Fuglede's theorem

V.S. Sunder
The Institute of Mathematical Sciences,
Taramani, Chennai 600113, India
e-mail: sunder@imsc.res.in

October 26, 2014

Abstract

In this short note, we give an elementary (set-theoretic) proof of Fuglede's theorem that the com mutant of a normal operator is *-closed.

Throughout this note, 'operator' will mean a bounded linear operator (denoted by symbols like A, N, P, T) on a separable Hilbert space \mathcal{H}.

Theorem 0.1. (Fuglede) If an operator T commutes with a normal operator N, then it necessarily commutes with N^{*}.

This short note provides a proof of this fact which is 'natural' in the sense that it exactly imitated the most natural proof in case \mathcal{H} is finite dimensional: in this case, the spectral theorem guarantees that N has an expression of the form $N=\sum_{i=1}^{k} \lambda_{i} P_{i}$ where P_{i} is the projection onto $\operatorname{ker}\left(N-\lambda_{i}\right)$; since P_{i} is a polynomial in N, it follows that T commutes with each P_{i} and hence with $N^{*}=\sum_{i} \bar{\lambda}_{i} P_{i}$.

We shall use the notation of the functional calculus $f \mapsto f(N)$ for bounded measurable functions defined on \mathbb{C}; thus $1_{E}(N)$ will denote the spectral subspace of N corresponding to any E in $\mathcal{B}_{\mathbb{C}}$:= the σ algebra of Borel sets in \mathbb{C}. We shall prove that T commutes with every $1_{E}(N)$, to conclude that T should commute with $f(N)$ for any bounded measurable function f on \mathbb{C}. For $f(z)=1_{s p(N)}(z) \bar{z}$, this yields the desired result.

Write $\mathcal{M}(E)=\operatorname{ran}\left(1_{E}(N)\right.$ for the spectral subspace corresponding to an $E \in \mathcal{B}_{\mathbb{C}}$. As $\mathcal{M}(E)^{\perp}=\mathcal{M}\left(E^{\prime}\right)$ (with the 'prime' denoting complement), it will suffice for us to show that T leaves each $\mathcal{M}(E)$ invariant. To this end, let us write

$$
\begin{equation*}
\mathcal{F}=\left\{E \in \mathcal{B}_{\mathbb{C}}: T(\mathcal{M}(E)) \subset \mathcal{M}(E)\right\} . \tag{0.1}
\end{equation*}
$$

We proceed through a sequence of simple steps to the desired conclusion. We start with the key observation which is stated and proved for self-adjoint N in [Hal].

First some notation: write $D\left(z_{0}, r\right)=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<r\right\}$, simply $\mathbb{D}=D(0,1)$ and $\overline{\mathbb{D}}$ for the closed ball $\{z:|z| \leq 1\}$.

Lemma 0.2 . The following conditions on a vector $x \in \mathcal{H}$ are equivalent:

1. $x \in \mathcal{M}(\overline{\mathbb{D}})$
2. $\left\|N^{n} x\right\| \leq\|x\| \forall n \in \mathbb{N}$
3. $\sup \left\{\left\|N^{n} x\right\|: n \in \mathbb{N}\right\}<\infty$

In particular, $\overline{\mathbb{D}} \in \mathcal{F}$.
Proof. The implications (1) $\Rightarrow(2) \Rightarrow(3)$ are obvious. As for $(3) \Rightarrow$ (1), it is enough to see that $x_{m}:=1_{\left\{z:|z| \geq 1+\frac{1}{m}\right\}}(N) x=0 \forall m \in \mathbb{N}$ since $x-\lim _{m} x_{m} \in \mathcal{M}(\mathbb{D})$; but this follows from
$\left\|N^{n} x\right\| \geq\left\|1_{\left\{z:|z| \geq 1+\frac{1}{m}\right\}}(N) N^{n} x\right\|=\left\|N^{n} x_{m}\right\| \geq\left(1+\frac{1}{m}\right)^{n}\left\|x_{m}\right\| \forall n \in \mathbb{N}$.
In particular, if $x \in \mathcal{M}(\overline{\mathbb{D}})$ it follows from

$$
\left\|N^{n} T x\right\|=\left\|T N^{n} x\right\| \leq\|T\|\left\|N^{n} x\right\|
$$

and (3) above that also $T x \in \mathcal{M}(\overline{\mathbb{D}})$ so that indeed $\overline{\mathbb{D}} \in \mathcal{F}$.
Corollary 0.3. $D(z, r) \in \mathcal{F} \forall z \in \mathbb{C}, r>0$.
Proof. This follows on applying Lemma 0.2 to $\left(\frac{N-z}{r}\right)$.
Theorem 0.4. With the foregoing notation, we have:

1. \mathcal{F} is closed under countable monotone limits, and is thus a 'monotone class'.
2. \mathcal{F} contains all (open or closed) discs.
3. \mathcal{F} contains all (open or closed) half-planes.
4. \mathcal{F} is closed under countable intersections and countable disjoint unions.
5. $\mathcal{F}=\mathcal{B}_{\mathbb{C}}$.

Proof. 1. If $E_{n} \in \mathcal{F} \forall n$ and if either $E_{n} \uparrow E$ or $E_{n} \downarrow E$, then $1_{E_{n}}(N) \xrightarrow{S O T} 1_{E}(N)$ so that either $\mathcal{M}(E)=\overline{\left(\cup \mathcal{M}\left(E_{n}\right)\right)}$ or $\mathcal{M}(E)=\cap \mathcal{M}\left(E_{n}\right)$ whence also $E \in \mathcal{F}$.
2. The assertion regarding closed discs is Corollary 0.3, and the assertion regarding open discs now follows from (1) above.
3. For example, if $a, b \in \mathbb{R}$, then $R_{a}=\{z \in \mathbb{C}: \Re z>a\}=$ $\cup_{n=1}^{\infty}\{z \in \mathbb{C}|z-(a+n)|<n\} \in \mathcal{F}$ and hence, by (1) above, also $L_{b}=\{z \in \mathbb{C}: \Re z \leq b\}=-\cap_{n=1}^{\infty} R_{-b-\frac{1}{n}} \in \mathcal{F}$. Similarly, if $c, d \in \mathbb{R}$, we also have $U_{c}=\{z \in \mathbb{C}: \Im z>c\}, D_{d}=\{z \in \mathbb{C}$: $\Im z \leq d\}$.
4. This is an immediate consequence of the definitions.
5. It follows from (3) and (4) above that \mathcal{F} contains $(a, b] \times(c, d]=$ $R_{a} \cap L_{b} \cap U_{c} \cap D_{d}$ and the collection \mathcal{A} of all finite disjoint unions of such rectangles. Since \mathcal{A} is an algebra of sets which generates $\mathcal{B}_{\mathbb{C}}$ as a σ-algebra, and since \mathcal{F} is a monotone class containing \mathcal{A}, the desired conclusion is a consequence of the monotone class theorem.

We conclude with the cute observation - see [Hal] - that by applying Fuglede's theorem to the block operator-matrices $\left[\begin{array}{cc}0 & 0 \\ T & 0\end{array}\right]$ and $\left(\begin{array}{cc}N_{1} & 0 \\ 0 & N_{2}\end{array}\right)$ we obtain Putnam's generalisation: if N_{i} is a normal operator on $\mathcal{H}_{i}, i=1,2$, and if $T \in B\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$ satisfies $T N_{1}=N_{2} T$, then necessarily $T N_{1}^{*}=N_{2}^{*} T$.

References

[Put] Putnam C R, On normal operators in Hilbert space, Am. J. Math. 73 (1951) 35-36.
[Fug] Bent Fuglede, A commutativity theorem for normal operators, Proc. of Nat. Acad. Sci., 36, 1950, 36-40.
[Hal] P.R. Halmos, A Hilbert Space Problem Book, SpringerVerlag, New York, 1974.

