tau)$ is real. Hence by induction it follows that $f_{k}^{\prime} s$ are selfadjoint.

We shall next prove the following lemma, before proceeding to prove Wenzl's theorem.

Lemma 1: Let τ be such that $\frac{1}{4} \sec ^{2}\left(\frac{\pi}{n+2}\right)<\tau<$ $\frac{1}{4} \sec ^{2}\left(\frac{\pi}{n+1}\right)$ for some $n \in \mathbb{N}$, with $n \geq 2$. Suppose $\pi: T L(\tau) \rightarrow B(H)$ be a \star homomorphism, where H is a Hilbert space. Let e_{i}^{T} denote the idempotents in $T L(\tau)$. Then the Jones-Wenzl idempotents f_{k}^{T} 's are defined for $k=1,2, \cdots n+2$. Suppose $f_{k}=\pi\left(f_{k}^{T}\right)$ for $k \leq n+2$. Then
(1) $1-f_{k}=e_{1} \vee e_{2} \vee \cdots e_{k-1}$ for $k \leq n+2$.
(2) $e_{n+1} f_{n+1}=0$.
(3) e_{n+1} is orthogonal to f_{n}.

Proof: Note that $P_{k}(\tau)>0$ for $k=1,2, \cdots n$ and $P_{n+1}(\tau)<0$. Hence the Jones-Wenzl idempotents are defined for $k=1,2, \cdots n+2$.

By Lemma JW, it follows that $f_{k} e_{i}=0$ for $i \leq k-1$. Hence we have $e_{1} \vee e_{2} \vee \cdots \vee e_{k-1} \leq$ $1-f_{k}$. Since $1-f_{k}$ is in the algebra generated by $e_{1}, e_{2}, \cdots, e_{k-1}$, it follows that $1-f_{k} \leq$ $e_{1} \vee e_{2} \vee \cdots e_{k-1}$. This proves (1).

Observe that $e_{n+1} f_{n+1} e_{n+1}=\frac{P_{n+1}(\tau)}{P_{n}(\tau)} e_{n+1} f_{n}$. But $e_{n+1} f_{n+1} e_{n+1}$ is positive and $e_{n+1} f_{n}$ is a projection. Since $P_{n+1}(\tau)<0$, it follows that $e_{n+1} f_{n}=0$ and $\left(f_{n+1} e_{n+1}\right)^{\star} f_{n+1} e_{n+1}=0$. Hence $f_{n+1} e_{n+1}=0$ and e_{n+1} is orthogonal to f_{n}. By taking adjoints, we get $e_{n+1} f_{n+1}=0$. This proves (2) and (3).

Proposition (orth): Let H be a Hilbert space. Suppose e_{1}, e_{2}, \cdots is a sequence of non-zero projections in $B(H)$ satisfying the following reIation :

$$
\begin{array}{rlrl}
e_{i}^{2} & =e_{i}=e_{i}^{\star} \\
& \\
e_{i} e_{j} & =e_{j} e_{i}=0 \quad \text { if }|i-j| \geq 2 \\
e_{i} e_{j} e_{i} & =\tau e_{i} & \text { if }|i-j|=1
\end{array}
$$

Then $\tau \in\left(0, \frac{1}{4}\right] \cup\left\{\frac{1}{4} \sec ^{2}\left(\frac{\pi}{n+1}\right): \quad n \geq 2\right\}$.
Proof: There exists a nontrivial C^{\star} representation of $T L(\tau)$ say π which is unital and for which $\pi\left(e_{i}^{T}\right)=e_{i}$ where e_{i}^{T} denote the idempotents in $T L(\tau)$. By taking norms on the third relation, it follows that $\tau \leq 1$. Suppose that τ is not in the set given in the proposition. Then there exists $n \geq 2$ such that $\frac{1}{4} \sec ^{2}\left(\frac{\pi}{n+2}\right)<\tau<\frac{1}{4} \sec ^{2}\left(\frac{\pi}{n+1}\right)$. Then $P_{k}(\tau)>0$ for $k=1,2, \cdots n$ but $P_{n+1}(\tau)<0$. Hence, the Jones Wenzl idempotents f_{k}^{T} 's are defined for $k=1,2, \cdots n+2$. Let $f_{k}=\pi\left(f_{k}^{T}\right)$ for $k \leq n+2$.

By Lemma 1, it follows that e_{n+1} is orthogonal to f_{n}. But e_{n+1} is orthogonal to $e_{1} \vee e_{2} \vee \cdots e_{n-1}$ which latter projection is, by Lemma 1, nothing but $1-f_{n}$. Hence $e_{n+1}=e_{n+1} f_{n}+e_{n+1}(1-$ $\left.f_{n}\right)=0$ which is a contradiction. This completes the proof.

Proof of Wenzl's theorem:

Suppose that τ is not in the set described above. Then there exists $n \geq 2$ such that $\frac{1}{4} \sec ^{2}\left(\frac{\pi}{n+2}\right)<\tau<\frac{1}{4} \sec ^{2}\left(\frac{\pi}{n+1}\right)$. From lemma ??, it follows that $e_{n+1} f_{n+1}=0$. Also $e_{i} f_{n+1}=$ 0 for $i \leq n$. Hence $f_{n+1} \leq 1-e_{1} \vee e_{2} \vee \cdots \vee$ $e_{n+1}=f_{n+2}$. But $f_{n+2} \leq f_{n+1}$. Hence $f_{n+1}=$ f_{n+2}. Let k be the least element in $\{2,3, \cdots, n\}$ for which $f_{k+1}=f_{k+2}$. Let $g_{i}=e_{k+i} f_{k-1}$ for $i \geq 0$. We will derive a contradiction by showing that $g_{i}^{\prime} s$ satisfy the hypothesis of Proposition (orth).

Since e_{k+i} commutes with f_{k-1} for $i \geq 0$, it follows that g_{i} 's are projections. For the same reason, $g_{i}^{\prime} s$ satisfy the third relation of Proposition (orth). First, we show that $g_{0} \neq 0$. By the choice of $k, f_{k} \neq f_{k+1}$. Hence $f_{k} e_{k} f_{k} \neq 0$. Since $f_{k} \leq f_{k-1}$, it follows that $f_{k-1} e_{k}=g_{0} \neq$ 0.

Now we show that $g_{i} g_{j}=0$ if $|i-j| \geq 2$. We begin by showing $g_{0} g_{2}=0$. Observe that since $f_{k+1}=f_{k+2}$, we have

$$
e_{k+1} f_{k}=e_{k+1}\left(f_{k}-f_{k+1}\right) e_{k+1}=e_{k+1}\left(\frac{P_{k-1}(\tau)}{P_{k}(\tau)} f_{k} e_{k} f_{k}\right) e
$$

Since $P_{k+1}(\tau) \neq 0$, it follows that $e_{k+1} f_{k}=0$. By premultiplying and postmultiplying by e_{k+2}, we see that $e_{k+2} f_{k}=0$. Hence we have,

$$
\begin{aligned}
g_{0} g_{2} & =e_{k} e_{k+2} f_{k-1} \\
& =e_{k} e_{k+2}\left(f_{k-1}-f_{k}\right) e_{k+2} e_{k} \\
& =e_{k+2} e_{k}\left(f_{k-1}-f_{k}\right) e_{k} e_{k+2} \\
& =e_{k+2} e_{k}\left(\frac{P_{k-2}(\tau)}{P_{k-1}(\tau)} f_{k-1} e_{k-1} f_{k-1}\right) e_{k} e_{k+2} \\
& =\tau \frac{P_{k-2}(\tau)}{P_{k-1}(\tau)} g_{0} g_{2}
\end{aligned}
$$

Since $P_{k}(\tau) \neq 0$, it follows that $g_{0} g_{2}=0$. Let $i \geq 2$. Let us consider the partial isometry $w=$ $\left(\frac{1}{\tau}\right)^{i-1} e_{k+i} e_{k+i-1} \cdots e_{k+2}$. Since w commutes with e_{k} and $f_{k-1}, w e_{k} f_{k-1}$ is a partial isometry. Note that $\left(w e_{k} f_{k-1}\right)^{\star} w e_{k} f_{k-1}=g_{0} g_{2}=0$. Thus, $g_{i} g_{0}=w e_{k} f_{k-1}\left(w e_{k} f_{k-1}\right)^{\star}=0$. Hence $g_{i} g_{0}=0$ if $i \geq 2$. Let i, j be such that $j \geq i+2$. Now let $u=\left(\frac{1}{\tau}\right)^{i+1} e_{k+i} e_{k+i-1} \cdots e_{k}$. Then u is a partial isometry which commutes with f_{k-1} and e_{k+j}.

Let $v=u e_{k+j} f_{k-1}$. Then v is a partial isometry such that $v^{\star} v=g_{0} g_{j}$ and $v v^{\star}=g_{i} g_{j}$. Since $v^{\star} v=0$, it follows that $v v^{\star}=0$. Thus $g_{i} g_{j}=$ 0 . Therefore g_{i} 's satisfy the assumptions of Proposition (orth). Hence we have a contradiction. This completes the proof.

