Fuglede's theorem

V.S. Sunder The Institute of Mathematical Sciences, Taramani, Chennai 600113, India e-mail: sunder@imsc.res.in

October 26, 2014

Abstract

In this short note, we give an elementary (set-theoretic) proof of Fuglede's theorem that the commutant of a normal operator is *-closed.

Throughout this note, 'operator' will mean a bounded linear operator (denoted by symbols like A, N, P, T) on a separable Hilbert space \mathcal{H} .

THEOREM 0.1. (Fuglede) If an operator T commutes with a normal operator N, then it necessarily commutes with N^* .

This short note provides a proof of this fact which is 'natural' in the sense that it exactly imitated the most natural proof in case \mathcal{H} is finite dimensional: in this case, the spectral theorem guarantees that N has an expression of the form $N = \sum_{i=1}^{k} \lambda_i P_i$ where P_i is the projection onto $ker(N - \lambda_i)$; since P_i is a polynomial in N, it follows that T commutes with each P_i and hence with $N^* = \sum_i \overline{\lambda_i} P_i$.

We shall use the notation of the functional calculus $f \mapsto f(N)$ for bounded measurable functions defined on \mathbb{C} ; thus $1_E(N)$ will denote the spectral subspace of N corresponding to any E in $\mathcal{B}_{\mathbb{C}}$:= the σ algebra of Borel sets in \mathbb{C} . We shall prove that T commutes with every $1_E(N)$, to conclude that T should commute with f(N) for any bounded measurable function f on \mathbb{C} . For $f(z) = 1_{sp(N)}(z)\bar{z}$, this yields the desired result.

Write $\mathcal{M}(E) = ran(1_E(N))$ for the spectral subspace corresponding to an $E \in \mathcal{B}_{\mathbb{C}}$. As $\mathcal{M}(E)^{\perp} = \mathcal{M}(E')$ (with the 'prime' denoting complement), it will suffice for us to show that T leaves each $\mathcal{M}(E)$ invariant. To this end, let us write

$$\mathcal{F} = \{ E \in \mathcal{B}_{\mathbb{C}} : T(\mathcal{M}(E)) \subset \mathcal{M}(E) \}.$$
(0.1)

We proceed through a sequence of simple steps to the desired conclusion. We start with the key observation which is stated and proved for self-adjoint N in [Hal].

First some notation: write $D(z_0, r) = \{z \in \mathbb{C} : |z - z_0| < r\}$, simply $\mathbb{D} = D(0, 1)$ and $\overline{\mathbb{D}}$ for the closed ball $\{z : |z| \le 1\}$.

LEMMA 0.2. The following conditions on a vector $x \in \mathcal{H}$ are equivalent:

- 1. $x \in \mathcal{M}(\bar{\mathbb{D}})$
- 2. $||N^n x|| \le ||x|| \quad \forall n \in \mathbb{N}$
- 3. $\sup\{\|N^n x\| : n \in \mathbb{N}\} < \infty$

In particular,
$$\mathbb{D} \in \mathcal{F}$$
.

Proof. The implications $(1) \Rightarrow (2) \Rightarrow (3)$ are obvious. As for $(3) \Rightarrow (1)$, it is enough to see that $x_m := 1_{\{z:|z| \ge 1 + \frac{1}{m}\}}(N)x = 0 \ \forall m \in \mathbb{N}$ since $x - \lim_m x_m \in \mathcal{M}(\mathbb{D})$; but this follows from

$$\|N^n x\| \ge \|\mathbf{1}_{\{z:|z|\ge 1+\frac{1}{m}\}}(N)N^n x\| = \|N^n x_m\| \ge (1+\frac{1}{m})^n \|x_m\| \,\forall n \in \mathbb{N} \,.$$

In particular, if $x \in \mathcal{M}(\overline{\mathbb{D}})$ it follows from

$$||N^{n}Tx|| = ||TN^{n}x|| \le ||T|| ||N^{n}x|$$

and (3) above that also $Tx \in \mathcal{M}(\overline{\mathbb{D}})$ so that indeed $\overline{\mathbb{D}} \in \mathcal{F}$. \Box

COROLLARY 0.3. $D(z,r) \in \mathcal{F} \ \forall z \in \mathbb{C}, r > 0.$

Proof. This follows on applying Lemma 0.2 to $\left(\frac{N-z}{r}\right)$.

THEOREM 0.4. With the foregoing notation, we have:

- 1. \mathcal{F} is closed under countable monotone limits, and is thus a 'monotone class'.
- 2. F contains all (open or closed) discs.
- 3. F contains all (open or closed) half-planes.
- 4. *F* is closed under countable intersections and countable disjoint unions.
- 5. $\mathcal{F} = \mathcal{B}_{\mathbb{C}}$.

- Proof. 1. If $E_n \in \mathcal{F} \forall n$ and if either $E_n \uparrow E$ or $E_n \downarrow E$, then $1_{E_n}(N) \xrightarrow{SOT} 1_E(N)$ so that either $\mathcal{M}(E) = \overline{(\cup \mathcal{M}(E_n))}$ or $\mathcal{M}(E) = \cap \mathcal{M}(E_n)$ whence also $E \in \mathcal{F}$.
 - 2. The assertion regarding closed discs is Corollary 0.3, and the assertion regarding open discs now follows from (1) above.
 - 3. For example, if $a, b \in \mathbb{R}$, then $R_a = \{z \in \mathbb{C} : \Re z > a\} = \bigcup_{n=1}^{\infty} \{z \in \mathbb{C} | z (a+n)| < n\} \in \mathcal{F}$ and hence, by (1) above, also $L_b = \{z \in \mathbb{C} : \Re z \le b\} = -\bigcap_{n=1}^{\infty} R_{-b-\frac{1}{n}} \in \mathcal{F}$. Similarly, if $c, d \in \mathbb{R}$, we also have $U_c = \{z \in \mathbb{C} : \Im z > c\}, D_d = \{z \in \mathbb{C} : \Im z \le d\}.$
 - 4. This is an immediate consequence of the definitions.
 - 5. It follows from (3) and (4) above that \mathcal{F} contains $(a, b] \times (c, d] = R_a \cap L_b \cap U_c \cap D_d$ and the collection \mathcal{A} of all finite disjoint unions of such rectangles. Since \mathcal{A} is an algebra of sets which generates $\mathcal{B}_{\mathbb{C}}$ as a σ -algebra, and since \mathcal{F} is a monotone class containing \mathcal{A} , the desired conclusion is a consequence of the monotone class theorem.

We conclude with the cute observation - see [Hal] - that by applying Fuglede's theorem to the block operator-matrices $\begin{bmatrix} 0 & 0 \\ T & 0 \end{bmatrix}$ and $\begin{pmatrix} N_1 & 0 \\ 0 & N_2 \end{pmatrix}$ we obtain Putnam's generalisation: if N_i is a normal operator on $\mathcal{H}_i, i = 1, 2$, and if $T \in B(\mathcal{H}_1, \mathcal{H}_2)$ satisfies $TN_1 = N_2T$, then necessarily $TN_1^* = N_2^*T$.

References

[Put] Putnam C R, On normal operators in Hilbert space, Am. J. Math. 73 (1951) 35-36.

[Fug] Bent Fuglede, A commutativity theorem for normal operators, *Proc. of Nat. Acad. Sci.*, 36, 1950, 36-40.

[Hal] P.R. Halmos, A Hilbert Space Problem Book, Springer-Verlag, New York, 1974.