Approximation properties and absence of Cartan subalgebra for free Araki-Woods factors

Cyril Houdayer (Joint work with Éric Ricard)

CNRS École Normale Supérieure de Lyon

Satellite Conference on Operator Algebras IMSc Chennai August 2010

- Definition of the free Araki-Woods factors Γ(H_R, U_t)".
 Construction, basic examples and earlier classification results.
- **2** Approximation properties and structural results for $\Gamma(H_{\mathbf{R}}, U_t)''$.
- **③** Applications to the classification problem of type III_1 factors.

Free Gaussian process

• Real Hilbert space, orthogonal representation of R

 $(H_{\mathbf{R}}, U_t)$

$$H = H_{\mathbf{R}} \otimes_{\mathbf{R}} \mathbf{C}$$
 and $U_t = A^{it}$

• Isometric embedding $H_{\mathbf{R}} \hookrightarrow H$, $K_{\mathbf{R}} = j(H_{\mathbf{R}})$.

$$j(\zeta) = \left(\frac{2}{1+A^{-1}}\right)^{1/2}\zeta$$

$$\overline{K_{\mathbf{R}} + iK_{\mathbf{R}}} = H$$
 and $K_{\mathbf{R}} \cap iK_{\mathbf{R}} = \{0\}$

• Closed densily defined conjugate-linear involution on H.

$$I(e+if) = e-if, \forall e, f \in K_{\mathbf{R}}$$

(Observe that $I^*I = A^{-1}$).

Free Gaussian process

• Full Fock space

$$\mathcal{F}(H) = \mathbf{C}\Omega \oplus igoplus_{n\geq 1} H^{\otimes n}$$

• Left creation operators. For $\xi \in H$, $\ell(\xi) : \mathcal{F}(H) \to \mathcal{F}(H)$

$$\begin{cases} \ell(\xi)\Omega = \xi \\ \ell(\xi)(\xi_1 \otimes \cdots \otimes \xi_n) = \xi \otimes \xi_1 \otimes \cdots \otimes \xi_n \end{cases}$$

• Semicircular element (whose spectrum is $[-2||\xi||, 2||\xi||]$)

$$W(\xi) = \ell(\xi) + \ell(\xi)^*$$

• Free quasi-free state

$$\chi = \langle \cdot \Omega, \Omega \rangle$$

Definition (Shlyakhtenko 1997)

Free Araki-Woods von Neumann algebra associated with $(H_{\mathbf{R}}, U_t)$

$$\Gamma(H_{\mathbf{R}}, U_t)'' := \{W(e) : e \in K_{\mathbf{R}}\}'' \subset \mathbf{B}(\mathcal{F}(H))$$

Note that $\Gamma(\mathbf{R}, 1)'' \simeq L(\mathbf{Z})$.

Theorem (Functorial property)

$$\Gamma(\bigoplus_{j\in J} H^{j}_{\mathbf{R}}, \bigoplus_{j\in J} U^{j}_{t})'' = *_{j\in J} \Gamma(H^{j}_{\mathbf{R}}, U^{j}_{t})''$$

where the latter free product is taken along free quasi-free states.

It follows immediately that if (U_t) is trivial then

$$\Gamma(H_{\mathsf{R}},1)'' \simeq \underbrace{L(\mathsf{Z}) \ast \cdots \ast L(\mathsf{Z})}_{\dim(H_{\mathsf{R}}) \text{ times}} = L(\mathsf{F}_{\dim(H_{\mathsf{R}})})$$

Example

If
$$H_{\mathbf{R}} = \mathbf{R}^2$$
 and $U_t = \begin{pmatrix} \cos(2\pi \log(\lambda)t) & -\sin(2\pi \log(\lambda)t) \\ \sin(2\pi \log(\lambda)t) & \cos(2\pi \log(\lambda)t) \end{pmatrix}$, then $\Gamma(H_{\mathbf{R}}, U_t)''$ is a type $\operatorname{III}_{\lambda}$ factor.

More generally

Theorem (Shlyakhtenko 1997)

If dim $(H_{\mathbf{R}}) \geq 2$, then $M = \Gamma(H_{\mathbf{R}}, U_t)''$ is a full factor and

• *M* is of type II₁ iff (U_t) is trivial: $M = L(\mathbf{F}_{\dim(H_R)})$

2 *M* is of type III_{$$\lambda$$}, $0 < \lambda < 1$, iff (U_t) is $\frac{2\pi}{|\log(\lambda)|}$ -periodic

3 *M* is of type III₁ otherwise

Theorem (Shlyakhtenko 1997)

Assume that (U_t) is not trivial and almost periodic

$$U_t = \mathbf{R}^k \oplus \bigoplus_n \begin{pmatrix} \cos(2\pi \log(\lambda_n)t) & -\sin(2\pi \log(\lambda_n)t) \\ \sin(2\pi \log(\lambda_n)t) & \cos(2\pi \log(\lambda_n)t) \end{pmatrix}$$

Then $\Gamma(H_{\mathbf{R}}, U_t)''$ is completely classified up to *-isomorphism and only depends on the countable subgroup of \mathbf{R}_+ generated by (λ_n) .

Classification of $\Gamma(H_{\mathbf{R}}, U_t)''$ in the non-almost periodic case is an extremely hard problem!

Definition (Haagerup 1979)

A von Neumann algebra M is said to have the **complete metric** approximation property (CMAP) if \exists a net $\Phi_n : M \to M$ of normal finite rank completely bounded maps such that

•
$$\Phi_n \rightarrow \mathsf{Id}$$
 pointwise *-strongly

•
$$\limsup_n \|\Phi_n\|_{\mathsf{cb}} = 1$$

Example

- *M* amenable (hyperfinite)
- M = L(G), where G is a free group and more generally a lattice in $SL_2(\mathbf{R})$, $SL_2(\mathbf{C})$, SO(n, 1), SU(n, 1).

Theorem A (H-Ricard 2010)

All the free Araki-Woods factors $\Gamma(H_{\mathbf{R}}, U_t)''$ have the CMAP.

Idea of proof. Recall that the GNS-space of $(\Gamma(H_{\mathbf{R}}, U_t)'', \chi)$ is

$$\mathbf{C}\Omega \oplus \bigoplus_{n\geq 1} H^{\otimes n}$$

- Using radial multipliers, we can project onto words W(ξ_i) of bounded length with a good control of the || · ||_{cb}-norm.
- 2 The second quantization allows us to project (with cp maps) onto words with letters ξ in finite dimensional subspaces.
- By composing, we get normal finite rank completely bounded maps (Φ_n) that do the job.

Definition

A subalgebra $A \subset M$ is said to be a **Cartan subalgebra** if

- A is maximal abelian, i.e. $A' \cap M = A$
- **2** There exists a faithful normal conditional expectation $E: M \rightarrow A$
- So The normalizer $\mathcal{N}_M(A) = \{u \in \mathcal{U}(M) : uAu^* = A\}$ generates the von Neumann algebra M

By Feldman-Moore, any such Cartan subalgebra $A \subset M$ arises as

$$L^{\infty}(X,\mu) = A \subset M = L(\mathcal{R},\omega)$$

where \mathcal{R} is a **nonsingular** equivalence relation on (X, μ) and ω is a scalar 2-cocycle for \mathcal{R} .

Group actions $\Gamma \curvearrowright (X, \mu)$

- G infinite countable discrete group
- (X, μ) nonatomic standard measure space
- $G \curvearrowright (X, \mu)$ nonsingular action:

$$\mu(\mathcal{V}) = 0 \Longleftrightarrow \mu(g \cdot \mathcal{V}) = 0, \forall g \in G, \forall \mathcal{V} \subset X$$

Definition

• $G \curvearrowright (X, \mu)$ is free if $\forall g \neq e$,

$$\mu(\{x \in X : g \cdot x = x\}) = 0$$

• $G \curvearrowright (X, \mu)$ is **ergodic** if $\forall \mathcal{V} \subset X$,

$$G \cdot \mathcal{V} = \mathcal{V} \Longrightarrow \mu(\mathcal{V}) = 0, 1$$

Nonsingular **orbit** equivalence relation $\mathcal{R}(G \curvearrowright X)$

Example

- Compact action. Let K be a compact group with G < K a countable dense subgroup. Let G ∩ (K, Haar) by left multiplication.
- **Bernoulli** shift. Let G be an infinite group and $(X, \mu) = ([0, 1]^G, \text{Leb}^G)$. Then $G \curvearrowright [0, 1]^G$ is defined by

$$s \cdot (x_h)_{h \in G} = (x_{g^{-1}h})_{h \in G}$$

- ③ The linear actions $SL_n(Z) \frown (T^n, \lambda^n)$ (of type II₁), and $SL_n(Z) \frown (\mathbf{R}^n, \lambda^n)$ (of type II_∞), for $n \ge 2$.
- The projective action SL_n(Z) ∼ Pⁿ⁻¹(R) (of type III₁), for n ≥ 2.

Theorem **B** (H-Ricard 2010)

Let $M = \Gamma(H_{\mathbb{R}}, U_t)''$ and $N \subset M$ be a diffuse subalgebra (for which \exists a faithful normal conditional expectation $E : M \to N$). Then either N is hyperfinite or N has no Cartan subalgebra.

Theorem **B** (H-Ricard 2010)

Let $M = \Gamma(H_{\mathbf{R}}, U_t)''$ and $N \subset M$ be a diffuse subalgebra (for which \exists a faithful normal conditional expectation $E : M \to N$). Then either N is hyperfinite or N has no Cartan subalgebra.

Ozawa-Popa (2007) showed that $L(\mathbf{F}_n)$ is **strongly solid**, i.e. $\forall P \subset L(\mathbf{F}_n)$ diffuse amenable, the normalizer $\mathcal{N}_{L(\mathbf{F}_n)}(P)$ generates an amenable von Neumann algebra. This strengthened two well-known indecomposability results for free group factors:

- Voiculescu (1994): $L(\mathbf{F}_n)$ has no Cartan decomposition
- Ozawa (2003): L(F_n) is solid (∀A ⊂ L(F_n) diffuse, A' ∩ L(F_n) is amenable)

Our proof is a generalization of theirs and relies on Theorem A.

Given a type III von Neumann algebra M, there is a canonical construction of the **noncommutative flow of weights**

$$(M \subset M \rtimes_{\sigma} \mathbf{R}, \theta, \mathsf{Tr})$$

where

() σ is the **modular** group and θ the **dual** action

2 The core $M \rtimes_{\sigma} \mathbf{R}$ is of type II_{∞} and Tr is a semifinite trace

③ Tr
$$\circ heta_s = e^{-s}$$
 Tr, $\forall s \in \mathbf{R}$

$$(M \rtimes_{\sigma} \mathbf{R}) \rtimes_{(\theta_s)} \mathbf{R} \simeq M \overline{\otimes} \mathbf{B}(L^2(\mathbf{R}))$$

This construction does **not** depend on the choice of a state ψ .

M is a type III₁ factor $\iff M \rtimes_{\sigma} \mathbf{R}$ is a type II_{∞} factor

On $H_{\mathbf{R}} \oplus H_{\mathbf{R}}$, the rotations

$$V_{s} = \begin{pmatrix} \cos(\frac{\pi}{2}s) & -\sin(\frac{\pi}{2}s) \\ \sin(\frac{\pi}{2}s) & \cos(\frac{\pi}{2}s) \end{pmatrix}$$

commute with $U_t \oplus U_t$. The second quantization $\alpha_s = \Gamma(V_s)$ on

$$\Gamma(H_{\mathbf{R}} \oplus H_{\mathbf{R}}, U_t \oplus U_t)'' = \Gamma(H_{\mathbf{R}}, U_t)'' * \Gamma(H_{\mathbf{R}}, U_t)''$$

satisfies

$$\alpha_1(x*1) = 1 * x, \forall x \in \Gamma(H_{\mathbf{R}}, U_t)''$$

 (α_s) is a malleable deformation in the sense of Popa. Moreover (α_s) can be extended to $M \rtimes_{\sigma^{\chi}} \mathbf{R}$ by letting $\alpha_{s|L(\mathbf{R})} = \mathrm{Id}_{L(\mathbf{R})}$.

Definition (Ozawa-Popa 2007)

Let \mathcal{R} be a p.m.p. equivalence relation on (X, μ) . We say that \mathcal{R} is weakly compact if \exists a sequence (ν_n) of Borel probability measures on $X \times X$ such that $\nu_n \sim \mu \times \mu$, $\forall n \in \mathbf{N}$ and

$$\lim_{n \to X} \int_{X \times X} (f_1 \otimes f_2) \, \mathrm{d}\nu_n = \int_X f_1 f_2 \, \mathrm{d}\mu, \, \forall f_1, f_2 \in L^\infty(X)$$

3
$$\lim_{n} \|\nu_n - (\theta \times \theta)_* \nu_n\| = 0, \forall \theta \in [\mathcal{R}]$$

Example

If $G \curvearrowright X$ is compact, then $\mathcal{R}(G \curvearrowright X)$ is weakly compact.

Theorem (Ozawa-Popa 2007)

Let \mathcal{R} be a p.m.p. equivalence relation on (X, μ) . If $L(\mathcal{R})$ has the CMAP, then \mathcal{R} is weakly compact.

Idea of proof of Theorem B

- Let M = Γ(H_R, U_t)". By contradiction, let N ⊂ M be a diffuse nonamenable subalgebra which has a Cartan subalgebra A ⊂ N.
- Choose a state ψ on M such that $A \subset N^{\psi}$. It follows that

$$A\overline{\otimes}\lambda^{\psi}(\mathsf{R})''\subset N
times_{\sigma^{\psi}}\mathsf{R}$$

is a Cartan subalgebra.

 Using Ozawa-Popa's techniques ((α_s) + weak compactness + semifinite intertwining techniques), one shows that

a corner of $A\overline{\otimes}\lambda^{\psi}(\mathbf{R})''$ embeds into a corner of $\lambda^{\chi}(\mathbf{R})''$

• One finally shows that this contradicts the fact that A is diffuse.

On the classification of type III_1 factors

Definition

A (separable) factor M is said to be **full** if Inn(M) is a closed subgroup of Aut(M). Then Out(M) = Aut(M) / Inn(M) is a Polish group.

By Connes' classical results, define the modular map

$$\delta: \mathbf{R}
i t \mapsto \pi(\sigma_t^{\varphi}) \in \mathsf{Out}(M)$$

Definition (Connes 1974)

Let M be a type III₁ factor. The invariant $\tau(M)$ is defined as the weakest topology on **R** that makes the map δ continuous.

If $\tau(M)$ is the usual topology on **R**, then *M* fails to have a **discrete decomposition**, i.e. of the form $M = II_{\infty} \rtimes G$

In the '70s, Connes constructed type III_1 factors that fail to have such a discrete decomposition using his τ invariant.

Connes' construction

Let μ be a finite Borel measure on \mathbf{R}_+ such that $\int x d\mu(x) < \infty$. Normalize μ so that $\int (1+x) d\mu(x) = 1$. Define the unitary representation (U_t) of \mathbf{R} on $L^2(\mathbf{R}_+, \mu)$ by

$$(U_t\xi)(x)=x^{it}\xi(x)$$

Define on $P = \mathsf{M}_2(L^\infty(\mathsf{R}_+,\mu))$ the state arphi by

$$\varphi\begin{pmatrix}f_{11} & f_{12}\\f_{21} & f_{22}\end{pmatrix} = \int f_{11}(x) \,\mathrm{d}\mu(x) + \int x f_{22}(x) \,\mathrm{d}\mu(x)$$

On the classification of type III_1 factors

Let \mathbf{F}_n be acting by Bernoulli shift on

$$\mathcal{P}_{\infty} = \overline{\bigotimes_{g \in \mathbf{F}_n}}(P, \varphi).$$

Theorem (Connes 1974)

Assume (U_t) is not periodic. Then $\mathcal{N} = \mathcal{P}_{\infty} \rtimes \mathbf{F}_n$ is a full factor of type III_1 and $\tau(\mathcal{N})$ is the weakest topology that makes the map $t \mapsto U_t$ *-strongly continuous. In particular, if (U_t) is the left regular representation, then \mathcal{N} has no discrete decomposition.

The following answers a question of Shlyakhtenko and Vaes.

Corollary C

 ${\cal N}$ is not *-isomorphic to any free Araki-Woods factor.

Theorem **D** (H-Ricard 2010)

Let $M = \Gamma(H_{\mathbf{R}}, U_t)''$ where (U_t) is neither trivial nor periodic. Let $N = p(M \rtimes_{\sigma} \mathbf{R})p$, where p is a finite projection.

- For any $A \subset N$ maximal abelian, $\mathcal{N}_N(A)''$ is amenable.
- If (U_t) is mixing or $U_t = \mathbf{R} \oplus V_t$, with (V_t) mixing, then N is strongly solid.

We obtain new examples of strongly solid II₁ factors N (with CMAP and Haagerup property), such that $N \neq L(\mathbf{F}_t)$ and $\mathcal{F}(N) = \mathbf{R}_+$.