The Temperley-Lieb algebra

V.S. Sunder (IMSc, Chennai) *

Lecture 1 at IIT Mumbai, 17th April 2007

These algebras appeared first in [TL] in the context of statistical mechanics. See appendix IIb of [GHJ] for an account of this. Our interest stems from their manner of appearance in [Jon], where the following striking result was proved:

Theorem (Jones): The index $[M: N]$ of a subfactor satisfies

$$
[M: N] \in[4, \infty] \cup\left\{4 \cos ^{2}\left(\frac{\pi}{n}\right): n=3,4,5, \cdots\right\}
$$

References:

1. ([GHJ]) F. M. Goodman, P. de la harpe and V. F.R.Jones: "Coxeter Graphs and Towers of Algebra", MSRI Publ., 14, Springer, New York, 1989.
2. ([Jon]) V.F.R. Jones: "Index for subfactors", Inventiones Math. 72(1983)1-25.
3. ([JS]) V.Jones and V.S.Sunder : "Introduction to Subfactors", LMS lecture note series, 234(1997).
4. ([JR]) V. F.R. Jones and Sarah A.Reznikoff: "Hilbert space representations of the annular Temperley-Lieb algebra", Pacific J. of Math., vol. 228, No. 2,(2006),219-250.
5. ([TL]) H.N.V. Temperley and E.H. Lieb: "Relations between the 'percolation' and the 'coloring' problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the 'percolation' problem", Proc. Roy. Soc. (London) ser A 322 (1971) 251-280.
6. ([Wen]) H.Wenzl: "On sequences of projections", C.R.Math. Rep. Acad. Sci. Canada 9 (1987) 5-9.

For a scalar $0 \neq \tau \in \mathbb{C}$, and positive integer n, the Temperley-Lieb algebra $T L_{n}(\tau)$ is the universal unital \mathbb{C}-algebra generated by $1, e_{1}, \cdots, e_{n-1}$ and satisfying the relations

$$
\begin{aligned}
e_{i}^{2} & =e_{i} \quad \forall i \\
e_{i} e_{j} & =e_{j} e_{i} \text { if }|i-j| \geq 2 \\
e_{i} e_{j} e_{i} & =\tau e_{i} \text { if }|i-j|=1
\end{aligned}
$$

We shall first establish finite-dimensionality of $T L_{n}(\tau)$. (In fact, the dimension is the n-th Catalan number.) To this end, we begin with the following result from [Jon]:

Lemma 1:

If w is a 'word' in e_{1}, \cdots, e_{n-1}, and if k is the largest integer for which e_{k} occurs in w, then there exist words u, v in e_{1}, \cdots, e_{k-1} such that $w=\tau^{m} u e_{k} v$.

Proof: We prove this by induction on k. The assertion being trivial when $k=1$, we assume the result for all smaller values of k and establish the validity of the inductive step.

For this, we proceed by induction on the number M of times e_{k} occurs in the word w. The result to be proved is trivially true for $M=1$, so we shall reduce the validity of the case when $M \geq 2$ to that of the case $M-1$. If $M \geq 2$, then $w=w_{1} e_{k} w_{2} e_{k} w_{3}$, with the w_{i} 's being words in e_{1}, \cdots, e_{k-1}. If w_{2} does not feature any e_{k-1}, then it commutes with e_{k} and we have $w=w_{1} e_{k} w_{2} w_{3}$ is an expression where e_{k} occurs only ($M-1$) times. If w_{2} does feature e_{k-1}, then by the (first) induction hypothesis, we may write $w_{2}=\tau^{r} u_{2} e_{k-1} v_{2}$, where u_{2}, v_{2} are words in e_{1}, \cdots, e_{k-2} and consequently commute with e_{k}, so that we find that, indeed

$$
\begin{aligned}
w & =w_{1} e_{k} w_{2} e_{k} w_{3} \\
& =\tau^{r} w_{1} u_{2} e_{k} e_{k-1} e_{k} v_{2} w_{3} \\
& =\tau^{r+1} w_{1} u_{2} e_{k} v_{2} w_{3}
\end{aligned}
$$

is an expression of w featuring only ($M-1$) e_{k} 's, and by induction, the proof of the lemma is complete.

Proposition 1.

(a) $T L_{n}(\tau)$ is spanned by elements of the form

$$
\begin{gather*}
w=\tau^{m}\left(e_{i_{1}} e_{i_{1}-1} \cdots e_{j_{1}}\right) \\
\left(e_{i_{2}} e_{i_{2}-1} \cdots e_{j_{2}}\right) \cdots \\
\left(e_{i_{p}} e_{i_{p}-1} \cdots e_{j_{p}}\right) \tag{1}
\end{gather*}
$$

for some integers $m, p, i_{1}, j_{1}, \cdots, i_{p}, j_{p}$ satisfying $m, p \geq 0$, and

$$
\begin{align*}
& 1 \leq i_{1}<i_{2}<\cdots<i_{p}<n, \\
& 1 \leq j_{1}<j_{2}<\cdots<j_{p}<n, \\
& \quad j_{1} \leq i_{1}, j_{2} \leq i_{2}, \cdots, j_{p} \leq i_{p} \tag{2}
\end{align*}
$$

(b) In particular,

$$
\operatorname{dim} T L_{n}(\tau) \leq \frac{1}{n+1}\binom{2 n}{n}
$$

Proof: (a) The proof is by induction on n.

It clearly suffices to prove that every word in the e_{i} 's satisfies an equation of the form displayed in (a). This assertion is obvious for $n=1$. So suppose this assertion is true for all values smaller than n.

If, now, w is a word in e_{1}, \cdots, e_{n-1}, the desired assertion holds if the w does not feature e_{n-1}. If w features e_{n-1}, then, the lemma alows us to assume that in fact, $w=u e_{n-1} v$, where u, v are words in e_{1}, \cdots, e_{n-2}. If we now 'push the e_{n-1} as far to the right as possible, we see, after appropriately utilising the induction hypothesis, that we may write w as in equation (1), where $i_{p}=n-1$ and all the inequalities in (2) are satisfied, except possibily $j_{p-1}<j_{p}$. Among all possible expressions of w, we claim
that the one of shortest length will indeed satisfy $j_{p-1}<j_{p}$. This is because, if $j_{p-1} \geq j_{p}$, it can be seen that

$$
\begin{aligned}
&\left(e_{i_{p-1}} \cdots e_{j_{p-1}}\right)\left(e_{n-1} e_{n-2} \cdots e_{j_{p-1}+1} e_{j_{p-1}} \cdots e_{j_{p}}\right) \\
&=\left(e_{i_{p-1}} \cdots e_{j_{p-1}+1}\right) \\
&\left(e_{n-1} e_{n-2} \cdots e_{j_{p-1}}+2 e_{j_{p-1}} e_{j_{p-1}+1} e_{j_{p-1}} \cdots e_{j_{p}}\right) \\
&= \tau\left(e_{i_{p-1}} \cdots e_{j_{p-1}+1}\right) \\
&\left(e_{n-1} e_{n-2} \cdots e_{j_{p-1}}+2\right)\left(e_{j_{p-1}} \cdots e_{j_{p}}\right) \\
&= \tau\left(e_{i_{p-1}} \cdots e_{j_{p}}\right)\left(e_{n-1} e_{n-2} \cdots e_{j_{p-1}}+2\right)
\end{aligned}
$$

would be another such expression with smaller length. Thus, the proof of (a) is complete.
(b) We only need to show, in view of (a) above, that if \mathcal{S}_{n} is the set of tuples $\left(i_{1}, j_{1}, \cdots, i_{p}, j_{p}\right)$ which satisfy condition (2), then $\left|\mathcal{S}_{n}\right|$ is at most the Catalan number $\frac{1}{n+1}\binom{2 n}{n}$. The proof is completed by observing that the assignment $(\mathbf{i}, \mathbf{j}) \mapsto \gamma_{(\mathrm{i}, \mathbf{j})}$ sets up a bijection between \mathcal{S}_{n} and the set denoted by $P_{g}((0,0),(n, n))$ in the proof of Proposition 2,
where $\gamma_{(\mathbf{i}, \mathbf{j})}$ is the path

$$
\begin{gathered}
(0,0) \rightarrow\left(i_{1}, 0\right) \rightarrow\left(i_{1}, j_{1}\right) \rightarrow\left(i_{2}, j_{1}\right) \\
\quad \rightarrow \cdots\left(i_{p}, j_{p}\right) \rightarrow\left(n, j_{p}\right) \rightarrow(n, n)
\end{gathered}
$$

A Kauffman diagram is an isotopy class of a planar (i.e., non-crossing) arrangement of n curves in a box with their ends tied to $2 n$ marked points on the boundary, with n points on each horizontal bounding edge, and usually thought of as being numbered clockwise, starting from the top left corner; an example, with $n=4$ is illustrated below:

The collection of such diagrams will be denoted by \mathcal{K}_{n}.

Proposition 2:

$$
\left|\mathcal{K}_{n}\right|=\frac{1}{n+1}\binom{2 n}{n}
$$

Proof: For $x, y \in \mathbb{R}^{2}$ such that $x_{i} \leq y_{i}$ for $i=$ 1,2 , let $P(x, y)$ denote the collection of all 'walks' γ from x to y, in which each step is of unit length, and is to the right (R) or up (U). It is clear that

$$
|P(x, y)|=\binom{y_{1}-x_{1}+y_{2}-x_{2}}{y_{1}-x_{1}} .
$$

We will primarily be interested in $P((0,0),(n, n))$. For instance, we see that $P((0,0),(2,2))$ is as

follows:

Let $P_{g}((0,0),(n, n))$ consist of those paths which do not cross the main diagonal (- i.e., every initial segment has at least as many R 's as U 's.) Thus, $P((0,0),(2,2))$ is as follows:

RRUU

It is an easy exercise to verify that

$$
\left|\mathcal{K}_{n}\right|=\left|P_{g}((0,0),(n, n))\right|
$$

The bijection is illustrated below, for $n=3$:

We need to show that

$$
\left|P_{g}((0,0),(n, n))\right|=\frac{1}{n+1}\binom{2 n}{n}
$$

Note - by a shift - that $\left|P_{g}((0,0),(n, n))\right|=$ $\left|P_{g}((0,1),(n+1, n))\right|$, and that the right side counts the ('good') paths in $P((1,0),(n+1, n))$ which do not meet the main diagonal. Consider the set $P_{b}((1,0),(n+1, n))$ of ('bad') paths which do cross the main diagonal. The point is that any path in $P_{b}((1,0),(n+1, n))$ is of the form $\gamma=\gamma_{1} \circ \gamma_{2} \in P_{b}((1,0),(n+1, n))$, where $\gamma_{1} \in P((0,1),(j, j)), \gamma_{2} \in P((j, j),(n+$ $1, n)$), and (j, j) is the 'first point' where γ touches the main diagonal. Define $\widetilde{\gamma}=\gamma_{1}^{\prime} \circ \gamma_{2}$, where γ_{1}^{\prime} is the reflection of γ_{1} about the main diagonal. This yields a bijection

$$
P_{b}((1,0),(n+1, n)) \ni \gamma \leftrightarrow \tilde{\gamma} \in P((0,1),(n+1, n))
$$

Hence

$$
\begin{aligned}
& \left|P_{g}((1,0),(n+1, n))\right| \\
& \quad=|P((1,0),(n+1, n))|-\left|P_{b}((1,0),(n+1, n))\right| \\
& \quad=|P((1,0),(n+1, n))|-|P((0,1),(n+1, n))| \\
& \quad=\binom{2 n}{n}-\binom{2 n}{n+1} \\
& \quad \frac{1}{n+1}\binom{2 n}{n}
\end{aligned}
$$

thereby completing the proof of Proposition 2.

The diagram algebras $D_{n}(\beta)$

We now pass to another one-parameter family $D(\beta)=\left\{D_{n}(\beta)\right\}$ of towers of algebras, which depends on a complex parameter β, which we will usually take to be positive.

By definition, $D_{n}(\beta)$ is the \mathbb{C}-algebra with basis given by \mathcal{K}_{n}, and multiplication defined (on the basis) by the rule

$$
S T=\beta^{\lambda(S, T)} U
$$

where (1) U is the diagram obtained by concatenation - i.e., identifying the point marked ($2 n-j+1$) for S with the point marked j for T, for $1 \leq j \leq n$ - and erasing any 'internal loops' formed in the process, and (2) $\lambda(S, T)$ is the number of 'internal loops' so erased. For example, if S and T are the elements of \mathcal{K}_{n} represented by (1(23)4)(56) and (12)(3(45)6) respectively, then $U=(1(23)(45) 6)$ and $\lambda(S, T)=$ 1 (so $S T=\beta U$), while $T S=\beta V$, where $V=$ (12)(34)(56).

Consider the elements $E_{i}, 1 \leq i<n$ of \mathcal{K}_{n} defined by requiring that the pairs of vertices joined by the strings of E_{i} are $(i, i+1),(2 n-$ $i+1,2 n-i)$ and $\{(j, 2 n-j+1): j \neq i, 1 \leq$ $j \leq n\}$; pictorially, this means that except for two strings, all strings come straight down, and the two exceptions join $(i, i+1)$ and ($2 n-i+$ $1,2 n-i$). We illustrate below the two E_{i} 's, when $n=3$:

E_{1}

E_{2}

It is not hard to see that

$$
\begin{aligned}
E_{i}^{2} & =\beta E_{i} \quad \forall i \\
E_{i} E_{j} & =E_{j} E_{i} \text { if }|i-j| \geq 2 \\
E_{i} E_{j} E_{i} & =E_{i} \quad \text { if }|i-j|=1
\end{aligned}
$$

It follows that if we define $e_{i}^{D}=\beta^{-1} E_{i}$, then the e_{i}^{D} 's satisfy the Temperley-Lieb relations (with $\tau=\beta^{-2}$), and consequently, there exists a unique unital algebra homomorphism

$$
\phi^{(n)}: T L_{n}\left(\beta^{-2}\right) \rightarrow D_{n}(\beta)
$$

such that $\phi^{(n)}\left(e_{i}^{T}\right)=e_{i}^{D}$ for $1 \leq i<n$, where we write $\left\{e_{i}^{T}: 1 \leq i<n\right\}$ for the generators of $T L_{n}$ in order to distinguish them from the e_{i}^{D} 's. We shall henceforth assume that τ and β are related by $\tau=\beta^{-2}$, and simply write $T L_{n}$ and D_{n} without specifying the parameter, if no confusion is likely to result.

Proposition 3:

(a) D_{n} is generated, as a unital algebra, by $\left\{E_{i}: 1 \leq i<n\right\}$; and consequently,
(b) $\phi^{(n)}: T L_{n}\left(\beta^{-2}\right) \rightarrow D_{n}(\beta)$ is an isomorphism of unital algebras.

Proof: (a) This is proved by induction on n.

The proposition is clear when $n \leq 2$. For the inductive step, note that if an $S \in \mathcal{K}_{n}$ has a string 'coming straight down', it will follow from the induction hypotesis that S is in the unital algebra generated by the E_{i} 's.

The general case is then reduced to two subcases, according as whether or not S has a through-string. Both sub-cases fall to the 'argument of the wiggle'.
(b) It follows from (a) that $\phi^{(n)}$ is surjective, and so

$$
\begin{equation*}
\operatorname{dim} D_{n} \leq \operatorname{dim} T L_{n} \tag{3}
\end{equation*}
$$

On the one hand, we have (by Proposition 2)

$$
\begin{equation*}
\frac{1}{n+1}\binom{2 n}{n}=\left|\mathcal{K}_{n}\right|=\operatorname{dim} D_{n} \tag{4}
\end{equation*}
$$

while on the other, we also know (by Proposition 1(b)) that

$$
\begin{equation*}
\frac{1}{n+1}\binom{2 n}{n} \geq \operatorname{dim} T L_{n} \geq \operatorname{dim} \phi^{(n)}\left(T L_{n}\right) . \tag{5}
\end{equation*}
$$

Hence the three inequalities in (5) must all be inequalities, and $\phi^{(n)}$ must be an isomorphism.

In view of the above proposition, we shall henceforth identify the Temperley-Lieb algebra with the diagram algebra.

