Wenzl's theorem

V.S. Sunder (IMSc, Chennai) *

Lectures 2, April 19th, 2007

Our goal in this lecture is to indicate a proof of the following result of Wenzl, which was inspired by the result of Jones on restriction of index values:

Theorem 1: (Wenzl) If there exists a sequence $\{e_n : n = 1, 2, \dots\}$ of orthogonal projections on Hilbert space, which satisfy the relations defining $TL(\tau)$, then

$$\tau \in (0, \frac{1}{4}] \cup \{\frac{1}{4}sec^2(\frac{\pi}{n}) : n = 3, 4, 5, \cdots\}$$

But we first need a digression into traces, conditional expectations, and a variant of Tchebyshev polynomials of the second kind. **Definition:** A linear functional 'tr' on an algebra A is said to be

- a *trace* if tr (xy) = tr (yx) forall $x, y \in A$;
- normalised if A is unital and tr(1) = 1;
- positive if A is a *-algebra and tr $(x^*x) \ge 0 \forall x \in A;$
- faithful and positive if A is a *-algebra and tr (x*x) > 0 ∀ 0 ≠ x ∈ A.

For example, $M_n(\mathbb{C})$ admits a unique normalised trace $(tr(x) = \frac{1}{n} \sum_{i=1}^{n} x_{ii})$ which is automatically faithful and positive. **Proposition FDC*:** The following conditions on a finite-dimensional unital *-algebra A are equivalent:

- 1. There exists a unital *-isomorphism from $\pi: A \to M_n(\mathbb{C})$ for some n.
- 2. There exists a faithful positive normalised trace on A.

Proof: (1) \Rightarrow (2): Set $\operatorname{tr}_A = \operatorname{tr}_{M_n(\mathbb{C})} \circ \pi$

(2) \Rightarrow (1): Set $H = \{\hat{x} : x \in A\}$, define

$$\langle \hat{x}, \hat{y} \rangle = \operatorname{tr}(y^* x),$$

and note that H becomes an inner product space.

Consider the map $\pi : A \to End_{\mathbb{C}}(H)$ defined by

$$\pi(x)\widehat{y} = \widehat{xy}$$

Observe that π is an algebra homomorphism, such that

 $\langle \pi(x)\hat{y},\hat{z}\rangle = \operatorname{tr}(z^*xy) = \operatorname{tr}((x^*z)^*y) = \langle \hat{y}, \pi(x^*)\hat{z}\rangle$ i.e., $\pi(x)^* = \pi(x^*)$.

The fact that A has a unit implies that π is faithful (since $\pi(x) = 0 \Rightarrow \operatorname{tr}(x^*x) = ||\hat{x}||^2 =$ $||\pi(x)\hat{1}||^2 = 0 \Rightarrow x = 0$. Finally, setting n =dim(H) = dim(A), and realising linear operators on H as matrices with respect t some orthonormal basis of H, we may view π as a faithful *-homomorphism into $M_n(\mathbb{C})$. \Box

Note: A *-algebra A as in the above Proposition is nothing but a finite-dimensional C^* -algebra. Such an A may admit several faithful positive normalised traces in general.

Suppose $A_0 \subset A$ is a unital inclusion of finitedimensional C^* -algebras, and suppose 'tr' is a faithful positive normalised trace on A. Let $H = \{\hat{a} : a \in A\}$ be the finite-dimensional Hilbert space as above, and let us simply identify $x \in A$ with $\pi(x) \in End_{\mathbb{C}}(H)$ - so that $x\hat{y} = \hat{xy}$. (The artificial looking 'hat's were introduced in order to distinguish between x_i the operator on H and \hat{x} , the vector in H.) Let $H_0 = {\hat{a_0} : a_0 \in A_0}$ and let e_{A_0} denote the orthogonal projection of H onto the subspace H_0 . Since faithfulness of 'tr' translates into injectivity of the map $A \ni a \mapsto \hat{a} \in H$, we see that there exists a uniquely defined \mathbb{C} -linear map $E_{A_0}: A \to A_0$, usually called *the* 'tr'-*preserving* conditional expectation of A onto A_0 , such that $e_{A_0}(\hat{a}) = \widehat{E_{A_0}}a$. The following facts may be verified to hold, for all $a, b \in A, a_0, b_0 \in A_0$:

$$E_{A_0}(a_0bb_0) = a_0 E_{A_0}(b)b_0$$

$$E_{A_0}(a_0) = a_0$$

$$tr|_{A_0} \circ E_{A_0} = tr$$

$$e_{A_0}ae_{A_0} = (E_{A_0}a)e_{A_0}$$

There is a natural *-structure on $TL_n(\beta^{-2}) = D_n(\beta)$ with the adjoint T^* of a Kauffman diagram T being defined as the diagram obtained by reflecting T about a horizontal lilne in the middle of the bounding box. Thus, E_i is selfadjoint for each i.

Also, there is a natural inclusion (= unital *algebra monomorphism) of TL_n into TL_{n+1} which maps e_i to e_i for $1 \le i < n$. At the level of diagrams, it identifies a $T \in \mathcal{K}_n$ with the element of \mathcal{K}_{n+1} behaviored by adding on a vertical strand to the right end of T.

Although the TL_n 's are not quite C^* -algebras in general, they nevertheles come equipped with a consistent family of traces $\{tr\}$ and consistent conditional expectations $\epsilon_n : D_{n+1}(\beta) \rightarrow$ $D_n(\beta)$ as follows: If a is an (n + 1, n + 1) diagram, then $\tilde{\epsilon_n}(a)$ is obtained by just closing up the last strand. Hence if $a \in D_n(\beta)$ then $\tilde{\epsilon_n}(a) = \beta a$. Define $\epsilon_n(a) = \frac{1}{\beta} \tilde{\epsilon_n}(a)$ for $a \in D_n(\beta)$. Then ϵ_n is a conditional expectation.

Let $tr_n : D_n(\beta) \to \mathbb{C}$ be defined by $tr_n(a) = (\epsilon_1 \epsilon_2 \cdots \epsilon_{n-1})(a)$. Note that $tr_n(a) = tr_{n+1}(a)$ if $a \in D_n(\beta)$. Hence we can and will denote tr_n by tr. If a is a diagram, let c(a) be the number of loops one gets when one closes all the strands. Then $tr(a) = \beta^{c(a)-n}$

 $tr: D_n(\beta) \to \mathbb{C}$ is a unital trace and satisfies the following properties:

- 1. $tr(x) = tr(\epsilon_n(x)) \forall x \in D_{n+1}(\beta).$
- 2. $e_n x e_n = \epsilon_{n-1}(x) e_n \quad \forall x \in D_n(\beta).$

3. $tr(e_i) = \tau$ where $\tau = \frac{1}{\beta^2}$.

7

The following variants of *Tchebyshev polynomials of the second kind* are important for us:

$$P_0(x) = P_1(x) = 1$$
 (1)

$$P_{n+1}(x) = P_n(x) - xP_{n-1}(x)$$
 (2)

Thus,

$$P_{0}(x) = 1$$

$$P_{1}(x) = 1$$

$$P_{2}(x) = 1 - x$$

$$P_{3}(x) = 1 - 2x$$

$$P_{4}(x) = 1 - 3x + x^{2}$$

$$P_{4}(x) = 1 - 4x + 3x^{2}$$

$$P_{5}(x) = 1 - 5x + 6x^{2} - x^{3}$$

$$P_{6}(x) = 1 - 6x + 10x^{2} - 4x^{3}$$

8

Lemma P_n :

If we set

$$\sigma = \frac{1 + \sqrt{1 - 4x}}{2}, \overline{\sigma} = \frac{1 - \sqrt{1 - 4x}}{2}$$

we have

(1)
$$P_n(x) = \frac{\sigma^{n+1} - \overline{\sigma}^{n+1}}{\sigma - \overline{\sigma}}$$

(2)
$$P_n(\frac{1}{4}sec^2\theta) = \frac{sin(n+1)\theta}{2^n cos^n \theta sin\theta}$$

(3) The polynomial P_n is of degree $m = [\frac{n}{2}]$. It's leading coefficient is $(-1)^m$ if n = 2m and $(-1)^m(m+1)$ if n = 2m + 1.

(4) The polynomial P_n has distinct zeros given by $\{\frac{1}{4}sec^2(\frac{\pi j}{n+1}): 1 \le j \le m\}$

(5) If $n \ge 2$ and if $\frac{1}{4}sec^2(\frac{\pi}{n+2}) < \lambda < \frac{1}{4}sec^2(\frac{\pi}{n+1})$, then $P_i(\lambda) > 0$ for $1 \le i \le n$ and $P_{n+1}(\lambda) < 0$.

Proof: (1) Note that σ and $\overline{\sigma}$ are the roots of the equation $p^2 - p + x = 0$, so the general solution of the recurrence relation defining the P_k 's is seen to be $P_n = A\sigma^{n+1} + B\overline{\sigma}^{n+1}$; the 'boundary conditions' demand that A + B = 0(for n = -1) and $A\sigma + B\overline{\sigma} = 1$ (for n = 0); this yields (1).

(2) Setting $x = \frac{1}{4}sec^2\theta$, we find that $\sigma = re^{i\theta}$, $\overline{\sigma} = re^{-i\theta}$ where $r = \frac{1}{2cos\theta}$, and hence $\sigma^{n+1} - \overline{\sigma}^{n+1} = 2ir^{n+1}sin(n+1)\theta$, $\sigma - \overline{\sigma} = 2irsin\theta$, thereby establishing (2).

(3) This is shown fairly easily by induction, using the recurrence relation satisfied by the P_n 's.

(4) It follows from (2) that the numbers $\frac{1}{4}sec^2(\frac{\pi j}{n+1})$ yield *m* distinct zeros of P_n . Since P_n has degree *m*, this assertion is clear.

(5) It is seen from (2) that $\lim_{x\to-\infty} P_n(x) = +\infty$ for all *n*; in particular, P_n is positive to the left of its first zero, and since the function $x \mapsto sec^2(x)$ is an increasing function in $(0, \frac{\pi}{2}, it is seen that for all <math>k \leq n$ and $j \leq [frack2]$, we have

$$\lambda < \frac{1}{4} \sec^2\left(\frac{\pi}{n+1}\right)$$
$$< \frac{1}{4} \sec^2\left(\frac{\pi}{k+1}\right)$$
$$< \frac{1}{4} \sec^2\left(\frac{j\pi}{k+1}\right)$$

and consequently λ lies to the left of the first zero of P_k , whence $P_k(\lambda) > 0$.

On the other hand, the inequalities

 $\frac{1}{4}sec^{2}(\frac{\pi}{n+2}) < \lambda < \frac{1}{4}sec^{2}(\frac{\pi}{n+1}) < \frac{1}{4}sec^{2}(\frac{2\pi}{n+2})$ show that λ lies between the first two zeros, and we may conclude that indeed $P_{n+1}(\lambda) < 0$. Let $TL(\tau) = \bigcup_n T_n(\tau)$. Then $TL(\tau)$ is a \star algebra generated by $1, e_1, e_2, \dots$ When $\tau > 0$, e_i 's are self adjoint.

Lemma JW:(Wenzl) Let τ be a nonzero complex number such that $P_k(\tau) \neq 0$ for $k = 1, 2, \dots, n$. Define (the so-called **Jones-Wenzl idempotents**) f_k in $TL(\tau)$ recursively as follows:

$$f_0 = f_1 = 1$$

$$f_{k+1} = f_k - \frac{P_{k-1}(\tau)}{P_k(\tau)} f_k e_k f_k, \ 1 \le k \le n.$$

Then, for $1 \le k \le n+1$, we have:

(1)
$$f_k \in T_k(\tau)$$
.

(2) If $k \ge 2$, then $1 - f_k$ is in the algebra generated by $\{e_1, \dots, e_{k-1}\}$

(3)
$$(e_k f_k)^2 = \frac{P_k(\tau)}{P_{k-1}(\tau)} e_k f_k$$
, $(f_k e_k)^2 = \frac{P_k(\tau)}{P_{k-1}(\tau)} f_k e_k$,

(4) f_k is an idempotent.

(5) $f_k e_i = 0$, $e_i f_k = 0$ if $i \le k - 1$.

(6) $tr(f_k) = P_k(\tau)$.

When $\tau > 0$, f_k is selfadjoint.

Proof: The proof is by induction on k. Assertions 1-6 are clearly true for $k \le 2$. Now assume that 1-6 are valid for $1 \le k \le l$ where $l \ge 2$. We will show the result is true for k = l + 1.

Since f_l is in $T_l(\tau)$, it follows by definition that f_{l+1} is in the algebra generated by $1, e_1, e_2, \dots, e_l$. Hence $f_{l+1} \in T_{l+1}(\tau)$. Since $1 - f_l$ is in the algebra genrated by e_1, e_2, \dots, e_{l-1} , by definition, it follows that $1 - f_{l+1}$ is in the algebra generated by e_1, e_2, \dots, e_l . Now note that $f_{l+1}f_l = f_{l+1}$ and $f_lf_{l+1} = f_{l+1}$ since f_l is an idempotent. Since $f_l \in T_l(\tau)$, e_{l+1} commutes with f_l . Thus,

$$e_{l+1}f_{l+1}e_{l+1} = e_{l+1}f_l - \frac{P_{l-1}(\tau)}{P_l(\tau)}f_le_{l+1}e_{l+1}f_l$$
$$= \frac{P_{l+1}(\tau)}{P_l(\tau)}e_{l+1}f_l$$

Hence $(e_{l+1}f_{l+1})^2 = \frac{P_{l+1}(\tau)}{P_l(\tau)}e_{l+1}f_{l+1}$.

The proof that $(f_{l+1}e_{l+1})^2 = \frac{P_{l+1}(\tau)}{P_l(\tau)}f_{l+1}e_{l+1}$ is similar.

Next

$$\begin{aligned} f_{l+1}^2 &= f_l^2 - 2 \frac{P_{l-1}(\tau)}{P_l(\tau)} f_l e_l f_l + \left(\frac{P_{l-1}(\tau)}{P_l(\tau)}\right)^2 f_l e_l f_l e_l f_l \\ &= f_l^2 - 2 \frac{P_{l-1}(\tau)}{P_l(\tau)} f_l e_l f_l + \left(\frac{P_{l-1}(\tau)}{P_l(\tau)}\right)^2 \frac{P_l(\tau)}{P_{l-1}(\tau)} f_l e_l f_l \\ &= f_l - \frac{P_{l-1}(\tau)}{P_l(\tau)} f_l e_l f_l = f_{l+1} \end{aligned}$$

14

Hence f_{l+1} is an idempotent.

Since $f_{l+1}e_i = f_{l+1}f_le_i$, it follows that $f_{l+1}e_i = 0$ if $i \le l-1$. Now $f_{l+1}e_l = f_le_l - \frac{P_{l-1}(\tau)}{P_l(\tau)}(f_le_l)^2$. But $(f_le_l)^2 = \frac{P_l(\tau)}{P_{l-1}(\tau)}f_le_l$, and so $f_{l+1}e_l = 0$. Hence $f_{l+1}e_i = 0$ for $i \le l$. Similarly $e_if_{l+1} = 0$.

Next,

$$tr(f_{l+1}) = tr(f_l) - \frac{P_{l-1}(\tau)}{P_l(\tau)} tr(f_l e_l f_l)$$

= $tr(f_l) - \frac{P_{l-1}(\tau)}{P_l(\tau)} tr(\epsilon_l(f_l e_l f_l))$
= $tr(f_l) - \frac{P_{l-1}(\tau)}{P_l(\tau)} tr(f_l \epsilon_l(e_l) f_l)$
= $tr(f_l) - \frac{P_{l-1}(\tau)}{P_l(\tau)} tr(\tau f_l)$
= $P_l(\tau) - \tau P_{l-1}(\tau) = P_{l+1}(\tau)$

If $\tau > 0$ then $P_k(\tau)$ is real. Hence by induction it follows that $f'_k s$ are selfadjoint.

We shall next prove the following lemma, before proceeding to prove Wenzl's theorem.

Lemma 1: Let τ be such that $\frac{1}{4}sec^2(\frac{\pi}{n+2}) < \tau < \frac{1}{4}sec^2(\frac{\pi}{n+1})$ for some $n \in \mathbb{N}$, with $n \geq 2$. Suppose π : $TL(\tau) \to B(H)$ be a \star homomorphism, where H is a Hilbert space. Let e_i^T denote the idempotents in $TL(\tau)$. Then the Jones-Wenzl idempotents f_k^T 's are defined for $k = 1, 2, \dots n + 2$. Suppose $f_k = \pi(f_k^T)$ for $k \leq n+2$. Then

(1)
$$1 - f_k = e_1 \lor e_2 \lor \cdots \lor e_{k-1}$$
 for $k \le n+2$.

(2)
$$e_{n+1}f_{n+1} = 0.$$

(3) e_{n+1} is orthogonal to f_n .

Proof: Note that $P_k(\tau) > 0$ for $k = 1, 2, \dots n$ and $P_{n+1}(\tau) < 0$. Hence the Jones-Wenzl idempotents are defined for $k = 1, 2, \dots n + 2$.

By Lemma JW, it follows that $f_k e_i = 0$ for $i \leq k-1$. Hence we have $e_1 \vee e_2 \vee \cdots \vee e_{k-1} \leq 1 - f_k$. Since $1 - f_k$ is in the algebra generated by $e_1, e_2, \cdots, e_{k-1}$, it follows that $1 - f_k \leq e_1 \vee e_2 \vee \cdots \vee e_{k-1}$. This proves (1).

Observe that $e_{n+1}f_{n+1}e_{n+1} = \frac{P_{n+1}(\tau)}{P_n(\tau)}e_{n+1}f_n$. But $e_{n+1}f_{n+1}e_{n+1}$ is positive and $e_{n+1}f_n$ is a projection. Since $P_{n+1}(\tau) < 0$, it follows that $e_{n+1}f_n = 0$ and $(f_{n+1}e_{n+1})^*f_{n+1}e_{n+1} = 0$. Hence $f_{n+1}e_{n+1} = 0$ and e_{n+1} is orthogonal to f_n . By taking adjoints, we get $e_{n+1}f_{n+1} = 0$. This proves (2) and (3).

17

Proposition (orth): Let H be a Hilbert space. Suppose e_1, e_2, \cdots is a sequence of non-zero projections in B(H) satisfying the following relation :

$$e_i^2 = e_i = e_i^*$$

$$e_i e_j = e_j e_i = 0 \quad \text{if } |i - j| \ge 2$$

$$e_i e_j e_i = \tau e_i \quad \text{if } |i - j| = 1$$
Then $\tau \in (0, \frac{1}{4}] \cup \{\frac{1}{4} \sec^2(\frac{\pi}{n+1}) : n \ge 2\}.$

Proof: There exists a nontrivial C^* representation of $TL(\tau)$ say π which is unital and for which $\pi(e_i^T) = e_i$ where e_i^T denote the idempotents in $TL(\tau)$. By taking norms on the third relation, it follows that $\tau \leq 1$. Suppose that τ is not in the set given in the proposition. Then there exists $n \geq 2$ such that $\frac{1}{4}sec^2(\frac{\pi}{n+2}) < \tau < \frac{1}{4}sec^2(\frac{\pi}{n+1})$. Then $P_k(\tau) > 0$ for $k = 1, 2, \cdots n$ but $P_{n+1}(\tau) < 0$. Hence, the Jones Wenzl idempotents f_k^T 's are defined for $k = 1, 2, \cdots n+2$. Let $f_k = \pi(f_k^T)$ for $k \leq n+2$.

By Lemma 1, it follows that e_{n+1} is orthogonal to f_n . But e_{n+1} is orthogonal to $e_1 \lor e_2 \lor \cdots e_{n-1}$ which latter projection is, by Lemma 1, nothing but $1-f_n$. Hence $e_{n+1} = e_{n+1}f_n + e_{n+1}(1-f_n) = 0$ which is a contradiction. This completes the proof.

Proof of Wenzl's theorem:

Suppose that τ is not in the set described above. Then there exists $n \geq 2$ such that $\frac{1}{4}sec^2(\frac{\pi}{n+2}) < \tau < \frac{1}{4}sec^2(\frac{\pi}{n+1})$. From lemma ??, it follows that $e_{n+1}f_{n+1} = 0$. Also $e_if_{n+1} =$ 0 for $i \leq n$. Hence $f_{n+1} \leq 1 - e_1 \lor e_2 \lor \cdots \lor e_{n+1} = f_{n+2}$. But $f_{n+2} \leq f_{n+1}$. Hence $f_{n+1} =$ f_{n+2} . Let k be the least element in $\{2, 3, \cdots, n\}$ for which $f_{k+1} = f_{k+2}$. Let $g_i = e_{k+i}f_{k-1}$ for $i \geq 0$. We will derive a contradiction by showing that $g'_i s$ satisfy the hypothesis of Proposition (orth). Since e_{k+i} commutes with f_{k-1} for $i \ge 0$, it follows that g_i 's are projections. For the same reason, g'_is satisfy the third relation of Proposition (orth). First, we show that $g_0 \ne 0$. By the choice of k, $f_k \ne f_{k+1}$. Hence $f_k e_k f_k \ne 0$. Since $f_k \le f_{k-1}$, it follows that $f_{k-1}e_k = g_0 \ne 0$.

Now we show that $g_ig_j = 0$ if $|i - j| \ge 2$. We begin by showing $g_0g_2 = 0$. Observe that since $f_{k+1} = f_{k+2}$, we have

 $e_{k+1}f_k = e_{k+1}(f_k - f_{k+1})e_{k+1} = e_{k+1}(\frac{P_{k-1}(\tau)}{P_k(\tau)}f_ke_kf_k)e_{k+1}$ Since $P_{k+1}(\tau) \neq 0$, it follows that $e_{k+1}f_k = 0$. By premultiplying and postmultiplying by e_{k+2} , we see that $e_{k+2}f_k = 0$. Hence we have,

$$g_{0}g_{2} = e_{k}e_{k+2}f_{k-1}$$

$$= e_{k}e_{k+2}(f_{k-1} - f_{k})e_{k+2}e_{k}$$

$$= e_{k+2}e_{k}(f_{k-1} - f_{k})e_{k}e_{k+2}$$

$$= e_{k+2}e_{k}(\frac{P_{k-2}(\tau)}{P_{k-1}(\tau)}f_{k-1}e_{k-1}f_{k-1})e_{k}e_{k+2}$$

$$= \tau \frac{P_{k-2}(\tau)}{P_{k-1}(\tau)}g_{0}g_{2}$$

Since $P_k(\tau) \neq 0$, it follows that $g_0g_2 = 0$. Let $i \geq 2$. Let us consider the partial isometry $w = (\frac{1}{\tau})^{i-1}e_{k+i}e_{k+i-1}\cdots e_{k+2}$. Since w commutes with e_k and f_{k-1} , we_kf_{k-1} is a partial isometry. Note that $(we_kf_{k-1})^*we_kf_{k-1} = g_0g_2 = 0$. Thus, $g_ig_0 = we_kf_{k-1}(we_kf_{k-1})^* = 0$. Hence $g_ig_0 = 0$ if $i \geq 2$. Let i, j be such that $j \geq i+2$. Now let $u = (\frac{1}{\tau})^{i+1}e_{k+i}e_{k+i-1}\cdots e_k$. Then u is a partial isometry which commutes with f_{k-1} and e_{k+j} .

Let $v = ue_{k+j}f_{k-1}$. Then v is a partial isometry such that $v^*v = g_0g_j$ and $vv^* = g_ig_j$. Since $v^*v = 0$, it follows that $vv^* = 0$. Thus $g_ig_j = 0$. Therefore g_i 's satisfy the assumptions of Proposition (orth). Hence we have a contradiction. This completes the proof.