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Abstract

In this paper, we study a tower {AG
n (d) : n ≥ 1} of finite-dimensional

algebras; here, G represents an arbitrary finite group, d denotes a
complex parameter, and the algebra AG

n (d) has a basis indexed by
‘G-stable equivalence relations’ on a set where G acts freely and has
n orbits.

We show that the algebra AG
n (d) is semi-simple for all but a finite

set of values of d, and determine the representation theory (or, equiv-
alently, the decomposition into simple summands) of this algebra in
the ‘generic case’. Finally we determine the Bratteli diagram of the
tower {AG

n (d) : n ≥ 1} (in the generic case).

1 Introduction

Let Rn denote the set of equivalence relations on the set [n] = {1, 2, · · · , n},
and let ρn denote the cardinality of Rn. By convention, n = 0, 1, 2, ... and
ρ0 = 1. Easy counting arguments show that the first few values of the
sequence {ρn : n ≥ 0} are given by 1, 1, 2, 5, 15, 52, 203,..., and that the
sequence satisfies the recursion relation

ρn+1 =
n∑

k=0

(
n

k

)
ρk ,∀n ≥ 0. (1.1)
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Given P,Q ∈ Rn, we shall say that P ≤ Q if any two P -related indices are
necessarily Q-related - or equivalently, if every Q-equivalence class is a union
of P -equivalence classes. Clearly, if Pmin is the trivial relation all of whose
equivalence classes are singletons, and if Pmax is the equivalence relation with
just one equivalence class, then Pmin ≤ P ≤ Pmax, ∀ P . It is not hard to
see that Rn is a lattice with respect to this order structure. (For instance,
if n = 4, P = {{1, 2}, {3, 4}} and Q = {{1}, {2, 3, 4}}, then P ∨ Q = Pmax

and P ∧ Q = {{1}, {2}, {3, 4}}. We shall, as above, sometimes equate an
equivalence relation with the set of its equivalence classes.)

Further, if P ∈ Rn, we shall write ||P || for the number of equivalence
classes in P . Before proceeding further, we record a simple fact as a lemma,
for convenience of future reference.

Lemma 1 If P,Q ∈ Rn, then,
(a) ||P ∨ Q|| ≤ ||P ||;
(b) if ||P ∨ Q|| = ||P || and P 6= Q, then ||P || < ||Q||.

Proof: (a) follows from the fact that every P ∨ Q-equivalence class is a
union of P -equivalence classes.

(b) The hypothesis is seen to imply that no two indices which are P -
inequivalent can be P ∨ Q-equivalent; this implies that P ∨ Q = P . On the
other hand, every Q-equivalence class is contained in a P -equivalence class,
and the assumption that P 6= Q says that at least one P -equivalence class
must be the union of two or more Q-equivalence classes, and the proof is
complete. 2

We think of an element of R2n as a diagram, thus: we think of the 2n
elements of [2n] listed in two rows of n elements each, with the j-th point
from the left on the top (resp., bottom) row indexed by j (resp., n + j); and
connect every pair of indices which are equivalent under the relation. For
instance, the relation in R4, whose equivalence classes are {1, 2, 4} and {3}
is represented by the picture

u u

u u

@
@

@

1 2

3 4
We will be interested in the vector space with R2n as basis, which will

be equipped with the structure of a C-algebra, with the definition of the
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product of basis vectors involving a complex parameter d. Rather than giving
a precise and rigorous definition, we shall describe the prescription for an
example.

For instance, suppose n = 5, P = {1, 2, 6}, {3, 7}, {4, 5}, {8, 9}, {10}} and
Q = {{1, 6, 7}, {2}, {3}, {4}, {5}, {8}, {9, 10}}; according to our diagram-
matic notation, we have:

P =
u u u u u

u u u u u

¡
¡

¡

¡
¡

¡

and

Q =
u u u u u

u u u u u

@
@

@

In order to define the product PQ, first concatenate the pictures (with P on
top and Q at the bottom), and identify the intermediate levels of points as
indicated:

e e e e e

u u u u u

¡
¡

¡

¡
¡

¡

u u u u u

e e e e e

@
@

@

...
...

...
...

...

then introduce a power of d equal to the number of ‘components’ in the grand
picture which are entirely contained in the two middle levels, and then forget
the two middle levels altogether, to finally obtain:

PQ = d2·
u u u u u

u u u u u

@
@

@¡
¡

¡

It is relatively painless to verify that this definition yields a finite-dimensional
associative C-algebra (of dimension 2n), which we denote by An(d). This al-
gebra has a multiplicative identity, namely the equivalence relation which
has n equivalence classes, namely {k, n + k}, 1 ≤ k ≤ n.
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As a trivial example, A1(d) has a basis consisting of 2 elements - say
1 = {{1, 2}} and P = {{1}, {2}} - where 1 is the multiplicative identity, and
P 2 = dP .

The process of ‘adding a single vertical line at the right extreme’ yields an
injective map from R2n into R2n+2, which is easily seen to linearly extend to
a multiplicative (identity-preserving) homomorphism of An(d) into An+1(d);
further, since this map sends a basis injectively into a basis, it is necessarily
a monomorphism. We thus have a tower

A1(d) ⊂ A2(d) ⊂ · · ·An(d) ⊂ · · ·

of finite-dimensional C-algebras.

Remark 2 The tower {An(d) : n ≥ 0} has several interesting subtowers.
(a) The Temperley-Lieb algebra: Consider the subalgebra Tn(d) of An(d)

consisting of the linear span of those equivalence relations P which satisfy
two conditions: (i) each P -equivalence class contains precisely two elements;
and most importantly, (ii) P admits a diagram - as in the above discussions -
which is planar, i.e., the diagram has no crossings and is a planar diagram
contained in the rectangle bounded by the 2n points. It is clear that the
inclusion of An(d) into An+1(d) maps Tn(d) into Tn+1(d); and it is a fact
that Tn(d) is generated as a unital algebra by the elements P1, P2, · · · , Pn−1,
where, for 1 ≤ k < n,

Pk =
u u

u u

· · ·

· · ·

· · ·

· · ·

u u u u

u u u u

u

u

k k + 1

It is to be noted that P 2
k = dPk and that PkPk±1Pk = Pk; so, if we define

ek = d−1Pk, then the ek’s are idempotents which satisfy ekek±1ek = d−2ek.
(b) The group algebra CΣn of the symmetric group sits naturally as a

subalgebra of An(d) as follows: given σ ∈ Σn, let Pσ denote the equivalence
relation, whose equivalence classes are {{σ(k), k + n} : 1 ≤ k ≤ n}. It is
fairly easy to verify that this map is multiplicative, meaning that Pσ·Pτ = Pστ .
The following little observation, which we call (c) below for the sake of future
reference, is proved easily.

(c) The following conditions on an element P ∈ R2n are equivalent:
(i) P is an invertible element of An(d);
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(ii) there exists a (necessarily unique) permutation σ ∈ Σn such that
P = Pσ, as in (b) above;

(iii) P has precisely n ‘through classes’ in the sense of definition 3 below.

Definition 3 If P ∈ R2n, a through class of P is an equivalence class A
of P such that A∩ {1, 2, · · · , n} 6= ∅ and A ∩ {n + 1, n + 2, · · · , 2n} 6= ∅. We
write t(P ) for the number of through classes of P .

For instance, in the preceding example illustrating the definition of the
product, we have t(P ) = 2 and t(Q) = t(d−2 ·PQ) = 1. This is an instance of
a general fact which has consequences for much of the following discussion.

Lemma 4 Suppose P,Q ∈ R2n, and P · Q = dr · S, for some r and some
S ∈ R2n. Then,

t(S) ≤ min{t(P ), t(Q)} .

Proof: (i) This follows easily from the definitions. 2

Corollary 5 For 0 ≤ k ≤ n, define In
k to be the set of those equivalence

relations with exactly k through classes; and let Ik be the linear subspace
spanned by ∪r≤kI

n
k ; then

{0} = I−1 ⊂ I0 ⊆ · · · ⊆ Ik ⊆ Ik+1 ⊆ · · · ⊆ In = An(d) (1.2)

is a filtration of An(d) by two-sided ideals.

Proof: Obvious. 2

Before concluding this introduction, we shall briefly dwell on the manner
in which we would like to think of elements of R2n, viz., as consisting of three
pieces of information: (a) the ‘top’, (b) the data on how the top is connected
to the bottom, and (c) the ‘bottom’.

Thus, suppose P ∈ R2n and t(P ) = k. Focus attention first on the top
set of n points in the diagram representing P ; we can naturally associate an
element P+ ∈ Rn, together with an unordered collection {Cj : 1 ≤ j ≤ k} of
‘distinguished’ P+-equivalence classes - these corresponding precisely to the
intersections of through-classes of P and the top line. This is the motivation
for the following definition.
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Definition 6 In the sequel, the symbol Sn
k will denote the set of symbols of

the form R = (R; {Cj(R) : 1 ≤ j ≤ k}), where R ∈ Rn and {Cj(R) : 1 ≤
j ≤ k} is an unordered collection of k distinct ‘distinguished’ R-equivalence
classes. (Note, in particular, that if R ∈ Sn

k , then ||R|| ≥ k.)

We shall want to encode an element P of R2n, for which t(P ) = k, as a
triple (P+, ρ, P−), where P± ∈ Sn

k , and ρ is a permutation, in such a way that
(i) the P -equivalence classes which are entirely contained in {1, 2, · · · , n} are
the same as the P+-equivalence classes other than Cj(P

+), 1 ≤ j ≤ k; (ii) the
P -equivalence classes which are entirely contained in {n+1, n+2, · · · , n+ t}
are the same as the sets (n + C) = {n + m : m ∈ C} where C is a P−-
equivalence class other than the Cj(P

−), 1 ≤ j ≤ k; and (iii) the k through-
classes of P are given by Cj = Cρ(j)(P

+)} ∪ (n + Cj(P
−)), ∀ 1 ≤ j ≤ k.

(In order to make precise sense of the permutation ρ, we should first choose
some ‘canonical ordering’ of the collection of distinguished classes for each
element of Sn

k ; we will say no more on this here, since we will elaborate on it
later.)

We record a lemma (which is a consequence of the definitions) for later
reference; we omit the simple proof.

Lemma 7 Suppose P1 · P2 = dlQ, with Pj, Q ∈ R2n and l ∈ Z+.
(a) Assume that t(P1) = t(Q). Then, P+

1 = Q+.
(b) Dually, if t(P2) = t(Q), then P−

2 = Q−.

After this paper was written up, the authors discovered that the algebras
An(d) have been extensively studied by Paul Martin - see [M1], [M2]; he calls
them partition algebras and even discusses their representation theory in the
‘non-generic case’. We, on the other hand, discuss only the case of ‘generic
d’ when the algebras are semisimple, but we consider the ‘equivariant case’.
Specifically, for any finite group G, we consider an algebra AG

n (d) - which
has a basis of ‘G-stable equivalence relations’ - and show (Theorem 21)
that these algebras are ‘generically semisimple’ and obtain (Theorem 33) the
Bratteli diagram for the tower {AG

n (d) : n ≥ 1}.

2 G-relations

We shall now consider an ‘equivariant version’ of the above analysis. (We
should perhaps mention that one of the reasons for our study of these algebras
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is the hope that we might be able to tie them up with the theory of ‘planar
algebras’ developed by Jones (see [J1]); this will be discussed elsewhere.)

We begin with some notation. For a set X, we shall write R(X) for the
set of all equivalence relations on X - so that R([n]) is what was denoted by
Rn in the last section. Suppose now that a group G acts on the set X; clearly
then, we have a natural action of G on R(X) - given by g ·R = {(g ·x, g · y) :
(x, y) ∈ R} whenever R ∈ R(X) and g ∈ G. Call a relation G-stable if it
is fixed by every element of G, and let RG(X) denote the set of all G-stable
equivalence relations.

We shall only consider the case when G acts freely on X; when G and X
are finite, the case we shall be concerned with, this amounts to assuming that
that X = G×{1, 2, · · · , n} and that the action is defined by g·(x, i) = (g·x, i).
We shall denote this set by Xn in the sequel.

First consider the case n = 1. In the following lemma and elsewhere in
this paper, the symbol

∐
always denotes ‘disjoint union’.

Lemma 8 (a) If H is a subgroup of G, then the partition G =
∐

giH of G
into distinct left H-cosets yields a G-relation on X1.

(b) Every G-relation on X1 arises as in (a) above. (Thus, there is a
natural bijection between RG(X1) and the set of subgroups of G.)

Proof: (a) is clear; as for (b), let H denote the equivalence class of 1
(the identity of G) with respect to a G-stable relation. Suppose h1, h2 ∈ H;
then, 1 ∼ h1 ⇒ h−1

1 ∼ h−1
1 h1 = 1, and h1h2 ∼ h1 ∼ 1; so H is a subgroup. 2

Definition 9 Let C = C(G) denote a collection of subgroups of G containing
exactly one subgroup from each conjugacy class of subgroups; for each H ∈ C,
let N(H) be the normaliser in G of H, and suppose

G =
∐

κ

N(H)σH
κ , (2.3)

where we always assume that {σH
κ : 1 ≤ κ ≤ [G : N(H)]} contains the

identity element G. (Thus, we have chosen fixed coset-representatives for
N(H)\G, choosing the identity as the representative of the coset N(H).)

Remark 10 (a) Suppose P ∈ RG(Xn). Then the equation

RP = {(i, j) : 1 ≤ i, j ≤ n, ∃ g, h ∈ G such that ((g, i), (h, j)) ∈ P}
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defines an element of R([n]); it follows from the definition that [(g, i)]P is a
through-class of P if and only if [i]RP is a through-class of RP (provided n is
even, so that this makes sense). (As above, we shall always use the notation
[i]R to denote the R-equivalence class of the point i.)

(b) For each i ∈ [n], it follows from Lemma 8 that there exists a unique
subgroup, say Ki(P ), such that ((g, i), (h, i)) ∈ P ⇔ g ∈ hKi(P ).

(c) If ((g, i), (h, j)) ∈ P are as in (a), then gKi(P )g−1 = hKj(P )h−1, and
in particular, the subgroups Ki(P ) and Kj(P ) are conjugate whenever (i, j) ∈
RP . (Reason: fix kj ∈ Kj(P ); then [(1, i)]P = [(g−1h, j)]P = [(g−1hkj, j)]P ;
similarly [(1, j)]P = [(h−1g, i)]P , and hence [(1, i)]P = [(g−1hkjh

−1g, i)]
P
;

i.e., g−1hKj(P )h−1g ⊆ Ki(P ); the reverse inclusion follows identically.)
(d) Thus, each P ∈ RG(Xn) determines a function

[n]/RP 3 C 7→ HP
C ∈ C

where HP
C is the unique element of C which is conjugate to Ki(P ) ∀ i ∈ C.

Further, for each C ∈ [n]/RP , we shall consistently use the notation i(C) =
min{i : i ∈ C}.

Proposition 11 Let P ∈ RG(Xn) and RP be as above. Then,

(a) there exists a unique function φP : [n] →
∐

H∈C H\G, which satisfies the
following conditions for all RP -equivalence classes C:

(i) φP (i) ∈ HP
C \G ∀i ∈ C;

(ii) ∪i∈C(φP (i) × {i}) is a P -equivalence class; (here, we think of an
element of H\G naturally as a subset of G;) and

(iii) φP (i(C)) = HP
C σP

C , where σP
C ∈ {σ

HP
C

κ : 1 ≤ κ ≤ [G : N(HP
C )]}.

(b) Conversely, suppose we are given (i) an R ∈ R([n]), (ii) a map [n]/R 3
C 7→ HC ∈ C, and (iii) a map φ : [n] →

∐
H∈C H\G, which satisfy:

(i)′ φ(i) ∈ HC\G, whenever i belongs to the R-equivalence class C; and
(iii)′ φ(i(C)) = HCσC, where σC ∈ {σHC

κ : 1 ≤ κ ≤ [G : N(HC)]} ∀C.
Then, there exists a unique P ∈ RG(Xn) such that RP = R, HC = HP

C ∀C,
and φP = φ. Further, this relation P is defined by

((g, i), (h, j))) ∈ P ⇔ (i, j) ∈ R and φ(i)g−1 = φ(j)h−1 . (2.4)

(c) If ψP is another function defined on [n] and satisfying (a) (i)-(ii), then

for each RP -equivalence class C, there exists a unique element ωP
C ∈ N(HC)

HC

such that ψP (i) = ωP
CφP (i) ∀ i ∈ C.
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Proof: (a) We first discuss uniqueness. Suppose we are given a function
φP satisfying conditions (a)(i) − (iii). Condition (ii) and the definition of
Ki(P ) shows that if [i]RP = C, then φP (i) is a left-coset of Ki(P ) as well
as a right-coset of HP

C . Suppose φP (i) = HP
C g = g1Ki(P ); then clearly

g−1HP
C g = (φP (i))−1φP (i) = Ki(P ). In particular, this is true for i = i(C),

and since the σH
i are representatives of the distinct right-cosets of N(H), it

follows that there exists a unique σP
C satisfying condition (iii). Now if we

define D = [(σP
C , i(C))]P , we see from condition (ii) that for each i ∈ C, we

must have φP (i) × {i} = D ∩ (G × {i}). This proves that the function φP is
uniquely determined by the conditions (i) − (iii).

For existence, let us define σP
C and φP by the prescription forced by the

discussion of last paragraph. We only need to verify that φP (i) is a right-coset
of HC . What is clear from the definition is that φP (i) is a left Ki(P )-coset;
on the other hand, notice that φP (i(C)) is invariant under the action of
HP

C , and that this is necessarily true also of D, and hence of φP (i), for each
i ∈ P ; thus, φP (i) is a left Ki(P )-coset, as also a union of right HP

C -cosets;
for reasons of cardinality, this forces φP (i) to be exactly one right HP

C -coset,
as desired. This proves existence.

(b) If the data of (b)(i)−(iii) satisfies (i)′, (iii)′, then equation 2.4 defines a
G-stable equivalence relation. (Reason: the P -equivalence classes are just the
‘sets of constancy’ for the function (g, i) 7→ ([i]R, H[i]Rg−1).) The definition
of P and of RP implies that RP ⊆ R; conversely, suppose (i, j) ∈ R; let
C = [i]R = [j]R; since G acts transitively on HC\G, we can find g ∈ G such
that φ(i)g−1 = φ(j); hence ((g, i), (1, j)) ∈ P ; this implies that (i, j) ∈ RP .
Thus, indeed R = RP .

Let C be an RP -equivalence class. By condition (iii)′, we have φ(i(C))σ−1
C =

HC , and hence, by definition of P ,

((σC , i(C)), (g, j)) ∈ P ⇔ j ∈ C and HC = φ(j)g−1

⇔ j ∈ C and φ(j) = HCg

⇔ j ∈ C and g ∈ φ(j) ,

(since φ(j) is given to be a right-coset of HC for j ∈ C). Hence φ also
satisfies:

(ii)′ D = ∪i∈C (φ(i) × {i}) is a P - equivalence class .
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Then, for any i ∈ C, it follows from the definition of Ki(P ) that φ(i)
is a left-coset of Ki(P ) as well as a right-coset of HC ; this means that the
subgroups Ki(P ) and HC are conjugate whenever i ∈ C. Thus, we see that
HP

C = HC ∀C.
So, the function φ satisfies the conditions (a)(i) − (iii), and we deduce

from the uniqueness assertion of (a) that φ = φP .
(c) If we set D = ∪i∈C (ψP (i) × {i}), we see as in the proof of (b)

above that if C is any RP -equivalence class, then ψP (i(C)) is a left-coset of
Ki(C)(P ) as well as a right-coset of HP

C ; if ψP (i(C)) = HP
C g, this means that

Ki(C) = g−1HP
C g. We already know that Ki(C) = (σP

C )−1HP
C σP

C . This means
that g(σP

C )−1 ∈ N(HP
C ) and hence there exists a unique element ωP

C ∈ N(HP
C )

such that g = ωP
CσP

C . The definitions show that

ψP (i(C)) = HP
C g = HP

C ωP
CσP

C = ωP
CHP

C σP
C = ωP

CφP (i(C)) .

It is now easy to verify that the function defined by φ(i) = (ωP
[i]

RP
)−1ψP (i)

satisfies the three conditions (a)(i) − (iii), and an appeal to the uniqueness
assertion of (a) completes the proof. 2

Notice now that for any positive integer n, we may regard RG(Xn) as a
subset of R([n|G|]); furthermore, if P,Q ∈ RG(X2n), and if P · Q = dlS,
where the product is computed as in the algebra An|G|(d), then it is easy to
see that S corresponds to a G-stable equivalence relation on X2n. Thus, the
linear span of RG(X2n) is a subalgebra of A2n|G|(d).

Definition 12 Let AG
n (d) denote the (finite-dimensional) algebra, with basis

RG(X2n), obtained as above.

Remark 13 Let P ∈ RG(X2n); since G acts transitively on each G × {j},
it is seen that if if C is any through-class of RP , then G × C is the disjoint
union of [G : HP

C ] many P -equivalence classes; and, as C varies over the
through-classes of R, these exhaust all the through-classes of P ; hence, if
t(P ) = k, then

k =
∑

[G : HP
C ] , (2.5)

where the sum is over all through-classes C of RP ; in particular, if t = t(RP ),
then,

t ≤ k ≤ t|G| .
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Definition 14 (a) For 0 ≤ k ≤ n|G|, define IG
k to be the linear subspace of

AG
n (d) spanned by {P ∈ RG(X2n) : t(P ) ≤ k}.

(b) If P ∈ RG(X2n), define nP : C → Z+(= {0, 1, · · ·}) by nP (H) = #{C :
C is a through-class of RP such that HP

C = H} for all H ∈ C.
(c) For 0 ≤ k ≤ n|G|, let Nk denote the set of functions n : C → Z+ which

satisfy the conditions
∑

H n(H) ≤ n, and k =
∑

H n(H)[G : H]. (Later, when
we wish to vary n, we shall denote this object by the symbol Nn;k, since the
definition also invloves the inequality depending upon n.)

Let N[n] = ∪n|G|
k=0 Nk.

(d) For arbitrary n ∈ N[n], define I(n) = {P ∈ RG(X2n) : nP = n}.

Thus, as in Corollary 5, it is true that {IG
k : 0 ≤ k ≤ n|G|} is a filtration

of AG
n (d) by two-sided ideals.

Lemma 15 For 0 ≤ k ≤ n|G| and arbitrary n ∈ Nk, let Q(n) denote the
linear subspace spanned by π(I(n)), where π : IG

k → IG
k /IG

k−1 is the quotient
map; then, Q(n) is an ideal in IG

k /IG
k−1, and further,

IG
k /IG

k−1 = ⊕n∈Nk
Q(n) .

Proof: The lemma is a tautology when k = 0, so we may assume k > 0.
It should be clear that it is sufficient to prove that if Pj ∈ I(nj), nj ∈

Nk, j = 1, 2, if P1 · P2 = dlQ in AG
n (d), and if t(Q) = k, then n1 = n2 = nQ.

In view of Lemma 7, it suffices to observe that nP is uniquely determined
by P+ as well as by P− - and this follows easily from the definitions. 2

In order to arrive at a ‘working description’ of elements of these ideals,
we shall first obtain an alternative way of encoding the ‘tops’ of elements
P ∈ RG(X2n). On the one hand, we can forget that P is G-stable and
represent the ‘top’ and ‘bottom’ of P , and just look at what we denoted by P±

at the end of S1. Thus, for instance P+ is just the data P+ of the equivalence
relation obtained by restricting P to the top (i.e., G× [n]), together with the
data of which P+-equivalence classes are contained in through-classes of P .

We wish to bring in the knowledge of G-invariance of P to encode this
data differently. For this, the starting point is the observation - see Remark
13 - that through-classes of P are intimately tied with through-classes of RP .
We begin by trying to list the elements of the latter collection in a ‘canonical
order’.
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If nP = n , and if H ∈ C, then there exist n(H) many ‘distinguished’ RP+
-

equivalence classes C+ for which HP+

C+ = H; let {CH,s(P
+) : 1 ≤ s ≤ n(H)}

be the unique listing of these classes which satisfies

s < s′ ⇒ i(CH,s(P
+)) < i(CH,s′(P

+)) . (2.6)

Definition 16 For n ∈ N[n], define S(n) to be the collection of all symbols
P+ = (P+; {CH,s(P

+) : 1 ≤ s ≤ n(H), H ∈ C}), where P+ ∈ RG(Xn),
and {CH,s(P

+) : 1 ≤ s ≤ n(H), H ∈ C}) is a collection of ‘distinguished’
RP+

-equivalence classes such that (i) HP+

CH,s(P+) = H for all H, s, and (ii) the
condition 2.6 is satisfied.

Thus, if P ∈ RG(X2n), and if nP = n, then the ‘top’ (resp., the ‘bottom’)
of P determines an element P+ (resp., P−) of S(n). Conversely, this P+

uniquely determines all the ‘distinguished’ classes of what we earlier called
P+, since a P+-equivalence class, say D+, is contained in a through-class
for P if and only if there exists a through-class, say C, of RP such that
D+ ⊂ (G×C). Thus, what we have called P+ is nothing but another way of
encoding what was earlier called P+ in case P is G-stable. Thus, in future,
we shall freely use such expressions as ‘let P± denote the ‘top’ and ‘bottom’
of P ∈ RG(X2n)’.

Lemma 17 There exists a bijection

I(n) 3 P
ζ
7→ (P+, ρ(P ),P−) ∈ S(n) × G(n) × S(n) ,

where (i) G(n) =
∏

H∈C

(
(N(H)

H
)n(H) × Σn(H)

)
is the product (over the

H’s) of semi-direct-products (with respect to the natural permutation action
of the second factor on the first), and (ii) P± denote the ‘top’ and ‘bottom’
of P .

Proof: Fix a P ∈ I(n). For Q ∈ {P, P+, P−}, let φQ be the function
associated to Q as in Proposition 11. By considering the through-classes
of RP , it is not hard to see that, for each fixed H ∈ C, there is a unique
permutation γH ∈ Σn(H) such that {CH,s(P

−)∪CH,γH(s)(P
+) : 1 ≤ s ≤ n(H)}

is precisely the collection of those RP -through classes C for which HP
C = H.

Notice next that the function defined on [n] by ψP−
(j) = φP (n + j),

satisfies the conditions of Proposition 11(c) (with P− in place of the P there).
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Hence, by that proposition, for each RP−
-equivalence class C−, there exists

a unique element ωP−

C− ∈
N(HP−

C− )

HP−

C−

such that ψP−
(j) = ωP−

C−φP−
(j) ∀ j ∈ C−.

Set ωH
s = ωP−

C
H,γ

−1
H

(s)
(P−), for 1 ≤ s ≤ n(H), H ∈ C.

Now define ρ(P ) = ((ρ(P )H))H∈C, where ρ(P )H ∈ (N(H)
H

)n(H) × Σn(H) is
defined by

ρ(P )H = ((ωH
1 , · · · , ωH

n(H)), γH).

Thus, we have defined the map ζ.
Conversely, suppose the triple (P+, ρ(P ),P−) is given, and suppose ρ(P ) =

((ρ(P )H))H∈C, where ρ(P )H = ((ωH
1 , · · · , ωH

n(H)), γH). Then define:
(i) a relation R ∈ R([2n]) by demanding that its equivalence classes are:

(a) the RP+
-equivalence classes other than the CH,s(P

+)’s; (b) sets of the
form (n+C), where C is an RP−

-equivalence class other than the CH,s(P
−)’s;

and (c) {(CH,s(P
−) ∪ CH,γH(s)(P

+)) : 1 ≤ s ≤ n(H), H ∈ C};

(ii) a map [2n]/R → C by setting HC to be equal to: (a) HP+

C , if C is an
RP+

-equivalence class other than the CH,s(P
+)’s; (b) HP−

C , if C is an RP−
-

equivalence class other than the CH,s(P
−)’s; and (c) H if C = (CH,s(P

−) ∪
CH,γH(s)(P

+)) for some H, s; and
(iii) a map φ : [2n] →

∐
H∈C H\G by setting

φ(k) =





φP+
(k) if k ≤ n

φP−
(k) if k > n and k − n /∈ ∪H,sCH,s(P

−)

ωH
γH(s)φ

P−
(k − n) if k > n and k − n ∈ CH,s(P

−)

.

The data (i)-(iii) above satisfy the conditions (b) (i)′ and (iii)′ of Propo-
sition 11 (with 2n instead of the n of the proposition) and therefore de-
termine a unique P ∈ RG(X2n). It is easy to see that P ∈ I(n). Set
η((P+, ρ(P ),P−)) = P .

The proof of the lemma is completed by verifying that the maps ζ and η
are inverse to one another. 2

In view of the above lemma, we shall feel free, in the sequel, to think of
elements of S(n) × G(n) × S(n) as elements of I(n), and vice versa.

3 The structure of AG
n (d)

We come now to the representation theory of AG
n (d).
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Proposition 18 Fix 0 ≤ k ≤ n|G| and n ∈ Nk. Let V (n) denote the
C-vector space with S(n) × G(n) as basis.

(a) The following prescription uniquely defines a representation π(n) of
AG

n (d) on V (n): temporarily fix an element S0 ∈ S(n); let P ∈ RG(X2n),
and (S, σ) ∈ S(n) × G(n), and suppose P · (S, σ,S0) = dlQ in the algebra
AG

n (d); consider two cases now:
(i) if t(Q) = k, then Q ∈ I(n) and Q = (S1, σ1,S0) for a unique pair

(S1, σ1) ∈ S(n) × G(n); in this case, define π(n)(P )(S, σ) = dl(S1, σ1);
(ii) if Q ∈ IG

k−1, define π(n)(P )(S, σ) = 0.

(b) Let P ∈ I(n) and (S, σ) ∈ S(n) × G(n). Suppose P = (P+, ρ,P−).
Then,

π(n)(P )(S, σ) = D(P−,S) (P+, ρβP−

S σ) , (3.7)

where the quantities D(P−,S) and βP−

S are most easily defined by considering
two cases:

Case (i): For each H ∈ C such that n(H) 6= 0, there exist distinct (RP−
∨

RS =) RP−∨S-equivalence classes, say CH,s, 1 ≤ s ≤ n(H), and a (necessar-
ily unique) permutation γH ∈ Σn(H) such that CH,s(S)∪CH,γH(s)(P

−) ⊂ CH,s

for each 1 ≤ s ≤ n(H).
In this case, define D(P−,S) = d||P−∨S||−k, while βP−

S is defined by the
equation

(P−, 1,P−) · (S, 1,S) = D(P−,S) (P−, βP−

S ,S) . (3.8)

Case (ii): Suppose the conditions of Case (i) are not satisfied.
In this case, define D(P−,S) = 0 and βP−

S = 1.

Proof: (a) We only need to verify that π(n)(P1 ·P2) = π(n)(P1)π(n)(P2)
for all P1, P2 ∈ RG(X2n). Suppose that (S, σ) ∈ S(n) × G(n), and (P1 · P2) ·
(S, σ,S0) = dlQ. Suppose P2 · (S, σ,S0) = dl2Q2.

First suppose t(Q) = k. It follows that also t(Q2) = k. Deduce now from
Lemma 7(b) that Q2 = (S2, σ2,S0) for some (S2, σ2), and that Q2 ∈ I(n). It
is also seen - from the associativity of multiplication in AG

n (d) - that P1 ·Q2 =
dl−l2Q; deduce , as before, that Q ∈ I(n) and that Q = (S1, σ1,S0) for some
(S1, σ1). Hence, we see that π(n)(P1 · P2)(S, σ) = dl(S1, σ1), while

π(n)(P1)π(n)(P2)(S, σ) = dl2π(n)(P1)(S2, σ2)

14



= dl(S1, σ1)

= π(n)(P1 · P2)(S, σ) ,

as desired.
Next, suppose Q ∈ IG

k−1, so that π(n)(P1 · P2)(S, σ) = 0; then it must
be the case that either (i) Q2 ∈ IG

k−1 or (ii) Q2 ∈ I(n), Q2 = (S2, σ2,S0)
for some (S2, σ2), and P1 · (S2, σ2,S0) ∈ IG

k−1. In either case, we have
π(n)(P1)π(n)(P2)(S, σ) = 0.

(b) If P ∈ I(n) and (S, σ) ∈ S(n) × G(n), it is not hard to see that the
following conditions are equivalent:

(α) The conditions of Case (i) of (b) are satisfied;
(β) If P · (S, σ,S0) = dlQ in AG

n (d), then t(Q) = k;
(γ) D(P−,S) 6= 0.

It is clearly enough to prove that equation 3.7 is satisfied when the three
equivalent conditions above are satisfied. If P ∈ I(n) and (S, σ) ∈ S(n) ×
G(n), we thus need to verify (under the stated assumptions above) that

(P+, ρ,P−) · (S, σ,S0) = D(P−,S) (P+, ρβP−

S σ,S0) ,

which we shall do, by considering several special cases.

Case 1: P− = S and σ = 1.
It is seen from the definition of the product in AG

n (d) that

(P+, ρ,S) · (S, 1,S0) = D(S,S) (P+, ρ,S0) , (3.9)

and equation 3.7 is satisfied in this case, since equation 3.8 and the same
reasoning, that goes in to justify equation 3.9, shows that βS

S = 1.
We note for future reference that, in the same way, we obtain, for arbitrary

S1,S2 ∈ S(n) and σ ∈ G(n):

(S1, σ,S2) =
1

D(S1,S1)
(S1, 1,S1) · (S1, σ,S2)

=
1

D(S2,S2)
(S1, σ,S2) · (S2, 1,S2) . (3.10)

Case 2: P− = S and σ is arbitrary.
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Thus, we have to verify that

(P+, ρ,P−) · (P−, σ,S0) = D(P−,P−) (P+, ρσ,S0) , (3.11)

and this is really the heart of the computation.
Let us write P1 = (P−, σ,S0) and P · P1 = D(P−,P−)Q. Since we are

assuming that the conditions (α) − (γ) are satisfied, we know from (a) that
Q ∈ I(n). Suppose Q = (Q+, φ,Q−). We know from Lemma 7 ((a) and (b))
that Q+ = P+, Q− = S0. Thus, we only need to show that φ = ρσ.

Suppose ρ = ((ρH))H∈C, where ρH = ((ωH
1 , · · · , ωH

n(H)), γH); and that

similarly, σ = ((σH))H∈C, where σH = ((νH
1 , · · · , νH

n(H)), κH): thus, for each

H ∈ C, we have ωH
s , νH

s ∈ N(H)
H

, 1 ≤ s ≤ n(H), and γH , κH ∈ Σn(H).
The construction in the proof of Proposition 17, when unravelled, says

that the group element ρ is related to the relation P ∈ RG(X2n) by the
following requirement, and that ρ is determined by this requirement:

For all H ∈ C, 1 ≤ s ≤ n(H), we have:

[(
σP+

CH,s(P+), i(CH,s(P
+))

)]
P

⊃

(
ωH

s σP−

C
H,γ

−1
H

(s)
(P−) × {i(CH,γ−1

H
(s)(P

−))}

)
.

Similarly, we see that for all H ∈ C, 1 ≤ s ≤ n(H) :

[(
σP−

CH,t(P−), i(CH,t(P
−))

)]
P1

⊃

(
νH

t σS0

C
H,κ

−1
H

(t)
(S0) × {i(CH,κ−1

H
(t)(S0))}

)
.

Now, set t = γ−1
H (s) in the last inclusion, and use the G-invariance of the

relation P1 to deduce that for all H and s, we have:
[(

ωH
s σP−

C
H,γ

−1
H

(s)
(P−) × i(CH,γ−1

H
(s)(P

−))

)]

P1

⊇

(
ωH

s νH
γ−1

H
(s)

σS0

C
H,κ

−1
H

(γ−1
H

(s))
(S0) × {i(CH,κ−1

H
(γ−1

H
(s))(S0))}

)
.

Hence, we see that for all H, s, we have:
[(

σP+

CH,s(P+), i(CH,s(P
+))

)]
Q

⊃

(
ωH

s νH
γ−1

H
(s)

σQ−

C
H,κ

−1
H

(γ−1
H

(s))
(Q−) × {i(CH,(γHκH)−1(s)(Q

−))}

)
.
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Since this property determines the group element φ, we see that φ =
((φH)), with φH = ((χH

1 , · · · , χH
n(H)), λH), where χH

s = ωH
s νH

γ−1
H

(s)
and λH =

γHκH ; in other words, φH = ρHσH , the product being computed in the semi-
direct product. (This is the reason for introducing the semi-direct products.)

Case 3: P−, ρ,S, σ arbitrary.
Compute as follows:

(P+, ρ,P−) · (S, σ,S0) =
(P+, ρ,P−) · (P−, 1,P−) · (S, 1,S) · (S, σ,S0)

D(P−,P−) D(S,S)

=
D(P−,S) (P+, ρ,P−) · (P−, βP−

S ,S) · (S, σ,S0)

D(P−,P−) D(S,S)

= D(P−,S) (P+, ρβP−

S σ,S0) ,

where we have used both the equations 3.10 in the first step, the definition
of β (see equation 3.8) in the second step, and equation 3.11 twice in the last
step. 2

The next lemma is needed to ensure that that the algebra AG
n (d) is

semisimple at all but a finite number of values of d.

Lemma 19 Let C = ((ci
j)) be a square matrix and suppose ci

j = dni
j , where

d is a complex parameter, and the matrix ((ni
j)) satisfies the following con-

ditions:
(i) ni

j ∈ {−∞, 0, 1, 2, · · ·},
(ii) ni

i ≥ max{0, ni
j} ∀i, j; and

(iii) if i 6= j and ni
j = ni

i, then ni
i < nj

j.
Then det C is a monic polynomial in d; in particular, the matrix C is non-

singular when we substitute all but finitely many possible complex numbers
for the parameter d.

Proof: We shall show that the monomial in d obtained as the ‘diagonal
product’ of C corresponding to any permutation σ which is distinct from the
identity permutation, has degree strictly smaller than the degree of the ‘main
diagonal product’ (which corresponds to the identity permutation).

Since any such σ is expressible as a product of disjoint cycles, and since
we have assumed that ni

i ≥ 0 (so that there is no problem of multiplying by
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0), it is enough to (consider the case when σ is just a cycle, and) prove that
if i, j, k, · · · , r, s is a collection of (two or more) distinct indices, then

(ni
j + nj

k + · · · + nr
s + ns

i ) < (ni
i + nj

j + · · · + nr
r + ns

s) . (3.12)

However, we have termwise inequalities:

ni
j ≤ ni

i, nj
k ≤ nj

j, · · · , nr
s ≤ nr

r, ns
i ≤ ns

s . (3.13)

Since the hypothesis (ii) guarantees that the right side of 3.12 is a finite
quantity (i.e., not equal to −∞), the only way that the inequality 3.12 can
fail to hold is that each of the inequalities in 3.13 is actually an equality; in
that case, the assumption (iii) will imply that ni

i < nj
j < · · · < nr

r < ns
s < ni

i.
This contradiction completes the proof of the lemma. 2

Proposition 20 Let n ∈ Nk. The equation (Γ(τ))(R, ρ) = (R, ρτ−1)
defines a representation Γ of G(n) on V (n). Let π(n) be the representation
of AG

n (d) described in Proposition 18. Then,
(i) π(n)(A

G
n (d)) ⊂ Γ(G(n))′.

(ii) Consider the matrix C with rows and columns indexed by S(n)×G(n),
defined - using the notation of Proposition 18(b) - by

C( (R, ρ), (S, σ) ) = δσ,ρβR

S

D(R,S) . (3.14)

Then the matrix C satisfies the hypothesis of Lemma 19; and if d is such that
the matrix C is invertible, then

π(n)(A
G
n (d)) = π(n)(span I(n)) = Γ(G(n))′ .

Proof: (i) Note that Γ(τ)(R, ρ) = 1
D(S0,S0)

π(n)(R, ρ,S0)(S0, τ
−1), for

each τ ∈ G(n), and (R, ρ) ∈ S(n) × G(n); assertion (i) of the proposition
is a consequence of the fact that ‘left multiplication’ commutes with ‘right
multiplication’.

(ii) It is clear that C( (R, ρ), (S, σ) ) = dN( (R,ρ),(S,σ) ) , where N is the
matrix defined by

N( (R, ρ), (S, σ) ) =

{
||R ∨ S|| − k if D(R,S) 6= 0 and σ = ρβR

S

−∞ otherwise .
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Notice first that βR
R = 1, and that consequently,

N( (R, ρ), (R, ρ) ) = ||R||−k ≥ max{0, N( (R, ρ), (S, σ) )} ∀(R, ρ), (S, σ) ;

thus N satisfies conditions (i) and (ii) of Lemma 19.
Next, suppose N( (R, ρ), (R, ρ) ) = N( (R, ρ), (S, σ) ) for some (R, ρ) 6=

(S, σ). In particular, this means that the right side is not equal to −∞, and
hence, D(R,S) 6= 0, σ = ρβR

S , and ||R∨S|| = ||R||. It follows that R∨S = R,
i.e., S ≤ R.

Suppose, if possible, that R = S. The condition D(R,S) 6= 0 is then
seen to imply that R = S; then the condition σ = ρβR

S is seen to imply
(since βR

R = 1) that σ = ρ; in other words, (R, ρ) = (S, σ), contradicting the
hypothesis; hence, indeed R 6= S.

Then it follows from Lemma 1(b) that ||R|| < ||S||, and hence that

N( (R, ρ), (R, ρ) ) = ||R|| − t < ||S|| − t = N( (S, σ), (S, σ) ) ,

thereby completing the verification that C satisfies the conditions of Lemma
19.

So, we assume, in the rest of this proof, that d ∈ C is such that the matrix
C is invertible. We shall, in what follows, identify a linear operator, say T ,
on V (n), with its matrix ((T

(R,ρ)
(S,σ) )) with respect to the basis S(n) × G(n).

(Thus, T (S, σ) =
∑

(R,ρ) T
(R,ρ)
(S,σ) (R, ρ).)

Now, the matrix of a typical element of Γ(G(n))′ has the form

X( (R, ρ), (S, σ) ) = x(ρσ−1)(R,S) ,

where {x(τ) : τ ∈ G(n)} is a collection of arbitrary matrices with rows and
columns indexed by S(n).

Hence, in order to prove (ii), it will suffice to prove that given an arbitrary
collection {x(τ) : τ ∈ G(n)} of matrices with rows and columns indexed by
S(n) × G(n), then there exist complex scalars a(Q, ρ,R), Q,R ∈ S(n), ρ ∈
G(n) such that

(
∑

Q,ρ,R

a(Q, ρ,R) π(n)(Q, ρ,R) ) ( (S1, σ1), (S, σ) ) = x(σ1σ−1)(S1,S) ,

(3.15)
for all ( (S1, σ1), (S, σ) ∈ S(n) × G(n).
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Fix S1 ∈ S(n), and define y(S1)(S, τ) = x(τ)(S1,S); due to the assumed
invertibility of the matrix C, there exists a unique collection {z(S1)(R, ρ) :
(R, ρ) ∈ S(n) × G(n)} of complex numbers such that

∑

R,ρ

z(S1)(R, ρ) C( (R, ρ), (S, τ) ) = y(S1)(S, τ) , (3.16)

for all S1,S, τ .
Also note, from equation 3.7 and the definition of C, that

π(n)( (Q, ρ,R) )( (S1, σ1), (S, σ) ) = δQ,S1
C( (R, ρ), (S, σ1σ

−1) ) .

Now set a(S1, ρ,R) = z(S1)(R, ρ), and compute as follows:

(
∑

Q,ρ,R

a(Q, ρ,R) π(n)(Q, ρ,R) ) ((S1, σ1), (S, σ))

=
∑

Q,ρ,R

a(Q, ρ,R) δQ,S1
C((R, ρ), (S, σ1σ

−1))

=
∑

ρ,R

a(S1, ρ,R) C((R, ρ), (S, σ1σ
−1))

=
∑

ρ,R

z(S1)(R, ρ) C((R, ρ), (S, σ1σ
−1))

= y(S1)(S, σ1σ
−1)

= x(σ1σ−1)(S1,S) ,

and the proof is complete. 2

The matrix that we called C in Proposition 20 really depends on n, n
and d, and we shall write Cn

(n)(d) (rather than merely C) when we wish to
emphasise this dependence in the following; likewise, we shall, when desired,
write Γn

(n) for the representation of G(n) that we called Γ in Proposition 20.

Theorem 21 Suppose d ∈ C is such that Cn
(n)(d) is invertible, for each

n ∈ Nk, 0 ≤ k ≤ n|G|. Then

AG
n (d) ∼= ⊕n∈N[n]

⊕
π∈Ĝ(n)

(
Mdπ

(C) ⊗ M|S(n)|(C)
)

; (3.17)

In particular, the algebras AG
n (d) are ‘generically’ semisimple.
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Proof: Let us write Ln
(n) = Γn

(n)(G(n))′; then, by Proposition 20(ii), we
have, for all k, n,

π(n)(A
G
n (d)) = π(n)(span I(n)) = Ln

(n) ;

further, it is clear from the definition that the representation Γn
(n) is equiv-

alent to R(n) ⊗ id
C

|S(n)| , where R(n) denotes the right regular representa-
tion of G(n); it follows that Ln

(n)
∼= C[G(n)] ⊗C M|S(n)|(C), and hence that

dim (Ln
(n)) = |G(n)| · |S(n)|2; on the other hand, we also know that this is

the dimension of I(n) (since I(n) has a basis indexed by S(n)×G(n)×S(n)),
and consequently, we may conclude that π(n) maps span I(n) bijectively onto
Ln

(n).
Since each Ln

(n) is clearly semisimple, the proposition will be proved once
we establish the following isomorphism of C-algebras:

⊕n∈N[n]
π(n) : AG

n (d) ∼= ⊕n∈N[n]
Ln

(n) .

Now dim AG
n (d) = dim (⊕n Ln

(n)), since
∐

n I(n) is a basis of AG
n (d); so it

suffices to prove surjectivity of ⊕n π(n).
So suppose ⊕n x(n) ∈ ⊕n Ln

(n); we shall exhibit {a(m) ∈ span I(m) : m ∈
N[n]} such that (⊕n π(n))(

∑
m a(m)) = ⊕n x(n). Note that π(n)(I(m)) = 0

whenever either (i) l < k, or (ii) l = k and m 6= n - where m ∈ Nl, n ∈ Nk;
hence the a(m)’s must satisfy

∑

l≥k,m∈Nl

π(n)(a(m)) = x(n) ∀ n ∈ Nk, 0 ≤ k ≤ n .

Since we know that π(n) maps I(n) onto Ln
(n), we may inductively define the

a(m)’s by just requiring that if n ∈ Nk, and if a(m) has been defined for all
m ∈ Nl, l < k, then

π(n)(a(n)) = x(n) −
∑

l>k,m∈Nl

π(n)(a(m)) .

2

4 The tower {AG
n (d) : n = 1, 2, · · ·}

Henceforth, we make the blanket assumption that d satisfies the hypothesis
of Theorem 21.
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It is a consequence of that theorem that - in the notation of that theo-
rem - the irreducible representations of AG

n (d) are parametrised by the set

{(n, π) : n ∈ N[n], π ∈ Ĝ(n)}. For the sake of future computations, we wish
to explicitly write out a model for the irreducible representation correspond-
ing to (n, π). In the sequel, we write CS(n) for the C-vector space with basis
S(n), with S(n) as before.

Remark 22 (i) We wish to note here that although we used a ‘reference
element’ S0 in defining the representation π(n) of Proposition 18, the defini-
tion is actually independent of the element S0 - at least under our blanket
assumption that d satisfies the hypothesis of Theorem 21. This is because:
(a) it is seen from equation 3.7 that the definition of π(P ) is independent of
S0 at least when P ∈ I(n); and (b) for a semi-simple algebra, a represen-
tation is uniquely determined by its restriction to any ideal on which it acts
‘non-degenerately’.

(ii) Further, as we shall wish to consider AG
n (d) for varying n, we shall

use a subscript n for symbols used so far, to indicate the dependence on n;
thus, we shall talk of Vn(n), Sn(n), etc.; also, we shall use the notation Nn;k

for what we have so far denoted by Nk (see Definition 14(c)).

Proposition 23 Fix n ∈ Nn;k, 0 ≤ k ≤ n|G|, π ∈ Ĝ(n). Let Vπ denote the
vector space on which π represents G(n), and define V (n, π) = CS(n)⊗Vπ.

(a) Then the following prescription uniquely defines the structure of an
AG

n (d)-module on V (n, π): let P ∈ RG(X2n), S ∈ S(n); by the definition
of the representation π(n) - see Proposition 18 - there exists a unique scalar
C(P,S) and an element (S1, σ1) ∈ S(n) × G(n) such that

π(n)(P ) (S, 1) = C(P,S) (S1, σ1) ,

where the 1 on the left denotes the identity element of G(n); then,

P · (S ⊗ v) = C(P,S) ( S1 ⊗ π(σ1)v ) .

(b) V (n, π) is irreducible as a module over the ideal IG
k (and hence also as

an AG
n (d)-module), and further, if m ∈ Nn;l, then I(m) acts as 0, whenever

either (i) l < k, or (ii) l = k and m 6= n.

(c) The modules {V (n, π) : 0 ≤ k ≤ n|G|, n ∈ Nn;k, π ∈ Ĝ(n)} are
pairwise inequivalent.
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Proof: Suppose X,Y ∈ RG(X2n) and S ∈ S(n), and suppose that

π(n)(Y )(S, 1) = C(Y,S) (S1, σ1) ; and

π(n)(X)(S1, 1) = C(X,S1)(S2, σ2) ;

it follows that

π(n)(XY )(S, 1) = π(n)(X)π(n)(Y )(S, 1)

= C(Y,S) π(n)(X)(S1, σ1)

= C(Y,S) π(n)(X)Γn
(n)(σ

−1
1 )(S1, 1)

= C(Y,S) Γn
(n)(σ

−1
1 )π(n)(X)(S1, 1)

= C(Y,S) Γn
(n)(σ

−1
1 )(C(X,S1) (S2, σ2))

= C(Y,S)C(X,S1) (S2, σ2σ1) ;

it follows from this that C(XY,S) = C(Y,S)C(X,S1).
Now deduce from the definitions that

Y · (S ⊗ v) = C(Y,S) (S1 ⊗ π(σ1)v) ;

X · (S1 ⊗ w) = C(X,S1) (S2 ⊗ π(σ2)w) ;

and hence that

XY · (S ⊗ v) = C(Y,S)C(X,S1)(S2 ⊗ π(σ2σ1)v)

= C(Y,S) X · (S1 ⊗ π(σ1)v)

= X · (C(Y,S)(S1 ⊗ π(σ1)v))

= X · (Y · (S ⊗ v)) ;

this proves that the ‘representation’ is multiplicative; the verification of lin-
earity is trivial.

(b) and (c) It is clear that Ik−1 acts as 0 on V (n, π). Further, if m ∈ Nn;k,
it is a consequence of Lemma 15 that π(n)(I(m)) = 0 for m 6= n, and hence
I(m) also acts as 0 on V (n, π), if m 6= n. On the other hand, I(n) does
not act as 0 on V (n, π), since π(n) is injective on I(n). It follows from
the preceding statements that if m ∈ Nn;l, then V (n, π) and V (m,χ) are
inequivalent AG

n (d)-modules, unless n = m.
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In order to complete the proof of the proposition, we shall verify - and
this is clearly sufficient - that if T : V (n, π) → V (n, χ) is an I(n)-linear map,

where π, χ ∈ Ĝ(n), then

T =

{
λ idV (n,π) if π = χ,
0 if πis not equivalent to χ ,

for some λ ∈ C.
Suppose {ej : 1 ≤ j ≤ dπ} (resp., {fi : 1 ≤ i ≤ dχ} ) is an orthonormal

basis for Vπ (resp., Vχ), and suppose

T (S ⊗ ej) =
∑

S1,i

T
(S1,i)
(S,j) (S1 ⊗ fi) .

Let (Q, ρ,R) ∈ I(n). Computing T ((Q, ρ,R) · (S ⊗ ej)) and (Q, ρ,R) ·
T (S ⊗ ej)), and equating coefficients, we see that

D(R,S)
∑

k

πk
j (ρβR

S )T
(Q1,l)
(Q,k) = δQ1

Q

∑

S1,i

T
(S1,i)
(S,j) D(R,S1) χl

i(ρβR
S1

) , (4.18)

for all possible choices of Q1,Q,R,S, l, j, ρ.
If Q1 6= Q, set R = S, ρ = 1 in equation 4.18 to deduce that

T
(Q1,l)
(Q,j) = 0 ∀l, j , (4.19)

whenever Q1 6= Q.
Writing TQ for the matrix defined by TQ = (((TQ)l

j)), where (TQ)l
j =

T
(Q,l)
(Q,j), we next deduce - on setting R = S,Q = Q1 in equation 4.18 - that

TQπ(ρ) = χ(ρ)TS (4.20)

for all choices of ρ,Q,S. Set ρ = 1 in equation 4.20 to find that TQ =
TS = T0 (say), for all Q,S; deduce next from 4.20 that T0 intertwines the
representations π and χ, thereby completing the proof. 2

Since we wish to now look at the inclusion AG
n (d) ⊂ AG

n+1(d), it will be
necessary to write Sn(n) for what we called S(n) till now. Thus,

Sn(n) = {S = (S; ({CH,s(S) : H ∈ C, 1 ≤ s ≤ n(H)}) | S ∈ RG(Xn)}
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Given P ∈ RG(X2n), define P̃ ∈ RG(X2n+2) by ‘adding on a set of |G|-
many vertical lines to the right of P ’; more pedantically, if P ∈ In(n) is given
by P = (P+, ρ,P−), with P± ∈ Sn(n), n ∈ N[n], then P = (P̃+, ρ̃, P̃−) ∈

Sn+1(m), where (a) P̃± = P± ∪{((g, n+1), (g, n+1)) : g ∈ G}, (b) m(H) =
n(H) + δH,{1}, and

CH,s(P̃±) =

{
{n + 1} if H = {1} and s = n({1}) + 1
CH,s(P

±) otherwise ;

and (c) with the natural identification of G(n) as a subgroup of G(m), we
have simply ρ̃ = ρ. (Note that (i) Gt sits as the subgroup of Gt+1 consisting
of those elements with last co-ordinate equal to 1, (ii) Σt sits as the subgroup
of Σt+1 consisting of those permutations which fix t + 1, (iii) the semi-direct
product Gt×s Σt naturally embeds in Gt+1×Σt+1 in a manner that is consis-
tent with (i) and (ii) above, and (iv) with n and m as above, there is a group
K such that G(n) = K × (Gt ×s Σt) and G(m) = K × (Gt+1 ×s Σt+1). Later,
we shall need the analogous and slightly more general fact that if n, m ∈ N[n]

and if n(H) ≤ m(H) ∀H ∈ C, then G(n) may be regarded as a subgroup of
G(m).)

Given H0 ∈ C, we shall write 1H0 for the function on C which is equal
to one at H0 and 0 elsewhere. In the sequel, we shall specify elements S ∈
Sn+1(m) thus: (a) by specifying the data of (i) an element RS ∈ R([n + 1]),
(ii) a mapping [n + 1]/R 3 C 7→ HS

C ∈ C, and (iii) a map φS defined on
[n+ 1] and taking values in right-cosets of the HS

C ’s satisfying the conditions
of Proposition 11; and demanding that S ∈ RG(Xn+1) is the unique element
corresponding to the data (i)-(iii) as in Proposition 11; and (b) by specifying
an explicitly labelled collection {CH,s(S) : 1 ≤ s ≤ m(H), H ∈ C} of RS-
equivalence classes such that CH,s(S) is assigned to H under the assignment
of (a)(ii), and such that the labelling satisfies the condition 2.6.

It will be convenient to have a ‘standard’ or ‘reference’ element of each
Sn(n); we define such an element in the following definition.

Definition 24 Once and for all, fix some total order on the class C. Fix
n ∈ {1, 2, · · ·}, and n ∈ N[n]. Then n uniquely specifies distinct elements
H1, H2, · · · , Hl of C such that:

(i) H1 < H2 < · · · < Hl (with respect to the chosen total order on C); and
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(ii) n(H) 6= 0 ⇔ H ∈ {Hj : 1 ≤ j ≤ l}.

Suppose n(Hj) = νj; set µj =
∑j

k=1 νk. Then, define S0(n, n) ∈ Sn(n) (which
we shall simply abbreviate to S0 if n, n are clear from the context) as follows:

(a) (i) RS0 is the ‘identity’ equivalence relation on [n], all of whose equiv-
alence classes are singletons;

(ii) HS0

{k} =

{
Hj if µj−1 < k ≤ µj

{1} if µl < k

(iii) φS0(k) = HS0

{k} ∀k; and
(b) CHj ,s(S0) = {µj−1 + s}, for 1 ≤ s ≤ νj, 1 ≤ j ≤ l.

With a view to decomposing Vn+1(n, χ) as an AG
n (d)-module, we shall now

proceed to construct several AG
n (d)-linear maps from Vn(m,π) to Vn+1(n, χ),

for appropriate m and π. The basic idea behind the construction of these
intertwiners is the old one that ‘right-multiplications commute with left-
multiplications’.

Recall, from Definition 9 that for every H ∈ C, we have chosen a fixed
set {σH

κ : 1 ≤ κ ≤ [G : N(H)]} of coset-representatives for N(H)\G.

Lemma 25 Fix n ∈ N[n+1], H0 ∈ C such that n(H0) > 0, and σ ∈ {σH0
κ :

1 ≤ κ ≤ [G : N(H0)]}.

(1) If Q ∈ Sn(n − 1H0), define αH0,σ(Q) = S, thus:
(a) (i) RS = RQ ∪ {(n + 1, n + 1)},

(ii) HS
C =

{
HQ

C if C ⊂ [n]
H0 if C = {n + 1}

(iii) φS(i) =

{
φQ(i) if i ≤ n
H0σ if i = n + 1

;

(b) CH,s(S) =

{
CH,s(Q) if H 6= H0 or H = H0, 1 ≤ s < n(H0)
{n + 1} if H = H0, s = n(H0)

.

Then αH0,σ is a 1-1 map of Sn(n − 1H0) into Sn+1(n).

(2) Conversely, if S ∈ Sn+1(n), and if the singleton {n + 1} is an RS-
equivalence class which is one of the ‘distinguished classes’ - meaning that
{n + 1} = CH0,s0(S) (for a necessarily unique H0 ∈ C and a unique integer
s0 necessarily equal to n(H0)), then there exists a unique H0 ∈ C (namely
the one just discussed), a unique σ, and a unique Q ∈ Sn(n− 1H0) such that
αH0,σ(Q) = S.
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(3) Let π ∈ ̂G(n − 1H0), χ ∈ Ĝ(n), and suppose L : Vπ → Vχ is a non-zero
G(n − 1H0)-linear operator. (Note that G(n − 1H0) ⊂ G(n), so the above
sentence makes sense.) Then the equation

(AH0,σ(L))(T ⊗ ξ) = αH0,σ(T) ⊗ Lξ (4.21)

defines a non-zero AG
n (d)-linear operator AH0,σ(L) : Vn(n−1H0 , π) → Vn+1(n, χ).

Proof: (1) and (2): It should be clear from the definitions that indeed
αH0,σ : Sn(n−1H0) → Sn+1(n). To complete the proof, we only need to verify
injectivity. On the other hand, the statement (2) is also fairly obvious, and
explcitly contains the specification of the range of the map αH0,σ, as well as
the assertion that any point in this range admits a unique pre-image, i.e.,
that αH0,σ is 1-1.

(3) We shall find the following notation useful: if m ∈ N[m], we shall write
t(m) =

∑
H∈C m(H) [G : H]; thus, if P ∈ Im(m), then t(P ) = t(m). Also, let

Jm(m) denote the linear subspace spanned by (Im(m)∪
⋃

{m′:t(m′)<t(m)} Im(m′));
it should be clear that Jm(m) is an ideal in AG

m(d) which acts non-degenerately
on the module Vm(m, ζ).

Since AG
n (d) is semi-simple, it will suffice to show that AH0,σ(L) is Jn(n−

1H0)-linear.
First, suppose P ∈ I(m) for m ∈ N[n] with t(m) < t(n − 1H0); then, we

shall show that

(AH0,σ(L))(P ·(T⊗ξ)) = 0 = P̃ ·(AH0,σ(L))(T⊗ξ)) ∀T ∈ Sn(n−1H0), ξ ∈ Vπ.

The fact that the left-side of the above equation is zero is a consequence
of the fact that t(P · (T, 1,S0) ) ≤ t(P ) < t(n − 1H0), and such elements of
the algebra act as zero on the module in question.

As for the right side, it suffices to verify that t(P̃ · (αH0,σ(T), 1,S0)) ) <
t(n); but notice that the first n|G| strands of this product contribute at most
t(P ) through-classes, while the last |G| strands contribute exactly [G : H0]
through-classes, and the sum of these two terms is, by hypothesis, less than
t(n).

We need now to verify that

(AH0,σ(L))(P · (T⊗ ξ)) = P̃ · (AH0,σ(L))(T⊗ ξ)) ∀T ∈ Sn(n− 1H0), ξ ∈ Vπ,
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whenever P ∈ In(n − 1H0). Thus, suppose P = (Q, ρ,R), where Q,R ∈
Sn(n − 1H0) and ρ ∈ G(n − 1H0). Then, if we write g = ρβR

T , we see that
since (Q, ρ,R) · (T, 1,S0) = D(R,T)(Q, g,S0), we have, by definition,

(AH0,σ(L))(P · (T ⊗ ξ)) = (AH0,σ(L))(D(R,T)(Q ⊗ π(g)ξ))

= D(R,T) αH0,σ(Q) ⊗ Lπ(g)ξ . (4.22)

On the other hand, since

P̃ · (AH0,σ(L))(T ⊗ ξ)) = P̃ · (αH0,σ(T) ⊗ Lξ)) ,

in order to evaluate the right side of this equation, we will need to first
calculate (Q, ρ,R)̃ · (αH0,σ(T), 1,S0).

To this end, it will be convenient to introduce the following element of
In+1(n), which we shall denote by α̃H0,σ:

α̃H0,σ = (αH0,σ(S0(n, n − 1H0)), 1,S0(n + 1, n)) .

The point is that

(αH0,σ(S), g,S0(n + 1, n)) = (S, g,S0(n, n − 1H0))˜· α̃H0,σ , (4.23)

for all S ∈ Sn(n− 1H0) and any g ∈ G(n− 1H0), where the g on the left side
of the equation denotes g when thought of as an element of G(n) (via the
natural inclusion G(n − 1H0) ⊂ G(n)). (Equation 4.23 is verified by looking
at the picture represented by the product on the right side, noting that it
does belong to In+1(n), and checking that its three ingredients are indeed as
given by the left side of 4.23.)

Hence,

(Q, ρ,R)̃ · (αH0,σ(T), 1,S0) = (Q, ρ,R)̃ · (T, 1,S0)̃ · α̃H0,σ

= D(R,T)(Q, g,S0)̃ · α̃H0,σ

= D(R,T)(αH0,σ(Q), g,S0) .

Hence we may deduce that

(Q, ρ,R)̃ · (AH0,σ(L))(T ⊗ ξ)) = (Q, ρ,R)̃ · (αH0,σ(T) ⊗ Lξ))

= D(R,T)(αH0,σ(Q) ⊗ χ(g)Lξ).

(4.24)

Since g ∈ G(n − 1H0), we have χ(g)L = Lπ(g), and the lemma follows from
equations 4.22 and 4.24. 2
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Lemma 26 Fix n ∈ N[n], H0 ∈ C and σ ∈ {σH0
κ : 1 ≤ κ ≤ [G : N(H0)]}.

(1) If Q ∈ Sn(n), define βH0,σ(Q) = S, thus:
(a) (i) RS = RQ ∪ {(n + 1, n + 1)};

(ii) HS
C =

{
HQ

C if C ⊂ [n]
H0 if C = {n + 1}

;

(iii) φS(i) =

{
φQ(i) if i ≤ n
H0σ if i = n + 1

;

(b) CH,s(S) = CH,s(Q) for H ∈ C, 1 ≤ s ≤ n(H).

Then βH0,σ is a 1-1 map of Sn(n) into Sn+1(n).

(2) Conversely, if S ∈ Sn+1(n), and if the singleton {n + 1} is an RS-
equivalence class which is not a ‘distinguished class’ - meaning that {n+1} /∈
{CH,s(S) : H ∈ C, 1 ≤ s ≤ n(H)}, then there exists a unique H0 ∈ C, a
unique σ, and a unique Q ∈ Sn(n) such that βH0,σ(Q) = S.

(3) Let π ∈ Ĝ(n). Then the equation

BH0,σ(T ⊗ ξ) = βH0,σ(T) ⊗ ξ (4.25)

defines a non-zero AG
n (d)-linear operator BH0,σ : Vn(n, π) → Vn+1(n, π).

Proof: The proof is almost identical to that of the last lemma, and so
we shall say nothing more about the proof except that we would here want
to look at the special element β̃H0,σ ∈ In+1(n) defined by

β̃H0,σ = (βH0,σ(S0), 1,S0) ,

and the crucial identify it satisfies is

(βH0,σ(S), g,S0) = (S, g,S0)˜· β̃H0,σ .

2

Remark 27 (1) Fix n and n ∈ N[n+1]. Consider two cases now:
Case 1: n ∈ N[n]

It is a consequence of Lemma 25(2) and Lemma 26(2) that if Hi ∈
C, σi ∈ {σHi

κ : 1 ≤ κ ≤ [G : N(Hi)]}, 1 ≤ i ≤ 4, if n(H1), n(H2) >
0, and if (H1, σ1) 6= (H2, σ2) and (H3, σ3) 6= (H4, σ4), then the four sets
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αH1,σ1(Sn(n−1H1)), αH2,σ2(Sn(n−1H2)), βH3,σ3(Sn(n)), βH4,σ4(Sn(n)) are pair-
wise disjoint. In this case, define W 0

n+1(n) to be the subspace of CSn+1(n)
spanned by (∪H,σαH,σ(Sn(n − 1H))) ∪ (∪H,σβH,σ(Sn(n))).

Case 2: n /∈ N[n].
Here also, it is true (and follows from Lemma 25(2) and Lemma 26(2))

that if Hi ∈ C, σi ∈ {σHi
κ : 1 ≤ κ ≤ [G : N(Hi)]}, i = 1, 2, if n(H1), n(H2) >

0, and if (H1, σ1) 6= (H2, σ2), then the sets αH1,σ1(Sn(n−1H1) and αH2,σ2(Sn(n−
1H2) are disjoint. In this case, define W 0

n+1(n) to be the subspace of CSn+1(n)
spanned by (∪H,σαH,σ(Sn(n − 1H))).

It also follows from Lemma 25(2) and Lemma 26(2) that if S ∈ Sn+1(n),
then S ∈ W 0

n+1(n) if and only if {n + 1} is an RS-equivalence class.

(2) Fix n ∈ N[n+1] as above, and χ ∈ Ĝ(n). Also fix H ∈ C such that
n(H) > 0, and fix σ ∈ {σH

κ : 1 ≤ κ ≤ [G : N(H)]}. Consider Vχ as a
G(n − 1H)-module and decompose into irreducible submodules; specifically,
assume that there exist G(n − 1H)-linear maps Lπ,j : Vπ → Vχ, 1 ≤ j ≤

mπ, π ∈ ̂G(n − 1H) such that Vχ is the direct sum of the ranges of all these
maps. Then, we wish to observe that:

⊕j,π range AH,σ(Lπ,j) = C(αH,σ(Sn(n − 1H))) ⊗ Vχ ;

and the two sides of this equation represent an AG
n (d)-submodule of Vn+1(n, χ).

Reason: The sum on the left is a direct sum because, for any fixed π, j,
the corresponding ‘summand’ is a subspace of CSn+1(n) ⊗ Lπ,j(Vπ). This
direct sum is, by definition, included in the space on the right. To prove the
reverse inclusion, it is clearly sufficient to verify that any vector of the form
αH,σ(Q)⊗Lπ,jξ, Q ∈ Sn(n− 1H)), ξ ∈ Vπ belongs to the left side, but this is
just AH,σ(Lπ,j)(Q ⊗ ξ).

(3) Clearly, for fixed n ∈ N[n], χ ∈ Ĝ(n), H ∈ C, σ ∈ {σH
κ : 1 ≤ κ ≤

[G : N(H)]},
range BH,σ = C(βH,σ(Sn(n))) ⊗ Vχ ;

and the two sides of this equation represent an AG
n (d)-submodule of Vn+1(n, χ).

(4) Define W 0
n+1(n, χ) = W 0

n+1(n) ⊗ Vχ. It is now a consequence of
(1)-(3) above that

W 0
n+1(n, χ) = (⊕H,σ,j,π range AH,σ(Lπ,j)) ⊕ (⊕H,σ range BH,σ) ,
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and that W 0
n+1(n, χ) is an AG

n (d)-submodule of Vn+1(n, χ).

Before discussing further intertwiners, it will be convenient to describe
some coset-representatives for some subgroups, and also to discuss a certain
natural group action; we do so in the following lemma, whose proof we omit
since it is an easy verification.

Lemma 28 Fix m ∈ N[m], H0 ∈ C.

(1) For 1 ≤ s ≤ m(H0) + 1, and f ∈ H0\N(H0), define an element
σ(s, f) ∈ G(m + 1H0) as follows:

σ(s, f) = ( (σ(s, f))H ) ,

where

(σ(s, f))H =

{
1 if H 6= H0

( (1, · · · , f, 1, · · · , 1); λs) if H = H0

where the f occurs in the s-th slot, and λs is the cycle (s, s+1, · · · ,m(H0)+1).
Then, G(m + 1H0) =

∐
(s,f) σ(s, f) G(m).

(2) Consider the set {1, · · · ,m(H0) + 1} × (H0\N(H0)) and an element
g ∈ G(m + 1H0); suppose that

g = ((gH)), where gH = ( (ωH
1 , · · · , ωH

m(H)+1); κH) ;

Then, the equations

g · (s, f) = (s1, f1) ⇔ s1 = κH0(s), f1 = ωH0
s1

f .

define a transitive action of G(m+1H0) on {1, · · · ,m(H0)+1}×(H0\N(H0)).
In fact, g · (s, f) = (s1, f1) ⇔ σ(s1, f1)

−1gσ(s, f)) ∈ G(m); equivalently, this
action may be identified with that of G(m + 1H0) on G(m + 1H0)/G(m).

Lemma 29 Fix n ∈ N[n], H0 ∈ C such that n(H0) > 0; also fix 1 ≤ s0 ≤
n(H0), f ∈ H0\N(H0) and σ ∈ {σH0

κ : 1 ≤ κ ≤ [G : N(H0)]}.
(1) If Q ∈ Sn(n), define γH0,(σ,s0,f)(Q) = S, thus:

(a) (i) the RS-equivalence classes are C = CH0,s0(Q) ∪ {n + 1} and all the
RQ-equivalence classes other than CH0,s0(Q);

(ii) HS
C = HQ

C∩[n];
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(iii) φS(i) =

{
φQ(i) if i ≤ n
fσ if i = n + 1

.

(b) Define CH0,s0(S) to be the C defined in (1)(a)(i), and for H ∈ C, 1 ≤
s ≤ n(H), (H, s) 6= (H0, s0), define CH,s(S) = CH,s(Q).

Then γH0,(σ,s0,f) is a 1-1 map of Sn(n) into Sn+1(n).

(2) Conversely, if S ∈ Sn+1(n), and if [n + 1]RS is not a singleton set, and
if this RS-equivalence class is a ‘distinguished class’ - meaning that [n +
1]RS = CH0,s0(S) for a necessarily unique (H0, s0), then there exists a unique
f ∈ H0\N(H0), σ ∈ {σH0

κ : 1 ≤ κ ≤ [G : N(H0)]} and a Q ∈ Sn(n) such
that γH0,(σ,s0,f)(Q) = S.

(3) Suppose π, χ ∈ Ĝ(n), and suppose L : Vπ → Vχ is a non-zero G(n−1H0)-
linear map. Also suppose that σ ∈ {σH0

κ : 1 ≤ κ ≤ [G : N(H0)]}. Then the
equation

(CH0,σ(L))(T ⊗ ξ)

=
∑

(s,f)

(
γH0,(σ,s,f)(T) ⊗ χ(σ(s, f))Lπ(σ(s, f)−1)ξ

)
+ W 0

n+1(n, χ) ,

where the sum ranges over 1 ≤ s ≤ n(H0) and f ∈ H0\N(H0), defines a

non-zero AG
n (d)-linear map CH0,σ(L) : Vn(n, π) →

(
Vn+1(n, χ)/W 0

n+1(n, χ)
)
.

Proof: The statements (1) and (2) are established exactly like their
counterparts in Lemma 25 after observing that every element of H0\G is
uniquely expressible as fσ for f ∈ H0\N(H0) and σ ∈ {σH0

κ : 1 ≤ κ ≤ [G :
N(H0)]}. For (3), again as in Lemma 25, it will suffice to verify that CH0,σ(L)
is Jn(n)-linear. Thus we need to verify that

(CH0,σ(L))(P · (T ⊗ ξ)) = P̃ · (CH0,σ(L))(T ⊗ ξ)) ∀T ∈ Sn(n), ξ ∈ Vπ,

whenever either (i) P ∈ In(m), where m ∈ N[n], t(m) < t(n), or (ii) P =
(Q, ρ,R) ∈ In(n).

We first show that in case (i), both sides of the desired equation reduce
to zero. Since t(P · (T, 1,S0)) ≤ t(P ) < t(n), it is seen that the left side of
the above equation is, indeed, zero. To evaluate the right side, we have to
examine such products as P̃ · (γH0,(σ,s,f)(T), 1,S0), and it will suffice to show,
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therefore, that in this case, either such a product has less than t(n) through
classes, or such a product has exactly t(n) through classes, in which case its
‘top’ belongs to W 0

n+1(n). In any case, since the second term of the product
has exactly t(n) through classes, the product can have at most t(n) through
classes. So, we may assume without loss of generality that the product has
exactly t(n) through classes. By the last line of Remark 27(1), it suffices
therefore to show that if the ‘top’ of our product is S, and if {n + 1} is not
an RS-equivalence class, then the product cannot have t(n) through classes;
but this is an easy consequence of the assumption that t(P ) < t(n).

To discuss the second (and less trivial) case, we will again find it con-
venient to introduce an auxiliary element γ̃H0,(σ,s,f) which enables us to re-
gard the mapping γH0,(σ,s,f) as a sort of right-multiplication. Thus, define
γ̃H0,(σ,s,f) ∈ In+1(n) by

γ̃H0,(σ,s,f) = (γH0,(σ,s,f)(S0), 1,S0) .

We can now state the desired analogue of equation 4.23, namely:

(S, g,S0)˜· γ̃H0,(σ,s,f) = (γH0,(σ,g·(s,f))(S), g,S0) (4.26)

for all S ∈ Sn(n−1H0), g ∈ G(n−1H0), where the g on the right is g thought
of as an element of G(n) (via the natural inclusion) and g · (s, f) refers to
the action of G(n) as in Lemma 28(2) applied to m = n − 1H0 . As in the
case of equation 4.23, this equation is also verified by looking at the picture
represented by the product on the left side, noting that it does belong to
In+1(n), and checking that its three ingredients are indeed as given by the
right side of 4.26.

Suppose now that P = (Q, ρ,R) ∈ In(n). If we let g = ρβR
T , we find that

(Q, ρ,R) · (T, 1,S0) = D(R,T) (Q, g,S0), and hence

(CH0,σ(L))(P · (T ⊗ ξ))

= (CH0,σ(L))(D(R,T)(Q ⊗ π(g)ξ))

= D(R,T)
∑

(s1,f1)

(
γH0,(σ,s1,f1)(Q) ⊗ χ(σ(s1, f1))Lπ(σ(s1, f1)

−1)π(g)ξ
)

+ W 0
n+1(n, χ) ; (4.27)

writing (s1, f1) = g · (s, f), and noting that

Lπ(σ(s1, f1)
−1)π(g) = Lπ(σ(s1, f1)

−1g)

33



= Lπ(σ(s1, f1)
−1gσ(s, f))π(σ(s, f)−1)

= χ(σ(s1, f1)
−1gσ(s, f))Lπ(σ(s, f)−1)

(where we have used the fact that σ(s1, f1)
−1gσ(s, f) ∈ G(n − 1H0)), we see

thus that the right side of equation 4.27 may be rewritten (after a change of
variable) as

D(R,T)
∑

(s,f)

(
γH0,(σ,g·(s,f))(Q) ⊗ χ(gσ(s, f))Lπ(σ(s, f)−1)ξ

)
+ W 0

n+1(n, χ) .

(4.28)
On the other hand, notice (by two applications of equation 4.26) that

(Q, ρ,R)˜· (γH0,(σ,s,f)(T), 1,S0) = (Q, ρ,R)˜· (T, 1,S0)˜· γ̃H0,(σ,s,f)

= ((Q, ρ,R) · (T, 1,S0)) ˜· γ̃H0,(σ,s,f)

= D(R,T)(Q, g, S0)˜· γ̃H0,(σ,s,f)

= D(R,T)(γH0,(σ,g·(s,f))(Q), g,S0) .

Hence, we see that

P̃ · (CH0,σ(L))(T ⊗ ξ))

= (Q, ρ,R)˜·
∑

(s,f)

(
γH0,(σ,s,f)(T) ⊗ χ(σ(s, f))Lπ(σ(s, f)−1)ξ

)
+ W 0

n+1(n, χ)

= D(R,T)
∑

(s,f)

(
γH0,(σ,g·(s,f))(Q) ⊗ χ(gσ(s, f))Lπ(σ(s, f)−1)ξ

)
+ W 0

n+1(n, χ),

and the lemma is proved. 2

Remark 30 (1) Fix n and n ∈ N[n+1]. Consider two cases now:
Case 1: n ∈ N[n]

Fix H ∈ C such that n(H) > 0 and define W
1
n+1(n; H) to be the subspace

of CSn+1(n)/W 0
n+1(n) spanned by {γH,(σ,s,f)(T) + W 0

n+1(n) : T ∈ Sn(n), σ ∈
{σH

κ : 1 ≤ κ ≤ [G : N(H)]}, 1 ≤ s ≤ n(H), f ∈ H\N(H)}. By Lemma
29(2), this spanning set is a basis, which can alternatively be described as
{S + W 0

n+1(n) : S ∈ Sn+1(n), [n + 1]RS
is a distinguished class which is not

a singleton, and HS
[n+1] = H}.

Also set W
1

n+1(n) =
∑

H∈C,n(H)>0 W
1

n+1(n; H), and note (again, by Lemma
29(2)) that this sum of subspaces is a direct sum.
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Case 2: n /∈ N[n].

In this case, define W
1

n+1(n) = {0} ⊆ CSn+1(n)/W 0
n+1(n).

In either case, set W 1
n+1(n) be the inverse image, in CSn+1(n), under the

natural quotient map, of W
1

n+1(n), and observe that a basis for W 1
n+1(n) is

furnished by {S ∈ Sn+1(n) : [n+1]RS is either a singleton or is a distinguished
RS-class}.

(2) We will need to use the following elementary fact about induced repre-
sentations. Let G0 be a subgroup of a finite group G and G =

∐n
k=1 gkG0 with

g1 = 1. For χ ∈ Ĝ and χ̃ = IndG0↑GResG↓G0(χ), we may regard Vχ̃ as the space
Vχ ⊗ C(G/G0) with G-action defined by g(v ⊗ giG0) = χ(h(g, i))(v) ⊗ gg(i)G0

where ggi = gg(i)h(g, i) with gg(i) ∈ {g1, · · · , gk} and h(g, i) ∈ G0. Further-

more, for π ∈ Ĝ, there is a natural bijection between G0-linear maps L : Vπ →
Vχ and G-linear maps L̃ : Vπ → Vχ̃ given by L̃(ξ) =

∑n
k=1 Lπ(g−1

k )(ξ)⊗ gkG0.

(3) Fix n ∈ N[n] and H ∈ C such that n(H) > 0. Also fix χ ∈ Ĝ(n).

Let χ̃ = IndG(n−1H)↑G(n)ResG(n)↓G(n−1H)(χ), and for appropriate π ∈ Ĝ(n),

choose non-zero G(n)-linear maps L̃π,j : Vπ → Vχ̃ so that the ranges of all
these maps yield a direct sum decomposition of Vχ̃. Let Lπ,j : Vπ → Vχ be the
G(n− 1H)-linear map which is related to L̃π,j as in the above paragraph. We
wish now to assert that

⊕σ,j,π range CH,σ(Lπ,j) = W
1
n+1(n; H) ⊗ Vχ ; (4.29)

hence the right side represents an AG
n (d)-submodule of Vn+1(n, χ)/W 0

n+1(n, χ).

Reason: Identify Vn+1(n, χ)/W 0
n+1(n, χ) with (CSn+1(n)/W 0

n+1(n))⊗Vχ;
the definition of CH,σ(L) shows that every summand on the left (of equation
4.29) is contained in the space on the right. To see that the sum is direct,

define Φ : W
1
n+1(n; H) ⊗ Vχ → Hom(CSn(n), C(N(H)\G) ⊗ Vχ̃) as follows:

an arbitrary element Z ∈ W
1

n+1(n; H) ⊗ Vχ can be expressed uniquely as
Z =

∑
T∈Sn(n)

∑
(σ,s,f) γH,(σ,s,f)(T)⊗ ξT

(σ,s,f) + W 0
n+1(n, χ), where ξT

(σ,s,f) ∈ Vχ

for all (σ, s, f); define

Φ(Z)(T) ∈ C(N(H)\G) ⊗ Vχ̃ = C(N(H)\G) ⊗ Vχ ⊗ C(G(n)/G(n − 1H))

by

Φ(Z)(T) =
∑

(σ,s,f)

N(H)σ ⊗ χ(σ(s, f)−1)(ξT
(σ,s,f)) ⊗ σ(s, f)G(n − 1H).
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The map Φ is clearly injective since knowledge of all Φ(Z)(T) determines
all the ξT

(σ,s,f) and hence Φ(Z) determines Z; i.e., Φ is an injective (clearly
linear) map. Further, it is easy to see that if Z ∈ range CH,σ(L) then
range Φ(Z) ⊆ C(N(H)σ) ⊗ range L̃. Together with the injectivity of Φ and
the choice of Lπ,j, this implies that the ranges of the CH,σ(Lπ,j)’s form a
direct sum. Finally, a dimension count - using Frobenius reciprocity for the
dimension of the left side (of equation 4.29), and the explicitly listed basis
for the first factor of the tensor product on the right - shows that both sides
of equation 4.29 have dimension |Sn(n)| dχ [G(n) : G(n − 1H)] [G : N(H)];
and therefore the direct sum on the left exhausts the space on the right.

(4) Define W
1

n+1(n, χ) = W
1

n+1(n)⊗Vχ, and as before, let W 1
n+1(n, χ) be

the inverse image, in Vn+1(n, χ), of W
1

n+1(n, χ), under the natural quotient
mapping. If n ∈ N[n] (as in (3) above), it then follows that

W
1

n+1(n, χ) = ⊕H∈C,n(H)>0 ⊕σ,π,jrange CH,σ(Lπ,j) ;

since W
1

n+1(n, χ) = {0} if n /∈ N[n], we find thus, in any case, that
W 1

n+1(n, χ) is an AG
n (d)-submodule of Vn+1(n, χ).

Lemma 31 Fix n ∈ N[n], H0 ∈ C, 1 ≤ s0 ≤ n(H0) + 1, f ∈ H0\N(H0) and
σ ∈ {σH0

κ : 1 ≤ κ ≤ [G : N(H0)]}.

(1) If Q ∈ Sn(n + 1H0), define δH0,(σ,s0,f)(Q) = S, thus:
(a) (i) RS is defined exactly as in Proposition 29(1)(a)(i);

(ii) HS
C = HQ

C∩[n];

(iii) φS(i) =

{
φQ(i) if i ≤ n
fσ if i = n + 1

;

(b) Define

CH,s(S) =

{
CH,s(Q) if H 6= H0 or H = H0, 1 ≤ s < s0

CH0,s+1(Q) if H = H0 and s0 ≤ s ≤ n(H0) .

Then δH0,(σ,s0,f) defines a 1-1 map of Sn(n + 1H0) into Sn+1(n).

(2) Conversely, if S ∈ Sn+1(n), and if [n + 1]RS is not a singleton set, and
if this RS-equivalence class is not a ‘distinguished class’ - then there exists
a unique H0 ∈ C, a unique 1 ≤ s0 ≤ n(H0) + 1, a unique f ∈ H0\N(H0), a
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unique σ ∈ {σH0
κ : 1 ≤ κ ≤ [G : N(H0)]} and a unique Q ∈ Sn(n + 1H0) such

that δH0,(σ,s0,f)(Q) = S.

(3) Suppose π ∈ ̂G(n + 1H0), χ ∈ Ĝ(n), and suppose L : Vπ → Vχ is a
non-zero G(n)-linear map. Then the equation

(DH0,σ(L))(T ⊗ ξ) =
∑

(s,f)

(
δH0,(σ,s,f)(T) ⊗ Lπ(σ(s, f)−1)ξ

)
+ W 1

n+1(n, χ)

(4.30)
where the sum ranges over all choices 1 ≤ s ≤ n(H0), f ∈ H0\N(H0),
(with σ(s, f) as in Lemma 28 applied with m = n + 1H0), defines a non-zero

AG
n (d)-linear map DH0,σ(L) : Vn(n + 1H0 , π) →

(
Vn+1(n, χ)/W 1

n+1(n, χ)
)
.

Proof: The statements (1) and (2) are established exactly like their
counterparts in Lemma 25. For (3), exactly as in Lemma 25, it will suffice
to verify that DH0,σ(L) is Jn(n + 1H0)-linear. Thus we need to verify that

(DH0,σ(L))(P · (T⊗ ξ)) = P̃ · (DH0,σ(L))(T⊗ ξ)) ∀T ∈ Sn(n+1H0), ξ ∈ Vπ,

whenever either (i) P ∈ In(m), where m ∈ N[n], t(m) < t(n + 1H0), or (ii)
P = (Q, ρ,R) ∈ In(n + 1H0).

We first show that in case (i), both sides of the desired equation reduce to
zero. Since t(P · (T, 1,S0)) ≤ t(P ) < t(n + 1H0), it is seen that the left side
of the above equation is, indeed, zero. To evaluate the right side, we have to
examine such products as P̃ · (δH0,(σ,s,f)(T), 1,S0), and it will suffice to show,
therefore, that in this case, either such a product has less than t(n) through
classes, or such a product has exactly t(n) through classes, in which case its
‘top’ belongs to W 1

n+1(n). In any case, since the second term of the product
has exactly t(n) through classes, the product can have at most t(n) through
classes. So, we may assume without loss of generality that the product has
exactly t(n) through classes. By the last line of Remark 30(1), it suffices
therefore to show that if the ‘top’ of our product is S, and if [n + 1]RS is
neither a singleton nor a distinguished RS-class, then the product cannot
have t(n) through classes; but this is an easy consequence of the assumption
that t(P ) < t(n + 1H0).

To discuss the second (and less trivial) case, we will again find it con-
venient to introduce an auxiliary element δ̃H0,(σ,s,f) which enables us to re-
gard the mapping δH0,(σ,s,f) as a sort of right-multiplication. Thus, define
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δ̃H0,(σ,s,f) ∈ In+1(n) by

δ̃H0,(σ,s,f) = (δH0,(σ,s,f)(S0(n, n + 1H0)), 1,S0(n + 1, n)) .

We come now to the desired analogue of equation 4.26, namely:

(S, g,S0)˜· δ̃H0,(σ,s,f) = (δH0,(σ,g·(s,f))(S), g̃,S0) (4.31)

for all S ∈ Sn(n + 1H0), g ∈ G(n + 1H0), where g̃ = σ(g · (s, f))−1gσ(s, f),
which is an element of G(n). As in the case of equation 4.26, this equation
is also verified by looking at the picture represented by the product on the
left side, noting that it does belong to In+1(n), and checking that its three
ingredients are indeed as given by the right side of 4.31.

Suppose now that P = (Q, ρ,R) ∈ In(n + 1H0). If we let g = ρβR
T , we

find that (Q, ρ,R) · (T, 1,S0) = D(R,T) (Q, g,S0), and hence

(DH0,σ(L))(P · (T ⊗ ξ))

= (DH0,σ(L))(D(R,T)(Q ⊗ π(g)ξ))

= D(R,T)
∑

(s1,f1)

(
δH0,(σ,s1,f1)(Q) ⊗ Lπ(σ(s1, f1)

−1)π(g)ξ
)

+ W 1
n+1(n, χ) ;

(4.32)

writing (s1, f1) = g · (s, f), and noting that

Lπ(σ(s1, f1)
−1)π(g) = Lπ(σ(s1, f1)

−1g)

= Lπ(σ(s1, f1)
−1gσ(s, f))π(σ(s, f)−1)

= χ(σ(s1, f1)
−1gσ(s, f))Lπ(σ(s, f)−1) ,

(where we have used the fact that σ(s1, f1)
−1gσ(s, f)) ∈ G(n)) we see thus

that the right side of equation 4.32 may be rewritten (after a change of
variable) as

D(R,T)
∑

(s,f)

(δH0,(σ,g·(s,f))(Q) ⊗ χ(g̃)Lπ(σ(s, f)−1)ξ ) + W 1
n+1(n, χ) ,

where g̃ = σ(g · (s, f))−1gσ(s, f), as before.
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On the other hand, notice (by two applications of equation 4.31) that

(Q, ρ,R)˜· (δH0,(σ,s,f)(T), 1,S0) = (Q, ρ,R)˜· (T, 1,S0)˜· δ̃H0,(σ,s,f)

= ((Q, ρ,R) · (T, 1,S0)) ˜· δ̃H0,(σ,s,f)

= D(R,T)(Q, g, S0)˜· δ̃H0,(σ,s,f)

= D(R,T)(δH0,(σ,g·(s,f))(Q), g̃,S0) .

Hence, we see that

P̃ · (DH0,σ(L))(T ⊗ ξ))

= (Q, ρ,R)˜·
∑

(s,f)

(
δH0,(σ,s,f)(T) ⊗ Lπ(σ(s, f)−1)ξ

)
+ W 1

n+1(n, χ)

= D(R,T)
∑

(s,f)

(
δH0,(σ,g·(s,f))(Q) ⊗ χ(g̃)Lπ(σ(s, f)−1)ξ

)
+ W 1

n+1(n, χ) ,

and the lemma is proved. 2

Remark 32 (1) Fix n, n ∈ N[n+1] and H ∈ C. Consider two cases now:

Case 1: n + 1H ∈ N[n].

Define W
2
n+1(n; H) to be the subspace of CSn+1(n)/W 1

n+1(n) spanned by
{δH,(σ,s,f)(T) + W 1

n+1(n) : T ∈ Sn(n + 1H), 1 ≤ s ≤ n(H) + 1, f ∈ H\N(H),
σ ∈ {σH

κ : 1 ≤ κ ≤ [G : N(H)]}}. By Lemma 31(2), this spanning set is a
basis which can also be characterized as {S + W 1

n+1(n) : S ∈ Sn+1(n), [n +
1]RS

is not distinguished and not a singleton, and HS
[n+1] = H}.

Case 2: n + 1H /∈ N[n].

In this case, define W
2
n+1(n; H) = {0} ⊆ CSn+1(n)/W 1

n+1(n).

Observe that Lemma 31(2) also implies that

CSn+1(n)/W 1
n+1(n) = ⊕H∈C,n+1H∈N[n]

W
2

n+1(n; H).

(2) We will need the following slightly stronger version of Remark 30 (2):
Let G0 be a subgroup of a finite group G and G =

∐n
k=1 gkG0 with g1 = 1. For

χ ∈ Ĝ0 and χ̃ = IndG0↑G(χ), we may regard Vχ̃ as the space Vχ⊗C(G/G0) with
G-action defined by g(v⊗giG0) = χ(h(g, i))(v)⊗gg(i)G0 where ggi = gg(i)h(g, i)

with gg(i) ∈ {g1, · · · , gk} and h(g, i) ∈ G0. Furthermore, for π ∈ Ĝ, there is
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a natural bijection between G0-linear maps L : Vπ → Vχ and G-linear maps
L̃ : Vπ → Vχ̃ given by L̃(ξ) =

∑n
k=1 Lπ(g−1

k )(ξ) ⊗ gkG0.

(3) Fix H ∈ C such that n + 1H ∈ N[n]; also fix χ ∈ Ĝ(n), and let ˜chi be

the result of inducing χ up to G(n + 1H). For appropriate π ∈ ̂G(n + 1H),
pick non-zero G(n + 1H)-linear maps L̃π,j : Vπ → Vχ̃ such that their ranges
afford a direct sum decomposition of Vχ̃. Let Lπ,j be related to L̃π,j as in
(2) above. Then, by an argument exactly analogous to the corresponding one
used in Remark 30(3), it may be verified that:

⊕σ,π,j range DH,σ(Lπ,j) = W
2

n+1(n; H) ⊗ Vχ. (4.33)

(4) We conclude from (1) and (3) that

Vn+1(n, χ)/W 1
n+1(n, χ) = ⊕H∈C,n+1H∈N[n]

⊕σ,π,j range DH,σ(Lπ,j)

which is a decomposition of the left hand side as a direct sum of irreducible
AG

n (d)-modules.

All the pieces are now in place for the required description of the Bratteli
diagram for the inclusion AG

n (d) ⊂ AG
n+1(d).

Theorem 33 Fix n ∈ IN and let d be any positive number satisfying the
hypothesis of Theorem 21. Then,

(a) The set ̂AG
n (d) of irreducible representations of AG

n (d) can be parametrised

by the set {(n, n, π) : n ∈ N[n], π ∈ Ĝ(n)}, in such a way that the associated
module Vn(n, π) has dimension equal to |Sn(n)| dπ.

(b) When viewed as an AG
n (d)-module, the multiplicity with which the

module Vn+1(n, χ) contains Vn(m,π) is given by:

(i) 〈χ|G(m), π〉 [G : N(H)], if n = m + 1H for some H ∈ C;

(ii) δπ,χ

∑
H∈C[G : N(H)] +

∑
H∈C,n(H)>0[G : N(H)] 〈χ̃, π〉, if n = m, where

χ̃ = IndG(n−1H)↑G(n)ResG(n)↓G(n−1H)χ;

(iii) 〈π|G(n), χ〉 [G : N(H)], if n = m − 1H , for some H ∈ C; and

(iv) 0, otherwise.

Proof: (a) is an immediate consequence of Theorem 21, while (b) follows
from Remark 27(4), Remark 30(4), Remark 32(4), and the simple fact that
if W is a sub-module of a semi-simple module V , then V ∼= W ⊕ (V/W ). 2
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5 Concluding Remarks

We wish to make a few remarks in two directions: first, we wish to discuss the
special case of the algebra AG

1 (d) and the question of whether, as a filtered
algebra (with filtering given by the number of through classes), this deter-
mines the group G; and second, we wish to discuss the trivial specialisation
|G| = 1, which has already appeared in the literature.

The filtered algebra AG
1 (d):

The algebra AG
1 (d) admits the filtration given by the ideals IG

k , 0 ≤ k ≤
|G|. Further, it should be clear from the definitions that if k 6= 0, then
N1;k 6= ∅ only when k|n, in which case, n ∈ N1;k if and only if there exists
H0 ∈ C such that [G : H0] = k and n(H) = δH,H0 . In particular, if we
assume, further, that G is abelian, then, for any fixed divisor k of |G|, we see
from Theorem 21 that

IG
k /IG

k−1
∼= ⊕H (Ck ⊗ Mk(C)) ,

where the direct sum is over all subgroups H of G of index k. In particular,
the knowledge of the filtered algebra AG

1 (d) amounts, in case G is abelian,
to the knowledge of the number sG(l) of subgroups of G of any given order
l. It is a curious fact that this knowledge of an abelian group G - i.e., of the
function sG : IN → IN ∪ {0} defined by the previous sentence - completely
determines the abelian group G (up to isomorphism).

It is natural to ask whether the filtered algebra AG
1 (d) determines the

isomorphism class of the (general, possibly non-abelian) group G. What we
can see is that the filtered algebra AG

1 (d) determines whether or not G is
simple, and more generally, it can detect the set of all possible orders of
quotients of G.

The case |G| = 1:

When G = {1} is the trivial group, then what we have called AG
n (d)

is exactly the same as what we called An(d); this algebra was originally
discussed in [J], where it was shown that at least when d = k, the algebra
An(d) can be identified with the commutant of the natural representation
(given by the diagonal action) of Σk on ⊗nV , where V is a k-dimensional
vector space, provided that k ≥ 2n.
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Algebras related to certain subalgebras of the general An(d) have occurred
in numerous contexts - for instance, see [B], [J], [W]; (see also Remark 2).

Recall that the Temperley-Lieb algebra is the subalgebra of An(d) gener-
ated by those equivalence relations which have the property that all equiva-
lence classes are two-element sets, and whose diagrams are planar. Another
subalgebra, call it Bn(d), is obtained by dropping this planarity requirement.
The structure of the inclusion Bn ⊂ An may be analysed using techniques
similar to the ones discussed here, and involve the representation theory of
the various symmetric groups and the ‘induction-restriction’ relations be-
tween several naturally arising subgroups thereof.
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