von Neumann Algebras

V.S. Sunder (IMSc, Chennai) *

Lectures at IISc, 14-18/3/06

Lecture 1: Gelfand Naimark Theorems

Lecture 2: Rings of operators

Lecture 3: Crossed products and examples of factors

Lecture 4: Subfactors

Lecture 5: From subfactors to knot invariants

Gelfand Naimark theorems

The ' $\mathrm{G}-\mathrm{N}$ ' theorems lead to the 'philosophy' of regarding C^{*}-algebras as non-commutative analogues of topological spaces.

- (commutative G-N th) A is a unital commutative C^{*}-algebra if and only if $A \cong C(X)$ (the algebra of continuous functions on a compact Hausdorff space).
- (non-commutative G-N th) A is a C^{*}-algebra if and only if A is isomorphic to a closed *-subalgebra of $\mathcal{L}(\mathcal{H})$ (the C^{*}-algebra of 'bounded operators’ on Hilbert space).

A Banach algebra is a triple $(A,\|\cdot\|, \cdot)$, where:

- $(A,\|\cdot\|)$ is a Banach space
- (A, \cdot) is a ring
- The map $A \ni x \mapsto L_{x} \in \mathcal{L}(A)$ defined by $L_{x}(y)=x y$ is a linear map and a ringhomomorphism satisfying

$$
\|x y\| \leq\|x\|\|y\|
$$

(or equivalently, $\left\|L_{x}\right\| \leq\|x\| \forall x \in A$).
A is unital if it has a multiplicative identity 1 , usually assumed to satisfy $\|1\|=1$. (We only consider such unital algebras here.)

Define $G L(A)=\{x \in A: x$ is invertible $\}$
Lemma: $\|x\|<1 \Rightarrow$

- $1-x \in G L(A)$
- $(1-x)^{-1}=\sum_{n=0}^{\infty} x^{n}$
- $\left\|(1-x)^{-1}-1\right\| \leq\|x\|(1-\|x\|)^{-1}$

Corollary: $G L(A)$ is open, and $x \mapsto x^{-1}$ is a continous self-map of $G L(A)$.

Define the spectrum of an element $x \in A$ by

$$
s p(x)=\{\lambda \in \mathbb{C}: x-\lambda \notin G L(A)\}
$$

and its spectral radius by

$$
r(x)=\sup \{|\lambda|: \lambda \in \operatorname{sp}(x)\}
$$

Theorem: The spectrum is always non-empty, and we have the spectral radius formula

$$
r(x)=\lim _{n \rightarrow \infty}\left\|x^{n}\right\|^{\frac{1}{n}}
$$

Caution: We must exercise some caution and talk about $s p_{A}(x)$, since if D is a unital Banach subalgebra of A and if $x \in D$, it may be the case that $s p_{D}(x) \neq s p_{A}(x)$. For example, by the maximum modulus principle, the Disc algebra

$$
D=\left\{f \in C(\overline{\mathbb{D}}):\left.f\right|_{\mathbb{D}} \text { is holomorphic }\right\}
$$

imbeds isometrically as a Banach subalgebra of $A=C(\partial \mathbb{D})$, and

$$
f \in D \Rightarrow s p_{D}(f)=f(\overline{\mathbb{D}}), s p_{A}(f)=f(\partial \mathbb{D}) .
$$

But it turns out that there is no such pathology if our Banach algebras are C^{*}-algebras.

Assume henceforth that A is a unital commutative Banach algebra. Let $\mathcal{M}(A)$ denote the collection of maximal ideals in A. (Conventions: (a) $J \in \mathcal{M}(A) \Rightarrow\{0\} \neq J \neq A$, if $A \neq \mathbb{C}$, but (b) $\{0\} \in \mathcal{M}(\mathbb{C})$)

Lemma: Let $x \in A$. T.F.A.E.:

1. $x \notin G L(A)$
2. $\exists J \in \mathcal{M}(A)$ such that $x \in J$.

Proof: For (1) \Rightarrow (2), note that $I=A x$ is a proper ideal; pick $J \in \mathcal{M}(A)$ such that $I \subset J$.

Note that maximal ideals are closed (since 1 is in the exterior of any proper ideal). This implies:

Proposition: Write \widehat{A} for the collection of unital homomorphisms $\phi: A \rightarrow \mathbb{C}$. Then
(a) $J \in \mathcal{M}(A) \Leftrightarrow \exists \phi \in \widehat{A}$ such that $J=\operatorname{ker} \phi$.
(b) $\phi \in \widehat{A} \Rightarrow \phi(x) \in s p(x)$, and so, $|\phi(x)| \leq$ $r(x) \leq\|x\|$, and $\widehat{A} \subset \operatorname{ball}\left(A^{*}\right)$.
\widehat{A} is closed and hence compact in the weak-* topology of ball (A^{*}).

Proposition: The Gelfand transform of A, which is the map $\Gamma: A \rightarrow C(\widehat{A})$ defined by

$$
(\Gamma(x))(\phi)=\phi(x) \forall \phi \in \widehat{A}
$$

is a contractive homomorphism of Banach algebras.
($\hat{x}=\Gamma(x)$ is called the Gelfand transform of x.)

Question: When is Γ an isometric isomorphism onto $C(\widehat{A})$?

Answer: When A is a C^{*}-algebra!

A C^{*}-algebra is a Banach algebra A equipped with an involution - i.e., a self-map $a \ni x \mapsto$ $x^{*} \in A$ satisfying

- $(\alpha x+y)^{*}=\bar{\alpha} x^{*}+y^{*}$
- $(x y)^{*}=y^{*} x^{*}$
- $\left(x^{*}\right)^{*}=x$
- which is related to the norm on A by the C^{*}-identity $\|x\|^{2}=\left\|x^{*} x\right\|$.

The commutative G-N theorem

The Gelfand transform of a commutative Banach algebra A is an isometric surjection if and only if A has the structure of a commutative C^{*}-algebra.

In this case, Γ is automatically an isomorphism of C^{*}-algebras.

Sketch of Proof: Suppose A is a C^{*}-algebra and $x=x^{*}$ is 'self-adjoint'. For $t \in \mathbb{R}$, define $u_{t}=e^{i t x}=\sum_{n=0}^{\infty} \frac{(i t x)^{n}}{n!}$ and note that $u_{t}^{*}=$ $u_{-t}=u_{t}^{-1}$. So, by the C^{*}-identity,

$$
\left\|u_{t}\right\|^{2}=\left\|u_{t}^{*} u_{t}\right\|=1 .
$$

Hence

$$
\phi \in \widehat{A} \Rightarrow 1 \geq\left|\phi\left(u_{t}\right)\right|=\left|e^{i t \phi(x)}\right| .
$$

Since $t \in \mathbb{R}$ is arbitrary, deduce that $\phi(x) \in \mathbb{R}$.

Also, for self-adjoint x, note that

$$
\|x\|=\left\|x^{*} x\right\|^{\frac{1}{2}}=\left\|x^{2}\right\|^{\frac{1}{2}}
$$

so

$$
\|x\|=\left\|x^{2}\right\|^{\frac{1}{2}}=\cdots=\lim _{n \rightarrow \infty}\left\|x^{2^{n}}\right\|^{\frac{1}{2^{n}}}=r(x)=\|\Gamma(x)\|
$$

For a (possibly non-commutative) unital C^{*} algebra A, and $x \in A$, let $C^{*}(x)$ be the C^{*} subalgebra of A generated by the set $\{1, x\}$.

Proposition: (a) T.F.A.E.:

(1) $C^{*}(x)$ is commutative
(2) $x^{*} x=x x^{*}$ (such x 's are called normal).
(b) If x is normal, there exists a unique unital C^{*}-algebra isomorphism $\gamma_{x}: C(s p(x)) \rightarrow C^{*}(x)$ such that $\gamma_{x}\left(i d_{s p(x)}\right)=x$.

It is customary to write $\gamma_{x}(f)=f(x)$ and call γ_{x} the continuous functional calculus for x.

Sub-classes of normal elements:

Proposition: An element satisfies the algebraic condition in the second column of the table below if and only if it is normal and its spectrum is contained in the set listed in the third column.

Name	Alg. def.	$s p(x) \subset ?$
self-adjoint	$x=x^{*}$	\mathbb{R}
unitary	$x^{*} x=x x^{*}=1$	\mathbb{T}
projection	$x^{2}=x^{*}=x$	$\{0,1\}$

Study of general C^{*}-algebras is facilitated by applying the commutative theory to normal elements of these types. Normal elements can be dealt with the same facility as functions. Here is a sample of such results:

- (Cartesian decomposition) Every element $z \in A$ admits a unique deomposition $z=$ $x+i y$, with x, y self-adjoint; in fact, $x=$ $\frac{z+z^{*}}{2}, y=\frac{z-z^{*}}{2 i}$
- Every self-adjoint element $x \in A$ admits a unique decomposition $x=x^{+}-x^{-}$, where $x^{ \pm}$are positive (in the sense of the next theorem) and satisfy $x^{+} x^{-}=0$; in fact, $x^{ \pm}=f^{ \pm}(x)$, where $f^{ \pm} \in C(\mathbb{R})$ are defined by $f^{ \pm}(t)=\frac{|t| \pm t}{2}$

The most important notion in the theory involves positivity. Its main features are listed in the next two results.

Theorem: (a) The following conditions on an element $x \in A$ are equivalent:

1. $x=x^{*}$ and $s p(x) \subset[0, \infty)$
2. $\exists y=y^{*} \in A$ such that $x=y^{2}$
3. $\exists z \in A$ such that $x=z^{*} z$

Such x 's are said to be 'positive'; the set A_{+} of positive elements of A is a 'positive cone' (proved using (1) above).
(b) If $x \in A_{+}$, then the y of (2) above may be chosen to be positive, and such a 'positive square root of x^{\prime} is unique, and in fact $y=x^{\frac{1}{2}}$.

Proposition: (a) Let $\phi \in A^{*}$. T.F.A.E.:

1. $\phi\left(A_{+}\right) \subset \mathbb{R}_{+}$
2. $\|\phi\|=\phi(1)$

Such ϕ 's are said to be positive (linear functionals); the set A_{+}^{*} of of positive elements of A^{*} is a 'positive cone'.
(b) (Cauchy-Schwarz inequality)

$$
\left|\phi\left(y^{*} x\right)\right|^{2} \leq \phi\left(x^{*} x\right) \phi\left(y^{*} y\right) \quad \forall \phi \in A_{+}^{*}, x, y \in A .
$$

Gelfand-Naimark-Segal (GNS) construction:

Theorem: T.F.A.E.:

1. $\phi \in A_{+}^{*}$
2. there exists a triple (\mathcal{H}, π, Ω) (essentially unique) of a Hilbert space \mathcal{H}, a representation π of A on \mathcal{H} (i.e., $\pi: A \rightarrow \mathcal{L}(\mathcal{H})$ is a homomorphism of C^{*}-algebras), and a vector $\Omega \in \mathcal{H}$ such that

- $\phi(x)=\langle\pi(x) \Omega, \Omega\rangle \forall x \in A$
- Ω is a cyclic vector in the sense that $\mathcal{H}=\{\pi(x) \Omega: x \in A\}^{-}$
(It is not uncommon to write $\mathcal{H}=L^{2}(A, \phi)$.)

Sketch of proof: The equation

$$
\langle x, y\rangle_{\phi}=\phi\left(y^{*} x\right)
$$

defines a semi-inner product on A (i.e., satisfies all requirements of an inner product except possibly positive - definiteness). Let $\mathcal{N}_{\phi}=\{x \in$ $\left.A:\|x\|_{\phi}^{2}=\langle x, x\rangle_{\phi}=0\right\}$. The fact that ϕ satisfies Cauchy-Schwarz inequality implies that \mathcal{N}_{ϕ} is a left-ideal in A (i.e., a subspace which is closed under left multiplication by any element of A).

Then A / \mathcal{N}_{ϕ} is a genuine inner product space, whose completion is the desired \mathcal{H}_{ϕ}, while the equation

$$
\pi_{0}(x)\left(y+\mathcal{N}_{\phi}\right)=x y+\mathcal{N}_{\phi}
$$

happens to define a bounded operator $\pi_{0}(x)$ on A / \mathcal{N}_{ϕ}; define $\pi_{\phi}(x)$ to be its unique continuous extension to \mathcal{H}_{ϕ}.

Lemma: If $x=x^{*} \in A$, there exists $\phi \in A_{+}^{*}$ such that $|\phi(x)|=\|x\|$

Proof: Let $A_{0}=C^{*}(\{x\})$. Then pick $\phi_{0} \in$ $\widehat{A_{0}} \subset A_{0}^{*}$ such that $\left|\phi_{0}(x)\right|=\|x\|$.

Use Hahn-Banach thm. to find $\phi \in A^{*}$ such that $\left.\phi\right|_{A_{0}}=\phi_{0}$ and $\|\phi\|=\left\|\phi_{0}\right\|\left(=\phi_{0}(1)=\right.$ $\phi(1))$. It follows that $\phi \in A_{+}^{*}$.

Lemma: Any (unital) homomorphism of C^{*} algebras is norm-decreasing.

Proof: If $\pi: A \rightarrow B$ is a (unital) homomorphism of C^{*}-algebras, then clearly $\pi(G L(A) \subset$ $G L(B)$; in particular, if $x=x^{*} \in A$, we see that $(\pi(x)$ is also self-adjoint, and $s p(\pi(x)) \subset s p(x)$, so)

$$
\|\pi(x)\|=r(\pi(x)) \leq r(x)=\|x\| ;
$$

and for general $z \in A$,

$$
\|\pi(z)\|=\left\|\pi(z)^{*} \pi(z)\right\|^{\frac{1}{\sqrt{2}}} \leq\left\|z^{*} z\right\|^{\frac{1}{[2}} \leq\|z\| .
$$

If we write π_{x} for the above GNS representation of A on, say, \mathcal{H}_{x}, then $\oplus_{\left\{x=x^{*} \in A\right\}} \pi_{x}$ is easily verified to be an isometric representation of A.

Rings of Operators (a.k.a. von Neumann algebras):

Introduced in - and referred to, by them, as Rings of Operators in 1936 by F.J. Murray and von Neumann, because - in their own words:
the elucidation of this subject is strongly suggested by

- our attempts to generalise the theory of unitary group-representations, and
- various aspects of the quantum mechanical formalism

Def 1: A vNa is the commutant of a unitary group representation: i.e.,

$$
M=\{x \in \mathcal{L}(\mathcal{H}): x \pi(g)=\pi(g) x \forall g \in G\}
$$

Note that $\mathcal{L}(\mathcal{H})$ is a Banach *-algebra w.r.t.
$\|x\|=\sup \{\|x \xi\|: \xi \in \mathcal{H},\|\xi\|=1\}$ ('operator norm') and 'Hilbert space adjoint'.

Defs: (a) $S^{\prime}=\left\{x^{\prime} \in \mathcal{L}(\mathcal{H}): x x^{\prime}=x^{\prime} x \forall x \in S\right\}$, for $S \subset \mathcal{L}(\mathcal{H})$
(b) SOT on $\mathcal{L}(\mathcal{H}): x_{n} \rightarrow x \Leftrightarrow\left\|x_{n} \xi-x \xi\right\| \rightarrow 0 \forall \xi$ (i.e., $x_{n} \xi \rightarrow x \xi$ strongly $\forall \xi$)
(c) WOT on $\mathcal{L}(\mathcal{H}): x_{n} \rightarrow x \Leftrightarrow\left\langle x_{n} \xi-x \xi, \eta\right\rangle \rightarrow$ $0 \forall \xi, \eta$ (i.e., $x_{n} \xi \rightarrow x \xi$ weakly $\forall \xi$)
(Our Hilbert spaces are always assumed to be separable.)
von Neumann's double commutant theorem: Let M be a unital self-adjoint subalgebra of $\mathcal{L}(\mathcal{H})$. TFAE:
(i) M is SOT-closed
(ii) M is WOT-closed
(iii) $M=M^{\prime \prime}=\left(M^{\prime}\right)^{\prime}$

Def 2: A vNa is an M as in DCT above.

The equivalence of definitions 1 and 2 is a consequence of the spectral theorem and the fact that any norm-closed unital $*_{\text {-subalgebra } A}$ of $\mathcal{L}(\mathcal{H})$ is linearly spanned by the set $\mathcal{U}(A)=\{u \in$ $\left.A: u^{*} u=u u^{*}=1\right\}$ of its unitary elements.

Some consequences of DCT:

(a) A von Neumann algebra is closed under all 'canonical constructions':
for instance, if $x \rightarrow\left\{1_{E}(x): E \in \mathcal{B}_{\mathbb{C}}\right\}$ is the spectral measure associated with a normal operator x, then $x \in M \Leftrightarrow 1_{E}(x) \in M \forall E \in \mathcal{B}_{\mathbb{C}}$.
(Reason: $1_{E}\left(u x u^{*}\right)=u 1_{E}(x) u^{*}$ for all unitary u; so implication \Rightarrow follows from

$$
\begin{aligned}
x \in M, u^{\prime} \in \mathcal{U}\left(M^{\prime}\right) & \Rightarrow u^{\prime} 1_{E}(x) u^{\prime *}=1_{E}\left(u^{\prime} x u^{\prime *}\right) \\
& \left.\Rightarrow 1_{E}(x) \in\left(\mathcal{U}\left(M^{\prime}\right)\right)^{\prime}=M\right)
\end{aligned}
$$

(b) For implication \Leftarrow, uniform approximability of bounded measurable functions by simple functions implies (by the spectral theorem) that

$$
M=[\mathcal{P}(M)]=(\text { span } \mathcal{P}(M))^{-} \quad(*),
$$

where $\mathcal{P}(M)=\left\{p \in M: p=p^{2}=p^{*}\right\}$ is the set of projections in M.

Suppose $M=\pi(G)^{\prime}$ as before. Then

$$
p \leftrightarrow \operatorname{ran} p
$$

establishes a bijection
$\mathcal{P}(M) \leftrightarrow G$-stable subspaces
So, for instance, eqn. (*) shows that $(\pi(G))^{\prime \prime}=\mathcal{L}(\mathcal{H}) \Leftrightarrow M=\mathbb{C} \Leftrightarrow \pi$ is irreducible

Under this correspondence, between sub-reps of π and $\mathcal{P}(M)$, (unitary) equivalence of subreps of π translates to Murray-von Neumann equivalence on $\mathcal{P}(M)$:
$p \sim_{M} q \Leftrightarrow \exists u \in M$ such that $u^{*} u=p, u u^{*}=q$

More generally, define

$$
p \preceq_{M} q \Leftrightarrow \exists p_{0} \in \mathcal{P}(M) \text { such that } p \sim_{M} p_{0} \leq q
$$

Proposition: TFAE:

1. If $p, q \in \mathcal{P}(M)$, either $p \preceq_{M} q$ or $q \preceq_{M} p$.
2. M has trivial center: $Z(M)=M \cap M^{\prime}=\mathbb{C}$

Such an M is called a factor.
$M=\pi(G)^{\prime}, G$ finite, is a factor iff π is isotypical.

In general, any vNa is a 'direct integral' of factors.

Say a projection $p \in \mathcal{P}(M)$ is infinite rel M if $\exists p_{0} \in \mathcal{P}(M)$ such that $p \sim_{M} p_{0} \leq p$; otherwise, call p finite (rel M).

Say M is finite if 1 is finite.

Murray von-Neumann classification of factors: A factor M is said to be of type:

1. I if there is a minimal non-zero projection in M.
2. II if it contains non-zero finite projections, but no minimal non-zero projection.
3. III if it contains no non-zero finite projection.

Def. 3: (Abstract Hilbert-space-free def) M is a vNa if

- M is a C^{*}-algebra (i.e., a Banach $*$-algebra satisfying $\left.\|x * x\|=\|x\|^{2} \forall x\right)$
- M is a dual Banach space: i.e., \exists a Banach space M_{*} such that $M \cong M_{*}^{*}$ as a Banach space.

Example: $M=L^{\infty}(\Omega, \mathcal{B}, \mu)$. Can also view it as acting on $L^{2}(\Omega, \mathcal{B}, \mu)$ as multiplication operators. (In fact, every commutative vNa is isomorphic to an $L^{\infty}(\Omega, \mathcal{B}, \mu)$.)

Fact: The predual M_{*} of M is unique up to isometric isomorphism. (So, (by Alaoglu), \exists a canonical loc. cvx. (weak-*) top. on M w.r.t. which the unit ball of M is compact. This is called the σ-weak topology on M.

A linear map between $v N a$'s is called normal if it is continuous w.r.t. the σ-weak topologies on domain and range.

The morphisms in the category of vNa 's are unital normal *-homomorphisms.

The algebra $\mathcal{L}(\mathcal{H})$, for any Hilbert space \mathcal{H}, is a $v \mathrm{Na}$ - with pre-dual being the space $\mathcal{L}_{*}(\mathcal{H})$ of trace-class operators.

Any σ-weakly closed $*$-subalgebra of a vNa is a vNa .

Gelfand-Naimark theorem: Any vNa is isomorphic to a $v \mathrm{~N}$-subalgebra of some $\mathcal{L}(\mathcal{H})$. (So the abstract and concrete ($=$ tied down to Hilbert space) definitions are equivalent.)

In some sense, the most interesting factors are the so-called type $I I_{1}$ factors ($=$ finite type $I I$ factors).

Theorem: Let M be a factor. TFAE:

1. M is finite.
2. \exists a trace tr_{M} on M - i.e., linear functional satisfying:

- $\operatorname{tr}_{M}(x y)=\operatorname{tr}_{M}(y x) \forall x, y \in M$ (trace)
- $\operatorname{tr}_{M}\left(x^{*} x\right) \geq 0 \forall x \in M$ (positive)
- $\operatorname{tr}_{M}(1)=1$ (normaliised)

Such a trace is automatically unique, and faithful - i.e., it satisfies $\operatorname{tr}_{M}\left(x^{*} x\right)=0 \Leftrightarrow x=0$

For $p, q \in \mathcal{P}(M), M$ a finite factor, TFAE:

1. $p \sim_{M} q$
2. $\operatorname{tr}_{M} p=t r_{M} q$
3. $\exists u \in \mathcal{U}(M)$ such that $u p u^{*}=q$.

If $\operatorname{dim}_{\mathbb{C}} M<\infty$, then $M \cong M_{n}(\mathbb{C})=\mathcal{L}\left(\mathbb{C}^{n}\right)$ for a unique n.

If $\operatorname{dim}_{\mathbb{C}} M=\infty$, then M is a $I I_{1}$ factor, and in this case, $\left\{\operatorname{tr}_{M} p: p \in \mathcal{P}(M)\right\}=[0,1]$.

So $I I_{1}$ factors are the arena for continuously varying dimensions; they got von Neumann looking at continuous geometries.

Henceforth, M will be a $I I_{1}$ factor.

Def: An M-module is a separable Hilbert space \mathcal{H}, equipped with a vNa morphism $\pi: M \rightarrow$ $\mathcal{L}(\mathcal{H})$. Two M-modules are isomorphic if there exists an invertible (equivalently, unitary) M linear map between them.

Proposition: \exists a complete isomorphism invariant

$$
\mathcal{H} \mapsto \operatorname{dim}_{M} \mathcal{H} \in[0, \infty]
$$

of M-modules such that:

1. $\mathcal{H} \cong \mathcal{K} \Leftrightarrow \operatorname{dim}_{M} \mathcal{H}=\operatorname{dim}_{M} \mathcal{K}$.

2, $\operatorname{dim}_{M}\left(\oplus_{n} \mathcal{H}_{n}\right)=\sum_{n} \operatorname{dim}_{M} \mathcal{H}_{n}$.
3. For each $d \in[0, \infty], \exists$ an M-module \mathcal{H}_{d} with $\operatorname{dim}_{M} \mathcal{H}_{d}=d$.

The equation

$$
\langle x, y\rangle=\operatorname{tr}_{M}\left(y^{*} x\right)
$$

defines an inner-product on M. Call the completion $L^{2}\left(M, t r_{M}\right)$. Then $L^{2}\left(M, t r_{M}\right)$ is an $M-M$ bimodule with left- and right- actions given by multiplication.
$\mathcal{H}_{1}=L^{2}\left(M, \operatorname{tr}_{M}\right)$.

If $0 \leq d \leq 1$, then $\mathcal{H}_{d}=L^{2}\left(M, \operatorname{tr}_{M}\right) \cdot p$ where $p \in \mathcal{P}(M)$ satisfies $\operatorname{tr}_{M} p=d$.
\mathcal{H}_{d} is a finitely generated projective module if $d<\infty$.

In particular $K_{0}(M) \cong \mathbb{R}$.

The hyperfinite $I I_{1}$ factor R : Among $I I_{1}$ factors, pride of place goes to the ubiquitous hyperfinite $I I_{1}$ factor R. It is characterised as the unique $I I_{1}$ factor which has any one of several properties, such as injectivity and approximate finite-dimensionality (= hyperfiniteness).

Thus, \exists a unique $I I_{1}$ factor R which contains an increasing sequence of finite-dimensional *subalgebras

$$
A_{1} \subset A_{2} \subset \cdots \subset A_{n} \subset \cdots
$$

such that $\cup_{n} A_{n}$ is σ-weakly dense in R.
Examples of $I I_{1}$ factors: Let $\lambda: G \rightarrow \mathcal{U}\left(\mathcal{L}\left(\ell^{2}(G)\right)\right)$ denote the 'left-regular representation' of a countable infinite group G, and let $L G=(\lambda(G))^{\prime \prime}$. Then $L G$ is a $I I_{1}$ factor iff every conjugacy class of G other than $\{1\}$ is infinite.
$L \Sigma_{\infty} \cong R$, while $L \mathbb{F}_{2}$ is not hyperfinite.
Big open problem: is $L \mathbb{F}_{3} \cong L \mathbb{F}_{2}$?

The study of bimodules over $I I_{1}$ factors is essentially equivalent to that of 'subfactors'.

$$
\left({ }_{N} \mathcal{H}_{M} \leftrightarrow \pi_{l}(N) \subset \pi_{r}(M)^{\prime} .\right)
$$

A subfactor is a unital inclusion $N \subset M$ of $I I_{1}$ factors. For a subfactor as above, Jones defined the index of the subfactor to be

$$
[M: N]=\operatorname{dim}_{N} L^{2}\left(M, \operatorname{tr}_{M}\right)
$$

and proved:

$$
[M: N] \in[4, \infty] \cup\left\{4 \cos ^{2}\left(\frac{\pi}{n}: n \geq 3\right\}\right.
$$

A subfactor $N \subset M$ satisfies $N^{\prime} \cap M=\mathbb{C}$ iff $L^{2}\left(M, \operatorname{tr}_{M}\right)$ is irreducible as an $N-M$ bimodule. Such a subfactor is called irreducible.

It is known that if a subfactor $N \subset M$ has finite index, then N is hyperfinite if and only if M is. In this case, call the subfactor hyperfinite.

Very little is known about the set \mathcal{I}_{R}^{0} of possible index values of irreducible hyperfinite subfactors.

Some known facts:
(a) (Jones) $\mathcal{I}_{R}=[4, \infty] \cup\left\{4 \cos ^{2}\left(\frac{\pi}{n}\right): n \geq 3\right\}$ and $\mathcal{I}_{R}^{0} \supset\left\{4 \cos ^{2}\left(\frac{\pi}{n}: n \geq 3\right\}\right.$
(b) $\left(\frac{N+\sqrt{N^{2}+4}}{2}\right)^{2},\left(\frac{N+\sqrt{N^{2}+8}}{2}\right)^{2} \in \mathcal{I}_{R}^{0} \forall N \geq 1$
(c) $\left(N+\frac{1}{N}\right)^{2}$ is the limit of an increasing sequence in \mathcal{I}_{R}^{0}.

Open problems:
(a) Is \mathcal{I}_{R}^{0} countable?
(b) Does there exist $\epsilon>0$ such that

$$
\mathcal{I}_{R}^{0} \cap(4,4+\epsilon)=\emptyset ?
$$

Crossed products and examples of factors:

The left-regular representation of a countable group G is the association

$$
G \ni t \mapsto \lambda_{t} \in \mathcal{U}\left(\mathcal{L}\left(\ell^{2}(G)\right)\right)
$$

given by

$$
\left(\lambda_{t} \xi\right)(s)=\xi\left(t^{-1} s\right) .
$$

Here, of course, $\ell^{2}(G)$ denotes the Hilbert space of square-summable functions $\xi: G \rightarrow \mathbb{C}$. If we write

$$
1_{s}(t)=\delta_{s, t},
$$

then clearly $\left\{1_{s}: s \in G\right\}$ is an o.n.b. for $\ell^{2}(G)$.
We shall identify operators on $\ell^{2}(G)$ with their matrices w.r.t. this o.n.b.; thus

$$
\mathcal{L}\left(\ell^{2}(G)\right) \ni x \leftrightarrow((x(s, t))),
$$

where $x(s, t)=\left\langle x 1_{t}, 1_{s}\right\rangle$; for example,

$$
\lambda_{u}(s, t)=\left\langle\lambda_{u} 1_{t}, 1_{s}\right\rangle=\left\langle 1_{u t}, 1_{s}\right\rangle=\delta_{s, u t} .
$$

Suppose G acts on a von Neumann algebra $M \subset \mathcal{L}(\mathcal{H})$; i.e., assume:
(i) α_{t} is a *-automorphism of M for each $t \in G$, and
(ii) $G \ni t \mapsto \alpha_{t} \in \operatorname{Aut}(M)$ is a group homomorphism.

Then the crossed-product construction is (analogous to the 'semi-direct product construction' for groups and) results in a von Neumann algebra $\tilde{M} \subset \mathcal{L}(\tilde{\mathcal{H}})$, a normal representation $\pi: M \rightarrow \mathcal{L}(\tilde{\mathcal{H}})$, and a unitary group representation $\lambda: G \rightarrow \mathcal{U}(\mathcal{L}(\tilde{\mathcal{H}}))$, such that:
(a) $\tilde{M}=(\pi(M) \cup \lambda(G))^{\prime \prime}$; and
(n) $\lambda(u) \pi(x)=\pi\left(\alpha_{u}(x)\right) \lambda(u) \forall u \in G, x \in M$.

It turns out that the isomorphism type of \tilde{M} is independent of the choices of $\tilde{\mathcal{H}}, \pi$ and λ.

The model of the crossed-product we shall use is as follows:

$$
\tilde{\mathcal{H}}=\ell^{2}(G ; \mathcal{H}) \cong \ell^{2}(G) \otimes \mathcal{H} \cong \oplus_{t \in G} \mathcal{H},
$$

where

$$
\tilde{\xi}_{\leftrightarrow} \sum_{t} \tilde{\mathrm{I}}_{t} \otimes \tilde{\xi}(t) \leftrightarrow((\tilde{\xi}(t)))
$$

As before, we identify operators $\tilde{x} \in \mathcal{L}(\tilde{\mathcal{H}})$ with their 'operator-matices $((\tilde{x}(s, t)))$ - defined by the requirement that

$$
\langle\tilde{x}(s, t) \xi, \eta\rangle=\left\langle\tilde{x}\left(1_{t} \otimes \xi\right),\left(1_{s} \otimes \eta\right)\right\rangle,
$$

or equivalently,

$$
(\tilde{x} \tilde{\xi})(s)=\sum_{t} \tilde{x}(s, t) \tilde{\xi}(t)
$$

Define

$$
\begin{aligned}
& (\pi(x) \tilde{\xi})(s)=\left(\alpha_{s^{-1}}(x) \tilde{\xi}(s)\right) \\
& (\lambda(u) \tilde{\xi})(s)=\tilde{\xi}\left(u^{-1} s\right)
\end{aligned}
$$

In matricial terms, we see that

$$
\begin{aligned}
(\pi(x))(s, t) & =\delta_{s, t} \alpha_{t^{-1}}(x) \\
(\lambda(u))(s, t) & =\delta_{s, u t} i d_{\mathcal{H}}
\end{aligned}
$$

In fact, we find that

$$
\begin{aligned}
\tilde{M}= & \{\mathcal{L}(\tilde{\mathcal{H}}) \ni \tilde{x}: \exists x(s) \in M, s \in G \text { such } \\
& \text { that } \left.\tilde{x}(s, t)=\alpha_{t^{-1}}\left(x\left(s t^{-1}\right)\right) \forall s, t \in G\right\}
\end{aligned}
$$

Remark: It is customary to denote the crossed product by $M \rtimes_{\alpha} G$. (If α is the trivial action on \mathbb{C} - with $\alpha_{t}=i d_{\mathbb{C}} \forall t$ - then

$$
\left.\mathbb{C} \rtimes_{\alpha} G \cong L(G)=(\lambda(G))^{\prime \prime} .\right)
$$

Aside on abelian vNa's: Any abelian vNa is isomorphic to some $A=L^{\infty}(\Omega, \mathcal{B}, \mu)$, with μ a probability measure.

Any automorphism $\theta \in \operatorname{Aut}(A)$ is of the form $\theta(f)=f \circ T$ for some non-singular automorphism of (Ω, \mathcal{B}, μ) (meaning a bi-measurable bijection $T: \Omega \rightarrow \Omega$ such that $\mu \circ T^{-1}$ and μ have the same null sets). Further, TFAE:

1. $\mu(\{\omega \in \Omega: T \omega=\omega\})=0$
2. $\theta=\theta_{T}$ is 'free' in the sense of the next definition.

Def.: (a) An automorphism $\theta \in \operatorname{Aut}(M)$ is said to be free if, for $x \in M$,

$$
x y=\theta(y) x \forall y \in M \Leftrightarrow x=0 .
$$

(b) An action $\alpha: G \rightarrow M$ is said to be free if α_{t} is free for all $t \neq 1$.
(c) An action $\alpha: G \rightarrow M$ is said to be ergodic if

$$
M^{\alpha}:=\left\{x \in M: \alpha_{t}(x)=x \forall t \in G\right\}==\mathbb{C}
$$

Note: If $M=A$ is abelian as before, the action is given by

$$
\alpha_{t}(f)=f \circ T_{t}^{-1}
$$

for an action $t \rightarrow T_{t}$ of G as non-singular automorphisms of $(\Omega, \mathcal{B}, \mu)$; and the action α is ergodic in the above sense iff the action $t \mapsto T_{t}$ is ergodic in the classical sense, meaning
$E \in \mathcal{B}, \mu\left(E \Delta T_{t} E\right)=0 \forall t \in G \Rightarrow \mu(E) \cdot \mu(\Omega \backslash E)=0$.

Proposition: TFAE:

(i) $\pi(M)^{\prime} \cap \tilde{M} \subset \pi(Z(M))$
(ii) The action α is free.

Proposition: Suppose the action is free. Then, TFAE:
(i) \tilde{M} is a factor.
(ii) The restricted action $\alpha_{Z}: G \rightarrow \operatorname{Aut}(Z(M)$ is ergodic.

Corollary: If $G \ni t \mapsto T_{t}$ is a free ergodic action of G as non-singular automorphisms of $(\Omega, \mathcal{B}, \mu)$, then $M=L^{\infty}(\Omega, \mathcal{B}, \mu) \rtimes_{\alpha} G$ is a factor - where, of course, $\alpha_{t}(f)=f \circ T_{t}^{-1}$.

The type of this factor is described below.

Theorem:(MvN)

Let A, G, T_{t}, M be as in the previous corollary. Then:
(a) M is of type $I I I$ iff there does not exist a σ-finite measure ν which has the same null sets as μ and is left invariant by each T_{t}.
(b) Suppose M is not type $I I I$, and that ν is a G-invarian measure which is mutually absolutely continuous with μ. Then,
(i) M is of type I iff ν has atoms (or, is equivalently, purely atomic).
(ii) M is of type $I I$ iff ν is non-atomic.
(iii) M is a finite factor iff ν is a finite measure.
$\left(I_{n}\right)$ If $G=\mathbb{Z}_{n}$ acts transitively on $\Omega=\{1,2, \cdots, n\}$ and if μ denotes counting measure on Ω, then $M \cong M_{n}(\mathbb{C})$.
(I_{∞}) If $G=\mathbb{Z}$ acts transitively on $\Omega=\{1,2, \cdots, n\}$ and if μ denotes counting measure on Ω, then $\left.M \cong \mathcal{L}\left(\ell^{2}(\mathbb{Z})\right)\right)$.
(II) If a countable dense subgroup G of a locally compact group Ω acts by translation on Ω, and if μ denotes Haar measure on Ω, then M is a type $I I$ factor, which is of type I_{1} iff Ω is compact.
(III) The $a x+b$ group G acts naturally on \mathbb{R} in an ergodic and free manner. Further $G_{0}=\{g \in G: g$ preserves Lebesgue measure $\}$ is a proper subgroup (corresponding to $a=1$) which also acts ergodically on \mathbb{R}. It follows that no measure mutually absolutely continous with Lebesgue measure is left invariant by all of G. So M is of type $I I I$ in this case.

Fact: If M is a factor, and $\theta \in A u t(M)$, TFAE:
(i) θ is free.
(ii) θ is 'outer': i.e., there does not exist $u \in$ $\mathcal{U}(M)$ such that $\theta=A d_{u}$ - i.e., $\theta(x)=u x u^{*}$ for all $x \in M$

Corollary: If $\alpha: G \rightarrow \operatorname{Aut}(M)$ is an outer action - i.e., if α_{t} is outer for each $t \neq 1$ - then $M \rtimes_{\alpha} G$ is a factor. If M is a $I I_{1}$ factor and G is a finite group, then $M \rtimes_{\alpha} G$ is also a $I I_{1}$ factor.

Facts: (i) If $G=U_{n}(\mathbb{C})$, then G admits an outer action on the hyperfinite $I I_{1}$ factor R;
(ii) In particular, any finite group admits an outer action on R.

Theorem:

Let G, H be finite groups. Then TFAE:
(i) There is an 'isomorphism of hyperfinite subfactors'

$$
\left(R \subset R \rtimes_{\alpha} G\right) \cong\left(R \subset R \rtimes_{\beta} H\right)
$$

(ii) There is an isomorphism of groups

$$
G \cong H .
$$

Subfactors:

The standard module: Assume M is a 'finite' vNa , with faithful trace $t r_{M}$; then $L^{2}\left(M, t r_{M}\right)$ has a distinguished dense subspace $\mathcal{D}=\{\hat{x}$: $x \in M\}$ such that

$$
\langle\hat{x}, \hat{y}\rangle=\operatorname{tr}_{M}\left(y^{*} x\right) \forall x, y \in M
$$

and that $L^{2}\left(M, t r_{M}\right)$ is an $M-M$ bimodule, with

$$
a \cdot \widehat{x} \cdot b=\widehat{a x b} .
$$

(The reason for the hats is that we shall identify an $a \in M$ with the unique operator $a \in$ $\mathcal{L}\left(L^{2}\left(M, t r_{M}\right)\right)$ such that

$$
a \widehat{x}=\widehat{a x} \forall \widehat{x} \in \mathcal{D}
$$

and we will need to distinguish between the operator a and the vector \hat{a}. Thus we view M as contained in $\mathcal{L}\left(L^{2}\left(M, \operatorname{tr}_{M}\right)\right.$.)

Since $t r_{M}$ is a trace, it follows that the mapping $\widehat{x} \mapsto \widehat{x^{*}}$ defines a conjugate-linear norm preserving self-map of \mathcal{D} which is its own inverse, and consequently extends uniquely to an anti-unitaty involution of $\left.L^{2}\left(M, t r_{M}\right)\right)$, which is usually denoted by J (or J_{M}, if it is necessary to draw attention to the dependence on M) and called the modular conjugation of M.

The definitions imply that $J a * J \widehat{x}=\widehat{x a}$, so that

$$
a \cdot \widehat{x} \cdot b=a J b^{*} J \widehat{x},
$$

thus establishing the easy half of part (a) of:
Proposition: (baby version of the celebrated Tomita-Takesaki theorem)
(a) $J M J(=\{J a J: a \in M\})=M^{\prime}$; and
(b) \mathcal{D} is precisely the collection of bounded vectors, meaning that a $\xi \in^{2}\left(M, t r_{M}\right)$ belongs to \mathcal{D} iff $\exists K>0$ such that $\|a \xi\| \leq K\|\widehat{a}\| \forall a \in M$.

Suppose now that $N \subset M$ is a vN subalgebra. Notice then that there is an (isometric) identification of $L^{2}\left(N, t r_{N}\right)$ as a subspace $L^{2}\left(M, t r_{M}\right)$ (where we write $\left.\operatorname{tr}_{M}\right|_{N}=t r_{N}$). Let e_{N} denote the orthogonal projection of $L^{2}\left(M, t r_{M}\right)$ onto $L^{2}\left(N, t r_{N}\right)$.

If we express operators on $L^{2}\left(M, \operatorname{tr}_{M}\right)$ as $2 \times$ 2 operator-matrices w.r.t. the decomposition $L^{2}\left(M, t r_{M}\right)=L^{2}\left(N, t r_{N}\right) \oplus k e r e_{N}$, we see that $e_{N}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], J_{M}=\left[\begin{array}{ll}J_{N} & 0 \\ 0 & J_{1}\end{array}\right], M \ni a=\left(\left(a_{i j}\right)\right)$, where J_{1} is some antiunitary operator on ker e_{N} and $a_{i j} \in \mathcal{L}\left(\mathcal{H}_{j}, \mathcal{H}_{i}\right)$, with $\mathcal{H}_{1}=$ ran e_{N} and $\mathcal{H}_{2}=$ ker e_{N}.

To keep track of various identifications, it will help if we write $\pi_{l}^{M}(a)$ to denote the operator of left multiplication by a on $L^{2}\left(M, t r_{M}\right)$. Then if $a \in N$, note that $\pi_{l}^{M}(a)\left(\mathcal{H}_{1}\right) \subset \mathcal{H}_{1}$, and we find that in this case, we must have $a_{12}=$ $a_{21}=0$ and $a_{11}=\pi_{l}^{N}(a)$.

More generally, for any $a \in M$, the fact that $J_{M} \pi_{l}^{M}(M) J_{M} \in \pi_{l}^{M}(M)^{\prime}$ implies that
$\left[\begin{array}{ll}J_{N} a_{11} J_{N} & J_{N} a_{12} J_{1} \\ J_{1} a_{21} J_{N} & J_{1} a_{22} J_{1}\end{array}\right] \in \pi_{l}^{M}(M)^{\prime} \subset \pi_{l}^{M}(N)^{\prime}$,
and in particular, $J_{N} a_{11} J_{N} \in \pi_{l}^{N}(N)^{\prime}=J_{N} \pi_{l}^{N}(N) J_{N}$: i.e., $a_{11} \in \pi_{l}^{N}(N)$.

So we have a well-defined map $E_{N}: M \rightarrow N$ such that

$$
a \in M \Rightarrow a_{11}=\pi_{l}^{N}\left(E_{N}(a)\right) .
$$

Proposition: The (linear) maps E_{N} (resp., e_{N}) satisfy, for arbitrary $x \in M, a, b \in N$:
(i) $\widehat{E_{N} x}=e_{N} \hat{x}$;
(ii) $E_{N} x=x \Rightarrow x \in N \Rightarrow x e_{N}=e_{N} x$ (projection);
(iii) $E_{N}(a x b)=a\left(E_{N} x\right) b$ (N-bilinear)
(iv) $E_{N}\left(x^{*} x\right)>0 \Rightarrow x \neq 0$ (faithful \& positive)
(v) $\operatorname{tr}_{N} \circ E_{N}=t r_{M}$ (trace-preserving)

The map E_{N} is called the trace-preserving conditional expectation of M onto N - because, if $M=L^{\infty}(\Omega, \mathcal{B}, \mu)$, any vN subalgebra is of the form $N=L^{\infty}\left(\Omega, \mathcal{B}_{0}, \mu\right)$ for some sub- σ-algebra \mathcal{B}_{0}, and E_{M} agrees with the conditional expectation familiar from classical probability theory.

The first step in the analysis of subfactors is the so-called basic construction due to Jones. (This notion makes sense in greater generality than the case we state, but we shall only need this.)

Proposition: Suppose $N \subset M$ is a subfactor. Define $M_{1}=J_{M} N^{\prime} J_{M}$. Then
(a) M_{1} is also a factor and $M \subset M_{1}$.
(b) M_{1} is a $I I_{1}$ factor iff $[M: N]<\infty$; in this case, $\left[M_{1}: M\right]=[M: N]$ and $\operatorname{dim}_{\mathbb{C}}\left(N^{\prime} \cap M\right)<$ ∞; and hence

$$
[M: N] \leq 4 \Rightarrow N^{\prime} \cap M=\mathbb{C} .
$$

(c) $M_{1}=\left(M \cup\left\{e_{N}\right\}\right)^{\prime \prime}$.

We abbreviate the content of (c) above and say that

$$
N \subset M \subset^{e_{N}} M_{1}
$$

is the basic construction. Thus, applied to a subfactor $(N=) M_{-1} \subset(M=) M_{0}$ of finite index, say d, the basic construction yields another subfactor $M_{0} \subset M_{1}=\left\langle M, e_{1}\left(=e_{N}\right)\right\rangle$ also of index d.

The tower of the basic construction:

And, as Jones says, we should 'push a good thing along', and inductively construct :
$N=M_{-1} \subset M=M_{0} \subset^{e_{1}} M_{1} \subset^{e_{2}} M_{2} \cdots \subset^{e_{n}} M_{n} \cdots$
We then find that:
(a) Each M_{n} is a $I I_{1}$ factor.
(b) e_{n} implements the CE of M_{n-1} onto M_{n-2}, meaning

$$
e_{n} x_{n-1} e_{n}=E_{M_{n-2}}\left(x_{n-1}\right) e_{n}
$$

(c) $\left[M_{k+l}: M_{l}\right]=\lambda^{k}$, and $M_{l} \subset M_{k+l} \subset M_{k+2 l}$ is an instance of the basic construction.

So, to the subfactor $N \subset M$ is canonically associated the grid ($\left(A_{i j}=M_{i}^{\prime} \cap M_{j}\right)$) of finitedimensional C^{*}-algebras - with $A_{i j} \subset A_{k l}$ whenever $-1 \leq k \leq i \leq j \leq l$ - which comes equipped with a consistent 'trace tr' - which agrees on $A_{i j}$ with $\operatorname{tr}_{M_{j}}$.

Owing to a certain periodicity of order 2 $A_{i j} \cong A_{i+2, j+2}$ - it turns out that the entire data of this grid is already contained in the first two rows (for $i=0,1$, namely the grid:

$$
\begin{array}{ccccc}
N^{\prime} \cap N \subset & N^{\prime} \cap M & \cdots & N^{\prime} \cap M_{N} & \cdots \\
& \cup & & \cup & \cdots \\
& M^{\prime} \cap M & \cdots & M^{\prime} \cap M_{N} & \cdots
\end{array}
$$

This grid, equipped with the trace tr (cf. the first para above), is called the standard invariant of the subfactor $N \subset M$.

Write $\pi(A)$ for the set of minimal (non-zero) projections in the centre $Z(A)$ of a finite dimensional C^{*}-algebra A. The WedderburnArtin theorem then guarantees the existence of a function $d: \pi(A) \rightarrow \mathbb{N}$ such that

$$
A \cong \oplus_{p \in \pi(A)} M_{d(p)}(\mathbb{C})
$$

Further, $\pi(A)$ parametrises the set of inequivalent irreducible representations of A thus: if $a \leftrightarrow \oplus_{p} a_{p}$ under the above isomorphism, then $\pi_{p}(a)=a_{p}$. If $\phi: A \rightarrow B$ is a (unital) inclusion of finite-dimensional C^{*}-algebras, define the associated non-negative integer-valued 'inclusion matrix' \wedge with rows and columns indexed by $\pi(A)$ and $\pi(B)$ respectively thus: if p_{0} is a minimal projection of A such that $p_{0} \leq p$, then $\wedge(p, q)=\operatorname{tr}_{M_{d(q)}(\mathbb{C})} \pi_{q}\left(\phi\left(p_{0}\right)\right)$ ($=$ 'the no. of times that $\left.\pi_{q}\right|_{A}$ contains $\left.\pi_{p}{ }^{\prime}\right)$.

It is a fact that two inclusions $A_{i} \subset B_{i}, i=1,2$ are isomorphic iff they have the same inclusion matrix.

Non-negative integer matrices may be viewed as adjacency matrices of bipartite graphs; so inclusions may be described by bipartite graphs.

Successive inclusion 'graphs' can be glued together into the Bratteli diagram of a tower. Thus the representation theory of the Σ_{n} 's shows that the Bratteli diagram for

$$
\mathbb{C} \subset \mathbb{C} \Sigma_{3} \subset \mathbb{C} \Sigma_{4}
$$

is:

The standard invariant may be viewed as having three ingredients:
(i) the tower $\left\{N^{\prime} \cap M_{n}: n \geq-1\right\}$;
(ii) the tower $\left\{M^{\prime} \cap M_{n}: n \geq 0\right\}$; and
(iii) the data of how the former tower is included in the latter.

These three ingredients are described by the so-called principal graph, dual principal graph and the flat connection associated to the subfactor, respectively.

The principal graph invariant:

The presence of the Jones projections $\left\{e_{n}: n \geq\right.$ $1\}$ in the tower of the basic construction causes the presence of a certain reflection symmetry in the Bratteli diagram of the tower $\left\{N^{\prime} \cap M_{n}\right.$: $n \geq-1\}$. We illustrate this with an example.

$$
N^{\prime} \cap N
$$

$N^{\prime} \cap M$
$N^{\prime} \wedge$ M_{1}
$N^{\prime} \wedge$ M_{2}
$N^{\prime} \wedge$ M_{3}
$N^{\prime} \wedge$ 4
$N^{\prime} \cap M_{5}$

Thus, if we write A_{n} for $N^{\prime} \cap M_{n}$, then at each stage, the 'inclusion graph' for $A_{n} \subset A_{n+1}$ contains a reflection of that of $A_{n-1} \subset A_{n}$ and a possibly 'new part'. The graph obtained by retaining only the 'new parts' is the principal graph. (In the above example, the preincipal graph is the Coxeter graph E_{6}.) It should be clear that the Bratteli diagram for the entire tower $\left\{A_{n}\right\}$ can be recaptured from the principal graph.

Since the 'dual principal graph' associated to the subfactor $N \subset M$ is just the principal graph associated to $M \subset M_{1}$, we see that the dual principal graph also exhibits the same reflection symmetry as the principal graph.

A discussion of flat connections is beyond the scope of these lectures; but we will say that it imposes constraints on when a pair of graphs can arise as the principal and the dual principal graphs of a subfactor. We will state a few sample results though.

Suppose Γ and Γ^{\prime} denote the principal and dual graphs associated with a subfactor. Then:
(a) Γ is finite iff Γ^{\prime} is finite; and in this case,

$$
\|A(\Gamma)\|=\left\|A\left(\Gamma^{\prime}\right)\right\|=[M: N]^{\frac{1}{2}}
$$

where $A(\Gamma)$ denotes the 'adjacency matrix' of Γ.

Thus if Γ denotes the E_{6} graph (with 6 vertices), then

$$
A(\Gamma)=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

(b) If $[M: N]<4$, then Γ is isomorphic to Γ^{\prime} and to one of the Coxeter graphs $A_{n}, D_{2 n}, E_{6}$ or E_{8}.
(c) There exists a subfactor, of index $\frac{5+\sqrt{13}}{2}$, with

and if $4<[M: N]<\frac{5+\sqrt{13}}{2}$, then the principal graph is infinite, and in fact, isomorphic to A_{∞}.

From subfactors to knot invariants:

Jones' polynomial invariant of knots is a consequence of the connection between subfactors and braid groups. So we shall digress with a sortie into braid groups and knots.

To an Indian, the term 'braid' can be motivated by the following ' 3 -strand braid':

Informal definition of an n-strand braid: two parallel rods with n hooks each, and n strands with one end of each strand tied to a hook on one of the rods - with two braids being identified if they can be (homotopically) deformed into one another.

We shall think of an n-strand braid b as follows - with 'all the action taking place' within the box:

general
n-strand braid

The collection B_{n} of all n-strand braids is equipped with a product thus:

(To verify that this multiplication is associative, we need the assumption that homotopic braids are the same.)
B_{n} turns out to be a group; the identity element $1_{n} \in B_{n}$ is given by

while the inverse of a braid is obtained by reflecting in a horizontal mirror placed at the level of the lower rod of the braid, thus:

Since braids can be built up 'one crossing at a time' it is clear that B_{n} is generated, as a group, by the braids $b_{1}, b_{2}, \cdots, b_{n-1}$ shown below - together with their inverses:

The b_{j} 's satisfy the following relations:

- $b_{i} b_{j}=b_{j} b_{i}$ if $|i-j| \geq 2$

$b_{1} b_{3}$

$b_{3} b_{1}$
- $b_{i} b_{i+1} b_{i}=b_{i+1} b_{i} b_{i+1}$ for all $i<n-1$

In order to describe a celebrated theorm by Artin on the braid group, we briefly digress into presentations of (finitely generated) groups.

Recall that the free group with generators $\left\{g_{1}, \cdots, g_{n}\right\}$ if for any set $\left\{h_{1}, \cdots, h_{n}\right\}$ of elements in any group H, there exists a unique homomorphism $\phi: G \rightarrow H$ with the property that $\phi\left(g_{k}\right)=h_{k}$ for each $k=1, \cdots, n$. Such a group exists, is unique up to isomorphism, and is denoted by the symbol

$$
G=\left\langle g_{1}, \cdots, g_{n}\right\rangle
$$

For example, $\mathbb{Z}=\langle 1\rangle$ is the free group on one generator.

A group G is said to have presentation

$$
G=\left\langle g_{1}, \cdots, g_{n} \mid r_{1}, \cdots, r_{m}\right\rangle
$$

if:
(i) it is generated by the set $\left\{g_{1}, \cdots, g_{n}\right\}$
(ii) the g_{i} 's satisfy each relation r_{j} for $j=$ $1, \cdots, m$; and
(iii) for any set $\left\{h_{1}, \cdots, h_{n}\right\}$ of elements in any group H, which 'satisfy each of the relations r_{1}, \cdots, r_{m}, there exists a unique homomorphism $\phi: G \rightarrow H$ with the property that $\phi\left(g_{k}\right)=$ h_{k} for each $k=1, \cdots, n$.

Such a group exists, and is unique up to isomorphism.

Examples of presentations
(i) $C_{n}=\left\langle g \mid g^{n}=1\right\rangle$ is the cyclic group of order n.
(ii) $D_{n}=\langle g, t| g^{n}=1$, tgt $\left.^{-1}=t^{-1}\right\rangle$ is the dihedral group of symmetries of an n-gon.
(D_{n} has $2 n$ elements.)

$g=$ rotation by 120°
$t=$ reflection about an altitude

The Braid group is often referred to as Artin's Braid Group, partly because of the following theorem he proved:

Theorem: (Artin) B_{n} has the presentation

$$
B_{n}=\left\langle b_{1}, \cdots, b_{n-1} \mid r_{1}, r_{2}\right\rangle
$$

where

- (r_{1}) $b_{i} b_{j}=b_{j} b_{i}$ if $|i-j| \geq 2$
- (r_{2}) $b_{i} b_{i+1} b_{i}=b_{i+1} b_{i} b_{i+1}$ for all $i<n-1$

It is a fact that the permutation group Σ_{n} has the presentation

$$
\Sigma_{n}=\left\langle t_{1}, \cdots, t_{n-1} \mid r_{1}, r_{2}, r_{3}\right\rangle
$$

where r_{1}, r_{2} are the braid relations above, and

$$
\left(r_{3}\right) \text { is } t_{i}^{2}=1 \text { for all } i<n
$$

(We may choose t_{i} to be $(i i+1)$.)

Remarks: (a) There exists a unique homomorphism $\phi: B_{n} \rightarrow \Sigma_{n}$ such that $\phi\left(b_{i}\right)=t_{i}$ for each i. (ϕ is onto, and hence Σ_{n} is a quotient of B_{n}.)

In fact, $\phi(b)=\beta$, where

(b) There exist 1-1 homomorphisms $B_{n} \hookrightarrow B_{n+1}$ given by $b_{k}^{(n)} \mapsto b_{k}^{(n+1)}$ for each $k<n$.
(c) The generators b_{i} are all pairwise conjugate in B_{n}; in fact, if $b=b_{1} b_{2} \cdots b_{n}$, then $b b_{i} b^{-1}=$ $b_{i+1} \forall i<n-1$. (For example:

$$
\left.b_{1} b_{2} b_{3} \cdot b_{1}=b_{1} b_{2} b_{1} b_{3}=b_{2} \cdot b_{1} b_{2} b_{3}\right)
$$

The closure of a braid $b \in B_{n}$ is obtained by sticking together the strings connected to the j-th pegs at the top and bottom. The result is a many component knot (also called a link) \bar{b}.

Two theorems make this 'closure operation' useful:

Theorem (Alexander):

Every tame link is the closure of some braid (on some number of strands).

Theorem(Markov):

Two braids have equivalent closures iff you can pass from one to the other by a finite sequence of moves of one of two types (the so-called 'Markov moves').
(Two links are 'equivalent' if each may be continuously deformed into the other: the two should be ambient isotopic in \mathbb{R}^{3}.)

Type I Markov move:

$$
c^{(n)} b^{(n)}\left(c^{(n)}\right)^{-1} \sim b^{(n)}
$$

Type II Markov move:

$$
b^{(n)} \sim b^{(n+1)}\left(b_{n}^{(n+1)}\right)^{-1}
$$

Def: A link invariant (taking values in some set S) is a function

$$
\mathcal{L} \ni L \mapsto \phi_{L} \in S
$$

such that $\phi_{L_{1}}=\phi_{L_{2}}$ whenever $L_{1} \sim L_{2}$.
The theorems of Alexander and Markov give us a strategy for constructing link invariants: simply define $\phi_{L}=\phi_{n}(a)$ if $L=\widehat{a}$ for some $a \in B_{n}$, where $\left\{\phi_{N}: B_{n} \rightarrow S: n \geq 1\right\}$ is any family of functions which satisfy, for all n :
1.

$$
\phi_{N}\left(c b c^{-1}\right)=\phi_{n}(b) \forall b, c \in B_{n} .
$$

2.

$$
\phi_{n}\left(a^{(n)}\right)=\phi_{n+1}\left(a^{(n+1)}\left(b_{n}^{(n+1)}\right)^{ \pm 1}\right)
$$

for all $a^{(n)} \in B_{n}$.

And the Jones projections from subfactor theory permit us to put this atrategy into practice. Recall that a subfactor $N \subset M$ with $[M: N]=d<\infty$ gives rise to a sequence $\left\{e_{n}: n \geq 1\right\}$ of projections which have the following properties:
(a) $e_{n} e_{m}=e_{m} e_{n}$ if $|m-n|>1$;
(b) $e_{n} e_{n \pm 1} e_{n}=d^{-1} e_{n}$;
(c) there is a faithful positive trace $t r$ defined on the unital *-subalgebra A_{∞} generated by $\left\{e_{n}: n \geq 1\right\}$, such that

$$
\operatorname{tr}\left(x e_{n+1}\right)=d^{-1} \operatorname{tr}(x)
$$

whenever x is in the unital algebra A_{n} generated by $\left\{e_{1}, \cdots, e_{n}\right\}$.

Comparing the braid relations and the relations (a),(b) satisfied by the Jones projections, we see - after a little algebra - that if we define

$$
g_{i}=C\left[(q+1) e_{i}-1\right],
$$

- for any $C \neq 0$, and $i \geq 1$ - then the g_{i} 's satisfy the braid relations, povided $q \in \mathbb{C}$ satisfies

$$
q+q^{-1}+2=d
$$

and so we have a homomorphism π_{n} from B_{n} into the group of invertible elements of A_{n} such that

$$
\pi_{n}\left(b_{i}\right)=g_{i} \forall 1 \leq i \leq n .
$$

Motivated by condition 2. of the last page, we choose the constant C such that $\operatorname{tr} g_{n+1}=$ tr g_{n+1}^{-1}; this forces $C=q^{\frac{1}{2}}$ and

$$
\begin{aligned}
& \operatorname{tr} \pi_{n+1}\left(a^{(n+1)}\left(b_{N}^{(n+1)}\right)^{ \pm 1}\right) \\
& \quad=\left[-\left(q^{\frac{1}{2}}+q^{-\frac{1}{2}}\right)^{-1}\right] \operatorname{tr} \pi_{n}\left(a^{(n)}\right) \forall a^{(n)} \in B_{n}
\end{aligned}
$$

Note that

$$
\tau=4 \cosh ^{2} z \Leftrightarrow q=e^{ \pm 2 z}
$$

and in particular τ^{-1} is a possible finite index value iff

$$
q \in Q=\left\{e^{ \pm \frac{2 \pi i}{n}}: n \geq 3\right\} \cup[1, \infty)
$$

In conclusion, we find that for each $q \in Q$, there exists a link invariant (in fact an invariant of oriented links)

$$
\mathcal{L} \ni L \mapsto \phi_{L}^{q} \in \mathbb{C}
$$

such that if π_{n}, C etc. are associated to $\tau=$ $\left(q+q^{-1}+2\right)^{-1}$ as above, then

$$
\phi_{a^{(n)}}^{q}=\left[-\left(q^{\frac{1}{2}}+q^{-\frac{1}{2}}\right)\right]^{n-1} \operatorname{tr} \pi_{n}\left(a^{(n)}\right)
$$

It is customary to write $V_{l}(q)$ for what we denoted above by ϕ_{L}^{q}, so as to draw attention to the function $q \mapsto V_{L}(q)$.

We list some remarkable properties of this function - commonly referred to as the one-variable Jones polynomial - below.

Proposition: Let L be any oriented link.
(a) If L has an odd number of components, then $V_{L}(q)$ is a Laurent polynomial in q; and if L has an even number of components, then $V_{L}(q)$ is $q^{\frac{1}{2}} \times$ a Laurent polynomial in q.
(b) If \tilde{L} denotes the 'mirror-reflection' of L, then

$$
V_{\tilde{L}}(q)=V_{L}\left(q^{-1}\right) .
$$

(c) $V_{U_{n}}(q)=\left[-\left(q^{\frac{1}{2}}+q^{-\frac{1}{2}}\right)\right]^{n-1}$, where U_{n} denotes the unlink on n components.
(d)

$$
q^{-1} V_{L_{+}}(q)-q V_{L_{-}}(q)=\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right) V_{L_{0}}(q)
$$

for any skein-related triple L_{+}, L_{-}, L_{0}.
(e) the invariant V is uniquely determined by properties (c) and (d) above.

Three links L_{+}, L_{-}, L_{0} are said to be skeinrelated if they may be represented by linkdiagrams which are identical except at one crossing, where they look like:

L_{-}

L_{0}

An instance of such a triple is given by:

where

$$
L_{+}=T_{+}, L_{-}=U_{1}, L_{0}=H_{+}
$$

