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Preface

This book grew out of a course of lectures on functional anal-
ysis that the author gave during the winter semester of 1996 at
the Institute of Mathematical Sciences, Madras. The one dif-
ference between the course of lectures and these notes stems
from the fact that while the audience of the course consisted of
somewhat mature students in the Ph.D. programme, this book
is intended for Master’s level students in India; in particular, an
attempt has been made to fill in some more details, as well as to
include a somewhat voluminous Appendix, whose purpose is to
(at least temporarily) fill in the possible gaps in the background
of the prospective Master’s level reader.

The goal of this book is to begin with the basics of normed
linear spaces, quickly specialise to Hilbert spaces and to get to
the spectral theorem for (bounded as well as unbounded) oper-
ators on separable Hilbert space.

The first couple of chapters are devoted to basic proposi-
tions concerning normed vector spaces (including the usual Ba-
nach space results - such as the Hahn-Banach theorems, the
Open Mapping theorem, Uniform boundedness principle, etc.)
and Hilbert spaces (orthonormal bases, orthogonal complements,
projections, etc.).

The third chapter is probably what may not usually be seen
in a first course on functional analysis; this is no doubt influenced
by the author’s conviction that the only real way to understand
the spectral theorem is as a statement concerning representations
of commutative C∗-algebras. Thus, this chapter begins with
the standard Gelfand theory of commutative Banach algebras,
and proceeds to the Gelfand-Naimark theorem on commutative
C∗-algebras; this is then followed by a discussion of represen-
tations of (not necessarily commutative) C∗-algebras (including
the GNS construction which establishes the correspondence be-
tween cyclic representations and states on the C∗-algebra, as well
as the so-called ‘non-commutative Gelfand Naimark theorem’
which asserts that C∗-algebras admit faithful representations on
Hilbert space); the final section of this chapter is devoted to
the Hahn-Hellinger classification of separable representations of
a commutative C∗-algebra (or equivalently, the classification of
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separable spectral measures on the Borel σ-algebra of a compact
Hausdorff space).

The fourth chapter is devoted to more standard ‘operator the-
ory’ in Hilbert space. To start with, the traditonal form of the
spectral theorem for a normal operator on a separable Hilbert
space is obtained as a special case of the theory discussed in
Chapter 3; this is followed by a discussion of the polar decompo-
sition of operators; we then discuss compact operators and the
spectral decomposition of normal compact operators, as well as
the singular value decomposition of general compact operators.
The final section of this chapter is devoted to the classical facts
concerning Fredholm operators and their ‘index theory’.

The fifth and final chapter is a brief introduction to the the-
ory of unbounded operators on Hilbert space; in particular, we
establish the spectral and polar decomposition theorems.

A fairly serious attempt has been made at making the treat-
ment almost self-contained. There are seven sections in the Ap-
pendix which are devoted to: (a) discussing and establishing
some basic results in each of the following areas: linear algebra,
transfinite considerations (including Zorn’s lemma and a ‘naive’
treatment of infinite cardinals), general topology, compact and
locally compact Hausdorff spaces, and measure theory; and (b) a
proof of the Stone-Weierstrass theorem, and finally, a statement
of the Riesz Representation theorem (on measures and continu-
ous functions). Most statements in the appendix are furnished
with proofs, the exceptions to this being the sections on measure
theory and the Riesz representation theorem.

The intended objective of the numerous sections in the Ap-
pendix is this: if a reader finds that (s)he does not know some
‘elementary’ fact from, say linear algebra, which seems to be
used in the main body of the book, (s)he can go to the perti-
nent section in the Appendix, to attempt a temporary stop-gap
filler. The reader who finds the need to pick up a lot of ‘back-
ground material’ from some section of the Appendix, should, at
the earliest opportunity, try to fill in the area in which a lacuna
in one’s training has been indicated. In particular, it should be
mentioned that the treatment in Chapter 3 relies heavily on var-
ious notions from measure theory, and the reader should master
these prerequisites before hoping to master the material in this
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chapter. A few ’standard’ references have been listed in the brief
bibliography; these should enable the reader to fill in the gaps
in the appendix.

Since the only way to learn mathematics is to do it, the book
is punctuated with a lot of exercises; often, the proofs of some
propositions in the text are relegated to the exercises; further,
the results stated in the exercises are considered to be on the
same footing as ‘properly proved’ propositions, in the sense that
we have freely used the statements of exercises in the subsequent
treatment in the text. Most exercises, whose solutions are not
immediate, are furnished with fairly elaborate hints; thus, a stu-
dent who is willing to sit down with pen and paper and ‘get
her hands dirty’ should be able to go through the entire book
without too much difficulty.

Finally, all the material in this book is very ‘standard’ and
no claims for originality are made; on the contrary, we have
been heavily influenced by the treatment of [Sim] and [Yos] in
various proofs; thus, for instance, the proofs given here for the
Open Mapping Theorem, Urysohn’s lemma and Alexander’s sub-
base theorem, are more or less the same as the ones found in
[Sim], while the proofs of the Weierstrass as well as the Stone-
Weierstrass theorems are almost identical to the ones in [Yos];
furthermore, the treatment in §A.2 has been influenced a little by
[Hal], but primarily, the proofs of this section on cardinal num-
bers are a specialisation of the proofs in [MvN] for corresponding
statements in a more general context.
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Chapter 1

Normed spaces

1.1 Vector spaces

We begin with the fundamental notion of a vector space.

Definition 1.1.1 A vector space is a (non-empty) set V that
comes equipped with the following structure:

(a) There exists a mapping V ×V → V , denoted (x, y) 7→ x+
y, referred to as vector addition, which satisfies the following
conditions, for arbitrary x, y, z ∈ V :

(i) (commutative law) x + y = y + x;
(ii) (associative law) (x + y) + z = x + (y + z);
(iii) (additive identity) there exists an element in V, always

denoted by 0 (or 0V , if it is important to draw attention to V ),
such that x + 0 = x;

(iv) (additive inverses) for each x in V, there exists an ele-
ment of V , denoted by −x, such that x + (−x) = 0.

(b) There exists a map C×V → V , denoted by (α, x) 7→ αx,
referred to as scalar multiplication, which satisfies the follow-
ing conditions, for arbitrary x, y ∈ V, α, β ∈ C :

(i) (associative law) α(βx) = (αβ)x;
(ii) (distributive law) α(x + y) = αx + αy, and (α +

β)x = αx + βx; and
(iii) (unital law) 1x = x.

1
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Remark 1.1.2 Strictly speaking, the preceding axioms define
what is usually called a ‘vector space over the field of complex
numbers’ (or simply, a complex vector space). The reader should
note that the definition makes perfect sense if every occurrence
of C is replaced by R; the resulting object would be a vector
space over the field of real numbers (or a ‘real vector space’).
More generally, we could replace C by an abstract field IK, and
the result would be a vector space over IK, and IK is called the
‘underlying field’ of the vector space. However, in these notes,
we shall always confine ourselves to complex vector spaces,
although we shall briefly discuss vector spaces over general fields
in §A.1.

Furthermore, the reader should verify various natural con-
sequences of the axioms, such as: (a) the 0 of a vector space
is unique; (b) additive inverses are unique - meaning that if
x, y ∈ V and if x + y = 0, then necessarily y = −x; more
generally, we have the cancellation law, meaning: if x, y, z ∈
V and if x + y = x + z, then y = z; (c) thanks to asso-
ciativity and commutativity of vector addition, the expression∑n

i=1 xi = x1 +x2 + · · ·+xn has an unambiguous (and natural)
meaning, whenever x1, · · · , xn ∈ V . In short, all the ‘normal’
rules of arithmetc hold in a general vector space. 2

Here are some standard (and important) examples of vector
spaces. The reader should have little or no difficulty in check-
ing that these are indeed examples of vector spaces (by verifying
that the operations of vector addition and scalar multiplication,
as defined below, do indeed satisfy the axioms listed in the defi-
nition of a vector space).

Example 1.1.3 (1) Cn is the (unitary space of all n− tuples of
complex numbers; its typical element has the form (ξ1, · · · , ξn),
where ξi ∈ C ∀ 1 ≤ i ≤ n. Addition and scalar multiplication
are defined co-ordinatewise: thus, if x = (ξi), y = (ηi), then
x + y = (ξi + ηi) and αx = (αξi).

(2) If X is any set, let CX denote the set of all complex-valued
functions on the set X, and define operations co-ordinatewise, as
before, thus: if f, g ∈ CX , then (f + g)(x) = f(x) + g(x) and
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(αf)(x) = αf(x). (The previous example may be regarded as
the special case of this example with X = {1, 2, · · · , n}.)

(3) We single out a special case of the previous example. Fix
positive integers m,n; recall that an m× n complex matrix is
a rectangular array of numbers of the form

A =




a1
1 a1

2 · · · a1
n

a2
1 a2

2 · · · a2
n

...
...

. . .
...

am
1 am

2 · · · am
n




.

The horizontal (resp., vertical) lines of the matrix are called
the rows (resp., columns) of the matrix; hence the matrix A
displayed above has m rows and n columns, and has entry ai

j in
the unique position shared by the i-th row and the j-th column
of the matrix.

We shall, in the sequel, simply write A = ((ai
j)) to indicate

that we have a matrix A which is related to ai
j as stated in the

last paragraph.
The collection of all m × n complex matrices will always be

denoted by Mm×n(C) - with the convention that we shall write
Mn(C) for Mn×n(C).

It should be clear that Mm×n(C) is in natural bijection with
CX , where X = {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

2

The following proposition yields one way of constructing lots
of new examples of vector spaces from old.

Proposition 1.1.4 The following conditions on a non-empty
subset W ⊂ V are equivalent:

(i) x, y ∈ W, α ∈ C ⇒ x + y, αx ∈ W ;
(ii) x, y ∈ W, α ∈ C ⇒ αx + y ∈ W ;
(iii) W is itself a vector space if vector addition and scalar

multiplication are restricted to vectors coming from W.

A non-empty subset W which satisfies the preceding equiva-
lent conditions is called a subspace of the vector space V .
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The (elementary) proof of the proposition is left as an exercise
to the reader. We list, below, some more examples of vector
spaces which arise as subspaces of the examples occurring in
Example 1.1.3.

Example 1.1.5 (1) {x = (ξ1, · · · , ξn) ∈ Cn :
∑n

i=1 ξn = 0} is
a subspace of Cn and is consequently a vector space in its own
right.

(2) The space C[0, 1] of continuous complex-valued functions
on the unit interval [0,1] is a subspace of C[0,1], while the set
Ck(0, 1) consisting of complex-valued functions on the open in-
terval (0,1) which have k continuous derivatives is a subspace
of C(0,1). Also, {f ∈ C[0, 1] :

∫ 1
0 f(x)dx = 0} is a subspace of

C[0, 1].

(3) The space `∞ = {(α1, α2, · · · , αn, · · ·) ∈ CIN : supn|αn| <
∞} (of bounded complex sequences), where IN denotes the set
of natural numbers. may be regarded as a subspace of CIN,
; similarly the space `1 = {(α1, α2, · · · , αn, · · ·) : αn ∈
C,

∑
n |αn| < ∞} (of absolutely summable complex sequences)

may be regarded as a subspace of `∞ (and consequently of CIN.)

(4) The examples in (3) above are the two extremes of a
continuum of spaces defined by `p = {(α1, α2, · · · , αn, · · ·) ∈
CIN :

∑
n |αn|p < ∞}, for 1 ≤ p < ∞. It is a (not totally trivial)

fact that each `p is a vector subspace of CIN.

(5) For p ∈ [1,∞], n ∈ IN, the set `p
n = {α ∈ `p : αk =

0 ∀ k > n} is a subspace of `p which is in natural bijection with
Cn. 2

1.2 Normed spaces

Recall that a set X is called a metric space if there exists
a function d : X × X → [0,∞) which satisfies the following
conditions, for all x, y, z ∈ X:

d(x, y) = 0 ⇔ x = y (1.2.1)

d(x, y) = d(y, x) (1.2.2)
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d(x, y) ≤ d(x, z) + d(z, y) . (1.2.3)

The function d is called a metric on X and the pair (X, d)
is what is, strictly speaking, called a metric space.

The quantity d(x, y) is to be thought of as the distance be-
tween the points x and y. Thus, the third condition on the metric
is the familiar triangle inequality.

The most familiar example, of course, is R3, with the metric
defined by

d((x1, x2, x3), (y1, y2, y3)) =

√√√√
3∑

i=1

(xi − yi)2.

As with vector spaces, any one metric space gives rise to many
metric spaces thus: if Y is a subset of X, then (Y, d|Y ×Y ) is also a
metric space, and is referred to as a (metric) subspace of X. Thus,
for instance, the unit sphere S2 = {x ∈ R3 : d(x, 0) = 1} is a
metric space; and there are clearly many more interesting metric
subspaces of R3. It is more customary to write ||x|| = d(x, 0),
refer to this quantity as the norm of x and to think of S2 as
the set of vectors in R3 of unit norm.

The set R3 is an example of a set which is simultaneously
a metric space as well as a vector space (over the field of real
numbers), where the metric arises from a norm. We will be
interested in more general such objects, which we now pause to
define.

Definition 1.2.1 A norm on a vector space V is a function
V 3 x 7→ ||x|| ∈ [0,∞) which satisfies the following conditions,
for all x, y ∈ V, α ∈ C:

||x|| = 0 ⇔ x = 0 (1.2.4)

||αx|| = |α| ||x|| (1.2.5)

||x + y|| ≤ ||x|| + ||y|| (1.2.6)

and a normed vector space is a pair (V, || · ||) consisting of a
vector space and a norm on it.
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Example 1.2.2 (1) It is a fact that `p (and hence `p
n, for any

n ∈ IN) is a normed vector space with respect to the norm defined
by

||α||p =

(∑

k

|αk|p
) 1

p

. (1.2.7)

This is easy to verify for the cases p = 1 and p = ∞; we
will prove in the sequel that || · ||2 is a norm; we will not need
this fact for other values of p and will hence not prove it. The
interested reader can find such a proof in [Sim] for instance; it
will, however, be quite instructive to try and prove it directly.
(The latter exercise/effort will be rewarded by a glimpse into
notions of duality between appropriate pairs of convex maps.)

(2) Given a non-empty set X, let B(X) denote the space of
bounded complex-valued functions on X. It is not hard to see
that B(X) becomes a normed vector space with respect to the
norm (denoted by || · ||∞) defined by

||f ||∞ = sup{|f(x)| : x ∈ X} . (1.2.8)

(The reader, who is unfamiliar with some of the notions dis-
cussed below, might care to refer to §A.4 and §A.6 in the Ap-
pendix, where (s)he will find definitions of compact and locally
compact spaces, respectively, and will also have the pleasure of
getting acquainted with ‘functions vanishing at infinity’.)

It should be noted that if X is a compact Hausdorff space,
then the set C(X) of continuous complex-valued functions on
X is a vector subspace of B(X) (since continuous functions on
X are necessarily bounded), and consequently a normed vector
space in its own right).

More generally, if X is a locally compact Hausdorff space, let
C0(X) denote the space of all complex-valued continuous func-
tions on X which ‘vanish at infinity’; thus f ∈ C0(X) precisely
when f : X → C is a continuous function such that for any
positive ε, it is possible to find a compact subset K ⊂ X such
that |f(x)| < ε whenever x /∈ K. The reader should verify that
C0(X) ⊂ B(X) and hence, that C0(X) is a normed vector space
with respect to || · ||∞.
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(3) Let Ck
b (0, 1) = {f ∈ Ck(0, 1) : ||f (j)||∞ < ∞ for all

0 ≤ j ≤ k} , where we write f (j) to denote the j-th derivative of
the function f - with the convention that f (0) = f . This becomes
a normed space if we define

||f || =
k∑

j=0

||f (j)||∞ . (1.2.9)

More generally, if Ω is an open set in Rn, let Ck
b (Ω) de-

note the space of complex-valued functions on Ω which admit
continuous partial derivatives of order at most k which are uni-
formly bounded functions. (This means that for any multi-index
α = (α1, α2, · · · , αn) where the αi are any non-negative inte-
gers satisfying |α| =

∑n
j=1 αj ≤ k, the partial derivative

∂αf = ∂|α|

∂
α1
x1

∂
α2
x2

···∂αn
xn

f exists, is continuous - with the conven-

tion that if αj = 0 ∀ j, then ∂αf = f - and is bounded.) Then,
the vector space Ck

b (Ω) is a normed space with respect to the
norm defined by

||f || =
∑

{α:0≤|α|≤k}
||∂αf ||∞ .

2

Note that - verify ! - a normed space is a vector space which
is a metric space, the metric being defined by

d(x, y) = ||x − y|| . (1.2.10)

It is natural to ask if the ‘two structures’- i.e., the vector (or
linear) and the metric (or topological) structures - are compati-
ble; this amounts to asking if the vector operations are continu-
ous.

Recall that a function f : X → Y between metric spaces is
said to be continuous at x0 ∈ X if, whenever {xn} is a sequence
in X which converges to x0 - i.e., if limn dX(xn, x0) = 0 - then also
the sequence {f(xn)} converges to f(x0); further, the function f
is said to be continuous if it is continuous at each point of X.

Exercise 1.2.3 (1) If X,Y are metric spaces, there are several
ways of making X × Y into a metric space; if dX , dY denote
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the metrics on X,Y respectively, verify that both the following
specifications define metrics on X × Y :

d1( (x1, y1), (x2, y2) ) = dX(x1, x2) + dY (y1, y2)

d∞( (x1, y1), (x2, y2) ) = max{dX(x1, x2), dY (y1, y2)} .

Also show that a sequence {(xn, yn)} in X×Y converges to a
point (x0, y0) with respect to either of the metrics di, i ∈ {1,∞}
if and only if we have ‘co-ordinate-wise convergence’ - i.e., if
and only if {xn} converges to x0 with respect to dX , and {yn}
converges to y0 with respect to dY .

(2) Suppose X is a normed space; show that each of the fol-
lowing maps is continuous (where we think of the product spaces
in (a) and (c) below as being metric spaces via equation 1.2.10
and Exercise (1) above):

(a) X × X 3 (x, y) 7→ (x + y) ∈ X;
(b) X 3 x 7→ − x ∈ X;
(c) C × X 3 (α, x) 7→ αx ∈ X.

(3) Show that a composite of continuous functions between
metric spaces - which makes sense in a consistent fashion only
if the domains and targets of the maps to be composed satisfy
natural inclusion relations - is continuous, as is the restriction
to a subspace of the domain of a continuous function.

1.3 Linear operators

The focus of interest in the study of normed spaces is on the
appropriate classes of mappings between them. In modern par-
lance, we need to identify the proper class of morphisms in the
category of normed spaces. (It is assumed that the reader is
familiar with the rudiments of linear algebra; the necessary ma-
terial is quickly discussed in the appendix - see §A.1 - for the
reader who does not have the required familiarity.)

If we are only interested in vector spaces, we would con-
cern ourselves with linear transformations between them -
i.e., if V,W are vector spaces, we would be interested in the
class L(V,W ) of mappings T : V → W which are linear in the
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sense that

T (αx + βy) = αTx + βTy , ∀ α, β ∈ C, x, y ∈ V (∗)

When V = W, we write L(V ) = L(V, V ).
We relegate some standard features (with the possible excep-

tion of (2) ) of such linear transformations in an exercise.

Exercise 1.3.1 (1) If T ∈ L(V,W ), show that T preserves
collinearity, in the sense that if x, y, z are three points (in V )
which lie on a straight line, then so are Tx, Ty, Tz (in W ).

(2) If V = R3 (or even Rn), and if T : V → V is a mapping
which (i) preserves collinearity (as in (1) above), and (ii) T maps
V onto W , then show that T must satisfy the algebraic condition
displayed in (*). (This may be thought of as a reason for calling
the above algebraic condition ‘linearity’.)

(3) Show that the following conditions on a linear transfor-
mation T ∈ L(V,W ) are equivalent:

(i) T is 1-1 ; i.e., x, y ∈ V, Tx = Ty ⇒ x = y;
(ii) ker T (= {x ∈ V : Tx = 0}) = {0};
(iii) T ‘preserves linear independence’, meaning that if X =

{xi : i ∈ I} ⊂ V is a linearly independent set, so is T (X) =
{Txi : i ∈ I} ⊂ W . (A set X as above is said to be linearly in-
dependent if, whenever x1, · · · , xn ∈ X, the only choice of scalars
α1, · · · , αn ∈ C for which the equation α1x1 + · · · + αnxn = 0
is satisfied is the trivial one: α1 = · · · = αn = 0. In particular,
any subset of a linearly independent set is also linearly indepen-
dent. A set which is not linearly independent is called ‘linearly
dependent’. It must be noted that {0} is a linearly dependent set,
and consequently, that any set containing 0 is necessarily linearly
dependent.)

(4) Show that the following conditions on a linear transfor-
mation T ∈ L(V,W ) are equivalent:

(i) T is invertible - i.e., there exists S ∈ L(W,V ) such that
ST = idV and TS = idW , where we write juxtaposition (ST )
for composition (S ◦ T );

(ii) T is 1-1 and onto;
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(iii) if X = {xi : i ∈ I} is a basis for V - equivalently, a
maximal linearly independent set in V , or equivalently, a linearly
independent spanning set for V - then T (X) is a basis for W .
(A linearly independent set is maximal if it is not a proper subset
of a larger linearly independent set.)

(5) When the equivalent conditions of (4) are satisfied, T is
called an isomorphism and the spaces V and W are said to be
isomorphic; if T is an isomorphism, the transformation S of
(i) above is unique, and is denoted by T−1.

(6) Show that GL(V ) = {T ∈ L(V ) : T is invertible} is a
group under multiplication.

(7) (i) If BV = {x1, x2, · · · , xn} is a basis for V , and
BW = {y1, y2, · · · , ym} is a basis for W , show that there is an
isomorphism between the spaces L(V,W ) and Mm×n(C) given
by L(V,W ) 3 T 7→ [T ]BW

BV
, where the matrix [T ]BW

BV
= ((tij))

is defined by

Txj =
m∑

i=1

tijyi . (1.3.11)

(ii) Show that [ST ]
BV3
BV1

= [S]
BV3
BV2

[T ]
BV2
BV1

where this makes

sense. (Recall that if A = ((ai
k)) is an m × n matrix, and if

B = ((bk
j )) is an n× p matrix, then the product AB is defined to

be the m × p matrix C = ((ci
j)) given by

ci
j =

n∑

k=1

ai
kb

k
j , ∀ 1 ≤ i ≤ m, 1 ≤ j ≤ p .)

(iii) If we put W = V, yi = xi, show that the isomor-
phism given by (i) above maps GL(V ) onto the group Gl(n, C)
of invertible n × n matrices.

(iv) The so-called standard basis Bn = {ei : 1 ≤ i ≤ n}
for V = Cn is defined by e1 = (1, 0, · · · , 0), · · · , en = (0, 0, · · · , 1);
show that this is indeed a basis for Cn.

(v) (In the following example, assume that we are working
over the real field R.) Compute the matrix [T ]B2

B2
of each of the

following (obviously) linear maps on R2:
(a) T is the rotation about the origin in the counter-clockwise

direction by an angle of π
4
;
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(b) T is the projection onto the x-axis along the y-axis;
(c) T is mirror-reflection in the line y = x.

When dealing with normed spaces - which are simultaneously
vector spaces and metric spaces - the natural class of mappings
to consider is the class of linear transformations which are con-
tinuous.

Proposition 1.3.2 Suppose V,W are normed vector spaces,
and suppose T ∈ L(V,W ); then the following conditions on T
are equivalent:

(i) T is continuous at 0 (= 0V );
(ii) T is continuous;
(iii) The quantity defined by

||T || = sup{||Tx|| : x ∈ V, ||x|| ≤ 1} (1.3.12)

is finite; in other words, T maps bounded sets of V into bounded
sets of W . (A subset B of a metric space X is said to be bounded
if there exist x0 ∈ X and R > 0 such that d(x, x0) ≤ R ∀ x ∈ B.)

Proof: Before proceeding to the proof, notice that

T ∈ L(V,W ) ⇒ T0V = 0W . (1.3.13)

In the sequel, we shall simply write 0 for the zero vector of any
vector space.

(i) ⇒ (ii) :

xn → x in V ⇒ (xn − x) → 0

⇒ T (xn − x) → T0 = 0

⇒ (Txn − Tx) → 0

⇒ Txn → Tx in W .

(ii) ⇒ (iii) : To say that ||T || = ∞ means that we can find
a sequence {xn} in X such that ||xn|| ≤ 1 and ||Txn|| ≥ n. It
follows from equation 1.3.13 that if xn are as above, then the se-
quence { 1

n
xn} would converge to 0 while the sequence {T ( 1

n
xn)}

would not converge to 0, contradicting the assumption (ii).
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(iii) ⇒ (i) : Notice to start with, that if ||T || < ∞, and if
0 6= x ∈ V, then

||Tx|| = ||x|| · ||T (
1

||x||x)|| ≤ ||x|| · ||T || ,

and hence

xn → 0 ⇒ ||xn|| → 0

⇒ ||Txn|| ≤ ||T || ||xn|| → 0

and the proposition is proved.
2

Remark 1.3.3 The collection of continuous linear transforma-
tions from a normed space V into a normed space W will always
be denoted, in these notes, by the symbol L(V,W ). As usual,
we shall use the abbreviation L(V ) for L(V, V ). In view of con-
dition (iii) of Proposition 1.3.2, an element of L(V,W ) is also
described by the adjective ‘bounded’. In the sequel, we shall
use the expression bounded operator to mean a continuous
(equivalently, bounded) linear transformation between normed
spaces. 2

We relegate some standard properties of the assignment T 7→
||T || to the exercises.

Exercise 1.3.4 Let V,W be non-zero normed vector spaces,
and let T ∈ L(V,W ).

(1) Show that

||T || = sup{||Tx|| : x ∈ V, ||x|| ≤ 1}
= sup{||Tx|| : x ∈ V, ||x|| = 1}

= sup{||Tx||
||x|| : x ∈ V, x 6= 0}

= inf{K > 0 : ||Tx|| ≤ K||x|| ∀ x ∈ V } ;

(2) L(V,W ) is a vector space, and the assignment T 7→ ||T ||
defines a norm on L(V,W );

(3) If S ∈ L(W,X), where X is another normed space, show
that ST (= S ◦ T ) ∈ L(V,X) and ||ST || ≤ ||S|| · ||T ||.
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(4) If V is a finite-dimensional normed space, show that
L(V,W ) = L(V,W ); what if it is only assumed that W (and not
necessarily V ) is finite-dimensional. (Hint : let V be the space
IP of all polynomials, viewed as a subspace of the normed space
C[0, 1] (equipped with the ‘sup’-norm as in Example 1.2.2 (2)),
and consider the mapping φ : IP → C defined by φ(f) = f ′(0).)

(5) Let λi ∈ C, 1 ≤ i ≤ n, 1 ≤ p ≤ ∞; consider the operator
T ∈ L(`p

n) defined by

T (x1, · · · , xn) = (λ1x1, · · · , λnxn) ,

and show that ||T || = max{|λi| : 1 ≤ i ≤ n}. (You may
assume that `p

n is a normed space.)
(6) Show that the equation U(T ) = T (1) defines a linear

isomorphism U : L(C, V ) → V which is isometric in the sense
that ||U(T )|| = ||T || for all T ∈ L(C, V ).

1.4 The Hahn-Banach theorem

This section is devoted to one version of the celebrated Hahn-
Banach theorem.

We begin with a lemma.

Lemma 1.4.1 Let M be a linear subspace of a real vector space
X. Suppose p : X → R is a mapping such that

(i) p(x + y) ≤ p(x) + p(y) ∀ x, y ∈ X; and
(ii) p(tx) = tp(x) ∀x ∈ X, 0 ≤ t ∈ R.

Suppose φ0 : M → R is a linear map such that φ0(x) ≤ p(x) for
all x ∈ M . Then, there exists a linear map φ : X → R such
that φ|M = φ0 and φ(x) ≤ p(x) ∀ x ∈ X.

Proof : The proof is an instance of the use of Zorn’s lemma.
(See §A.2, if you have not yet got acquainted with Zorn’s lemma.)
Consider the partially ordered set P , whose typical member is a
pair (Y, ψ), where (i) Y is a linear subspace of X which contains
X0; and (ii) ψ : Y → R is a linear map which is an extension
of φ0 and satisfies ψ(x) ≤ p(x) ∀ x ∈ Y ; the partial order on
P is defined by setting (Y1, ψ1) ≤ (Y2, ψ2) precisely when (a)
Y1 ⊂ Y2, and (b) ψ2|Y1 = ψ1. (Verify that this prescription
indeed defines a partial order on P .)
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Furthermore, if C = {(Yi, ψi) : i ∈ I} is any totally ordered
set in P , an easy verification shows that an upper bound for the
family C is given by (Y, ψ), where Y = ∪i∈IYi and ψ : Y → R is
the unique (necessarily linear) map satisfying ψ|Yi

= ψi for all
i.

Hence, by Zorn’s lemma. the partially ordered set P has a
maximal element, call it (Y, ψ). The proof of the lemma will be
completed once we have shown that Y = X.

Suppose Y 6= X; fix x0 ∈ X−Y , and let Y1 = Y +Rx0 = {y+
tx0 : y ∈ Y, t ∈ R}. The definitions ensure that Y1 is a subspace
of X which properly contains Y . Also, notice that any linear
map ψ1 : Y1 → R which extends ψ is prescribed uniquely by the
number t0 = ψ1(x0) (and the equation ψ1(y+tx0) = ψ(y)+tt0).

We assert that it is possible to find a number t0 ∈ R such
that the associated map ψ1 would - in addition to extending ψ
- also satisfy ψ1 ≤ p. This would then establish the inequality
(Y, ψ) ≤ (Y1, ψ1), contradicting the maximality of (Y, ψ); this
contradiction would then imply that we must have had Y = X
in the first place, and the proof would be complete.

First observe that if y1, y2 ∈ Y are arbitrary, then,

ψ(y1) + ψ(y2) = ψ(y1 + y2)

≤ p(y1 + y2)

≤ p(y1 − x0) + p(y2 + x0) ;

and consequently,

sup
y1∈Y

[ ψ(y1)−p(y1−x0) ] ≤ inf
y2∈Y

[ p(y2+x0) − ψ(y2) ] . (1.4.14)

Let t0 be any real number which lies between the supremum
and the infimum appearing in equation 1.4.14. We now verify
that this t0 does the job.

Indeed, if t > 0, and if y ∈ Y , then, since the definition of t0
ensures that ψ(y2) + t0 ≤ p(y2 + x0) ∀ y2 ∈ Y , we find that:

ψ1(y + tx0) = ψ(y) + tt0

= t [ψ(
y

t
) + t0]

≤ t p(
y

t
+ x0)

= p(y + tx0) .
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Similarly, if t < 0, then, since the definition of t0 also ensures
that ψ(y1) − t0 ≤ p(y1 − x0) ∀ y1 ∈ Y , we find that:

ψ1(y + tx0) = ψ(y) + tt0

= −t [ψ(
y

−t
) − t0]

≤ −t p(
y

−t
− x0)

= p(y + tx0) .

Thus, ψ1(y + tx0) ≤ p(y + tx0) ∀ y ∈ Y, t ∈ R, and the proof
of the lemma is complete.

2

It is customary to use the notation V ∗ for the space L(V, C)
of continuous (equivalently, bounded) linear functionals on the
normed space V .

We are ready now for the Hahn-Banach theorem, which guar-
antees the existence of ‘sufficiently many’ continuous linear func-
tionals on any normed space. (Before proceeding to this theo-
rem, the reader should spend a little time thinking about why
V ∗ 6= {0} for a normed space V 6= {0}.)

Theorem 1.4.2 (Hahn-Banach theorem)
Let V be a normed space and let V0 be a subspace of V . Sup-

pose φ0 ∈ V ∗
0 ; then there exists a φ ∈ V ∗ such that

(i) φ|V0 = φ0; and
(ii) ||φ|| = ||φ0||.

Proof: We first consider the case when V is a ‘real normed
space’ and V0 is a (real) linear subspace of V . In this case, apply
the preceding lemma with X = V,M = V0 and p(x) = ||φ0||·||x||,
to find that the desired conclusion follows immediately.

Next consider the case of complex scalars. Define ψ0(x) =
Re φ0(x) and χ0(x) = Im φ0(x), ∀ x ∈ V0, and note that if
x ∈ X0, then

ψ0(ix) + iχ0(ix) = φ0(ix)

= iφ0(x)

= −χ0(x) + iψ0(x) ,
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and hence, χ0(x) = −ψ0(ix) ∀ x ∈ X0.
Observe now that ψ0 : X0 → R is a ‘real’ linear functional of

the real normed linear space X0 , which satisfies :

|ψ0(x)| ≤ |φ0(x)| ≤ ||φ0|| · ||x|| ∀ x ∈ V0 ;

deduce from the already established real case that ψ0 extends to
a real linear functional - call it ψ - of the real normed space V
such that |ψ(x)| ≤ ||φ0|| · ||x|| ∀ x ∈ V . Now define φ : V → C
by φ(x) = ψ(x) − iψ(ix), and note that φ indeed extends φ0.
Finally, if x ∈ V and if φ(x) = reiθ, with r > 0, θ ∈ R, then,

|φ(x)| = e−iθφ(x)

= φ(e−iθx)

= ψ(e−iθx)

≤ ||φ0|| · ||e−iθx||
= ||φ0|| · ||x|| ,

and the proof of the theorem is complete. 2

We shall postpone the deduction of some easy corollaries of
this theorem until we have introduced some more terminology
in the next section. Also, we postpone the discussion of fur-
ther variations of the Hahn-Banach theorem - which are best de-
scribed as Hahn-Banach separation results, and are stated most
easily using the language of ‘topological vector spaces’ - to the
last section of this chapter, which is where topological vector
spaces are discussed.

1.5 Completeness

A fundamental notion in the study of metric spaces is that of
completeness. It would be fair to say that the best - and most
useful - metric spaces are the ones that are complete.

To see what this notion is, we start with an elementary ob-
servation. Suppose (X, d) is a metric space, and {xn : n ∈ IN} is
a sequence in X; recall that to say that this sequence converges
is to say that there exists a point x ∈ X such that xn → x -
or equivalently, in the language of epsilons, this means that for
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each ε > 0, it is possible to find a natural number N such that
d(xn, x) < ε whenever n ≥ N. This is easily seen to imply the
following condition:

Cauchy criterion: For each ε > 0, there exists a natural num-
ber N such that d(xm, xn) < ε whenever n,m ≥ N .

A sequence which satisfies the preceding condition is known
as a Cauchy sequence. Thus, the content of our preceding
discussion is that any convergent sequence is a Cauchy sequence.

Definition 1.5.1 (a) A metric space is said to be complete if
every Cauchy sequence in it is convergent.

(b) A normed space which is complete with respect to the
metric defined by the norm is called a Banach space.

The advantage with the notion of a Cauchy sequence is that
it is a condition on only the members of the sequence; on the
other hand, to check that a sequence is convergent, it is necessary
to have the prescience to find a possible x to which the sequence
wants to converge. The following exercise will illustrate the use
of this notion.

Exercise 1.5.2 (1) Let X = C[0, 1] be endowed with the sup-
norm || · ||∞, as in Example 1.2.3 (2).

(a) Verify that a sequence {fn} converges to f ∈ X precisely
when the sequence {fn} of functions converges uniformly to the
function f .

(b) Show that C is a complete metric space with respect to
d(z, w) = |z − w|, and use the fact that the limit of a uniformly
convergent sequence of continuous functions is continuous, to
prove that X is complete (in the metric coming from the sup-
norm), and cosequently, a Banach space.

(c) Show, more generally, that the space C0(Z), where Z is
a locally compact Hausdorff space, - see Example 1.2.3 (2) - is a
Banach space.

(2) Suppose (X, || · ||) is a Banach space; a series
∑∞

n=1 xn is
said to converge in X if the sequence {sn} of partial sums defined
by sn =

∑n
k=1 xk, is a convergent sequence.
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Show that an ‘absolutely summable’ series is convergent, pro-
vided the ambient normed space is complete - i.e., show that if
{xn} is a sequence in X such that the series

∑∞
n=1 ||xn|| of non-

negative numbers is convergent (in R), then the series
∑∞

n=1 xn

converges in X.
Show, conversely, that if every absolutely summable series in

a normed vector space X is convergent, then X is necessarily
complete.

(3) Show that the series
∑∞

n=1
1
n2 sin nx converges to a con-

tinuous function in [0,1]. (Try to think of how you might prove
this assertion using the definition of a convergent sequence, with-
out using the notion of completeness and the fact that C[0, 1] is
a Banach space.)

(4) Adapt the proof of (1)(b) to show that if W is a Banach
space, and if V is any normed space, then also L(V,W ) is a
Banach space.

(5) Show that the normed space `p is a Banach space, for
1 ≤ p ≤ ∞.

As a special case of Exercise 1.5.2(4) above, we see that even
if V is not necessarily complete, the space V ∗ is always a Banach
space. It is customary to refer to V ∗ as the dual space of the
normed space V . The justification, for the use of the term ‘dual’
in the last sentence, lies in the Hahn-Banach theorem. To see
this, we first list various consequences of this very important
theorem as exercises.

Exercise 1.5.3 Let X be a normed space, with dual space X∗.
(1) If 0 6= x0 ∈ X, show that there exists a φ ∈ X∗ such that

||φ|| = 1 and φ(x0) = ||x0||. (Hint: set X0 = Cx0 = {αx0 :
α ∈ C}, consider the linear functional φ0 ∈ X∗

0 defined by
φ0(λx0) = λ||x0||, and appeal to the Hahn-Banach theorem.)

(2) Show that the equation

( j(x) ) (φ) = φ(x) (1.5.15)

defines an isometric mapping j : X → (X∗)∗. (It is customary
to write X∗∗ for (X∗)∗.
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(3) If X0 is a closed subspace of X - i.e., X0 is a vector
subspace which is closed as a subset of the metric space X -
let X/X0 denote the quotient vector space; (thus, X/X0 is the
set of equivalence classes with respect to the equivalence relation
x ∼X0 y ⇔ (x − y) ∈ X0; it is easy to see that X/X0 is a
vector space with respect to the natural vector operations; note
that a typical element of X/X0 may - and will - be denoted by
x + X0, x ∈ X).

Define

||x+X0|| = inf{||x−x0|| : x0 ∈ X0} = dist(x,X0) . (1.5.16)

Show that
(i) X/X0 is a normed vector space with respect to the above

definition of the norm, and that this quotient space is complete
if X is;

(ii) if x ∈ X, then x /∈ X0 if and only if there exists a non-
zero linear functional φ ∈ X∗ such that φ(x) 6= 0 and φ(y) =
0 ∀ y ∈ X0. (Hint: Apply Exercise (1) above to the space X/X0.)

Remark 1.5.4 A Banach space X is said to be reflexive if the
mapping j of Exercise 1.5.3(2) is surjective - i.e., j(X) = X∗∗.
(Since any dual space is complete, a reflexive space is necessarily
complete, and this is why we have - without loss of generality -
restricted ourselves to Banach spaces in defining this notion.

It is a fact that `p - see Example 1.2.2(4) - is reflexive if and
only if 1 < p < ∞. 2

In the next sequence of exercises, we outline one procedure
for showing how to ‘complete’ a normed space.

Exercise 1.5.5 (1) Suppose Y is a normed space and Y0 is a
(not necessarily closed) subspace in Y . Show that:

(a) if Y1 denotes the closure of Y0 - i.e., if Y1 = {y ∈ Y :
∃ {yn}∞n=1 ⊂ Y0 such that yn → y} - then Y1 is a closed subspace
of Y ; and

(b) if Z is a Banach space, and if T ∈ L(Y0, Z), then there
exists a unique operator T̃ ∈ L(Y1, Z) such that T̃ |Y0 = T ;
further, if T is an isometry, show that so also is T̃ .
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(2) Suppose X is a normed vector space. Show that there
exists a Banach space X which admits an isometric embedding
of X onto a dense subspace X0; i.e., there exists an isometry
T ∈ L(X,X) such that X0 = T (X) is dense in X (meaning that
the closure of X0 is all of X). (Hint: Consider the map j of
Exercise 1.5.3(2), and choose X to be the closure of j(X).)

(3) Use Exercise (1) above to conclude that if Z is another
Banach space such that there exists an isometry S ∈ L(X,Z)
whose range is dense in Z, and if X and T are as in Exer-
cise (2) above, then show that there exists a unique isometry
U ∈ L(X,Z) such that U ◦ T = S and U is onto. Hence the
space X is essentially uniquely determined by the requirement
that it is complete and contains an isometric copy of X as a
dense subspace; such a Banach space is called a completion of
the normed space X.

We devote the rest of this section to a discussion of some im-
portant consequences of completeness in the theory of normed
spaces. We begin with two results pertaining to arbitrary met-
ric (and not necessarily vector) spaces, namely the celebrated
‘Cantor intersection theorem’ and the ‘Baire category theorem’.

Theorem 1.5.6 (Cantor intersection theorem)
Suppose C1 ⊃ C2 ⊃ · · · ⊃ Cn ⊃ · · · is a non-increasing

sequence of non-empty closed sets in a complete metric space X.
Assume further that

diam(Cn) = sup{d(x, y) : x, y ∈ Cn} → 0 as n → ∞ .

Then ∩∞
n=1 Cn is a singleton set.

Proof: Pick xn ∈ Cn - this is possible since each Cn is as-
sumed to be non-empty. The hypothesis on the diameters of the
Cn’s shows that {xn} is a Cauchy sequence in X, and hence the
sequence converges to a limit, say x.

The assumption that the Cn’s are nested and closed are easily
seen to imply that x ∈ ∩nCn. If also y ∈ ∩nCn, then, for each n,
we have d(x, y) ≤ diam(Cn). This clearly forces x = y, thereby
completing the proof.

2
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Exercise 1.5.7 Consider the four hypotheses on the sequence
{Cn} in the preceding theorem - viz., non-emptiness, decreasing
property, closedness, shrinking of diameters to 0 - and show, by
example, that the theorem is false if any one of these hypotheses
is dropped.

Before we ge to the next theorem, we need to introduce some
notions. Call a set (in a metric space) nowhere dense if its clo-
sure has empty interior; thus a set A is nowhere dense precisely
when every non-empty open set contains a non-empty open sub-
set which is disjoint from A. (Verify this last statement!) A set
is said to be of first category if it is expressible as a countable
union of nowhere dense sets.

Theorem 1.5.8 (Baire Category Theorem) No non-empty
open set in a complete metric space is of the first category; or,
equivalently, a countable intersection of dense open sets in a com-
plete metric space is also dense.

Proof: The equivalence of the two assertions is an easy exer-
cise in taking complements and invoking de Morgan’s laws, etc.
We content ourselves with proving the second of the two for-
mulations of the theorem. For this, we shall repeatedly use the
following assertion, whose easy verification is left as an exercise
to the reader:

If B is a closed ball of positive diameter - say δ - and if U is
a dense open set in X, then there exists a closed ball B0 which
is contained in B ∩ U and has a positive diameter which is less
than 1

2
δ.

Suppose {Un}∞n=1 is a sequence of dense open sets in the com-
plete metric space X. We need to verify that if U is any non-
empty open set, then U ∩ (∩∞

n=1Un) is not empty. Given such
a U , we may clearly find a closed ball B0 of positive diameter -
say δ - such that B0 ⊂ U .

Repeated application of the preceding italicised assertion and
an easy induction argument yield a sequence {Bn}∞n=1 of closed
balls of positive diameter such that:

(i) Bn ⊂ Bn−1 ∩ Un ∀ n ≥ 1;
(ii) diam Bn < (1

2
)nδ ∀ n ≥ 1.
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An appeal to Cantor’s intersection theorem completes the
proof.

2

Remark 1.5.9 In the foregoing proof, we used the expression
‘diameter of a ball’ to mean the diameter of the set as defined, for
instance, in the statement of the Cantor intersection theorem. In
particular, the reader should note that if B = {y ∈ X : d(x, y) <
δ} is the typical open ball in a general metric space, then the
diamter of B might not be equal to 2δ in general. (For instance,
consider X = Z, x = 0, δ = 1, in which case the ‘ball’ B in
question is actually a singleton and hence has diameter 0.) It
is in this sense that the word diameter is used in the preceding
proof. 2

We give a flavour of the kind of consequence that the Baire
category theorem has, in the following exercise.

Exercise 1.5.10 (i) Show that the plane cannot be covered by
a countable number of straight lines;

(ii) more generally, show that a Banach space cannot be ex-
pressed as a countable union of ‘translates of proper closed sub-
spaces’;

(iii) where do you need the hypothesis that the subspaces in
(ii) are closed?

As in the preceding exercise, the Baire category theorem is
a powerful ‘existence result’. (There exists a point outside the
countably many lines, etc.) The interested reader can find ap-
plications in [Rud], for instance, of the Baire Category Theorem
to prove the following existence results:

(i) there exists a continuous function on [0,1] which is nowhere
differentiable;

(ii) there exists a continuous function on the circle whose
Fourier series does not converge anywhere.

The reader who does not understand some of these state-
ments may safely ignore them.

We now proceed to use the Baire category theorem to prove
some of the most useful results in the theory of linear operators
on Banach spaces.
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Theorem 1.5.11 (Open mapping theorem)
Suppose T ∈ L(X,Y ) where X and Y are Banach spaces,

and suppose T maps X onto Y . Then T is an open mapping -
i.e., T maps open sets to open sets.

Proof: For Z ∈ {X,Y }, let us write BZ
r = {z ∈ Z : ||z|| <

r}. Since a typical open set in a normed space is a union of
translates of dilations of the unit ball, it is clearly sufficient to
prove that T (BX

1 ) is open in Y . In fact it is sufficient to show
that there exists an r > 0 such that BY

r ⊂ T (BX
1 ). (Reason:

suppose this latter assertion is true; it is then clearly the case
that BY

rε ⊂ T (BX
ε ) ∀ε > 0. Fix y ∈ T (BX

1 ), say y = Tx, ||x|| <
1; choose 0 < ε < 1 − ||x|| and observe that y + BY

rε ⊂ y +
T (BX

ε ) = T (x+BX
ε ) ⊂ T (BX

1 ), so we have verified that every
point of T (BX

1 ) is an interior point.)
The assumption of surjectivity shows that Y = ∪n T (BX

n );
deduce from the Baire category theorem that (since Y is as-
sumed to be complete) there exists some n such that T (BX

n ) is
not nowhere dense; this means that the closure T (BX

n ) of T (BX
n )

has non-empty interior; since T (BX
n ) = nT (BX

1 ), this implies

that T (BX
1 ) has non-empty interior. Suppose y + BY

s ⊂ T (BX
1 );

this is easily seen to imply that BY
s ⊂ T (BX

2 ). Hence, set-

ting t = 1
2
s, we thus see that BY

t ⊂ T (BX
1 ), and hence also

BY
εt ⊂ T (BX

ε ) ∀ε > 0.
Thus, we have produced a positive number t with the follow-

ing property:

δ, ε > 0, y ∈ Y, ||y|| < εt ⇒ ∃x ∈ X such that ||x|| < ε

and ||y − Tx|| < δ . (1.5.17)

Suppose now that y0 ∈ BY
t . Apply 1.5.17 with ε = 1, δ =

1
2
t, y = y0 to find x0 ∈ X such that ||x0|| < 1 and ||y0 −Tx0|| <

1
2
t.

Next apply 1.5.17 with ε = 1
2
, δ = (1

2
)2t, y = y1 = y0 − Tx0,

to find x1 ∈ X such that ||x1|| < 1
2

and ||y1 − Tx1|| < (1
2
)2t.

By repeating this process inductively, we find vectors yn ∈
Y, xn ∈ X such that ||yn|| < (1

2
)nt, ||xn|| < (1

2
)n, yn+1 = yn −

Txn ∀n ≥ 0.
Notice that the inequalities ensure that the series

∑∞
n=0 xn

is an ‘absolutely summable’ series in the Banach space X and
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consequently - by Exercise 1.5.2(2) - the series converges to a
limit, say x, in X. On the other hand, the definition of the yn’s
implies that

yn+1 = yn − Txn

= yn−1 − Txn−1 − Txn

= · · ·
= y0 − T (

n∑

k=0

xk) .

Since ||yn+1|| → 0, we may conclude from the continuity of
T that y0 = Tx. Finally, since clearly ||x|| < 2, we have now
shown that BY

t ⊂ T (BX
2 ), and hence BY

1
2
t
⊂ T (BX

1 ) and the proof

of the theorem is complete. 2

Corollary 1.5.12 Suppose X,Y are Banach spaces and sup-
pose T ∈ L(X,Y ). Assume that T is 1-1.

(1) Then the following conditions on T are equivalent:
(i) ran T = T (X) is a closed subspace of Y ;
(ii) the operator T is bounded below, meaning that there

exists a constant c > 0 such that ||Tx|| ≥ c||x|| ∀ x ∈ X.
(2) In particular, the following conditions are equivalent:
(i) T is 1-1 and maps X onto Y ;
(ii) there exists a bounded operator S ∈ L(Y,X) such that

ST = idX and TS = idY ; in other words, T is invertible in the
strong sense that T has an inverse which is a bounded operator.

Proof: (1) Suppose T is bounded below and suppose Txn →
y; then {Txn}n is a Cauchy sequence; but the assumption that
T is bounded below then implies that also {xn}n is a Cauchy
sequence which must converge to some point, whose image under
T must be y in view of continuity of T .

Conversely suppose Y0 = T (X) is closed; then also Y0 is
a Banach space in its own right. An application of the open
mapping theorem to T ∈ L(X,Y0) now implies that there exists
a constant ε > 0 such that BY0

ε ⊂ T (BX
1 ) (in the notation of

the proof of Theorem 1.5.11) . We now assert that ||Tx|| ≥
ε
2
||x|| ∀ x ∈ X. Indeed, suppose x ∈ X and ||Tx|| = r; then

T ( ε
2r

x) ∈ BY0
ε ⊂ T (BX

1 ). Since T is 1-1, this clearly implies that
ε
2r

x ∈ BX
1 , whence ||x|| < 2r

ε
; this proves our assertion.
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(2) The implication (ii) ⇒ (i) is obvious. Conversely, if T is
a bijection, it admits an inverse map which is easily verified to
be linear; the boundedness of the inverse is a consequence of the
fact that T is bounded below (in view of (1) above). 2

Before proceeding to obtain another important consequence
of the open mapping theorem, we need to set up some terminol-
ogy, which we do in the guise of an exercise.

Exercise 1.5.13 The graph of a function f : X → Y is, by
definition, the subset G(f) ⊂ X × Y defined by

G(f) = {(x, f(x)) : x ∈ X} .

Recall that if X and Y are metric spaces, then the product X×Y
can be metrised in a variety of ways - see Exercise 1.2.3(1) - in
such a way that a sequence in X × Y converges precisely when
each of the co-ordinate sequences converges.

(i) Show that if f is a continuous map of metric spaces, then
its graph is closed (as a subset of the product) - i.e., if {xn} is
a sequence in X and if there exists (x, y) ∈ X × Y such that
xn → x and f(xn) → y, then necessarily y = f(x).

(ii) What about the converse? i.e., if a function between met-
ric spaces has a closed graph, is the function necessarily contin-
uous?

The content of the next result is that for linear mappings be-
tween Banach spaces, the requirements of continuity and having
a closed graph are equivalent. In view of Exercise 1.5.13(i), we
only state the non-trivial implication in the theorem below.
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Theorem 1.5.14 (Closed Graph Theorem)
Suppose X and Y are Banach spaces, and suppose T : X →

Y is a linear mapping which has a closed graph. Then T is
continuous, i.e., T ∈ L(X,Y ).

Proof: The graph G(T ) is given to be a closed subspace of
the Banach space X ⊕`1 Y (by which, of course, we mean the
space X×Y with norm given by ||(x, y)|| = ||x||+ ||y||). Hence,
we may regard G(T ) as a Banach space in its own right.

Consider the mapping S : G(T ) → X defined by the equa-
tion S(x, f(x)) = x. This is clearly a linear 1-1 map of G(T )
onto X. Also, it follows from the definition of our choice of the
norm on G(T ) that S is a bounded operator with ||S|| ≤ 1.
It now follows from Corollary 1.5.12(1) that the operator S is
bounded below; i.e., there exists a constant c > 0 such that
||x|| ≥ c(||x|| + ||Tx||). Hence ||Tx|| ≤ 1−c

c
||x||, and the proof

is complete.
2

Remark 1.5.15 Suppose T ∈ L(X,Y ), where X and Y are
Banach spaces, and suppose that T is only assumed to be 1-1.
(An example of such an operator, with X = Y = `2 is given
by T (x1, x2, · · · , xn, · · ·) = (x1,

1
2
x2, · · · , 1

n
xn, · · ·).) Let Y0 be

the (not necessarily closed, and hence Banach) subspace of Y
defined by Y0 = T (X). Let T−1 : Y0 → X be the (necessarily
linear) inverse of T . Then T−1 has a closed graph, but is not
continuous unless T happened to be bounded below (which is
not the case in the example cited above). Hence the hypothesis
of completeness of the domain cannot be relaxed in the closed
graph theorem. (Note that T−1 is bounded precisely when T is
bounded below, which, under the assumed completeness of X,
happens precisely when Y0 is complete - see Corollary 1.5.12.)

This example also shows that the ‘onto’ requirement in the
Open Mapping Theorem is crucial, and cannot be dropped. 2

We conclude with another very important and useful result
on operators between Banach spaces.



1.5. COMPLETENESS 27

Theorem 1.5.16 (Uniform Boundedness Principle)
Suppose X and Y are Banach saces. The following conditions

on an arbitrary family {Ti : i ∈ I} ⊂ L(X,Y ) of operators are
equivalent:

(i) {Ti : i ∈ I} is uniformly bounded - i.e., supi∈I ||Ti|| < ∞;
(ii) {Ti : i ∈ I} is ‘pointwise’ bounded - i.e., for each x ∈ X,

the family {Tix : i ∈ I} is bounded in Y , supi∈I ||Tix|| < ∞.

Proof: We only prove the non-trivial implication; so suppose
(ii) holds. Let An = {x ∈ X : ||Tix|| ≤ n ∀ i ∈ I}. The
hypothesis implies that X = ∪∞

n=1 An . Notice also that each
An is clearly a closed set. Conclude from the Baire category
theorem that there exists a positive constant r > 0, an integer
n, and a vector x0 ∈ X such that (x0 + BX

r ) ⊂ An. It follows
that BX

r ⊂ A2n. Hence,

||x|| ≤ 1 ⇒ r

2
x ∈ BX

r

⇒ ||Ti(
r

2
x)|| ≤ 2n ∀ i ∈ I

⇒ sup
i∈I

||Tix|| ≤
4n

r
.

This proves the theorem. 2

We conclude this section with some exercises on the uniform
boundedness principle. (This ‘principle’ is also sometimes re-
ferred to as the Banach-Steinhaus theorem.)

Exercise 1.5.17 (1) Suppose S is a subset of a (not necessarily
complete) normed space X which is weakly bounded, meaning
that φ(S) is a bounded set in C, for each φ ∈ X∗. Then show
that S is norm bounded, meaning that sup{||x|| : x ∈ S} < ∞.
(Hint: Apply the uniform boundedness principle to the family
{j(x) : x ∈ S} ⊂ X∗∗, in the notation of Exercise 1.5.3(2).)

(2) Show that the completeness of Y is not needed for the
validity of the uniform boundedness principle. (Hint: reduce to
the complete case by considering the completion Y of Y .)

(3) Suppose {Tn : n = 1, 2, · · ·} ⊂ L(X,Y ) is a sequence of
bounded operators, where X,Y are Banach spaces, and suppose
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the sequence converges ‘strongly’; i.e., assume that {Tnx} is a
convergent sequence in Y , for each x ∈ X. Show that the equa-
tion Tx = limnTnx defines a bounded operator T ∈ L(X,Y ).

1.6 Some topological considerations

This section is devoted to some elementary facts concerning
‘topological vector spaces’, which are more general than normed
spaces - in much the same way as a topological space is more
general than a metric space. The following text assumes that
the reader knows at least the extent of ‘general topology’ that is
treated in the appendix; the reader who is unfamiliar with the
contents of §§A.3 and A.4, should make sure she understands
that material at least by the time she finishes the contents of
this section.

Definition 1.6.1 A topological vector space - henceforth
abbreviated to t.v.s. - is a vector space X which is at the same
time a topological space in such a way that the ‘vector operations
are continuous’; explicitly, we demand that the following maps
are continuous:

(i) C × X 3 (α, x) 7→ αx ∈ C;

(ii) X × X 3 (x, y) 7→ x + y ∈ X.

If X,Y are topological vector spaces, the set of all continuous
linear transformations T : X → Y is denoted by L(X,Y ), and
we write L(X) = L(X,X).

We leave some simple verifications as an exercise for the
reader.

Exercise 1.6.2 (1) Suppose X is a t.v.s. Show that:

(a) the map X 3 x 7→ Tx ∈ L(X), defined by Tx(y) = x + y,
is a homomorphism of the additive group of the vector space X
into the group Homeo(X) of homeomorphisms of the t.v.s. X;
(recall that a homeomorphism of a topological space is a contin-
uous bijection whose inverse is also continuous;)
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(b) the map C× 3 α 7→ Dα ∈ L(X), defined by Dαx =
αx, is a homomorphism from the multiplicative group of non-
zero complex numbers into the multiplicative group G(L(X)) of
invertible elements of the algebra L(X);

(c) with the preceding notation, all the translation and di-
lation operators Tx, Dα belong to Homeo(X); in particular, the
group of homeomorphisms of X acts transitively on X - i.e., if
x, y are arbitrary points in X, then there exists an element L in
this group such that L(x) = y.

(2) Show that Nsym = {U : U is an open neighbourhood of
0 which is symmetric in the sense that U = −U = {−x : x ∈
U}} is a neighbourhood base for 0, meaning that if V is any
open neighbourhood of 0, then there exists a U ∈ Nsym such that
U ⊂ V .

The most important examples of topological vector spaces
are the the so-called locally convex ones; these are the spaces
where the topology is given by a family of seminorms.

Definition 1.6.3 A seminorm on a vector space X is a func-
tion p : X → [0,∞) which satisfies all the properties of a norm
except for ‘positive-definiteness’; specifically, the conditions to be
satisfied by a function p as above, in order to be called a semi-
norm are: for all α ∈ C, x, y ∈ X, we demand that

p(x) ≥ 0 (1.6.18)

p(αx) = |α|p(x) (1.6.19)

p(x + y) ≤ p(x) + p(y) (1.6.20)

Example 1.6.4 If X is a vector space, and if T : X → Y is a
linear map of X into a normed space Y , then the equation

pT (x) = ||Tx||

defines a seminorm on X.
In particular, if φ : X → C is a linear functional, then the

equation
pφ(x) = |φ(x)| (1.6.21)

defines a seminorm on X. 2
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Remark 1.6.5 Every normed space is clearly a t.v.s. in an
obvious manner. More generally, suppose P = {pi : i ∈ I}
is a family of seminorms on a vector space; for each x ∈ X
and i ∈ I, consider the map fi,x : X → [0,∞) defined by
fi,x(y) = pi(y − x). Let τP denote the weak topology on X
which is induced by the family {fi,x : i ∈ I, x ∈ X} of maps -
see Proposition A.3.10 for the definition of weak topology. We
may then conclude the following facts concerning this topology
on X (from Exercise A.3.11):

(a) For each fixed x ∈ X, i ∈ I, ε > 0, define U(i,x,ε) =
{y ∈ X : pi(y − x) < ε} ; then the family SP = {U(i,x,ε) :
i ∈ I, x ∈ X, ε > 0} defines a sub-base for the topology τP ,
and consequently the family BP = {∩n

j=1U(ij ,xj ,εj) : {ij}n
j=1 ⊂

I, {xj}n
j=1 ⊂ X, {εj}n

j=1 ⊂ (0,∞), n ∈ IN} is a base for the
topology τP . (The reader should verify that the family of finite
intersections of the above form where (in any particular finite
intersection) all the εj’s are equal, also constitutes a base for the
topology τP .)

(b) A net - see Definition 2.2.3 - {xλ : λ ∈ Λ} converges to x in
the topological space (X, τP) if and only if the net {pi(xλ − x) :
λ ∈ Λ} converges to 0 in R, for each i ∈ I. (Verify this; if
you do it properly, you will use the triangle inequality for semi-
norms, and you will see the need for the functions fi,x constructed
above.)

It is not hard to verify - using the above criterion for con-
vergence of nets in X - that X, equipped with the topology τP
is a t.v.s; further, τP is the smallest topology with respect to
which (X, τP) is a topological vector space with the property
that pi : X → R is continuous for each i ∈ I. This is called
the t.v.s. structure on X which is induced by the family P of
seminorms on X.

However, this topology can be somewhat trivial; thus, in the
extreme case where P is empty, the resulting topology on X is
the indiscrete topology - see Example A.3.2(1); a vector space
with the indiscrete topology certainly satisfies all the require-
ments we have so far imposed on a t.v.s., but it is quite uninter-
esting.

To get interesting t.v.s., we normally impose the further con-
dition that the underlying topological space is a Hausdorff space.
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It is not hard to verify that the topology τP induced by a fam-
ily of seminorms satisfies the Hausdorff separation requirement
precisely when the family P of seminorms separates points in
X, meaning that if x 6= 0, then there exists a seminorm pi ∈ P
such that pi(x) 6= 0. (Verify this!)

We will henceforth encounter only t.v.s where the underlying
topology is induced by a family of seminorms which separates
points in the above sense. 2

Definition 1.6.6 Let X be a normed vector space.
(a) The weak topology on X is the topology τP , where

P = {pφ : φ ∈ X∗}, where the pφ’s are defined as in Ex-
ample 1.6.4, and, of course, the symbol X∗ denotes the Banach
dual space of X.

(b) The weak∗ topology on the dual space X∗ is the topology
τP , where P = {pj(x) : x ∈ X}, where the pφ’s are as before,
and j : X → X∗∗ is the canonical inclusion of X into its second
dual.

(c) In order to distinguish between the different notions, the
natural norm topology (which is the same as τ{||·||}) on X is re-
ferred to as the strong topology on X.

It should be clear that any normed space (resp., any Banach
dual space) is a t.v.s. with respect to the weak (resp., weak∗)
topology. Further, it follows from the definitions that if X is any
normed space, then:

(a) any set in X which is weakly open (resp., closed) is also
strongly open (resp., closed); and

(b) any set in X∗ which is weak∗ open (resp., closed) is also
weakly open (resp., closed).

Remark 1.6.7 (1) Some care must be exercised with the ad-
jective ‘strong’; there is a conflict between the definition given
here, and the sense in which the expression ‘strong convergence’
is used for operators, as in §2.5, for instance; but both forms of
usage have become so wide-spread that this is a (minor) conflict
that one has to get used to.

(2) The above definitions also make sense for topological vec-
tor spaces; you only have to note that X∗ is the space of con-
tinuous linear functionals on the given t.v.s. X. In this case,
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the weak∗ topology on X∗ should be thought of as the topology
induced by the family of ‘evaluation functionals’ on X∗ coming
from X. 2

Exercise 1.6.8 (1) Let X be a normed space. Show that the
weak topology on X is a Hausdorff topology, as is the weak ∗

topology on X∗.
(2) Verify all the facts that have been merely stated, without

a proof, in this section.

Our next goal is to establish a fact which we will need in the
sequel.

Theorem 1.6.9 (Alaoglu’s theorem)
Let X be a normed space. Then the unit ball of X∗ - i.e.,

ball X∗ = {φ ∈ X∗ : ||φ|| ≤ 1}

is a compact Hausdorff space with respect to the weak ∗ topology.

Proof : Notice the following facts to start with:
(1) if φ ∈ ball X∗ and if x ∈ ball X, then |φ(x)| ≤ 1;
(2) if f : ball X → C is a function, then there exists a

φ ∈ ball X∗ such that f = φ|ball X if and only if the function f
satisfies the following conditions:

(i) |f(x)| ≤ 1 ∀x ∈ ball X;
(ii) whenever x, y ∈ ball X and α, β ∈ C are such that αx +

βy ∈ ball X, then f(αx + βy) = αf(x) + βf(y).

Let Z = ID
ball X

denote the space of functions from ball X
into ID, where of course ID = {z ∈ C : |z| ≤ 1} (is the closed unit
disc in C); then, by Tychonoff’s theorem (see Theorem A.4.15),
Z is a compact Hausdorff space with respect to the product
topology.

Consider the map F : ball X∗ → Z defined by

F (φ) = φ|ball X .

The definitions of the weak∗ topology on ball X∗ and the product
topology on Z show easily that a net {φi : i ∈ I} converges with
respect to the weak∗ topology to φ in ball X∗ if and only if the net
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{F (φi) : i ∈ I} converges with respect to the product topology
to F (φ) in Z. Also, since the map F is clearly 1-1, we find that F
maps ball X∗ (with the weak∗ topology) homeomorphically onto
its image ran F (with the subspace topology inherited from Z).

Thus, the proof of the theorem will be complete once we
show that ran F is closed in Z - since a closed subspace of a
compact space is always compact. This is where fact (2) stated
at the start of the proof is needed. Whenever x, y ∈ ballX and
α, β ∈ C are such that αx + βy ∈ ball X, define

Kx,y,α,β = {f ∈ Z : f(αx + βy) = αf(x) + βf(y)} ;

note that Kx,y,α,β is a closed subset of Z (when defined) and
consequently compact; the content of fact (2) above is that the
image ran F is nothing but the set ∩x,y,α,βKx,y,α,β, and the
proof is complete, since an arbitrary intersection of closed sets
is closed. 2

The reason that we have restricted ourselves to discussing
topological vector spaces, where the topology is induced by a
family of seminorms in the above fashion, is that most ‘decent’
t.v.s. arise in this manner. The object of the following exercises
is to pave the way for identifying topological vector spaces of the
above sort with the so-called locally convex topological vector
spaces.

Exercise 1.6.10 (1) Let X be a vector space. Show that if
p : X → R is a semi-norm on X, and if C = {x ∈ X : p(x) <
1} denotes the associated ‘open unit ball’, then C satisfies the
following conditions:

(a) C is convex - i.e., x, y ∈ C, 0 ≤ t ≤ 1 ⇒ tx+(1− t)y ∈
C;

(b) C is ‘absorbing’ - i.e., if x ∈ X is arbitrary, then there
exists ε > 0 such that εx ∈ C; and

(c) C is ‘balanced’ - i.e., x ∈ C,α ∈ C, |α| ≤ 1 ⇒ αx ∈ C.
(d) if x ∈ X, then the set {λ > 0 : λx ∈ C} is an open set.

(Hint: this is actually just the open interval given by (0, 1
p(x)

),

where 1
0

is to be interpreted as ∞.)

(2) (i) Show that any absorbing set contains 0.
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(ii) If C is a convex and absorbing set in X, define pC : X →
R by

pC(x) = inf{λ > 0 : λ−1x ∈ C} , (1.6.22)

and show that the map pC satisfies the conditions of Lemma
1.4.1.

(3) In the converse direction to (1), if C is any subset of X
satisfying the conditions (i)(a) − (d), show that there exists a
semi-norm p on X such that C = {x ∈ X : p(x) < 1}. (Hint:
Define p by equation 1.6.22, and verify that this does the job.)
The function p is called the Minkowski functional associated
with the set C.

The proof of the following proposition is a not very difficult
use of the Minkowski functionals associated with convex, bal-
anced, absorbing sets; we omit the proof; the reader is urged to
try and prove the proposition, failing which she should look up
a proof (in [Yos], for instance).

Proposition 1.6.11 The following conditions on a topological
vector space X are equivalent:

(i) the origin 0 has a neighbourhood base consisting of convex,
absorbing and balanced open sets;

(ii) the topology on X is induced by a family of semi-norms
- see Remark 1.6.5.

A topological vector space which satisfies these equivalent con-
ditions is said to be locally convex.

We conclude this section (and chapter) with a version of the
Hahn-Banach separation theorem.

Theorem 1.6.12 (a) Suppose A and B are disjoint convex sets
in a topological vector space X, and suppose A is open. Then
there exists a continuous linear functional φ : X → C and a real
number t such that

Re φ(a) < t ≤ Re φ(b) ∀ a ∈ A, b ∈ B .
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(b) If X is a locally convex topological vector space, and if
A ⊂ X (resp., B ⊂ X) is a compact (resp., closed) convex set,
then there exists a continuous linear functional φ : X → C and
t1, t2 ∈ R such that

Re φ(a) < t1 < t2 ≤ Re φ(b) ∀ a ∈ A, b ∈ B .

Proof : By considering real- and imaginary- parts, as in the
proof of the Hahn-Banach theorem, it suffices to treat the case
of a real vector space X.

(a) Let C = A − B = {a − b : a ∈ A, b ∈ B}, and fix
x0 = a0 − b0 ∈ C. The hypothesis ensures that D = C − x0

is a convex open neighbourhood of 0, and consequently D is an
absorbing set. As in Exercise 1.6.10(1)(iii), define

p(x) = inf{α > 0 : α−1x ∈ D} .

Then p(x) ≤ 1 ∀ x ∈ D. Conversely, suppose p(x) < 1
for some x ∈ X; then, there exists some 0 < α < 1 such that
α−1x ∈ D; since D is convex, 0 ∈ D and α−1 > 1, it follows that
x ∈ D; thus p(x) < 1 ⇒ x ∈ D. In particular,

0 /∈ C ⇒ (−x0) /∈ D ⇒ p(−x0) ≥ 1 .

Since p(tx) = tp(x) ∀x ∈ X ∀t > 0 - verify this! - we find thus
that

p(−tx0) ≥ t ∀ t > 0 . (1.6.23)

Now define φ0 : X0 = Rx0 → R by φ0(tx0) = −t, and note
that φ0(x) ≤ p(x) ∀ x ∈ Rx0. (Reason: Let x = tx0; if t ≥ 0,
then φ(x) = −t ≤ 0 ≤ p(x); if t < 0, then, φ(x) = −t = |t| ≤
p(−|t|x0) = p(x), by equation 1.6.23.) Deduce from Lemma
1.4.1 that φ0 extends to a linear functional φ : X → R such
that φ|X0 = φ0 and φ(x) ≤ p(x) ∀x ∈ X. Notice that φ(x) ≤
1 whenever x ∈ D ∩ (−D); since V = D ∩ (−D) is an open
neighbourhood of 0, it follows that φ is ‘bounded’ and hence
continuous. (Reason: if xn → 0, and if ε > 0 is arbitrary, then
(εV is also an open neighbourhood of 0, and so) there exists n0

such that xn ∈ εV ∀ n ≥ n0; this implies that |φ(xn)| ≤ ε ∀ n ≥
n0.)

Finally, if a ∈ A, b ∈ B, then a − b − x0 ∈ D, and so,
φ(a)−φ(b)+1 = φ(a− b−x0) ≤ 1; i.e., φ(a) ≤ φ(b). It follows
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that if t = inf{φ(b) : b ∈ B}, then φ(a) ≤ t ≤ φ(b) ∀ a ∈ A, b ∈
B. Now, if a ∈ A, since A is open, it follows that a− εx0 ∈ A for
sufficiently small ε > 0; hence also, φ(a) + ε = φ(a − εx0) ≤ t;
thus, we do indeed have φ(a) < t ≤ φ(b) ∀ a ∈ A, b ∈ B.

(b) For each x ∈ A, (since 0 /∈ B − x, and since addition is
continuous) it follows that there exists a convex open neighbour-
hood Vx of 0 such that B∩(x+Vx+Vx) = ∅. Since {x+Vx : x ∈ A}
is an open cover of the compact set A, there exist x1, · · · , xn ∈ A
such that A ⊂ ∪n

i=1 (xi + Vxi
). Let V = ∩n

i=1Vxi
; then V is a

convex open neighbourhood of 0, and if U = A + V , then U is
open (since U = ∪a∈Aa + V ) and convex (since A and V are);
further, A + V ⊂ ∪n

i=1(xi + Vxi
+ V ) ⊂ ∪n

i=1(xi + Vxi
+ Vxi

);
consequently, we see that U ∩ B = ∅. Then, by (a) above, we
can find a continuous linear functional φ : X → R and a scalar
t ∈ R such that φ(u) < t ≤ φ(b) ∀ u ∈ U, b ∈ B. Then, φ(A) is
a compact subset of (−∞, t), and so we can find t1, t2 ∈ R such
that sup φ(A) < t1 < t2 < t, and the proof is complete. 2

The reason for calling the preceding result a ‘separation the-
orem’ is this: given a continuous linear functional φ on a topo-
logical vector space X, the set H = {x ∈ X : Reφ(x) = c}
(where c is an arbitrary real number) is called a ‘hyperplane’ in
X; thus, for instance, part (b) of the preceding result says that a
compact convex set can be ‘separated’ from a closed convex set
from which it is disjoint, by a hyperplane.

An arbitrary t.v.s. may not admit any non-zero continuous
linear functionals. (Example?) In order to ensure that there are
‘sufficiently many’ elements in X∗, it is necessary to establish
something like the Hahn-Banach theorem, and for this to be
possible, we need something more than just a topological vector
space; this is where local convexity comes in.



Chapter 2

Hilbert spaces

2.1 Inner Product spaces

While normed spaces permit us to study ‘geometry of vector
spaces’, we are constrained to discussing those aspects which
depend only upon the notion of ‘distance between two points’. If
we wish to discuss notions that depend upon the angles between
two lines, we need something more - and that something more is
the notion of an inner product.

The basic notion is best illustrated in the example of the
space R2 that we are most familiar with, where the most natural
norm is what we have called || · ||2. The basic fact from plane
geometry that we need is the so-called cosine law which states
that if A,B,C are the vertices of a triangle and if θ is the angle
at the vertex C, then

2(AC)(BC) cos θ = (AC)2 + (BC)2 − (AB)2 .

If we apply this to the case where the points A,B and C are
represented by the vectors x = (x1, x2), y = (y1, y2) and (0, 0)
respectively, we find that

2||x|| · ||y|| · cos θ = ||x||2 + ||y||2 − ||x − y||2
= 2 (x1y1 + x2y2 ).

Thus, we find that the function of two (vector) variables given
by

〈x, y〉 = x1y1 + x2y2 (2.1.1)

37
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simultaneously encodes the notion of angle as well as distance
(and has the explicit interpretation 〈x, y〉 = ||x|| ||y|| cos θ).
This is because the norm can be recovered from the inner product
by the equation

||x|| = 〈x, x〉 1
2 . (2.1.2)

The notion of an inner product is the proper abstraction of
this function of two variables.

Definition 2.1.1 (a) An inner product on a (complex) vec-
tor space V is a mapping V × V 3 (x, y) 7→ 〈x, y〉 ∈ C which
satisfies the following conditions, for all x, y, z ∈ V and α ∈ C:
(i) (positive definiteness) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 ⇔ x = 0;
(ii) (Hermitian symmetry) 〈x, y〉 = 〈y, x〉;
(iii) (linearity in first variable) 〈αx+βz, y〉 = α〈x, y〉+β〈z, y〉.

An inner product space is a vector space equipped with a
(distinguished) inner product.

(b) An inner product space which is complete in the norm
coming from the inner product is called a Hilbert space.

Example 2.1.2 (1) If z = (z1, · · · , zn), w = (w1, · · · , wn) ∈ Cn,
define

〈z, w〉 =
n∑

i=1

ziwi ; (2.1.3)

it is easily verified that this defines an inner product on Cn.

(2) The equation

〈f, g〉 =
∫

[0,1]
f(x)g(x) dx (2.1.4)

is easily verified to define an inner product on C[0, 1]. 2

As in the (real) case discussed earlier of R2, it is generally
true that any inner product gives rise to a norm on the under-
lying space via equation 2.1.2. Before verifying this fact, we
digress with an exercise that states some easy consequences of
the definitions.
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Exercise 2.1.3 Suppose we are given an inner product space
V ; for x ∈ V, define ||x|| as in equation 2.1.2, and verify the
following identities, for all x, y, z ∈ V, α ∈ C:

(1) 〈x, y + αz〉 = 〈x, y〉 + α〈x, z〉;
(2) ||x + y||2 = ||x||2 + ||y||2 + 2 Re〈x, y〉;
(3) two vectors in an inner product space are said to be or-

thogonal if their inner product is 0; deduce from (2) above and
an easy induction argument that if {x1, x2, · · · , xn} is a set of
pairwise orthogonal vectors, then

||
n∑

i=1

xi||2 =
n∑

i=1

||xi||2 .

(4) ||x + y||2 + ||x − y||2 = 2 (||x||2 + ||y||2); draw some
diagrams and convince yourself as to why this identity is called
the parallelogram identity;

(5) (Polarisation identity) 4〈x, y〉 =
∑3

k=0 ik〈x + iky, x +
iky〉, where, of course, i =

√
−1.

The first (and very important) step towards establishing that
any inner product defines a norm via equation 2.1.2 is the fol-
lowing celebrated inequality.

Proposition 2.1.4 (Cauchy-Schwarz inequality)
If x, y are arbitrary vectors in an inner product space V, then

|〈x, y〉| ≤ ||x|| · ||y|| .

Further, this inequality is an equality if and only if the vectors x
and y are linearly dependent.

Proof: If y = 0, there is nothing to prove; so we may assume,
without loss of generality, that ||y|| = 1 (since the statement of
the proposition is unaffected upon scaling y by a constant).

Notice now that, for arbitrary α ∈ C,

0 ≤ ||x − αy||2
= ||x||2 + |α|2 − 2Re(α〈y, x〉) .

A little exercise in the calculus shows that this last expression
is minimised for the choice α0 = 〈x, y〉, for which choice we
find, after some minor algebra, that

0 ≤ ||x − α0y||2 = ||x||2 − |〈x, y〉|2 ,



40 CHAPTER 2. HILBERT SPACES

thereby establishing the desired inequality.
The above reasoning shows that (if ||y|| = 1) if the inequality

becomes an equality, then we should have x = α0y, and the proof
is complete. 2

Remark 2.1.5 (1) For future reference, we note here that the
positive definite property ||x|| = 0 ⇒ x = 0 was never used
in the proof of the Cauchy-Schwarz inequality; in particular, the
inequality is valid for any positive definite sesquilinear form on
V ; i.e., suppose B : V × V → C is a mapping which is positive-
semidefinite - meaning only that B(x, x) ≥ 0 ∀x - and satisfies
the conditions of Hermitian symmetry and linearity (resp., ‘con-
jugate’ linearity) in the first (resp., second) variable (see defini-
tion of inner product and Exercise 2.1.3 (1)) ; then

|B(x, y)|2 ≤ B(x, x) · B(y, y) .

(2) Similarly, any sesquilinear form B on a complex vector
space satisfies the polarisation identity, meaning:

B(x, y) =
3∑

k=0

ik B(x + iky, x + iky) ∀ x, y ∈ V .

2

Corollary 2.1.6 Any inner product gives rise to a norm via
equation 2.1.2.

Proof: Positive-definiteness and homogeneity with respect
to scalar multiplication are obvious; as for the triangle inequality,

||x + y||2 = ||x||2 + ||y||2 + 2 Re〈x, y〉
≤ ||x||2 + ||y||2 + 2||x|| · ||y|| ,

and the proof is complete. 2

Exercise 2.1.7 We use the notation of Examples 1.2.2(1) and
2.1.2.

(1) Show that

|
n∑

i=1

ziwi|2 ≤
(

n∑

i=1

|zi|2
) (

n∑

i=1

|wi|2
)

, ∀ z, w ∈ Cn .
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(2) Deduce from (1) that the series
∑∞

i=1 αiβi converges, for
any α, β ∈ `2, and that

|
∞∑

i=1

αiβi|2 ≤
( ∞∑

i=1

|αi|2
) ( ∞∑

i=1

|βi|2
)

, ∀ α, β ∈ `2 ;

deduce that `2 is indeed (a vector space, and in fact) an inner
product space, with respect to inner product defined by

〈α, β〉 =
∞∑

i=1

αiβi . (2.1.5)

(3) Write down what the Cauchy-Schwarz inequality trans-
lates into in the example of C[0, 1].

(4) Show that the inner product is continuous as a mapping
from V ×V into C. (In view of Corollary 2.1.6 and the discussion
in Exercise 1.2.3, this makes sense.)

2.2 Some preliminaries

This section is devoted to a study of some elementary aspects of
the theory of Hilbert spaces and the bounded linear operators
between them.

Recall that a Hilbert space is a complete inner product space
- by which, of course, is meant a Banach space where the norm
arises from an inner product. We shall customarily use the sym-
bols H,K and variants of these symbols (obtained using sub-
scripts, primes, etc.) for Hilbert spaces. Our first step is to
arm ourselves with a reasonably adequate supply of examples of
Hilbert spaces.

Example 2.2.1 (1) Cn is an example of a finite-dimensional
Hilbert space, and we shall soon see that these are essentially
the only such examples. We shall write `2

n for this Hilbert space.

(2) `2 is an infinite-dimensional Hilbert space - see Exercises
2.1.7(2) and 1.5.2(5). Nevertheless, this Hilbert space is not ‘too
big’, since it is at least equipped with the pleasant feature of
being a separable Hilbert space - i.e., it is separable as a metric
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space, meaning that it has a countable dense set. (Verify this
assertion!)

(3) More generally, let S be an arbitrary set, and define

`2(S) = {x = ((xs))s∈S :
∑

s∈S

|xs|2 < ∞} .

(The possibly uncountable sum might be interpreted as fol-
lows: a typical element of `2(S) is a family x = ((xs)) of com-
plex numbers which is indexed by the set S, and which has the
property that xs = 0 except for s coming from some countable
subset of S (which depends on the element x) and which is such
that the possibly non-zero xs’s, when written out as a sequence
in any (equivalently, some) way, constitute a square-summable
sequence.)

Verify that `2(S) is a Hilbert space in a natural fashion.

(4) This example will make sense to the reader who is already
familiar with the theory of measure and Lebesgue integration;
the reader who is not, may safely skip this example; the subse-
quent exercise will effectively recapture this example, at least in
all cases of interest. In any case, there is a section in the Ap-
pendix - see §A.5 - which is devoted to a brief introduction to
the theory of measure and Lebesgue integration.

Suppose (X,B, µ) is a measure space. Let L2(X,B, µ) denote
the space of B-measurable complex-valued functions f on X such
that

∫
X |f |2dµ < ∞. Note that |f + g|2 ≤ 2(|f |2 + |g|2),

and deduce that L2(X,B, µ) is a vector space. Note next that
|fg| ≤ 1

2
(|f |2 + |g|2), and so the right-hand side of the following

equation makes sense, if f, g ∈ L2(X,B, µ):

〈f, g〉 =
∫

X
fgdµ . (2.2.6)

It is easily verified that the above equation satisfies all the re-
quirements of an inner product with the solitary possible excep-
tion of the positive-definiteness axiom: if 〈f, f〉 = 0, it can only
be concluded that f = 0 a.e. - meaning that {x : f(x) 6= 0} is a
set of µ-measure 0 (which might very well be non-empty).

Observe, however, that the set N = {f ∈ L2(X,B, µ) : f =
0 a.e.} is a vector subspace of L2(X,B, µ); now consider the
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quotient space L2(X,B, µ) = L2(X,B, µ)/N , a typical element
of which is thus an equivalence class of square-integrable func-
tions, where two functions are considered to be equivalent if they
agree outside a set of µ-measure 0.

For simplicity of notation, we shall just write L2(X) for
L2(X,B, µ), and we shall denote an element of L2(X) simply
by such symbols as f, g, etc., and think of these as actual func-
tions with the understanding that we shall identify two functions
which agree almost everywhere. The point of this exercise is that
equation 2.2.6 now does define a genuine inner product on L2(X);
most importantly, it is true that L2(X) is complete and is thus
a Hilbert space. 2

Exercise 2.2.2 (1) Suppose X is an inner product space. Let
X be a completion of X regarded as a normed space - see Exercise
1.5.5. Show that X is actually a Hilbert space. (Thus, every
inner product space has a Hilbert space completion.)

(2) Let X = C[0, 1] and define

〈f, g〉 =
∫ 1

0
f(x)g(x)dx .

Verify that this defines a genuine (positive-definite) inner prod-
uct on C[0, 1]. The completion of this inner product space is
a Hilbert space - see (1) above - which may be identified with
what was called L2([0, 1],B,m) in Example 2.2.1(4), where (B
is the σ-algebra of Borel sets in [0,1] and) m denotes the so-called
Lebesgue measure on [0,1].

In the sequel, we will have to deal with ‘uncountable sums’
repeatedly, so it will be prudent to gather together some facts
concerning such sums, which we shall soon do in some exercises.
These exercises will use the notion of nets, which we pause to
define and elucidate with some examples.

Definition 2.2.3 A directed set is a partially ordered set
(I,≤) which, - in addition to the usual requirements of reflexivity
(i ≤ i), antisymmetry (i ≤ j, j ≤ i ⇒ i = j) and transitivity
(i ≤ j, j ≤ k ⇒ i ≤ k), which have to be satisfied by any
partially ordered set - satisfies the following property:

∀ i, j ∈ I, ∃ k ∈ I such that i ≤ k, j ≤ k .
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A net in a set X is a family {xi : i ∈ I} of elements of X
which is indexed by some directed set I.

Example 2.2.4 (1) The motivating example for the definition
of a directed set is the set IN of natural numbers with the natural
ordering, and a net indexed by this directed set is nothing but a
sequence.

(2) Let S be any set and let F(S) denote the class of all
finite subsets of S; this is a directed set with respect to the order
defined by inclusion; thus, F1 ≤ F2 ⇔ F1 ⊆ F2. This will be
referred to as the directed set of finite subsets of S.

(3) Let X be any topological space, and let x ∈ X; let N (x)
denote the family of all open neighbourhoods of the point x; then
N (x) is directed by ‘reverse inclusion’; i.e, it is a directed set if
we define U ≤ V ⇔ V ⊆ U.

(4) If I and J are directed sets, then the Cartesian prod-
uct I × J is a directed set with respect to the ‘co-ordinate-wise
ordering’ defined by (i1, j1) ≤ (i2, j2) ⇔ i1 ≤ i2 and j1 ≤ j2. 2

The reason that nets were introduced in the first place was
to have analogues of sequences when dealing with more general
topological spaces than metric spaces. In fact, if X is a general
topological space, we say that a net {xi : i ∈ I} in X xonverges
to a point x if, for every open neighbourhood U of x, it is possible
to find an index i0 ∈ I with the property that xi ∈ U whenever
i0 ≤ i. (As with sequences, we shall, in the sequel, write i ≥ j
to mean j ≤ i in an abstract partially ordered set.)

Exercise 2.2.5 (1) If f : X → Y is a map of topological
spaces, and if x ∈ X, then show that f is continuous at x if
and only the net {f(xi) : i ∈ I} converges to f(x) in Y when-
ever {xi : i ∈ I} is a net which converges to x in X. (Hint: use
the directed set of Example 2.2.4(3).)

(2) Define what should be meant by saying that a net in a
metric space is a ‘Cauchy net’, and show that every convergent
net is a Cauchy net.

(3) Show that if X is a metric space which is complete -
meaning, of course, that Cauchy sequences in X converge - show
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that every Cauchy net in X also converges. (Hint: for each n,
pick in ∈ I such that i1 ≤ i2 ≤ · · · ≤ in ≤ · · ·, and such that
d(xi, xj) < 1

n
, whenever i, j ≥ in; now show that the net should

converge to the limit of the Cauchy sequence {xin}n∈IN.)
(4) Is the Cartesian product of two directed sets directed with

respect to the ‘dictionary ordering’?

We are now ready to discuss the problem of ‘uncountable
sums’. We do this in a series of exercises following the necessary
definition.

Definition 2.2.6 Suppose X is a normed space, and suppose
{xs : s ∈ S} is some indexed collection of vectors in X, whose
members may not all be distinct; thus, we are looking at a func-
tion S 3 s 7→ xs ∈ X. We shall, however, be a little sloppy
and simply call {xs : s ∈ S} a family of vectors in X - with the
understanding being that we are actually talking about a function
as above.

If F ∈ F(S) define x(F ) =
∑

s∈F xs - in the notation
of Example 2.2.4(2). We shall say that the family {xs : s ∈ S}
is unconditionally summable, and has the sum x, if the net
{x(F ) : F ∈ F(S)} converges to x in X. When this happens, we
shall write

x =
∑

s∈S

xs .

Exercise 2.2.7 (1) If X is a Banach space, then show that a
family {xs : s ∈ S} ⊂ X is unconditionally summable if and only
if, given any ε > 0, it is possible to find a finite subset F0 ⊂ S
such that ||∑s∈F xs|| < ε whenever F is a finite subset of S
which is disjoint from F0. (Hint: use Exercise 2.2.5(3).)

(2) If we take S to be the set IN of natural numbers, and if the
sequence {xn : n ∈ IN} ⊂ X is unconditionally summable, show
that if π is any permutation of IN, then the series

∑∞
n=1 xπ(n) is

convergent in X and the sum of this series is independent of the
permutation π. (This is the reason for the use of the adjective
‘unconditional’ in the preceding definition.)

(3) Suppose {ai : i ∈ S} ⊂ [0,∞); regard this family as a
subset of the complex normed space C; show that the following
conditions are equivalent:
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(i) this family is unconditionally summable;
(ii) A = sup {∑

s∈F as : F ∈ F(S)} < ∞, (in the notation of
Definition 2.2.6).

When these equivalent conditions are satisfied, show that;
(a) as 6= 0 for at most countably many s ∈ S; and
(b)

∑
s∈S as = A.

2.3 Orthonormal bases

Definition 2.3.1 A collection {ei : i ∈ I} in an inner product
space is said to be orthonormal if

〈ei, ej〉 = δij ∀ i, j ∈ I .

Thus, an orthonormal set is nothing but a set of unit vectors
which are pairwise orthogonal; here, and in the sequel, we say
that two vectors x, y in an inner product space are orthogonal
if 〈x, y〉 = 0, and we write x ⊥ y.

Example 2.3.2 (1) In `2
n, for 1 ≤ i ≤ n, let ei be the element

whose i-th co-ordinate is 1 and all other co-ordinates are 0; then
{e1, · · · , en} is an orthonormal set in `2

n.
(2) In `2, for 1 ≤ n < ∞, let ei be the element whose i-th

co-ordinate is 1 and all other co-ordinates are 0; then {en :
n = 1, 2, · · ·} is an orthonormal set in `2. More generally, if S is
any set, an entirely similar prescription leads to an orthonormal
set {es : s ∈ S} in `2(S).

(3) In the inner product space C[0, 1] - with inner product as
described in Exercise 2.2.2 - consider the family {en : n ∈ Z} de-
fined by en(x) = exp(2πinx), and show that this is an orthonor-
mal set; hence this is also an orthonormal set when regarded as
a subset of L2([0, 1],m) - see Exercise 2.2.2(2). 2

Proposition 2.3.3 Let {e1, e2, · · · , en} be an orthonormal set
in an inner product space X, and let x ∈ X be arbitrary. Then,

(i) if x =
∑n

i=1 αiei, αi ∈ C, then αi = 〈x, ei〉 ∀i;
(ii) (x − ∑n

i=1〈x, ei〉ei ) ⊥ ej ∀1 ≤ j ≤ n;
(iii) (Bessel’s inequality)

∑n
i=1 |〈x, ei〉|2 ≤ ||x||2.
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Proof: (i) If x is a linear combination of the ej’s as indicated,
compute 〈x, ei〉, and use the assumed orthonormality of the ej’s,
to deduce that αi = 〈x, ei〉.

(ii) This is an immediate consequence of (i).
(iii) Write y =

∑n
i=1〈x, ei〉ei, z = x − y, and deduce from

(two applications of) Exercise 2.1.3(3) that

||x||2 = ||y||2 + ||z||2
≥ ||y||2

=
n∑

i=1

|〈x, ei〉|2 .

2

We wish to remark on a few consequences of this proposition;
for one thing, (i) implies that an arbitrary orthonormal set is
linearly independent; for another, if we write

∨{ei : i ∈ I} for
the vector subspace spanned by {ei : i ∈ I} - i.e., this consists
of the set of linear combinations of the ei’s, and is the smallest
subspace containing {ei : i ∈ I} - it follows from (i) that we
know how to write any element of

∨{ei : i ∈ I} as a linear
combination of the ei’s.

We shall find the following notation convenient in the sequel:
if S is a subset of an inner product space X, let [S] denote the
smallest closed subspace containing S; it should be clear that this
could be described in either of the following equivalent ways: (a)
[S] is the intersection of all closed subspaces of X which contain
S, and (b) [S] =

∨
S. (Verify that (a) and (b) describe the

same set.)

Lemma 2.3.4 Suppose {ei : i ∈ I} is an orthonormal set in a
Hilbert space H. Then the following conditions on an arbitrary
family {αi : i ∈ I} of complex numbers are equivalent:

(i) the family {αiei : i ∈ I} is unconditionally summable in
H;

(ii) the family {|αi|2 : i ∈ I} is unconditionally summable
in C;

(iii) sup {∑
i∈F : |αi|2 : F ∈ F(I)} < ∞, where F(I) denote

the directed set of finite subsets of the set I;
(iv) there exists a vector x ∈ [{ei : i ∈ I}] such that

〈x, ei〉 = αi ∀i ∈ I.
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Proof: For each F ∈ F(I), let us write x(F ) =
∑

i∈F αiei .
We find, from Exercise 2.1.3(3) that

||x(F )||2 =
∑

i∈F

|αi|2 = A(F ) ; (say)

thus we find, from Exercise 2.2.7 (1), that the family {αiei : i ∈
I} (resp., {|αi|2 : i ∈ I}) is unconditionally summable in the
Hilbert space H (resp., C) if and only if, for each ε > 0, it is
possible to find F0 ∈ F(I) such that

||x(F )||2 = A(F ) < ε ∀ F ∈ F(I − F0) ;

this latter condition is easily seen to be equivalent to condition
(iii) of the lemma; thus, the conditions (i), (ii) and (iii) of the
lemma are indeed equivalent.

(i) ⇒ (iv) : Let x =
∑

i∈I αiei; in the preceding notation,
the net {x(F ) : F ∈ F(I)} converges to x in H. Hence also the
net {〈x(F ), ei〉 : F ∈ F(I)} converges to 〈x, ei〉, for each i ∈ I.
An appeal to Proposition 2.3.3 (1) completes the proof of this
implication.

(iv) ⇒ (iii) : This follows immediately from Bessel’s inequal-
ity. 2

We are now ready to establish the fundamental proposition
concerning orthonormal bases in a Hilbert space.

Proposition 2.3.5 The following conditions on an orthonor-
mal set {ei : i ∈ I} in a Hilbert space H are equivalent:

(i) {ei : i ∈ I} is a maximal orthonormal set, meaning that
it is not strictly contained in any other orthonormal set;

(ii) x ∈ H ⇒ x =
∑

i∈I〈x, ei〉ei;
(iii) x, y ∈ H ⇒ 〈x, y〉 =

∑
i∈I〈x, ei〉〈ei, y〉;

(iv) x ∈ H ⇒ ||x||2 =
∑

i∈I |〈x, ei〉|2.

Such an orthonormal set is called an orthonormal basis of
H.

Proof : (i) ⇒ (ii) : It is a consequence of Bessel’s inequality
and (the equivalence (iii) ⇔ (iv) of) the last lemma that there
exists a vector, call it x0 ∈ H, such that x0 =

∑
i∈I〈x, ei〉ei. If
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x 6= x0, and if we set f = 1
||x−x0|| (x− x0), then it is easy to see

that {ei : i ∈ I} ∪ {f} is an orthonormal set which contradicts
the assumed maximality of the given orthonormal set.

(ii) ⇒ (iii) : For F ∈ F(I), let x(F ) =
∑

i∈F 〈x, ei〉ei

and y(F ) =
∑

i∈F 〈y, ei〉ei, and note that, by the assumption
(ii) (and the meaning of the uncountable sum), and the assumed
orthonormality of the ei’s, we have

〈x, y〉 = lim
F
〈x(F ), y(F )〉

= lim
F

∑

i∈F

〈x, ei〉〈y, ei〉

=
∑

i∈F

〈x, ei〉〈ei, y〉 .

(iii) ⇒ (iv) : Put y = x.
(iv) ⇒ (i) : Suppose {ei : i ∈ I ∪ J} is an orthonormal

set and suppose J is not empty; then for j ∈ J , we find, in view
of (iv), that

||ej||2 =
∑

i∈I

|〈ej, ei〉|2 = 0 ,

which is impossible in an orthonormal set; hence it must be that
J is empty - i.e., the maximality assertion of (i) is indeed implied
by (iv). 2

Corollary 2.3.6 Any orthonormal set in a Hilbert space can
be ‘extended’ to an orthonormal basis - meaning that if {ei :
i ∈ I} is any orthonormal set in a Hilbert space H, then there
exists an orthonormal set {ei : i ∈ J} such that I ∩ J = ∅ and
{ei : i ∈ I ∪ J} is an orthonormal basis for H.

In particular, every Hilbert space admits an orthonormal ba-
sis.

Proof : This is an easy consequence of Zorn’s lemma. (For
the reader who is unfamiliar with Zorn’s lemma, there is a small
section - see §A.2 - in the appendix which discusses this very
useful variant of the Axiom of Choice.) 2

Remark 2.3.7 (1) It follows from Proposition 2.3.5 (ii) that
if {ei : i ∈ I} is an orthonormal basis for a Hilbert space H,
then H = [{ei : i ∈ I}]; conversely, it is true - and we shall
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soon prove this fact - that if an orthonormal set is total in the
sense that the vector subspace spanned by the set is dense in
the Hilbert space, then such an orthonormal set is necessarily an
orthonormal basis.

(2) Each of the three examples of an orthonormal set that is
given in Example 2.3.2, is in fact an orthonormal basis for the
underlying Hilbert space. This is obvious in cases (1) and (2).
As for (3), it is a consequence of the Stone-Weierstrass theorem
- see Exercise A.6.10(i) - that the vector subspace of finite linear
combinations of the exponential functions {exp(2πinx) : n ∈ Z}
is dense in {f ∈ C[0, 1] : f(0) = f(1)} (with respect to the
uniform norm - i.e., with respect to || · ||∞); in view of Exercise
2.2.2(2), it is not hard to conclude that this orthonormal set is
total in L2([0, 1],m) and hence, by remark (1) above, this is an
orthonormal basis for the Hilbert space in question.

Since exp(±2πinx) = cos(2πnx)± i sin(2πnx), and since it
is easily verified that cos(2πmx) ⊥ sin(2πnx) ∀m,n = 1, 2, · · ·,
we find easily that

{1 = e0} ∪ {
√

2cos(2πnx),
√

2sin(2πnx) : n = 1, 2, · · ·}

is also an orthonormal basis for L2([0, 1],m). (Reason: this is
orthonormal, and this sequence spans the same vector subspace
as is spanned by the exponential basis.) (Also, note that these
are real-valued functions, and that the inner product of two real-
valued functions in clearly real.) It follows, in particular, that if
f is any (real-valued) continuous function defined on [0,1], then
such a function admits the following Fourier series (with real
coefficients):

f(x) = a0 +
∞∑

n=1

(ancos(2πnx) + bnsin(2πnx) )

where the meaning of this series is that we have convergence of
the sequence of the partial sums to the function f with respect to
the norm in L2[0, 1]. Of course, the coefficients an, bn are given
by

a0 =
∫ 1

0
f(x)dx
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an = 2
∫ 1

0
f(x)cos(2πnx)dx , ∀ n > 0,

bn = 2
∫ 1

0
f(x)sin(2πnx)dx , ∀ n > 0

The theory of Fourier series was the precursor to most of
modern functional analysis; it is for this reason that if {ei : i ∈ I}
is any orthonormal basis of any Hilbert space, it is customary to
refer to the numbers 〈x, ei〉 as the Fourier coefficients of the
vector x with respect to the orthonormal basis {ei : i ∈ I}. 2

It is a fact that any two orthonormal bases for a Hilbert space
have the same cardinality, and this common cardinal number is
called the dimension of the Hilbert space; the proof of this
statement, in its full generality, requires facility with infinite
cardinal numbers and arguments of a transfinite nature; rather
than giving such a proof here, we adopt the following compro-
mise: we prove the general fact in the appendix - see §A.2 - and
discuss here only the cases that we shall be concerned with in
these notes.

We temporarily classify Hilbert spaces into three classes of in-
creasing complexity; the first class consists of finite-dimensional
ones; the second class consists of separable Hilbert spaces - see
Example 2.2.1(2) - which are not finite-dimensional; the third
class consists of non-separable Hilbert spaces.

The purpose of the following result is to state a satisfying
characterisation of separable Hilbert spaces.

Proposition 2.3.8 The following conditions on a Hilbert space
H are equivalent:

(i) H is separable;
(ii) H admits a countable orthonormal basis.

Proof : (i) ⇒ (ii) : Suppose D is a countable dense set in H
and suppose {ei : i ∈ I} is an orthonormal basis for H. Notice
that

i 6= j ⇒ ||ei − ej||2 = 2 . (2.3.7)

Since D is dense in H, we can, for each i ∈ I, find a vector
xi ∈ D such that ||xi − ei|| <

√
2

2
. The identity 2.3.7 shows that



52 CHAPTER 2. HILBERT SPACES

the map I 3 i 7→ xi ∈ D is necessarily 1-1; since D is countable,
we may conclude that so is I.

(ii) ⇒ (i) : If I is a countable (finite or infinite) set and if
{ei : i ∈ I} is an orthonormal basis for H, let D be the set
whose typical element is of the form

∑
j∈J αjej, where J is a

finite subset of I and αj are complex numbers whose real and
imaginary parts are both rational numbers; it can then be seen
that D is a countable dense set in H. 2

Thus, non-separable Hilbert spaces are those whose orthonor-
mal bases are uncountable. It is probably fair to say that any
true statement about a general non-separable Hilbert space can
be established as soon as one knows that the statement is valid
for separable Hilbert spaces; it is probably also fair to say that
almost all useful Hilbert spaces are separable. So, the reader may
safely assume that all Hilbert spaces in the sequel are separable;
among these, the finite-dimensional ones are, in a sense, ‘triv-
ial’, and one only need really worry about infinite-dimensional
separable Hilbert spaces.

We next establish a lemma which will lead to the important
result which is sometimes referred to as ‘the projection theorem’.

Lemma 2.3.9 Let M be a closed subspace of a Hilbert space H;
(thus M may be regarded as a Hilbert space in its own right;)
let {ei : i ∈ I} be any orthonormal basis for M, and let {ej :
j ∈ J} be any orthonormal set such that {ei : i ∈ I ∪ J} is an
orthonormal basis for H, where we assume that the index sets I
and J are disjoint. Then, the following conditions on a vector
x ∈ H are equivalent:

(i) x ⊥ y ∀ y ∈ M;
(ii) x =

∑
j∈J〈x, ej〉ej .

Proof : The implication (ii) ⇒ (i) is obvious. Conversely,
it follows easily from Lemma 2.3.4 and Bessel’s inequality that
the ‘series’

∑
i∈I〈x, ei〉ei and

∑
j∈J〈x, ej〉ej converge in H. Let

the sums of these ‘series’ be denoted by y and z respectively.
Further, since {ei : i ∈ I ∪ J} is an orthonormal basis for H, it
should be clear that x = y +z. Now, if x satisfies condition (i) of
the Lemma, it should be clear that y = 0 and that hence, x = z,
thereby completing the proof of the lemma. 2
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We now come to the basic notion of orthogonal comple-
ment.

Definition 2.3.10 The orthogonal complement S⊥ of a subset
S of a Hilbert space is defined by

S⊥ = {x ∈ H : x ⊥ y ∀ y ∈ S} .

Exercise 2.3.11 If S0 ⊂ S ⊂ H are arbitrary subsets, show
that

S⊥
0 ⊃ S⊥ =

(∨
S

)⊥
= ([S])⊥ .

Also show that S⊥ is always a closed subspace of H.

We are now ready for the basic fact concerning orthogonal
complements of closed subspaces.

Theorem 2.3.12 Let M be a closed subspace of a Hilbert space
H. Then,

(1) M⊥ is also a closed subspace;

(2)
(
M⊥

)⊥
= M;

(3) any vector x ∈ H can be uniquely expressed in the form
x = y + z, where y ∈ M, z ∈ M⊥;

(4) if x, y, z are as in (3) above, then the equation Px = y
defines a bounded operator P ∈ L(H) with the property that

||Px||2 = 〈Px, x〉 = ||x||2 − ||x − Px||2 , ∀x ∈ H .

Proof : (i) This is easy - see Exercise 2.3.11.
(ii) Let I, J, {ei : i ∈ I∪J} be as in Lemma 2.3.9. We assert,

to start with, that in this case, {ej : j ∈ J} is an orthonormal
basis for M⊥. Suppose this were not true; since this is clearly an
orthonormal set in M⊥, this would mean that {ej : j ∈ J} is not
a maximal orthonormal set in M⊥, which implies the existence
of a unit vector x ∈ M⊥ such that 〈x, ej〉 = 0 ∀ j ∈ J ; such an
x would satisfy condition (i) of Lemma 2.3.9, but not condition
(ii).

If we now revese the roles of M, {ei : i ∈ I} and M⊥, {ej :
j ∈ J}, we find from the conclusion of the preceding paragraph

that {ei : i ∈ I} is an orthonormal basis for
(
M⊥

)⊥
, from

which we may conclude the validity of (ii) of this theorem.
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(iii) The existence of y and z was demonstrated in the proof
of Lemma 2.3.9; as for uniqueness, note that if x = y1 + z1 is
another such decomposition, then we would have

y − y1 = z1 − z ∈ M∩M⊥ ;

but w ∈ M∩M⊥ ⇒ w ⊥ w ⇒ ||w||2 = 0 ⇒ w = 0.
(iv) The uniqueness of the decomposition in (iii) is easily seen

to iimply that P is a linear mapping of H into itself; further, in
the notation of (iii), we find (since y ⊥ z) that

||x||2 = ||y||2 + ||z||2 = ||Px||2 + ||x − Px||2 ;

this implies that ||Px|| ≤ ||x|| ∀ x ∈ H, and hence P ∈ L(H).
Also, since y ⊥ z, we find that

||Px||2 = ||y||2 = 〈y, y + z〉 = 〈Px, x〉 ,

thereby completing the proof of the theorem. 2

The following corollary to the above theorem justifies the
final assertion made in Remark 2.3.7(1).

Corollary 2.3.13 The following conditions on an orthonor-
mal set {ei : i ∈ I} in a Hilbert space H are equivalent:

(i) {ei : i ∈ I} is an orthonormal basis for H;
(ii) {ei : i ∈ I} is total in H - meaning, of course, that

H = [ {ei : i ∈ I} ].

Proof : As has already been observed in Remark 2.3.7(1),
the implication (i) ⇒ (ii) follows from Proposition 2.3.5(ii).

Conversely, suppose (i) is not satisfied; then {ei : i ∈ I} is
not a maximal orthonormal set in H; hence there exists a unit
vector x such that x ⊥ ei ∀i ∈ I; if we write M = [ {ei : i ∈
I} ], it follows easily that x ∈ M⊥, whence M⊥ 6= {0}; then, we
may deduce from Theorem 2.3.12(2) that M 6= H - i.e., (ii) is
also not satisfied. 2

Remark 2.3.14 The operator P ∈ L(H) constrcted in Theo-
rem 2.3.12(4) is referred to as the orthogonal projection onto
the closed subspace M. When it is necessary to indicate the rela-
tion between the subspace M and the projection P , we will write



2.3. ORTHONORMAL BASES 55

P = PM and M = ran P ; (note that M is indeed the range
of the operator P ;) some other facts about closed subspaces and
projections are spelt out in the following exercises.

2

Exercise 2.3.15 (1) Show that
(
S⊥

)⊥
= [S], for any subset

S ⊂ H.

(2) Let M be a closed subspace of H, and let P = PM;

(a) show that PM⊥ = 1 − PM , where we write 1 for the
identity operator on H (the reason being that this is the multi-
plicative identity of the algebra L(H));

(b) Let x ∈ H; the following conditions are equivalent:

(i) x ∈ M;

(ii) x ∈ ran P (= PH);

(iii) Px = x;

(iv) ||Px|| = ||x||.
(c) show that M⊥ = ker P = {x ∈ H : Px = 0}.

(3) Let M and N be closed subspaces of H, and let P =
PM, Q = PN ; show that the following conditions are equivalent:

(i) N ⊂ M;

(ii) PQ = Q;

(i)′ M⊥ ⊂ N⊥;

(ii)′ (1 − Q)(1 − P ) = 1 − P ;

(iii) QP = Q.

(4) With M,N , P,Q as in (3) above, show that the following
conditions are equivalent:

(i) M ⊥ N - i.e., N ⊂ M⊥;

(ii) PQ = 0;

(iii) QP = 0.

(5) When the equivalent conditions of (4) are met, show that:

(a) [M∪N ] = M + N = {x + y : x ∈ M, y ∈ N}; and

(b) (P + Q) is the projection onto the subspace M + N .

(c) more generally, if {Mi : 1 ≤ i ≤ n} is a family of closed
subspaces of H which are pairwise orthogonal, show that their
‘vector sum’ defined by

∑n
i=1 Mi = {∑n

i=1 xi : xi ∈ Mi ∀i} is
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a closed subspace and the projection onto this subspace is given
by

∑n
i=1 PMi

.

If M1, · · · ,Mn are pairwise orthogonal closed subspaces -
see Exercise 2.3.15(5)(c) above - and if M =

∑n
i=1 Mi, we say

that M is the direct sum of the closed subspaces Mi, 1 ≤ i ≤ n,
and we write

M = ⊕∞
n=1 Mi ; (2.3.8)

conversely, whenever we use the above symbol, it will always
be tacitly assumed that the Mi’s are closed subspaces which are
pairwise orthogonal and that M is the (closed) subspace spanned
by them.

2.4 The Adjoint operator

We begin this section with an identification of the bounded linear
functionals - i.e., the elements of the Banach dual space H∗ - of
a Hilbert space.

Theorem 2.4.1 (Riesz lemma)
Let H be a Hilbert space.
(a) If y ∈ H, the equation

φy(x) = 〈x, y〉 (2.4.9)

defines a bounded linear functional φy ∈ H∗; and furthermore,
||φy||H∗ = ||y||H .

(b) Conversely, if φ ∈ H∗, there exists a unique element y ∈
H such that φ = φy.

Proof : (a) Linearity of the map φy is obvious, while the
Cauchy-Schwarz inequality shows that φy is bounded and that
||φy|| ≤ ||y||. Since φy(y) = ||y||2, it easily follows that we
actually have equality in the preceding inequality.

(b) Suppose conversely that φ ∈ H∗. Let M = ker φ. Since
||φy1 − φy2|| = ||y1 − y2|| ∀ y1, y2 ∈ H, the uniqueness assertion
is obvious; we only have to prove existence. Since existence is
clear if φ = 0, we may assume that φ 6= 0, or i.e., that M 6= H,
or equivalently that M⊥ 6= 0.
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Notice that φ maps M⊥ 1-1 into C; since M⊥ 6= 0, it follows
that M⊥ is one-dimensional. Let z be a unit vector in M⊥. The
y that we seek - assuming it exists - must clearly be an element
of M⊥ (since φ(x) = 0 ∀x ∈ M). Thus, we must have y = αz
for some uniquely determined scalar 0 6= α ∈ C. With y defined
thus, we find that φy(z) = α; hence we must have α = φ(z).
Since any element in H is uniquely expressible in the form x+γz
for some x ∈ M, γ ∈ C, we find easily that we do indeed have
φ = φ

φ(z)z. 2

It must be noted that the mapping y 7→ φy is not quite an
isometric isomorphism of Banach spaces; it is not a linear map,
since φαy = αφy; it is only ‘conjugate-linear’. The Banach
space H∗ is actually a Hilbert space if we define

〈φy, φz〉 = 〈z, y〉 ;

that this equation satisfies the requirements of an inner product
are an easy consequence of the Riesz lemma (and the already
stated conjugate-linearity of the mapping y 7→ φy); that this
inner product actually gives rise to the norm on H∗ is a conse-
quence of the fact that ||y|| = ||φy||.

Exercise 2.4.2 (1) Where is the completeness of H used in the
proof of the Riesz lemma; more precisely, what can you say about
X∗ if you only know that X is a (not necessarily complete) inner
product space? (Hint: Consider the completion of X.)

(2) If T ∈ L(H,K), where H,K are Hilbert spaces, prove that

||T || = sup{|〈Tx, y〉| : x ∈ H, y ∈ K, ||x|| ≤ 1, ||y|| ≤ 1} .

(3) If T ∈ L(H) and if 〈Tx, x〉 = 0 ∀ x ∈ H, show that T =
0. (Hint: Use the Polarisation identity - see Remark 2.1.5(2).
Notice that this proof relies on the fact that the underlying field
of scalars is C - since the Polarisation identity does. In fact,
the content of this exercise is false for ‘real’ Hilbert spaces; for
instance, consider rotation by 90o in R2.)

We now come to a very useful consequence of the Riesz rep-
resentation theorem; in order to state this result, we need some
terminology.
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Definition 2.4.3 Let X,Y be inner product spaces.
(a) A mapping B : X × Y → C is said to be a sesquilinear

form on X × Y if it satisfies the following conditions:
(i) for each fixed y ∈ Y , the mapping X 3 x 7→ B(x, y) ∈ C

is linear; and
(ii) for each fixed x ∈ X, the mapping Y 3 y 7→ B(x, y) ∈ C

is conjugate-linear;
in other words, for arbitrary x1, x2 ∈ X, y1, y2 ∈ Y and

α1, α2, β1, β2 ∈ C, we have

B




2∑

i=1

αixi,
2∑

j=1

βjyj


 =

2∑

i,j=1

αiβjB(xi, yj) .

(b) a sesquilinear form B : X×Y → C is said to be bounded
if there exists a finite constant 0 < K < ∞ such that

|B(x, y)| ≤ K · ||x|| · ||y|| , ∀ x ∈ X, y ∈ Y.

Examples of bounded sesquilinear maps are obtined from
bounded linear operators, thus: if T ∈ L(X,Y ), then the as-
signment

(x, y) 7→ 〈Tx, y〉
defines a bounded sesquilinear map. The useful fact, which we
now establish, is that for Hilbert spaces, this is the only way to
construct bounded sesquilinear maps.

Proposition 2.4.4 Suppose H and K are Hilbert spaces. If
B : H×K → C is a bounded sesquilinear map, then there exists
a unique bounded operator T : H → K such that

B(x, y) = 〈Tx, y〉 , ∀x ∈ H, y ∈ K .

Proof : Temporarily fix x ∈ H. The hypothesis implies that
the map

K 3 y 7→ B(x, y)

defines a bounded linear functional on K with norm at most
K||x||, where K and B are related as in Definition 2.4.3(b).
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Deduce from the Riesz lemma that there exists a unique vector
in K - call it Tx - such that

B(x, y) = 〈y, Tx〉 ∀ y ∈ K
and that, further, ||Tx|| ≤ K||x||.

The previous equation unambiguously defines a mapping T :
H → K which is seen to be linear (as a consequence of the
uniqueness assertion in the Riesz lemma). The final inequality
of the previous paragraph guarantees the boundedness of T .

Finally, the uniqueness of T is a consequence of Exercise
2.4.2. 2

As in Exercise 2.4.2(1), the reader is urged to see to what
extent the completeness of H and K are needed in the hypothesis
of the preceding proposition. (In particular, she should be able
to verify that the completeness of H is unnecessary.)

Corollary 2.4.5 Let T ∈ L(H,K), where H,K are Hilbert
spaces. Then there exists a unique bounded operator T ∗ ∈
L(K,H) such that

〈T ∗y, x〉 = 〈y, Tx〉 ∀ x ∈ H, y ∈ K . (2.4.10)

Proof : Consider the (obviously) bounded sesquilinear form
B : K × H → C defined by B(y, x) = 〈y, Tx〉 and appeal to
Proposition 2.4.4 to lay hands on the operator T ∗. 2

Definition 2.4.6 If T, T ∗ are as in Corollary 2.4.5, the oper-
ator T ∗ is called the adjoint of the operator T .

The next proposition lists various elementary properties of
the process of adjunction - i.e., the passage from an operator to
its adjoint.

Proposition 2.4.7 Let H1,H2,H3 be Hilbert spaces, and sup-
pose T, T1 ∈ L(H1,H2), S ∈ L(H2,H3) and suppose α ∈ C.
Then,

(a) (αT + T1)
∗ = αT ∗ + T ∗

1 ;
(b) (T ∗)∗ = T ;
(c) 1∗H = 1H, where 1H denotes the identity operator on H;
(d) (ST )∗ = T ∗S∗;
(e) ||T || = ||T ∗||; and
(f) ||T ||2 = ||T ∗T ||.
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Proof : Most of these assertions are verified by using the
fact that the adjoint operator T ∗ is characterised by the equation
2.4.10.

(a) For arbitrary x ∈ H1, y ∈ H2, note that

〈y, (αT + T1)x〉 = α〈y, Tx〉 + 〈y, T1x〉
= α〈T ∗y, x〉 + 〈T ∗

1 y, x〉
= 〈(αT ∗ + T ∗

1 )y, x〉

and deduce that (αT + T1)
∗ = αT ∗ + T ∗

1 .
The proofs of (b), (c) and (d) are entirely similar to the one

given above for (i) and the reader is urged to verify the details.
(e) This is an immediate consequence of equation 2.4.10 and

(two applications, once to T and once to T ∗, of) Exercise 2.4.2(2).
(f) If x ∈ H1, note that

||Tx||2 = 〈Tx, Tx〉
= 〈T ∗Tx, x〉
≤ ||T ∗Tx|| · ||x|| ( by Cauchy-Schwarz)

≤ ||T ∗T || · ||x||2 ;

since x was arbitrary, deduce that ||T ||2 ≤ ||T ∗T ||. The reverse
inequality follows at once from (e) above and Exercise 1.3.4(3).

2

In the remainder of this section, we shall discuss some im-
portant classes of bounded operators.

Definition 2.4.8 An operator T ∈ L(H), where H is a Hilbert
space, is said to be self-adjoint if T = T ∗.

Proposition 2.4.9 Let T ∈ L(H), where H is a Hilbert space.
(a) T is self-adjoint if and only if 〈Tx, x〉 ∈ R ∀x ∈ H;
(b) there exists a unique pair of self-adjoint operators Ti, i =

1, 2 such that T = T1 + iT2; this decomposition is given by
T1 = T+T ∗

2
, T2 = T−T ∗

2i
, and it is customary to refer to

T1 and T2 as the real and imaginary parts of T and to write
Re T = T1, Im T = T2.

Proof : (a) If T ∈ L(H), we see that, for arbitrary x,

〈Tx, x〉 = 〈x, T ∗x〉 = 〈T ∗x, x〉 ,
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and consequently, 〈Tx, x〉 ∈ R ⇔ 〈Tx, x〉 = 〈T ∗x, x〉 .
Since T is determined - see Exercise 2.4.2(3) - by its quadratic

form (i.e., the map H 3 x 7→ 〈Tx, x〉 ∈ C), the proof of (a) is
complete.

(b) It is clear that the equations

Re T =
T + T ∗

2
, Im T =

T − T ∗

2i

define self-adjoint operators such that T = Re T + i Im T .
Conversely, if T = T1+iT2 is such a decomposition, then note

that T ∗ = T1− iT2 and conclude that T1 = Re T, T2 = Im T .
2

Notice, in view of (a) and (b) of the preceding proposition,
that the quadratic forms corresponding to the real and imaginary
parts of an operator are the real and imaginary parts of the
quadratic form of that operator.

Self-adjoint operators are the building blocks of all operators,
and they are by far the most important subclass of all bounded
operators on a Hilbert space. However, in order to see their
structure and usefulness, we will have to wait until after we have
proved the fundamental spectral theorem - which will allow us to
handle self-adjoint operators with exactly the same facility that
we have when handling real-valued functions.

Nevertheless, we have already seen one special class of self-
adjoint operators, as shown by the next result.

Proposition 2.4.10 Let P ∈ L(H). Then the following condi-
tions are equivalent:

(i) P = PM is the orthogonal projection onto some closed
subspace M ⊂ H;

(ii) P = P 2 = P ∗.

Proof : (i) ⇒ (ii) : If P = PM, the definition of an or-
thogonal projection shows that P = P 2; the self-adjointness of
P follows from Theorem 2.3.12(4) and Proposition 2.4.9(a).

(ii) ⇒ (i) : Suppose (ii) is satisfied; let M = ran P , and
note that

x ∈ M ⇒ ∃y ∈ H such that x = Py

⇒ Px = P 2y = Py = x ; (2.4.11)
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on the other hand, note that

y ∈ M⊥ ⇔ 〈y, Pz〉 = 0 ∀z ∈ H
⇔ 〈Py, z〉 = 0 ∀z ∈ H (since P = P ∗)

⇔ Py = 0 ; (2.4.12)

hence, if z ∈ H and x = PMz, y = PM⊥z, we find from equations
2.4.11 and 2.4.12 that Pz = Px + Py = x = PMz. 2

The next two propositions identify two important classes of
operators between Hilbert spaces.

Proposition 2.4.11 Let H,K be Hilbert spaces; the following
conditions on an operator U ∈ L(H,K) are equivalent:

(i) if {ei : i ∈ I} is any orthonormal set in H, then also
{Uei : i ∈ I} is an orthonormal set in K;

(ii) there exists an orthonormal basis {ei : i ∈ I} for H such
that {Uei : i ∈ I} is an orthonormal set in K;

(iii) 〈Ux, Uy〉 = 〈x, y〉 ∀ x, y ∈ H;
(iv) ||Ux|| = ||x|| ∀ x ∈ H;
(v) U∗U = 1H.

An operator satisfying these equivalent conditions is called an
isometry.

Proof : (i) ⇒ (ii) : There exists an orthonormal basis for
H.

(ii) ⇒ (iii) : If x, y ∈ H and if {ei : i ∈ I} is as in (ii), then

〈Ux, Uy〉 = 〈U
(∑

i∈I

〈x, ei〉ei

)
, U


∑

j∈I

〈y, ej〉ej


 〉

=
∑

i,j∈I

〈x, ei〉〈ej, y〉〈Uei, Uej〉

=
∑

i∈I

〈x, ei〉〈ei, y〉

= 〈x, y〉 .

(iii) ⇒ (iv) : Put y = x.
(iv) ⇒ (v) : If x ∈ H, note that

〈U∗Ux, x〉 = ||Ux||2 = ||x||2 = 〈1Hx, x〉 ,
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and appeal to the fact that a bounded operator is determined
by its quadratic form - see Exercise 2.4.2(3).

(v) ⇒ (i) : If {ei : i ∈ I} is any orthonormal set in H, then

〈Uei, Uej〉 = 〈U∗Uei, ej〉 = 〈ei, ej〉 = δij .

2

Proposition 2.4.12 The following conditions on an isometry
U ∈ L(H,K) are equivalent:

(i) if {ei : i ∈ I} is any orthonormal basis for H, then {Uei :
i ∈ I} is an orthonormal basis for K;

(ii) there exists an orthonormal set {ei : i ∈ I} in H such
that {Uei : i ∈ I} is an orthonormal basis for K;

(iii) UU∗ = 1K;
(iv) U is invertible;
(v) U maps H onto K.

An isometry which satisfies the above equivalent conditions is
said to be unitary.

Proof : (i) ⇒ (ii) : Obvious.
(ii) ⇒ (iii) : If {ei : i ∈ I} is as in (ii), and if x ∈ K, observe

that

UU∗x = UU∗(
∑

i∈I

〈x, Uei〉Uei)

=
∑

i∈I

〈x, Uei〉UU∗Uei

=
∑

i∈I

〈x, Uei〉Uei (since U is an isometry)

= x .

(iii) ⇒ (iv) : The assumption that U is an isometry, in con-
junction with the hypothesis (iii), says that U∗ = U−1.

(iv) ⇒ (v) : Obvious.
(v) ⇒ (i) : If {ei : i ∈ I} is an orthonormal basis for H, then

{Uei : i ∈ I} is an orthonormal set in H, since U is isometric.
Now, if z ∈ K, pick x ∈ H such that z = Ux, and observe that

||z||2 = ||Ux||2



64 CHAPTER 2. HILBERT SPACES

= ||x||2
=

∑

i∈I

|〈x, ei〉|2

=
∑

i∈I

|〈z, Uei〉|2 ,

and since z was arbitrary, this shows that {Uei : i ∈ I} is an
orthonormal basis for K. 2

Thus, unitary operators are the natural isomorphisms in the
context of Hilbert spaces. The collection of unitary operators
from H to K will be denoted by U(H,K); when H = K, we shall
write U(H) = U(H,H). We list some elementary properties of
unitary and isometric operators in the next exercise.

Exercise 2.4.13 (1) Suppose that H and K are Hilbert spaces
and suppose {ei : i ∈ I} (resp., {fi : i ∈ I}) is an orthonormal
basis (resp., orthonormal set) in H (resp., K), for some index
set I. Show that:

(a) dim H ≤ dim K; and
(b) there exists a unique isometry U ∈ L(H,K) such that

Uei = fi ∀i ∈ I.

(2) Let H and K be Hilbert spaces. Show that:
(a) there exists an isometry U ∈ L(H,K) if and only if dim

H ≤ dim K;
(b) there exists a unitary U ∈ L(H,K) if and only if dim H

= dim K.

(3) Show that U(H) is a group under multiplication, which
is a (norm-) closed subset of the Banach space L(H).

(4) Suppose U ∈ U(H,K); show that the equation

L(H) 3 T
ad U7→ UTU∗ ∈ L(K) (2.4.13)

defines a mapping (ad U) : L(H) → L(K) which is an ‘isometric
isomorphism of Banach *-algebras’, meaning that:

(a) ad U is an isometric isomorphism of Banach spaces:
i.e., ad U is a linear mapping which is 1-1, onto, and is norm-
preserving; (Hint: verify that it is linear and preserves norm and
that an inverse is given by ad U∗.)
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(b) ad U is a product-preserving map between Banach alge-
bras; i.e., (ad U)(T1T2) = ( (ad U)(T1) )( ad U)(T2) ), for all
T1, T2 ∈ L(H);

(c) ad U is a *-preserving map between C∗-algebras; i.e.,
( (ad U)(T ) )∗ = (ad U)(T ∗) for all T ∈ L(H).

(5) Show that the map U 7→ (ad U) is a homomor-
phism from the group U(H) into the group Aut L(H) of all auto-
morphisms (= isometric isomorphisms of the Banach *-algebra
L(H) onto itself); further, verify that if Un → U in U(H,K),
then (ad Un)(T ) → (ad U)(T ) in L(K) for all T ∈ L(H).

A unitary operator between Hilbert spaces should be viewed
as ‘implementing an inessential variation’; thus, if U ∈ U(H,K)
and if T ∈ L(H), then the operator UTU∗ ∈ L(K) should be
thought of as being ‘essentially the same as T ’, except that it
is probably being viewed from a different observer’s perspective.
All this is made precise in the following definition.

Definition 2.4.14 Two operators T ∈ L(H) and S ∈ L(K)
(on two possibly different Hilbert spaces) are said to be unitarily
equivalent if there exists a unitary operator U ∈ U(H,K) such
that S = UTU∗.

We conclude this section with a discussion of some examples
of isometric operators, which will illustrate the preceding notions
quite nicely.

Example 2.4.15 To start with, notice that if H is a finite-
dimensional Hilbert space, then an isometry U ∈ L(H) is nec-
essarily unitary. (Prove this!) Hence, the notion of non-unitary
isometries of a Hilbert space into itself makes sense only in
infinite-dimensional Hilbert spaces. We discuss some examples
of a non-unitary isometry in a separable Hilbert space.

(1) Let H = `2 (= `2(IN) ). Let {en : n ∈ IN} denote the
standard orthonormal basis of H (consisting of sequences with a
1 in one co-ordinate and 0 in all other co-ordinates). In view of
Exercise 2.4.13(1)(b), there exists a unique isometry S ∈ L(H)
such that Sen = en+1 ∀n ∈ IN; equivalently, we have

S(α1, α2, · · ·) = (0, α1, α2, · · ·).
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For obvious reasons, this operator is referred to as a ‘shift’ op-
erator; in order to distinguish it from a near realtive, we shall
refer to it as the unilateral shift. It should be clear that S is
an isometry whose range is the proper subspace M = {e1}⊥,
and consequently, S is not unitary.

A minor computation shows that the adjoint S∗ is the ‘back-
ward shift’:

S∗(α1, α2, · · ·) = (α2, α3, · · ·)
and that SS∗ = PM (which is another way of seeing that S is
not unitary). Thus S∗ is a left-inverse, but not a right-inverse,
for S. (This, of course, is typical of a non-unitary isometry.)

Further - as is true for any non-unitary isometry - each power
Sn, n ≥ 1, is a non-unitary isometry.

(2) The ‘near-relative’ of the unilateral shift, which was re-
ferred to earlier, is the so-called bilateral shift, which is defined
as follows: consider the Hilbert space H = `2(Z) with its stan-
dard basis {en : n ∈ Z} for H. The bilateral shift is the unique
isometry B on H such that Ben = en+1 ∀n ∈ Z. This time, how-
ever, since B maps the standard basis onto itself, we find that
B is unitary. The reason for the terminology ‘bilateral shift’
is this: denote a typical element of H as a ‘bilateral’ sequence
(or a sequence extending to infinity in both directions); in or-
der to keep things straight, let us underline the 0-th co-ordinate
of such a sequence; thus, if x =

∑∞
n=−∞ αnen, then we write

x = (· · · , α−1, α0, α1, · · ·); we then find that

B(· · · , α−1, α0, α1, · · ·) = (· · · , α−2, α−1, α0, · · ·) .

(3) Consider the Hilbert space H = L2([0, 1],m) (where, of
course, m denotes ‘Lebesgue measure’) - see Remark 2.3.7(2) -
and let {en : n ∈ Z denote the exponential basis of this Hilbert
space. Notice that |en(x)| is identically equal to 1, and conclude
that the operator defined by

(Wf)(x) = e1(x)f(x) ∀f ∈ H

is necessarily isometric; it should be clear that this is actually
unitary, since its inverse is given by the operator of multiplication
by e−1.
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It is easily seen that Wen = en+1 ∀n ∈ Z. If U : `2(Z) →
H is the unique unitary operator such that U maps the n-th
standard basis vector to en, for each n ∈ Z, it follows easily that
W = UBU∗. Thus, the operator W of this example is unitarily
equivalent to the bilateral shift (of the previous example).

More is true; let M denote the closed subspace M = [{en :
n ≥ 1}]; then M is invariant under W - meaning that W (M) ⊂
M; and it should be clear that the restricted operator W |M ∈
L(M) is unitarily equivalent to the unilateral shift.

(4) More generally, if (X,B, µ) is any measure space - see the
appendix (§A.5) - and if φ : X → C is any measurable function
such that |φ| = 1 µ − a.e., then the equation

Mφf = φf , f ∈ L2(X,B, µ)

defines a unitary operator on L2(X,B, µ) (with inverse given by
Mφ). 2

2.5 Strong and weak convergence

This section is devoted to a discussion of two (vector space)
topologies on the space L(H,K) of bounded operators between
Hilbert spaces.

Definition 2.5.1 (1) For each x ∈ H, consider the seminorm
px defined on L(H,K) by px(T ) = ||Tx||; the strong operator
topology is the topology on L(H,K) defined by the family {px :
x ∈ H} of seminorms (see Remark 1.6.5).

(2) For each x ∈ H, y ∈ K, consider the seminorm px,y de-
fined on L(H,K) by px,y(T ) = |〈Tx, y〉|; the weak opera-
tor topology is the topology on L(H,K) defined by the family
{px,y : x ∈ H, y ∈ K} of seminorms (see Remark 1.6.5).

Thus, it should be clear that if {Ti : i ∈ I} is a net in
L(H,K), then the net converges to T ∈ L(H,K) with respect
to the strong operator topology precisely when ||Tix − Tx|| →
0 ∀x ∈ H, i.e., precisely when the net {Tix : i ∈ I} converges
to Tx with respect to the strong (i.e., norm) topology on K, for
every x ∈ H. Likewise, the net {Ti} converges to T with respect
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to the weak operator topology if and only if 〈(Ti − T )x, y〉 → 0
for all x ∈ H, y ∈ K, i.e., if and only if the net {Tix} converges
to Tx with respect to the weak topology on K, for every x ∈ H.

At the risk of abusing our normal convention for use of the
expressions ‘strong convergence’ and ‘weak convergence’ (which
we adopted earlier for general Banach spaces), in spite of the fact
that L(H,K) is itself a Banach space, we adopt the following
convention for operators: we shall say that a net {Ti} converges
to T in L(H,K) (i) uniformly, (ii) strongly, or (iii) weakly, if it is
the case that we have convergence with respect to the (i) norm
topology, (ii) strong operator topology, or (iii) weak operator
topology, respectively, on L(H,K).

Before discussing some examples, we shall establish a simple
and useful lemma for deciding strong or weak convergence of a
net of operators. (Since the strong and weak operator topologies
are vector space topologies, a net {Ti} converges strongly or
weakly to T precisely when {Ti−T} converges strongly or weakly
to 0; hence we will state our criteria for nets which converge to
0.)

Lemma 2.5.2 Suppose {Ti : i ∈ I} is a net in L(H,K) which is
uniformly bounded - i.e., sup{||Ti|| : i ∈ I} = K < ∞. Let S1

(resp., S2) be a total set in H (resp., K) - i.e., the set of finite
linear combinations of elements in S1 (resp., S2) is dense in H
(resp., K).

(a) {Ti} converges strongly to 0 if and only if limi||Tix|| = 0
for all x ∈ S1; and

(b) {Ti} converges weakly to 0 if and only if limi〈Tix, y〉 = 0
for all x ∈ S1, y ∈ S2.

Proof : Since the proofs of the two assertions are almost
identical, we only prove one of them, namely (b). Let x ∈ H, y ∈
K be arbitrary, and suppose ε > 0 is given. We assume, without
loss of generality, that ε < 1. Let M = 1+max{||x||, ||y||}, and
K = 1 + supi||Ti||; (the 1 in these two definitions is for the sole
reason of ensuring that K and M are not zero, and we need not
worry about dividing by zero).

The assumed totality of the sets Si, i = 1, 2, implies the exis-
tence of vectors x′ =

∑m
k=1 αkxk, y

′ =
∑n

j=1 βjyj, with the prop-
erty that xk ∈ S1, yj ∈ S2 ∀k, j and such that ||x − x′|| < ε

3KM
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and ||y − y′|| < ε
3KM

. Since ε < 1 ≤ K,M , it follows that
||x′|| ≤ ||x|| + 1 ≤ M ; similarly, also ||y′|| ≤ M . Let N =
1 + max{|αk|, |βj| : 1 ≤ k ≤ m, 1 ≤ j ≤ n}.

Since I is a directed set, the assumption that limi〈Tixk, yj〉 =
0 ∀j, k implies that we can find an index i0 ∈ I with the property
that |〈Tixk, yj〉| < ε

3N2mn
whenever i ≥ i0, 1 ≤ k ≤ m, 1 ≤ j ≤ n.

It then follows that for all i ≥ i0, we have:

|〈Tix, y〉| ≤ |〈Tix, y − y′〉| + |〈Ti(x − x′), y′〉| + |〈Tix
′, y′〉|

≤ 2KM
ε

3KM
+

m∑

k=1

n∑

j=1

|αkβj| · |〈Tixk, yj〉|

≤ 2ε

3
+ N2mn

ε

3N2mn
= ε ,

and the proof is complete. 2

Example 2.5.3 (1) Let S ∈ L(`2) be the unilateral shift - see
Example 2.4.15(1). Then the sequence {(S∗)n : n = 1, 2, · · ·}
converges strongly, and hence also weakly, to 0. (Reason: the
standard basis {em : m ∈ IN} is total in `2, the sequence {(S∗)n :
n = 1, 2, · · ·} is uniformly bounded, and (S∗)nem = 0 ∀n > m.
On the other hand, {Sn = ((S∗)n)∗ : n = 1, 2, · · ·} is a sequence
of isometries, and hence certainly does not converge strongly to
0. Thus, the adjoint operation is not ‘strongly continuous’.

(2) On the other hand, it is obvious from the definition that
if {Ti : i ∈ I} is a net which converges weakly to T in L(H,K),
then the net {T ∗

i : i ∈ I} converges weakly to T ∗ in L(K,H).
In particular, conclude from (1) above that both the sequences
{(S∗)n : n = 1, 2, · · ·} and {Sn : n = 1, 2, · · ·} converge weakly to
0, but the sequence {(S∗)nSn : n = 1, 2, · · ·} (which is the con-
stant sequence given by the identity operator) does not converge
to 0; thus, multiplication is not ‘jointly weakly continuous’.

(3) Multiplication is ‘separately strongly (resp., weakly) con-
tinuous’ - i.e., if {Si} is a net which converges strongly (resp.,
weakly) to S in L(H,K), and if A ∈ L(K,K1), B ∈ L(H1,H),
then the net {ASiB} converges strongly (resp., weakly) to ASB
in L(H1,K1). (For instance, the ‘weak’ assertion follows from
the equation 〈ASiBx, y〉 = 〈Si(Bx), A∗y〉.)
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(4) Multiplication is ‘jointly strongly continuous’ if we restrict
ourselves to uniformly bounded nets - i.e., if {Si : i ∈ I} (resp.,
{Tj : j ∈ J}) is a uniformly bounded net in L(H1,H2) (resp.,
L(H2,H3) which converges strongly to S (resp., T ), and if K =
I ×J is the directed set obtained by coordinate-wise ordering as
in Example 2.2.4(4), then the net {Tj ◦Si : (i, j) ∈ K} converges
strongly to T ◦ S. (Reason: assume, by translating if necessary,
that S = 0 and T = 0; (the assertion in (3) above is needed to
justify this reduction); if x ∈ H1 and if ε > 0, first pick i0 ∈ I
such that ||Six|| < ε

M
, ∀i ≥ i0, where M = 1 + supj||Tj||; then

pick an arbitrary j0 ∈ J , and note that if (i, j) ≥ (i0, j0) in K,
then ||TjSix|| ≤ M ||Six|| < ε.)

(5) The purpose of the following example is to show that the
asserted joint strong continuity of multiplication is false if we
drop the restriction of uniform boundedness. Let N = {N ∈
L(H) : N2 = 0}, where H is infinite-dimensional.

We assert that N is strongly dense in L(H). To see this, note
that sets of the form {T ∈ L(H) : ||(T−T0)xi|| < ε, ∀1 ≤ i ≤ n},
where T0 ∈ L(H), {x1, · · · , xn} is a linearly independent set in
H, n ∈ IN and ε > 0, constitute a base for the strong oper-
ator topology on L(H). Hence, in order to prove the asser-
tion, we need to check that every set of the above form con-
tains elements of N . For this, pick vectors y1, · · · , yn such that
{x1, · · · , xn, y1, · · · , yn} is a linearly independent set in H , and
such that ||T0xi − yi|| < ε ∀i; now consider the operator T
defined thus: Txi = yi, T yi = 0 ∀i and Tz = 0 whenever
z ⊥ {x1, · · · , xn, y1, · · · , yn}; it is seen that T ∈ N and that
T belongs to the open set exhibited above.

Since N 6= L(H), the assertion (of the last paragraph) shows
three things: (a) multiplication is not jointly strongly continu-
ous; (b) if we choose a net in N which converges strongly to an
operator which is not in N , then such a net is not uniformly
bounded (because of (4) above); thus, strongly convergent nets
need not be uniformly bounded; and (c) since a strongly con-
vergent sequence is necessarily uniformly bounded - see Exercise
1.5.17(3) - the strong operator topology cannot be described with
‘just sequences’. 2
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We wish now to make certain statements concerning (arbi-
trary) direct sums.

Proposition 2.5.4 Suppose {Mi : i ∈ I} is a family of closed
subspaces of a Hilbert space H, which are pairwise orthogonal -
i.e., Mi ⊥ Mj for i 6= j. Let Pi = PMi

denote the orthogonal
projection onto Mi. Then the family {Pi : i ∈ I} is uncondi-
tionally summable, with respect to the strong (and hence also the
weak) operator topology, with sum given by P = PM, where M
is the closed subspace spanned by ∪i∈IMi.

Conversely, suppose {Mi : i ∈ I} is a family of closed sub-
spaces, suppose Pi = PMi

, suppose the family {Pi : i ∈ I} is
unconditionally summable, with respect to the weak topology; and
suppose the sum P is an orthogonal projection; then it is nec-
essarily the case that Mi ⊥ Mj for i 6= j, and we are in the
situation described by the previous paragraph.

Proof : For any finite subset F ⊂ I, let P (F ) =
∑

i∈F Pi, and
deduce from Exercise 2.3.15(5)(c) that P (F ) is the orthogonal
projection onto the subspace M(F ) =

∑
i∈F Mi.

Consider the mapping F(I) 3 F 7→ P (F ) ∈ L(H) - where
F(I) denotes the net of finite subsets of I, directed by inclusion,
as in Example 2.2.4(2). The net {P (F ) : F ∈ F(I)} is thus seen
to be a net of projections and is hence a uniformly bounded net
of operators.

Observe that F1 ≤ F2 ⇒ F1 ⊂ F2 ⇒ M(F1) ⊂ M(F2).
Hence M = ∪F∈F(I)M(F ). The set S = ∪F∈F(I)M(F ) ∪ M⊥

is clearly a total set in H and if x ∈ S, then the net {P (F )x}
is eventually constant and equal to x or 0, according as x ∈
∪F∈F(I)M(F ) or x ∈ M⊥. It follows from Lemma 2.5.2 that the
net {P (F )} converges strongly to P .

In the converse direction, assume without loss of generality
that all the Mi are non-zero subspaces, fix i0 ∈ I and let x ∈ Mi0

be a unit vector. Notice, then, that

1 ≥ 〈Px, x〉
=

∑

i∈I

〈Pix, x〉

≥ 〈Pi0x, x〉
= 1 ;
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conclude that 〈Pix, x〉 = 0 ∀i 6= i0, i.e., Mi0 ⊥ Mi for i 6= i0,
and the proof of the proposition is complete. 2

If M and Mi, i ∈ I are closed subspaces of a Hilbert space
H as in Proposition 2.5.4, then the subspace M is called the
(orthogonal) direct sum of the subspaces Mi, i ∈ I, and we
write

M = ⊕i∈I Mi . (2.5.14)

Conversely, if the equation 2.5.14 is ever written, it is always
tacitly understood that the Mi’s constitute a family of pairwise
orthogonal closed subspaces of a Hilbert space, and that M is
related to them as in Proposition 2.5.4.

There is an ‘external’ direct sum construction for an arbitrary
family of Hilbert spaces, which is closely related to the notion
discussed earlier, which is described in the following exercise.

Exercise 2.5.5 Suppose {Hi : i ∈ I} is a family of Hilbert
spaces; define

H = {((xi)) : xi ∈ Hi ∀i,
∑

i∈I

||xi||2 < ∞} .

(a) Show that H is a Hilbert space with respect to the inner
product defined by 〈((xi)), ((yi))〉 =

∑
i∈I〈xi, yi〉.

(b) Let Mj = {((xi)) ∈ H : xi = 0∀i 6= j} for each j ∈ I;
show that Mi, i ∈ I is a family of closed subspaces such that
H = ⊕i∈I Mi, and that Mi is naturally isomorphic to Hi, for
each i ∈ I.

In this situation, also, we shall write H = ⊕i∈IHi, and there
should be no serious confusion as a result of using the same no-
tation for both ‘internal direct sums’ (as in equation 2.5.14) and
‘external direct sums’ (as above).

There is one very useful fact concerning operators on a direct
sum, and matrices of operators, which we hasten to point out.

Proposition 2.5.6 Suppose H = ⊕j∈JHj and K = ⊕i∈IKi are
two direct sums of Hilbert spaces - which we regard as internal
direct sums. Let Pi (resp., Qj) denote the orthogonal projection
of K (resp., H) onto Ki (resp., Hj).
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(1) If T ∈ L(H,K), define T i
jx = PiTx, ∀ x ∈ Hj; then

T i
j ∈ L(Hj,Ki) ∀i ∈ I, j ∈ J ;

(2) The operator T is recaptured from the matrix ((T i
j )) of

operators by the following prescription: if x = ((xj)) ∈ H, and
if Tx = ((yi)) ∈ K, then yi =

∑
j∈J T i

jxj, ∀i ∈ I, where the
series is interpreted as the sum of an unconditionally summable
family in K (with respect to the norm in K); (thus, if we think of
elements of H (resp., K) as column vectors indexed by J (resp.,
I) - whose entries are themselves vectors in appropriate Hilbert
spaces - then the action of the operator T is given by ‘matrix
multiplication’ by the matrix ((T i

j )).)
(3) For finite subsets I0 ⊂ I, J0 ⊂ J , let P (I0) =

∑
i∈I0 Pi

and Q(J0) =
∑

j∈J0
Qj. Then the net {P (I0)TQ(J0) : k =

(I0, J0) ∈ K = F(I)×F(J)} - where K is ordered by coordinate-
wise inclusion - converges strongly to T , and

||T || = lim
(I0,J0)∈K

||P (I0)TQ(J0)||

= sup
(I0,J0)∈K

||P (I0)TQ(J0)|| . (2.5.15)

(4) Conversely, a matrix ((T i
j )), where T i

j ∈ L(Hj,Ki), ∀i ∈
I, j ∈ J, defines a bounded operator T ∈ L(H,K) as in (2)
above, precisely when the family {||S||} - where S ranges over
all those matrices which are obtained by replacing all the entries
outside a finite number of rows and columns of the given matrix
by 0 and leaving the remaining finite ‘rectangular submatrix’ of
entries unchanged - is uniformly bounded.

(5) Suppose M = ⊕l∈LMl is another (internal) direct sum
of Hilbert spaces, and suppose S ∈ L(K,M) has the matrix
decomposition ((Sl

i)) with respect to the given direct sum de-
compositions of K and M, respectively, then the matrix decom-
position for S ◦ T ∈ L(H,M) (with respect to the given di-
rect sum decompositions of H and M, respectively) is given by
(S ◦ T )l

j =
∑

i∈I Sl
i ◦ T i

j , where this series is unconditionally
summable with respect to the strong operator topology.

(6) The assignment of the matrix ((T i
j )) to the operator T

is a linear one, and the matrix associated with T ∗ is given by
(T ∗)j

i = (T i
j )

∗.

Proof : (1) Sice ||Pi|| ≤ 1, it is clear theat T i
j ∈ L(Hj,Ki)

and that ||T i
j || ≤ ||T || (see Exercise 1.3.4(3)).
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(2) Since
∑

j∈J Qj = idH - where this series is interpreted as
the sum of an unconditionally summable family, with respect to
the strong operator topology in L(H) - it follows from ‘separate
strong continuity’ of multiplication - see Example 2.5.3(3) - that

x ∈ H ⇒ PiTx =
∑

j∈J

PiTQjx =
∑

j∈J

T i
jxj ,

as desired.
(3) Since the nets {P (I0) : I0 ∈ F(I)} and {Q(J0) : J0 ∈

F(J)} are uniformly bounded and converge strongly to idK and
idH respectively, it follows from ‘joint strong continuity of mul-
tiplication on uniformly bounded sets’ - see Example 2.5.3(4) -
that the net {P (I0)TQ(J0) : (I0, J0) ∈ F(I) × F(J)} converges
strongly to T and that ||T || ≤ lim inf(I0,J0)||P (I0)TQ(J0)||.
(The limit inferior and limit superior of a bounded net of real
numbers is defined exactly as such limits of a bounded sequence
of real numbers is defined - see equations A.5.16 and A.5.17, re-
spectively, for these latter definitions.) Conversely, since P (I0)
and Q(J0) are projections, it is clear that ||P (I0)TQ(J0)|| ≤ ||T ||
for each (I0, J0); hence ||T || ≥ lim sup(I0,J0)||P (I0)TQ(J0)||,
and the proof of (3) is complete.

(4) Under the hypothesis, for each k = (I0, J0) ∈ K = F(I)×
F(J), define Tk to be the (clearly bounded linear) map from H to
K defined by ‘matrix multiplication’ by the matrix which agrees
with ((T i

j )) in rows and columns indexed by indices from I0 and
J0 respectively, and has 0’s elsewhere; then {Tk : k ∈ K} is seen
to be a uniformly bounded net of operators in L(H,K); this net
is strongly convergent. (Reason: S = ∪J0∈F(J)Q(J0)H is a total
set in H, and the net {Tkx : k ∈ K} is easily verified to converge
whenever x ∈ S; and we may appeal to Lemma 2.5.2.) If T
denotes the strong limit of this net, it is easy to verify that this
operator does indeed have the given matrix decomposition.

(5) This is proved exactly as was (2) - since the equation∑
i∈I Pi = idK implies that

∑
i∈I SPiT = ST , both ‘series’ being

interpreted in the strong operator topology.
(6) This is an easy verification, which we leave as an exercise

for the reader. 2

We explicitly spell out a special case of Proposition 2.5.6, be-
cause of its importance. Suppose H and K are separable Hilbert
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spaces, and suppose {ej} and {fi} are orthonormal bases for H
and K, respectively. Then, we have the setting of Proposition
2.5.6, if we set Hj = Cej and Ki = Cfi respectively. Since Hj

and Ki are 1-dimensional, any operator S : Hj → Ki determines
and is determined by a uniquely defined scalar λ, via the require-
ment that Sej = λfi. If we unravel what the proposition says in
this special case, this is what we find:

For each i, j, define tij = 〈Tej, fi〉; think of an element x ∈ H
(resp., y ∈ K) as a column vector x = ((xj = 〈x, ej〉)) (resp.,
y = ((yi = 〈y, fi〉))); then the action of the operator is given
by matrix-multiplication, thus: if Tx = y, then yi =

∑
j tijxj -

where the series is unconditionally summable in C.
In the special case when H = K has finite dimension, say n, if

we choose and fix one orthonormal basis {e1, · · · , en} for H - thus
we choose the f ’s to be the same as the e’s - then the choice of any
such (ordered) basis sets up a bijective correspondence between
L(H) and Mn(C) which is an ‘isomorphism of *-algebras’, where
(i) we think of L(H) as being a *-algebra in the obvious fashion,
and (ii) the *-algebra structure on Mn(C) is defined thus: the
vector operations, i.e., addition and scalar multiplication, are as
in Example 1.1.3(2), the product of two n × n matrices is as in
Exercise 1.3.1(7)(ii), and the ‘adjoint’ of a matrix is the ‘complex
conjugate transpose’ - i.e., if A is the matrix with (i, j)-th entry
given by ai

j, then the adjoint is the matrix A∗ with (i, j)-th entry

given by aj
i .

This is why, for instance, a matrix U ∈ Mn(C) is said to be
unitary if U∗U = In (the identity matrix of size n), and the set
U(n) of all such matrix has a natural structure of a compact
group.

Exercise 2.5.7 If H is a Hilbert space, and if x, y ∈ H, define
Tx,y : H → H by Tx,y(z) = 〈z, y〉x . Show that

(a) Tx,y ∈ L(H) and ||Tx,y|| = ||x|| · ||y||.
(b) T ∗

x,y = Ty,x, and Tx,yTz,w = 〈z, y〉Tx,w.
(c) if H is separable, if {e1, e2, · · · , en, · · ·} is an orthonor-

mal basis for H, and if we write Eij = Tei,ej
, show that

EijEkl = δjk Eil, and E∗
ij = Eji for all i, j, k, l.

(d) Deduce that if H is at least two-dimensional, then L(H)
is not commutative.
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(e) Show that the matrix representing the operator Ekl with
respect to the orthonormal basis {ej}j is the matrix with a 1 in
the (k, l) entry and 0’s elsewhere.

(f) For 1 ≤ i, j ≤ n, let Ei
j ∈ Mn(C) be the matrix which

has 1 in the (i, j) entry and 0’s elsewhere. (Thus {Ei
j : 1 ≤

i, j ≤ n} is the ‘standard basis’ for Mn(C).) Show that Ei
jE

k
l =

δk
j E

i
l ∀ i, j, k, l, and that

∑n
i=1 Ei

i is the (n × n) identity matrix
In.

In the infinite-dimensional separable case, almost exactly the
same thing - as in the case of finite-dimensional H - is true, with
the only distinction now being that not all infinite matrices will
correspond to operators; to see this, let us re-state the descrip-
tion of the matrix thus: the j-th column of the matrix is the
sequence of Fourier coefficients of Tej with respect to the or-
thonormal basis {ei : i ∈ IN}; in particular, every column must
define an element of `2.

Let us see precisely which infinite matrices do arise as the
matrix of a bounded operator. Suppose T = ((tij))

∞
i,j=1 is an

infinite matrix. For each n, let Tn denote the ‘n-th truncation’
of T defined by

(Tn)i
j =

{
tij if 1 ≤ i, j ≤ n
0 otherwise

Then it is clear that these truncations do define bounded oper-
ators on H, the n-th operator being given by

Tnx =
n∑

i,j=1

tij〈x, ej〉ei .

It follows from Proposition 2.5.6(4) that T is the matrix of a
bounded operator on H if and only if supn ||Tn|| < ∞. It will
follow from our discussion in the next chapter that if An denotes
the n × n matrix with (i, j)-th entry tij, then ||Tn||2 is noth-
ing but the largest eigenvalue of the matrix A∗

nAn (all of whose
eigenvalues are real and non-negative).

We conclude with a simple exercise concerning ‘direct sums’
of operators.
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Exercise 2.5.8 Let H = ⊕i∈I Hi be a(n internal) direct sum
of Hilbert spaces. Let ⊕`∞

i∈IL(Hi) = {T = ((Ti))i∈I : Ti ∈
L(Hi) ∀i, and supi ||Ti|| < ∞}.

(a) If T ∈ ⊕`∞

i∈IL(Hi), show that there exists a unique opera-
tor ⊕iTi ∈ L(H) with the property that (⊕iTi)xj = Tjxj, ∀xj ∈
Hj,∀j ∈ I; further, || ⊕i Ti|| = supi ||Ti||. (The operator (⊕iTi)
is called the ‘direct sum’ of the family {Ti} of operators.)

(b) If T,S ∈ ⊕`∞

i∈IL(Hi), show that ⊕i(Ti + Si) = (⊕iTi) +
(⊕iSi), ⊕i(TiSi) = (⊕iTi)(⊕iSi), and (⊕iTi)

∗ = (⊕iT
∗
i ).
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Chapter 3

C∗-algebras

3.1 Banach algebras

The aim of this chapter is to build up the necessary background
from the theory of C∗-algebras to be able to prove the spectral
theorem. We begin with the definition and some examples of a
normed algebra.

Definition 3.1.1 A normed algebra is a normed space A0

with the following additional structure: there exists a well-defined
multiplication in A0, meaning a map A0 × A0 → A0, denoted
by (x, y) → xy, which satisfies the following conditions, for all
x, y, z ∈ A0, α ∈ C:
(i) (associativity) (xy)z = x(yz);
(ii) (distributivity) (αx+y)z = αxz+yz, z(αx+y) = αzx+zy;
(iii) (sub-multiplicativity of norm) ||xy|| ≤ ||x|| · ||y||.

A Banach algebra is a normed algebra which is complete
as a normed space. A normed (or Banach) algebra is said to be
unital if it has a multiplicative identity - i.e., if there exists an
element, which we shall denote simply by 1, such that 1x = x1 =
x ∀x.

Example 3.1.2 (1) The space B(X) of all bounded complex-
valued functions on a set X - see Example 1.2.2(2) - is an ex-
ample of a Banach algebra, with respect to pointwise product
of functions - i.e., (fg)(x) = f(x)g(x). Notice that this is a
commutative algebra - i.e., xy = yx ∀x, y.

79
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(2) If A0 is a normed algebra, and if B0 is a vector subspace
which is closed under multiplication, then B0 is a normed algebra
in its own right (with the structure induced by the one on A0)
and is called a normed subalgebra of A0; a normed subalgebra
B of a Banach algebra A is a Banach algebra (in the induced
structure) if and only if B is a closed subspace of A. (As in
this example, we shall use the notational convention of using the
subscript 0 for not necessarily complete normed algebras, and
dropping the 0 subscript if we are dealing with Banach algebras.)

(3) Suppose A0 is a normed algebra, and A denotes its com-
pletion as a Banach space. Then A acquires a natural Banach al-
gebra structure as follows: if x, y ∈ A, pick sequences {xn}, {yn}
in A0 such that xn → x, yn → y. Then, pick a constant K such
that ||xn||, ||yn|| ≤ K ∀n, note that

||xnyn − xmym|| = ||xn(yn − ym) + (xn − xm)ym||
≤ ||xn(yn − ym)|| + ||(xn − xm)ym||
≤ ||xn|| · ||yn − ym|| + ||xn − xm|| · ||ym||
≤ K(||yn − ym|| + ||xn − xm||) ,

and conclude that {xnyn} is a Cauchy sequence and hence con-
vergent; define xy = limnxnyn. To see that the ‘product’ we
have proposed is unambiguously defined, we must verify that
the above limit is independent of the choice of the approximat-
ing sequences, and depends only on x and y. To see that this
is indeed the case, suppose xi,n → x, yi,n → y, i = 1, 2. De-
fine x2n−1 = x1,n, x2n = x2,n, y2n−1 = y1,n, y2n = y2,n, and apply
the preceding reasoning to conclude that {xnyn} is a convergent
sequence, with limit z, say; then also {x1,ny1,n = x2n−1y2n−1}
converges to z, since a subsequence of a convergent sequence
converges to the same limit; similarly, also x2,ny2,n → z.

Thus, we have unambiguously defined the product of any two
elements of A. We leave it to the reader to verify that (a) with
the product so defined, A indeed satisfies the requirements of a
Banach algebra, and (b) the multiplication, when restricted to
elements of A0, coincides with the initial multiplication in A0,
and hence A0 is a dense normed subalgebra of A.

(4) The set Cc(R), consisting of continuous functions on R
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which vanish outside a bounded interval (which interval will typ-
ically depend on the particular function in question), is a normed
subalgebra of B(R), and the set C0(R), which may be defined
as the closure in B(R) of Cc(R) is a Banach algebra. More gen-
erally, if X is any locally compact Hausdorff space, then the set
Cc(X) of continuous functions on X which vanish outside a com-
pact set in X is a normed subalgebra of B(X), and its closure
in B(X) is the Banach algebra C0(X) consisting of continuous
functions on X which vanish at ∞.

In particular, if X is a compact Hausdorff space, then the
space C(X) of all continuous functions on X is a Banach algebra.

(5) The Banach space `1(Z) is a Banach algebra, if multipli-
cation is defined thus: if we think of elements of `1 as functions
f : Z → C with the property that ||f ||1 =

∑
n∈Z |f(n)| < ∞,

then the (so-called convolution) product is defined by

(f ∗ g)(n) =
∑

m∈Z

f(m)g(n − m) . (3.1.1)

To see this, note - using the change of variables l = n − m -
that

∑

m,n

|f(m)g(n − m)| =
∑

m,l

|f(m)g(l)| = ||f ||1 · ||g||1 < ∞ ,

and conclude that if f, g ∈ `1(Z), then, indeed the series defining
(f ∗g)(n) in equation 3.1.1 is (absolutely) convergent. The argu-
ment given above actually shows that also ||f ∗g||1 ≤ ||f ||1 ·||g||1.

An alternative way of doing this would have been to verify
that the set cc(Z), consisting of functions on Z which vanish out-
side a finite set, is a normed algebra with respect to convolution
product, and then saying that `1(Z) is the Banach algebra ob-
tained by completing this normed algebra, as discussed in (3)
above.

There is a continuous analogue of this, as follows: define a
convolution product in Cc(R) - see (4) above - as follows:

(f ∗ g)(x) =
∫ ∞

−∞
f(y)g(x − y)dy ; (3.1.2)
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a ‘change of variable argument’ entirely analogous to the discrete
case discussed above, shows that if we define

||f ||1 =
∫ ∞

−∞
|f(x)|dx , (3.1.3)

then Cc(R) becomes a normed algebra when equipped with the
norm || · ||1 and convolution product; the Banach algebra com-
pletion of this normed algebra - at least one manifestation of it
- is the space L1(R,m), where m denotes Lebesgue measure.

The preceding constructions have analogues in any ‘locally
compact topological group’; thus, suppose G is a group which is
equipped with a topology with respect to which mulitplication
and inversion are continuous, and suppose that G is a locally
compact Hausdorff space. For g ∈ G, let Lg be the homeomor-
phism of G given by left multiplication by g; it is easy to see (and
useful to bear in mind) that G is homogeneous as a topological
space, since the group of homeomorphisms acts transitively on
G (meaning that given any two points g, h ∈ G, there is a home-
omorphism - namely Lhg−1 - which maps g to h).

Useful examples of topological groups to bear in mind are: (i)
the group G(A) of invertible elements in a unital Banach algebra
A - of which more will be said soon - (with respect to the norm
and the product in A); (ii) the group U(H) of unitary operators
on a Hilbert space H (with respect to the norm and the product
in L(H)); and (iii) the finite-dimensional (or matricial) special
cases of the preceding examples GLn(C) and the compact group
U(n, C) = {U ∈ Mn(C) : U∗U = In} (where U∗ denotes the
complex conjugate transpose of the matrix U). (When A and
H are one-dimensional, we recover the groups C× (of non-zero-
complex numbers) and T (of complex numbers of unit modulus;
also note that in case A (resp., H) is finite-dimensional, then the
example in (i) (resp., (ii)) above are instances of locally compact
groups.)

Let Cc(G) be the space of compactly supported continuous
functions on G, regarded as being normed by || · ||∞; the map Lg

of G induces a map, via composition, on Cc(G) by λg(f) = f ◦
Lg−1 . (The reason for the inverse is ‘functorial’, meaning that
it is only this way that we can ensure that λgh = λg ◦ λh; thus
g 7→ λg defines a ‘representation’ of G on Cc(G) (meaning a
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group homomorphism λ : G → G( L(Cc(G))), in the notation of
example (i) of the preceding paragraph). The map λ is ‘strongly
continuous’, meaning that if gi → g (is a convergent net in G),
then ||λgi

f − λgf ||∞ → 0 ∀f ∈ Cc(G).
Analogous to the case of R or Z, it is a remarkable fact

that there is always a bounded linear functional mG ∈ Cc(G)∗

which is ‘(left-) translation invariant’ in the sense that mG ◦
λg = mG ∀g ∈ G. It is then a consequence of the Riesz Rep-
resentation theorem (see the Appendix - §A.7) that there exists
a unique measure - which we shall denote by µG defined on the
Borel sets of G such that mg(f) =

∫
G f dµG. This measure µG

inherits translational invariance from mG - i.e., µG ◦ Lg = µG.
It is a fact that the functional mG, and consequently the

measure µG, is (essentially) uniquely determined by the transla-
tional invariance condition (up to scaling by a positive scalar);
this unique measure is referred to as (left) Haar measure on
G. It is then the case that Cc(G) can alternatively be normed
by

||f ||1 =
∫

G
|f | dµG ,

and that it now becomes a normed algebra with respect to con-
volution product

(f ∗ g)(t) =
∫

G
f(s)g(s−1t) dµG(s) . (3.1.4)

The completion of this normed algebra - at least one version of
it - is given by L1(G,µG).

(6) Most examples presented so far have been commutative
algebras - meaning that xy = yx ∀x, y. (It is a fact that L1(G)
is commutative precisely when G is commutative, i.e., abelian.)
The following one is not. If X is any normed space and X is not
1-dimensional, then L(X) is a non-commutative normed algebra;
(prove this fact!); further, L(X) is a Banach algebra if and only
if X is a Banach space. (The proof of one implication goes
along the lines of the proof of the fact that C[0, 1] is complete;
for the other, consider the embedding of X into L(X) given by
Ly(x) = φ(x)y, where φ is a linear functional of norm 1.)

In particular, - see Exercise 2.5.7 - Mn(C) is an example of a
non-commutative Banach algebra for each n = 2, 3, · · · . 2
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Of the preceding examples, the unital algebras are B(X) (X
any set), C(X) (X a compact Hausdorff space), `1(Z) (and more
generally, L1(G) in case the group G is (equipped with the) dis-
crete (topology), and L(X) (X any normed space). Verify this
assertion by identifying the multiplicative identity in these ex-
amples, and showing that the other examples do not have any
identity element.

Just as it is possible to complete a normed algebra and man-
ufacture a Banach algebra out of an incomplete normed algebra,
there is a (and in fact, more than one) way to start with a normed
algebra without identity and manufacture a near relative which
is unital. This, together with some other elementary facts con-
cerning algebras, is dealt with in the following exercises.

Exercise 3.1.3 (1) If A0 is a normed algebra, consider the al-
gebra defined by A+

0 = A0 ⊕`1 C; thus, A+
0 = {(x, α) : x ∈

X,α ∈ C} as a vector space, and the product and norm are de-
fined by (x, α)(y, β) = (xy+αy+βx, αβ) and ||(x, α)|| = ||x||+
|α|. Show that with these definitions,

(a) A+
0 is a unital normed algebra;

(b) the map A0 3 x 7→ (x, 0) ∈ A+
0 is an isometric isomor-

phism of the algebra A0 onto the subalgebra {(x, 0) : x ∈ A0} of
A+

0 ;
(c) A0 is a Banach algebra if and only if A+

0 is a Banach
algebra.

(2) Show that multiplication is jointly continuous in a normed
algebra, meaning that xn → x, yn → y ⇒ xnyn → xy.

(3) If A0 is a normed algebra, show that a multiplicative iden-
tity, should one exist, is necessarily unique; what can you say
about the norm of the identity element?

(4) (a) Suppose I is a closed ideal in a normed algebra A0

- i.e., I is a (norm-) closed subspace of A0, such that whenever
x, y ∈ I, z ∈ A0, α ∈ C, we have αx + y, xz, zx ∈ I; then show
that the quotient space A0/I - with the normed space structure
discussed in Exercise 1.5.3(3) - is a normed algebra with respect
to multiplication defined (in the obvious manner) as: (z+I)(z′+
I) = (zz′ + I).
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(b) if I is a closed ideal in a Banach algebra A, deduce that
A/I is a Banach algebra.

(c) in the notation of Exercise (1) above, show that {(x, 0) :
x ∈ A0} is a closed ideal - call it I - of A+

0 such that A+
0 /I ∼= C.

We assume, for the rest of this section, that A is a unital
Banach algebra with (multiplicative) identity 1; we shall assume
that A 6= {0}, or equivalently, that 1 6= 0. As with 1, we shall
simply write λ for λ1. We shall call an element x ∈ A in-
vertible (in A) if there exists an element - which is necessarily
unique and which we shall always denote by x−1 - such that
xx−1 = x−1x = 1, and we shall denote the collection of all
such invertible elements of A as G(A). (This is obviously a group
with repect to multiplication, and is sometimes referred to as the
‘group of units’ in A.)

We gather together some basic facts concerning units in a
Banach algebra in the following proposition.

Proposition 3.1.4 (1) If x ∈ G(A), and if we define Lx (to be
the map given by left-multiplication by x) as Lx(y) = xy, ∀y ∈ A
then Lx ∈ L(A) and further, Lx is an invertible operator, with
(Lx)

−1 = Lx−1;
(2) If x ∈ G(A) and y ∈ A, then xy ∈ G(A) ⇔ yx ∈ G(A) ⇔

y ∈ G(A).
(3) If {x1, x2, · · · , xn} ⊂ A is a set of pairwise commuting

elements - i.e., xixj = xjxi ∀i, j - then the product x1x2 · · ·xn

is invertible if and only if each xi is invertible.
(4) If x ∈ A and ||1 − x|| < 1, then x ∈ G(A) and

x−1 =
∞∑

n=0

(1 − x)n , (3.1.5)

where we use the convention that y0 = 1.
In particular, if λ ∈ C and |λ| > ||x||, then (x− λ) is invert-

ible and

(x − λ)−1 = −
∞∑

n=0

xn

λn+1
. (3.1.6)

(5) G(A) is an open set in A and the mapping x 7→ x−1 is a
homeomorphism of G(A) onto itself.
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Proof : (1) Obvious.
(2) Clearly if y is invertible, so is xy (resp., yx); conversely,

if xy (resp., yx) is invertible, so is y = x−1(xy) (resp., y =
(yx)x−1).

(3) One implication follows from the fact that G(A) is closed
under multiplication. Suppose, conversely, that x = x1x2 · · ·xn

is invertible; it is clear that xi commutes with x, for each i; it
follows easily that each xi also commutes with x−1, and that the
inverse of xi is given by the product of x−1 with the product of
all the xj’s with j 6= 1. (Since all these elements commute, it
does not matter in what order they are multiplied.)

(4) The series on the right side of equation 3.1.5 is (absolutely,
and hence) summable (since the appropriate geometric series
converges under the hypothesis); let {sn =

∑n
i=0(1 − x)i} be

the sequence of partial sums, and let s denote the limit; clearly
each sn commutes with (1 − x), and also, (1 − x)sn = sn(1 −
x) = sn+1 − 1; hence, in the limit, (1− x)s = s(1− x) = s− 1,
i.e., xs = sx = 1.

As for the second equation in (4), we may apply equation
3.1.5 to (1 − x

λ
) in place of x, and justify the steps

(x − λ)−1 = −λ−1 (1 − x

λ
)−1

= −λ−1
∞∑

n=0

xn

λn

= −
∞∑

n=0

xn

λn+1
.

(5) The assertions in the first half of (4) imply that 1 is in
the interior of G(A) and is a point of continuity of the inversion
map; by the already established (1) and (2) of this proposition,
we may ‘transport this local picture at 1’ via the linear homeo-
morphism Lx (which maps G(A) onto itself) to a ‘corresponding
local picture at x’, and deduce that any element of G(A) is an
interior point and is a point of continuity of the inversion map.

2

We now come to the fundamental notion in the theory.

Definition 3.1.5 Let A be a unital Banach algebra, and let
x ∈ A. Then the spectrum of x is the set, denoted by σ(x),
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defined by

σ(x) = {λ ∈ C : (x − λ) is not invertible} , (3.1.7)

and the spectral radius of x is defined by

r(x) = sup{|λ| : λ ∈ σ(x)} . (3.1.8)

(This is thus the radius of the smallest disc centered at 0 in C
which contains the spectrum. Strictly speaking, the last sentence
makes sense only if the spectrum is a bounded set; we shall soon
see that this is indeed the case.)

(b) The resolvent set of x is the complementary set ρ(x)
defined by

ρ(x) = C − σ(x) = {λ ∈ C : (x − λ) is invertible} , (3.1.9)

and the map

ρ(x) 3 λ
Rx7→ (x − λ)−1 ∈ G(A) (3.1.10)

is called the resolvent function of x.

To start with, we observe - from the second half of Proposi-
tion 3.1.4(4) - that

r(x) ≤ ||x|| . (3.1.11)

Next, we deduce - from Proposition 3.1.4(5) - that ρ(x) is an
open set in C and that the resolvent function of x is continuous.
It follows immediately that σ(x) is a compact set.

In the proof of the following proposition, we shall use some
elementary facts from complex function theory; the reader who
is unfamiliar with the notions required is urged to fill in the
necessary background from any standard book on the subject
(such as [Ahl], for instance).

Proposition 3.1.6 Let x ∈ A; then,
(a) lim|λ|→∞ ||Rx(λ)|| = 0; and
(b) (Resolvent equation)

Rx(λ) − Rx(µ) = (λ − µ)Rx(λ)Rx(µ) ∀ λ, µ ∈ ρ(x) ;
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(c) the resolvent function is ‘weakly analytic’, meaning that
if φ ∈ A∗, then the map φ ◦ Rx is an analytic function (defined
on the open set ρ(x) ⊂ C), such that

lim
|λ|→∞

φ ◦ Rx(λ) = 0 .

Proof : (a) It is an immediate consequence of equation 3.1.6
that there exists a constant C > 0 such that

||Rx(λ)|| ≤ C

|λ| ∀|λ| > ||x||,

and assertion (a) follows.
(b) If λ, µ ∈ ρ(x), then

(λ − µ)Rx(λ)Rx(µ) = (λ − µ)(x − λ)−1(x − µ)−1

= Rx(λ) ( (x − µ) − (x − λ) ) Rx(µ)

= Rx(λ) − Rx(µ) .

(c) If φ ∈ A∗ is any continuous linear functional on A, it fol-
lows from Proposition 3.1.4(5) and the resolvent equation above,
that if µ ∈ ρ(x), and if λ is sufficiently close to µ, then λ ∈ ρ(x),
and

lim
λ→µ

(
φ ◦ Rx(λ) − φ ◦ Rx(µ)

λ − µ

)
= lim

λ→µ
(φ( Rx(λ) · Rx(µ) ))

= φ(Rx(µ)2) ,

thereby establishing (complex) differentiability, i.e., analyticity,
of φ ◦ Rx at the point µ.

It is an immediate consequence of (a) above and the bound-
edness of the linear functional φ that

lim
λ→µ

φ ◦ Rx(λ) ,

and the proof is complete. 2

Theorem 3.1.7 If A is any Banach algebra and x ∈ A, then
σ(x) is a non-empty compact subset of C.
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Proof : Assume the contrary, which means that ρ(x) =
C. Let φ ∈ A∗ be arbitrary. Suppose ρ(x) = C; in view
of Proposition 3.1.6(c), this means that φ ◦ Rx is an ‘entire’
function - meaning a function which is ‘complex-differentiable’
throughout C - which vanishes at infinity; it then follows from
Liouville’s theorem that φ ◦Rx(λ) = 0 ∀λ ∈ C. (For instance,
see [Ahl], for Liouville’s theorem.) Since φ was arbitrary, and
since A∗ ‘separates points of A - see Exercise 1.5.3(1) - we may
conclude that Rx(λ) = 0 ∀ λ ∈ C; but since Rx(λ) ∈ G(A), this
is absurd, and the contradiction completes the proof. 2

Remark 3.1.8 Suppose A = Mn(C). It is then a consequence
of basic properties of the determinant mapping - see the Ap-
pendix (§A.1) - that if T ∈ Mn(C), then λ ∈ σ(T ) if and
only if λ is an eigenvalue of the matrix T , i.e, pT (λ) = 0 where
pT (z) = det(T −z) denotes the characteristsc polynomial of the
matrix T . On the other hand, it is true - see §A.1 - that any poly-
nomial of degree n, with leading coefficient equal to (−1)n, is the
characteristic polynomial of some matrix in Mn(C). Hence the
statement that σ(T ) is a non-empty set, for every T ∈ Mn(C), is
equivalent to the statement that every complex polynomial has
a complex root, viz., the so-called Fundamental Theorem of Al-
gebra. Actually, the fundamental theorem is the statement that
every complex polynomial of degree N is expressible as a prod-
uct of N polynomials of degree 1; this version is easily derived,
by an induction argument, from the slightly weaker statement
earlier referred to as the fundamental theorem. 2

Proposition 3.1.9 If p(z) =
∑N

n=0 anz
n is a polynomial with

complex coefficients, and if we define p(x) = a0 ·1+
∑N

n=1 anx
n

for each x ∈ A, then
(i) p(z) 7→ p(x) is a homomorphism from the algebra C[z] of

complex polynomials onto the subalgebra of A which is generated
by {1, x};

(ii) (spectral mapping theorem) if p is any polynomial
as above, then

σ( p(x) ) = p( σ(x) ) = {p(λ) : λ ∈ σ(x)} .
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Proof : The first assertion is easily verified. As for (ii),
temporarily fix λ ∈ C; if p(z) =

∑N
n=0 anz

n, assume without
loss of generality that aN 6= 0, and (appeal to the fundamental
theorem of algebra to) conclude that there exist λ1, · · · , λN such
that

p(z) − λ = aN

N∏

n=1

(z − λi) .

(Thus the λi are all the zeros, counted according to multiplicity,
of the polynomial p(z) − λ.)

Deduce from part (i) of this Proposition that

p(x) − λ = aN

N∏

n=1

(x − λi) .

Conclude now, from Proposition 3.1.4(3), that

λ /∈ σ(p(x)) ⇔ λi /∈ σ(x) ∀ 1 ≤ i ≤ n

⇔ λ /∈ p(σ(x))

and the proof is complete. 2

The next result is a quantitative strengthening of the asser-
tion that the spectrum is non-empty.

Theorem 3.1.10 (spectral radius formula)
If A is a Banach algebra and if x ∈ A, then

r(x) = lim
n→∞ ||xn|| 1

n . (3.1.12)

Proof : To start with, fix an arbitrary φ ∈ A∗, and let
F = φ ◦ Rx; by definition, this is analytic in the exterior of the
disc {λ ∈ C : |λ| ≤ r(x)}; on the other hand, we may conclude
from equation 3.1.6 that F has the Laurent series expansion

F (λ) = −
∞∑

n=0

φ(xn)

λn+1
,

which is valid in the exterior of the disc {λ ∈ C : |λ| ≤ ||x||}.
Since F vanishes at infinity, the function F is actually analytic
at the point at infinity, and consequently the Laurent expansion
above is actually valid in the larger region |λ| > r(x).
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So if we temporarily fix a λ with |λ| > r(x), then we find, in
particular, that

limn→∞
φ(xn)

λn
= 0 .

Since φ was arbitrary, it follows from the uniform boundedness
principle - see Exercise 1.5.17(1) - that there exists a constant
K > 0 such that

||xn|| ≤ K |λ|n ∀n .

Hence, ||xn|| 1
n ≤ K

1
n |λ|. By allowing |λ| to decrease to r(x),

we may conclude that

lim sup
n

||xn|| 1
n ≤ r(x) . (3.1.13)

On the other hand, deduce from Proposition 3.1.9(2) and

equation 3.1.11 that r(x) = r(xn)
1
n ≤ ||xn|| 1

n , whence we
have

r(x) ≤ lim inf
n

||xn|| 1
n , (3.1.14)

and the theorem is proved. 2

Before proceeding further, we wish to draw the reader’s at-
tention to one point, as a sort of note of caution; and this pertains
to the possible dependence of the notion of the spectrum on the
ambient Banach algebra.

Thus, suppose A is a unital Banach algebra, and suppose B
is a unital Banach subalgebra of A; suppose now that x ∈ B;
then, for any intermediate Banach subalgebra B ⊂ C ⊂ A, we
can talk of

ρC(x) = {λ ∈ C : ∃z ∈ C such that z(x−λ) = (x−λ)z = 1} ,

and σC(x) = C − ρC(x). The following result describes the
relations between the different notions of spectra.

Proposition 3.1.11 Let 1, x ∈ B ⊂ A, as above. Then,
(a) σB(x) ⊃ σA(x);
(b) ∂( σB(x) ) ⊂ ∂( σA(x) ), where ∂(Σ) denotes the

‘topological boundary’ of the subset Σ ⊂ C. (This is the set
defined by ∂Σ = Σ ∩ C − Σ; thus, λ ∈ ∂Σ if and only if
there exists sequences {λn} ⊂ Σ and {zn} ⊂ C − Σ such that
λ = limnλn = limnzn.)
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Proof : (a) We need to show that ρB(x) ⊂ ρA(x). So
suppose λ ∈ ρB(x); this means that there exists z ∈ B ⊂ A such
that z(x − λ) = (x − λ)z = 1; hence, λ ∈ ρA(x).

(b) Suppose λ ∈ ∂( σB(x) ); since the spectrum is closed,
this means that λ ∈ σB(x) and that there exists a sequence
{λn} ⊂ ρB(x) such that λn → λ. Since (by (a)) λn ∈ ρA(x) ∀n,
we only need to show that λ ∈ σA(x); if this were not the case,
then (x − λn) → (x − λ) ∈ G(A), which would imply - by
Proposition 3.1.4(5) - that (x − λn)−1 → (x − λ)−1; but the
assumptions that λn ∈ ρB(x) and that B is a Banach subalgebra
of A would then force the conclusion (x−λ)−1 ∈ B, contradicting
the assumption that λ ∈ σB(x). 2

The purpose of the next example is to show that it is possible
to have strict inclusion in Proposition 3.1.11(a).

Example 3.1.12 In this example, and elsewhere in this book,
we shall use the symbols ID, ID and T to denote the open unit
disc, the closed unit disc and the unit circle in C, respectively.
(Thus, if z ∈ C, then z ∈ ID (resp., ID, resp., T) if and only
if the absolute value of z is less than (resp., not greater than,
resp., equal to) 1.

The disc algebra is, by definition, the class of all functions
which are analytic in ID and have continuous extensions to ID;
thus,

A(ID) = {f ∈ C(ID) : f |ID is analytic} .

It is easily seen that A(ID) is a (closed subalgebra of C(ID)
and consequently a) Banach algebra. (Verify this!) Further, if
we let T : A(ID) → C(T) denote the ‘restriction map’, it follows
from the maximum modulus principle that T is an isometric
algebra isomorphism of A(ID) into C(T). Hence, we may - and
do - regard B = A(ID) as a Banach subalgebra of A = C(T). It
is another easy exercise - which the reader is urged to carry out -
to verify that if f ∈ B, then σB(f) = f(ID), while σA(f) = f(T).
Thus, for example, if we consider f0(z) = z, then we see that
σB(f0) = ID, while σA(f0) = T.

The preceding example more or less describes how two com-
pact subsets in C must look like, if they are to satisfy the two
conditions stipulated by (a) and (b) of Proposition 3.1.11. Thus,
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in general, if Σ0, Σ ⊂ C are compact sets such that Σ ⊂ Σ0 and
∂Σ0 ⊂ ∂Σ, then it is the case that Σ0 is obtained by ‘filling in
some of the holes in Σ’. (The reader is urged to make sense of
this statement and to then try and prove it.) 2

3.2 Gelfand-Naimark theory

Definition 3.2.1 (a) Recall - see Exercise 3.1.3 (4) - that a
subset I of a normed algebra A0 is said to be an ideal if the
following conditions are satisfied, for all choices of x, y ∈ I, z ∈
A0, and α ∈ C:

αx + y, xz, zx ∈ I .

(b) A proper ideal is an ideal I which is distinct from the
trivial ideals {0} and A0.

(c) A maximal ideal is a proper ideal which is not strictly
contained in any larger ideal.

Remark 3.2.2 According to our definitions, {0} is not a max-
imal ideal; in order for some of our future statements to be ap-
plicable in all cases, we shall find it convenient to adopt the
convention that in the single exceptional case when A0 = C, we
shall consider {0} as a maximal ideal. 2

Exercise 3.2.3 (1) Show that the (norm-) closure of an ideal
in a normed algebra is also an ideal.

(2) If I is a closed ideal in a normed algebra A0, show that
the quotient normed space A0/I - see Exercise 1.5.3(3) - is a
normed algebra with respect to the natural definition (x+I)(y+
I) = (xy + I), and is a Banach algebra if A0 is.

(3) Show that if A is a unital normed algebra, then the fol-
lowing conditions on a non-zero ideal I (i.e., I 6= {0}) are equiv-
alent:

(i) I is a proper ideal;
(ii) I ∩ G(A) = ∅;
(iii) 1 /∈ I.
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(4) Deduce from (3) above that the closure of a proper ideal
in a unital Banach algebra is also a proper ideal, and hence,
conclude that any maximal ideal in a unital Banach algebra is
closed.

(5) Consider the unital Banach algebra A = C(X), where X
is a compact Hausdorff space.

(a) For a subset S ⊂ X, define I(S) = {f ∈ A : f(x) =
0 ∀x ∈ S}; show that I(S) is a closed ideal in A and that
I(S) = I(S) - where, of course, the symbol S denotes the
closure of S.

(b) For S ⊂ X, define I0(S) = {f ∈ A : f vanishes in
some open neighbourhood of the set S (which might depend on
f)}; show that I0(S) is an ideal in A, and try to determine what
subsets S would have the property that I0(S) is a closed ideal.

(c) Show that every closed ideal in A has the form I(F ) for
some closed subset F ⊂ X, and that the closed set F is uniquely
determined by the ideal. (Hint: Let I be a closed ideal in C(X).
Define F = {x ∈ X : f(x) = 0∀f ∈ I}. Then clearly I ⊂ I(F ).
Conversely, let f ∈ I(F ) and let U = {x : |f(x)| < ε}, V =
{x : |f(x)| < ε

2
}, so U and V are open sets such that F ⊂ V ⊂

V ⊂ U . First deduce from Urysohn’s lemma that there exists
h ∈ C(X) such that h(V ) = {0} and h(X − U) = {1}. Set
f1 = fh, and note that ||f1 − f || < ε. For each x /∈ V , pick
fx ∈ I such that fx(x) = 1; appeal to compactness of X − V to
find finitely many points x1, · · · , xn such that X −V ⊂ ∪n

i=1{y ∈
X : |fxi

(y)| > 1
2
}; set g = 4

∑n
i=1 |fxi

|2, and note that g ∈ I -
since |fi|2 = fifi - and |g(y)| > 1 ∀y ∈ X − V ; conclude from
Tietze’s extension theorem - see Theorem A.4.24 - that there
exists an h1 ∈ C(X) such that h1(y) = 1

g(y)
∀ y /∈ V . Notice

now that f1gh1 ∈ I and that f1gh1 = f1, since f1 is supported in
X − V . Since ε > 0 was arbitrary, and since I was assumed to
be closed, this shows that f ∈ I.)

(d) Show that if Fi, i = 1, 2 are closed subsets of X, then
I(F1) ⊂ I(F2) ⇔ F1 ⊃ F2, and hence deduce that the maximal
ideals in C(X) are in bijective correspondence with the points in
X.

(e) If S ⊂ X, and if the closure of I0(S) is I(F ), what is the
relationship between S and F .



3.2. GELFAND-NAIMARK THEORY 95

(6) Can you show that there are no proper ideals in Mn(C) ?

(7) If I is an ideal in an algebra A, show that:
(i) the vector space A/I is an algebra with the natural struc-

ture;
(ii) there exists a 1-1 correspondence between ideals in A/I

and ideals in A which contain I. (Hint: Consider the corre-
spondence J → π−1(J ), where π : A → A/I is the quotient
map.)

Throughout this section, we shall assume that A is a com-
mutative Banach algebra, and unless it is explicitly stated to
the contrary, we will assume that A is a unital algebra. The
key to the Gelfand-Naimark theory is the fact there are always
lots of maximal ideals in such an algebra; the content of the
Gelfand-Naimark theorem is that the collection of maximal ide-
als contains a lot of information about A, and that in certain
cases, this collection ‘recaptures’ the algebra. (See the example
discussed in Exercise 3.2.3(5), for an example where this is the
case.)

Proposition 3.2.4 If x ∈ A, then the following conditions are
equivalent:

(i) x is not invertible;
(ii) there exists a maximal ideal I in A such that x ∈ I.

Proof : The implication (ii) ⇒ (i) is immediate - see Exer-
cise 3.2.3(3).

Conversely, suppose x is not invertible. If x = 0, there is
nothing to prove, so assume x 6= 0. Then, I0 = {ax : a ∈ A} is
an ideal in A. Notice that I0 6= {0} (since it contains x = 1x)
and I0 6= A (since it does not contain 1); thus, I0 is a proper
ideal. An easy application of Zorn’s lemma now shows that there
exists a maximal ideal I which contains I0, and the proof is
complete. 2

The proof of the preceding proposition shows that any com-
mutative Banach algebra, which contains a non-zero element
which is not invertible, must contain non-trivial (maximal) ide-
als. The next result disposes of commutative Banach algebras
which do not satisfy this requirement.
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Theorem 3.2.5 (Gelfand-Mazur theorem)
The following conditions on a unital commutative Banach

algebra A are equivalent:
(i) A is a division algebra - i.e., every non-zero element is

invertible;
(ii) A is simple - i.e., there exist no proper ideals in A; and
(iii) A = C1.

Proof : (i) ⇒ (ii) : If A0 contains a proper ideal, then
(by Zorn) it contains maximal ideals, whence (by the previous
proposition) it contains non-zero non-invertible elements.

(ii) ⇒ (iii) : Let x ∈ A; pick λ ∈ σ(x); this is possible, in
view of the already established fact that the spectrum is always
non-empty; then (x − λ) is not invertible and is consequently
contained in the ideal A(x−λ) 6= A; deduce from the hypothesis
(ii) that A(x − λ) = {0}, i.e., x = λ1.

(iii) ⇒ (i) : Obvious. 2

The conclusion of the Gelfand-Naimark theorem is, loosely
speaking, that commutative unital Banach algebras are ‘like’ the
algebra of continuous functions on a compact Hausdorff space.
The first step in this direction is the identification of the points
in the underlying compact space.

Definition 3.2.6 (a) A complex homomorphism on a com-
mutative Banach algebra A is a mapping φ : A → C which is a
non-zero algebra homomorphism - i.e., φ satisfies the following
conditions:

(i) φ(αx + y) = αφ(x) + φ(y), φ(xy) = φ(x)φ(y) ∀ x, y ∈
A, α ∈ C;

(ii) φ is not identically equal to 0.

The collection of all complex homomorphisms on A is called
the spectrum of A - for reasons that will become clear later -
and is denoted by Â.

(b) For x ∈ A, we shall write x̂ for the function x̂ : Â → C,
defined by x̂(φ) = φ(x).



3.2. GELFAND-NAIMARK THEORY 97

Remark 3.2.7 (a) It should be observed that for unital Banach
algebras, condition (ii) in Definition 3.2.6 is equivalent to the
requirement that φ(1) = 1. (Verify this!)

(b) Deduce, from Exercise 3.2.3(5), that in case A = C(X),
with X a compact Hausdorff space, then there is an identification
of Â with X in such a way that f̂ is identified with f , for all
f ∈ A. 2

Lemma 3.2.8 Let A denote a unital commutative Banach alge-
bra.

(a) the mapping φ → ker φ sets up a bijection between Â
and the collection of all maximal ideals in A;

(b) x̂(Â) = σ(x);
(c) if it is further true that ||1|| = 1, then, the following

conditions on a map φ : A → C are equivalent:
(i) φ ∈ Â;
(ii) φ ∈ A∗, ||φ|| = 1, and φ(xy) = φ(x)φ(y) ∀ x, y ∈ A.

Proof : (a) Let φ ∈ Â and define I = ker φ. Since φ is
an algebra homomorphism of A onto C, it follows - see Exercise
3.2.3(7) - that I is a maximal ideal in A. Conversely, if I is a
maximal ideal in A, it follows from Exercise 3.2.3(7) that A/I is
simple, and hence, by the Gelfand-Mazur Theorem, we see that
A/I = C1; consequently, the quotient map A → A/I = C
gives rise to a complex homomorphism φI which clearly has the
property that ker φI = I. Finally, the desired conclusion follows
from the following facts: (i) two linear functionals on a vector
space with the same kernel are multiples of one another, and (ii)
if φ ∈ Â, then A = ker φ⊕C1 (as vector spaces), and φ(1) = 1.

(b) If x ∈ A, φ ∈ Â, then (x−φ(x)1) ∈ ker φ, and hence, by
Proposition 3.2.4, we see that φ(x) ∈ σ(x). Conversely, it follows
from Proposition 3.2.4 and (a) of this Lemma, that σ(x) ⊂ x̂(Â).

(c) Deduce from (b) and equation 3.1.11 that if φ ∈ Â, then,
for any x ∈ A, we have

|φ(x)| ≤ r(x) ≤ ||x|| ,

and hence ||φ|| ≤ 1. On the other hand, since φ(1) = 1, we must
have ||φ|| = 1, and hence (i) ⇒ (ii); the other implication is
obvious. 2
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Corollary 3.2.9 Let A be a non-unital commutative Banach
algebra; then φ ∈ Â ⇒ φ ∈ A∗ and ||φ|| ≤ 1.

Proof : Let A+ denote the ‘unitisation’ of A as in Exercise
3.1.3(1). Define φ+ : A+ → C by φ+(x, α) = φ(x)+α; it is easily
verified that φ+ ∈ Â+; hence, by Lemma 3.2.8(c), we see that
φ+ ∈ (A+)∗ and ||φ+|| ≤ 1, and the desired conclusion follows
easily. 2

In the sequel, given a commutative Banach algebra A, we
shall regard Â as a topological space with respect to the subspace
topology it inherits from ball A∗ = {φ ∈ A∗ : ||φ|| ≤ 1}, where
this unit ball is considered as a compact Hausdorff space with
respect to the weak∗-topology - see Alaoglu’s theorem (Theorem
1.6.9).

Theorem 3.2.10 Let A be a commutative Banach algebra, with
spectrum Â. Then,

(1) Â is a locally compact Hausdorff space (with respect to
the weak∗-topology), which is compact in case the Banach algebra
A contains an identity; and

(2) the map x → x̂ defines a mapping Γ : A → C0(Â)
which is a contractive homomorphism of Banach algebras (where,
of course, C0(Â) is regarded as a Banach algebra as in Exam-
ple 3.1.2(4)) - meaning that the following relations hold, for all
x, y ∈ A, α ∈ C:

(i) ||Γ(x)|| ≤ ||x||;
(ii) Γ(αx + y) = αΓ(x) + Γ(y); and
(iii) Γ(xy) = Γ(x)Γ(y).

The map Γ is referred to as the Gelfand transform of A.

Proof : (1) Consider the following sets: for fixed x, y ∈ A,
let Kx,y = {φ ∈ ball A∗ : φ(xy) = φ(x)φ(y)}; and let V = {φ ∈
ball A∗ : φ 6= 0}. The definition of the weak∗ topology implies
that Kx,y (resp., V ) is a closed (resp., open) subset of ball A∗;
hence K = ∩x,y∈AKx,y is also a closed, hence compact, set in

the weak∗ topology. Notice now that Â = K ∩ V , and since
an open subset of a (locally) compact Hausdorff space is locally
compact - see Proposition A.6.2(3) - and Hausdorff, we see that
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Â is indeed a locally compact Hausdorff space. In case A has an
identity, then F = {φ ∈ ball A∗ : φ(1) = 1} is weak∗ closed, and
Â = K ∩ F is a closed subset of ball A∗, and the proof of (1) is
complete.

(2) The definition of the weak∗ topology guarantees that x̂ is
a continuous function on Â, for every x ∈ A; it is also obvious
that the mapping Γ : x 7→ x̂ is linear and preserves products;
(for example, if x, y ∈ A and if φ ∈ Â is arbitrary, then (by
the definition of a complex homomorphism) we have: x̂y(φ) =
φ(xy) = φ(x)φ(y) = x̂(φ)ŷ(φ), whence x̂y = x̂ŷ).

To complete the proof, we need to verify that Γ maps A into
C0(Â), and that ||Γ(x)|| ≤ ||x||.

First consider the case when A has an identity. In this case,
C0(Â) = C(Â), while, by Lemma 3.2.8(b), we find that

||Γ(x)|| = sup{|x̂(φ)| : φ ∈ Â}
= sup{|λ| : λ ∈ σ(x)}
= r(x)

≤ ||x|| ,

and the proof of the unital case is complete.
Now suppose A does not have an identity. To start with,

deduce, from Corollary 3.2.9, that Γ is indeed contractive, so
we only need to verify that functions on (A+)̂ of the form x̂ do
indeed vanish at infinity.

Let A+ be the unitisation of A, and let Â 3 φ
f7→ φ+ ∈ (A+)̂

be as in the proof of Corollary 3.2.9. Notice now that (A+)̂ =
f(Â)∪{φ0}, where φ0(x, α) = α, since φ0 is the unique complex
homomorphism of A+ whose restriction to A is identically equal
to 0. On the other hand, (the definitions of) the topologies on

Â and (A+)̂ show that a net {φi : i ∈ I} converges to φ in Â if
and only if {φ+

i : i ∈ I} converges to φ+ in Â; in other words,
the function f maps Â homeomorphically onto f(Â).

Thus, we find - from the compactness of (A+)̂, and from the
nature of the topologies on the spaces concerned - that we may
identify (A+)̂ with the one-point compactification (Â)+ of the
locally compact Hausdorff space Â, with the element φ0 playing
the role of the point at infinity; notice now that if we identify

Â as a subspace of (A+)̂ (via f), then the mapping ̂(x, 0) is a
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continuous functon on (A+)̂ which extends x̂ and which vanishes
at ‘∞’ (since φ0(x, 0) = 0); thus, (by Proposition A.6.7(a), for

instance) we find that indeed x̂ ∈ C0((A+)̂), ∀x ∈ A, and the
proof is complete. 2

Corollary 3.2.11 Let Γ be the Gelfand transform of a com-
mutative Banach algebra A. The following conditions on an el-
ement x ∈ A are equivalent:

(i) x ∈ ker Γ − i.e., Γ(x) = 0;

(ii) limn ||xn|| 1
n = 0.

In case A has an identity, these conditions are equivalent to
the following two conditions also:

(iii) x ∈ I, for every maximal ideal I of A;
(iv) σ(x) = {0}.

Proof : Suppose first that A has an identity. Then, since
||Γ(x)|| = r(x), the equivalence of the four conditions follows eas-
ily from Proposition 3.2.4, Lemma 3.2.8 and the spectral radius
formula.

For non-unital A, apply the already established unital case
of the corollary to the element (x, 0) of the unitised algebra A+.

2

Definition 3.2.12 An element of a commutative Banach alge-
bra A is said to be quasi-nilpotent if it satisfies the equivalent
conditions of Corollary 3.2.11. The radical of A is defined to
be the ideal consisting of all quasinilpotent elements of A. A
commutative Banach algebra is said to be semi-simple if it has
trivial radical, (or equivalently, it has no quasinilpotent elements,
which is the same as saying that the Gelfand transform of A is
injective).

A few simple facts concerning the preceding definitions are
contained in the following exercises.

Exercise 3.2.13 (1) Consider the matrix N ∈ Mn(C) defined
by N = ((ni

j)), where ni
j = 1 if i = j − 1, and ni

j = 0 other-
wise. (Thus, the matrix has 1’s on the ‘first super-diagonal’ and
has 0’s elsewhere.) Show that Nk = 0 ⇔ k ≥ n, and hence
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deduce that if A = {∑n−1
i=1 αiN

i : αi ∈ C} (is the subalgebra of
Mn(C) which is generated by {N}), then A is a commutative
non-unital Banach algebra, all of whose elements are (nilpotent,
and consequently) quasi-nilpotent.

(2) If A is as in (1) above, show that Â is empty, and con-
sequently the requirement that Â is compact does not imply that
A must have an identity.

(3) Show that every nilpotent element (i.e., an element with
the property that some power of it is 0) in a commutative Banach
algebra is necessarily quasi-nilpotent, but that a quasi-nilpotent
element may not be nilpotent. (Hint: For the second part, let
Nn denote the operator considered in (1) above, and consider the
operator given by T = ⊕ 1

n
Nn acting on ⊕∞

n=1C
n.)

We now look at a couple of the more important applications
of the Gelfand-Naimark theorem in the following examples.

Example 3.2.14 (1) Suppose A = C(X), where X is a com-
pact Hausdorff space. It follows from Exercise 3.2.3(5)(d) that
the typical complex homomorphism of A is of the form φx(f) =
f(x), for some x ∈ X. Hence the map X 3 x → φx ∈ Â
is a bijective map which is easily seen to be continuous (since
xi → x ⇒ f(xi) → f(x) for all f ∈ A); since X is a com-
pact Hausdorff space, it follows that the above map is actually
a homeomorphism, and if Â is identified with X via this map,
then the Gelfand transform gets identified with the identity map
on A.

(2) Let A = `1(Z), as in Example 3.1.2(5). Observe that
A is ‘generated, as a Banach algebra’ by the element e1, which
is the basis vector indexed by 1; in fact, en

1 = en ∀n ∈ Z, and
x =

∑
n∈Z x(n)en, the series converging (unconditionally) in the

norm. If φ ∈ Â and φ(e1) = z, then note that for all n ∈ Z,
we have |zn| = |φ(en)| ≤ 1, since ||en|| = 1 ∀n; this clearly
forces |z| = 1. Conversely, it is easy to show that if |z| = 1,
then there exists a unique element φz ∈ Â such that φz(e1) =
z. (Simply define φz(x) =

∑
n∈Z x(n)zn, and verify that this

defines a complex homomorphism.) Thus we find that Â may
be identified with the unit circle T; notice, incidentally, that
since Z is the infinite cyclic group with generator 1, we also have
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a natural identification of T with the set of all homomorphisms
of the group Z into the multiplicative group T; and if Z is viewed
as a locally compact group with respect to the discrete topology,
then all homomorphisms on Z are continuous.

More generally, the preceding discussion has a beautiful ana-
logue for general locally compact Hausdorff abelian groups. If
G is such a group, let Ĝ denote the set of continuous homo-
morphisms from G into T; for γ ∈ Ĝ, consider the equation
φγ(f) =

∫
G f(t)γ(t)dmG(t), where mG denotes (some choice,

which is unique up to normalisation of) a (left = right) Haar
measure on G - see Example 3.1.2(5). (The complex conjugate
appears in this equation for historic reasons, which ought to be-
come clearer at the end of this discussion.) It is then not hard
to see that φγ defines a complex homomorphism of the Banach
algebra L1(G,mG). The pleasant fact is that every complex ho-
momorphism of L1(G,mG) arises in this manner, and that the
map Ĝ 3 γ 7→ φγ ∈ (L1(G,mG))̂ is a bijective correspondence.

The (so-called Pontrjagin duality) theory goes on to show

that if the (locally compact Hausdorff) topology on ̂L1(G,mG)
is transported to Ĝ, then Ĝ acquires the structure of a locally
compact Hausdorff group, which is referred to as the dual group
of G. (What this means is that (a) Ĝ is a group with respect to
pointwise operations - i.e., (γ1 · γ2)(t) = γ1(t)γ2(t), etc; and (b)
this group structure is ‘compatible’ with the topology inherited
from Â, in the sense that the group operations are continuous.)
The elements of Ĝ are called characters on G, and Ĝ is also
sometimes referred to as the character group of G.

The reason for calling Ĝ the ‘dual’ of G is this: each element
of G defines a character on Ĝ via evaluation, thus: if we define

χt(γ) = γ(t), then we have a mapping G 3 t 7→ χt ∈ ˆ̂
G = (Ĝ)̂;

the theory goes on to show that the above mapping is an isomor-
phism of groups which is a homeomorphism of topological spaces;

thus we have an identification G ∼= ˆ̂
G of topological groups.

Under the identification of (L1(G,mG))̂ with Ĝ, the Gelfand
transform becomes identified with the mapping L1(G,mG) 3
f 7→ f̂ ∈ C0(Ĝ) defined by

f̂(γ) =
∫

G
f(t)γ(t)dmG(t) ; (3.2.15)
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the mapping f̂ defined by this equation is referred to, normally,
as the Fourier transform of the function f - for reasons stem-
ming from specialisations of this theory to the case when G ∈
{R, Z, T}.

Thus, our earlier discussion shows that Ẑ = T (so that, also
T̂ = Z). (It is a fact that, in general, G is discrete if and only
if Ĝ is compact.) It is also true that the typical element of R̂
is of the form γt(s) = exp(its), so that R̂ may be identified
with R as a topological group. Further, if we choose the right
normalisations of Haar measure, we find the equations:

f̂(z) =
∑

n∈Z

f(n)zn, ∀ f ∈ `1(Z)

f̂(n) =
1

2π

∫

[0,2π]
f(eiθ)e−inθdθ , ∀ f ∈ L1(T,mT)

f̂(x) =
1√
2π

∫

R
f(y)e−ixydy , ∀ f ∈ L1(R,mR)

which are the equations defining the classical Fourier transforms.
It is because of the occurrence of the complex conjugates in these
equations, that we also introduced a complex conjugate earlier,
so that it could be seen that the Gelfand transform specialised,
in this special case, to the Fourier transform. 2

3.3 Commutative C∗-algebras

By definition, the Gelfand transform of a commutative Banach
algebra is injective precisely when the algebra in question is semi-
simple. The best possible situation would, of course, arise when
the Gelfand transform turned out to be an isometric algebra iso-
morphism onto the appropriate function algebra. For this to be
true, the Banach algebra would have to behave ‘like’ the algebra
C0(X); in particular, in the terminology of the following defini-
tion, such a Banach algebra would have to possess the structure
of a commutative C∗-algebra.

Definition 3.3.1 A C∗-algebra is, by definition, a Banach
algebra A, which is equipped with an ‘involution’ A 3 x 7→ x∗ ∈
A which satisfies the following conditions, for all x, y ∈ A, α ∈
C:
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(i) (conjugate-linearity) (αx + y)∗ = αx∗ + y∗;
(ii) (product-reversal) (xy)∗ = y∗x∗;
(iii) (order two) (x∗)∗ = x; and
(iv) (C∗-identity) ||x∗x|| = ||x||2.

The element x∗ is called the adjoint of the element x, and
the mapping x 7→ x∗ is referred to as the ‘adjoint-map’ or as
‘adjunction’.

Example 3.3.2 (1) An example of a commutative C∗-algebra
is furnished by C0(X), where X is a locally compact Hausdorff
space; it is clear that this algebra has an identity precisely when
X is compact.

(2) An example of a non-commutative C∗-algebra is provided
by L(H), where H is a Hilbert space of dimension at least two.
(Why two?)

(3) If A is a C∗-algebra, and if B is a subalgebra which is
closed (with respect to the norm) and is ‘self-adjoint’ - meaning
that it is closed under the mapping x 7→ x∗ - then B has the
structure of a C∗-algebra in its own right. In this case, we shall
call B a C∗-subalgebra of A.

(4) This is a non-example. If G is a locally compact abelian
group - or more generally, if G is a locally compact group whose
left Haar measure is also invariant under right translations -
define an involution on L1(G,mG) by f ∗(t) = f(t−1); then
this is an involution of the Banach algebra which satisfies the
first three algebraic requirements of Definition 3.3.1, but does
NOT satisfy the crucial fourth condition; that is, the norm is
not related to the involution by the C∗-identity; nevertheless
the involution is still not too badly behaved with respect to the
norm, since it is an isometric involution. (We ignore the trivial
case of a group with only one element, which is the only case
when the C∗-identity is satisfied.) 2

So as to cement these notions and get a few simple facts
enunciated, we pause for an exercise.
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Exercise 3.3.3 (1) Let A be a Banach algebra equipped with
an involution x 7→ x∗ which satisfies the first three conditions of
Definition 3.3.1.

(a) Show that if A is a C∗-algebra, then ||x∗|| = ||x|| ∀ x ∈ A.
(Hint: Use the submultiplicativity of the norm in any Banach
algebra, together with the C∗-identity.)

(b) Show that A is a C∗-algebra if and only if ||x||2 ≤ ||x∗x||
for all x ∈ A. (Hint: Use the submultiplicativity of the norm in
any Banach algebra, together with (a) above.)

(2) An element x of a C∗-algebra is said to be self-adjoint
if x = x∗.

(a) Show that any element x of a C∗-algebra is uniquely ex-
pressible in the form x = x1 + ix2, where x1 and x2 are self-
adjoint elements. (Hint: Imitate the proof of Proposition 2.4.9.)

(b) If A is a C∗-algebra which has an identity 1, show that 1
is necessarily self-adjoint.

(3) Let A be a C∗-algebra, and let S be an arbitrary subset of
A. (This exercise gives an existential, as well as a constructive,
description of the ‘C∗-subalgebra generated by S’.)

(a) Show that ∩{B : S ⊂ B,B is a C∗-subalgebra of A} is
a C∗-subalgebra of A that contains S, which is minimal with
respect to this property, in the sense that it is contained in any
other C∗-subalgebra of A which contains S; this is called the
C∗-subalgebra generated by S and is denoted by C∗(S).

(b) Let S1 denote the set of all ‘words in S∪S∗’; i.e., S1 con-
sists of all elements of the form w = a1a2 · · · an, where n is any
positive integer and either ai ∈ S or a∗

i ∈ S for all i; show that
C∗(S) is the closure of the set of all finite linear combinations
of elements of S1.

In order to reduce assertions about non-unital C∗-algebras
to those about unital C∗-algebras, we have to know that we can
embed any non-unital C∗-algebra as a maximal ideal in a unital
C∗-algebra (just as we did for Banach algebras). The problem
with our earlier construction is that the norm we considered
earlier (in Exercise 3.1.3(1)) will usually not satisfy the crucial
C∗-identity. We get around this difficulty as follows.
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Proposition 3.3.4 Suppose A is a C∗-algebra without identity.
Then there exists a C∗-algebra A+ with identity which contains
a maximal ideal which is isomorphic to A as a C∗-algebra.

Proof : Consider the mapping A 3 x 7→ Lx ∈ L(A) defined
by

Lx(y) = xy ∀ y ∈ A .

It is a consequence of sub-multiplicativity of the norm (with
respect to products) in any Banach algebra, and the C∗-identity
that this map is an isometric algebra homomorphism of A into
L(A).

Let A+ = {Lx + α1 : x ∈ A, α ∈ C}, where we write 1
for the identity operator on A; as usual, we shall simply write α
for α1. It is elementary to verify that A+ is a unital subalgebra
of L(A); since this subalgebra is expressed as the vector sum of
the (complete, and hence) closed subspace I = {Lx : x ∈ A}
and the one-dimensional subspace C1}, it follows from Exercise
3.3.5(1) below that A+ is a closed subspace of the complete space
L(A) and thus A+ is indeed a Banach algebra. (Also notice that
I is a maximal ideal in A+ and that the mapping x 7→ Lx is an
isometric algebra isomorphism of A onto the Banach algebra I.)

Define the obvious involution on A+ by demanding that (Lx+
α)∗ = Lx∗ + α. It is easily verified that this involution satisfies
the conditions (i) − (iii) of Definition 3.3.1.

In view of Exercise 3.3.3(1)(a), it only remains to verify that
||z∗z|| ≥ ||z||2 for all z ∈ A+. We may, and do, assume that
z 6= 0, since the other case is trivial. Suppose z = Lx + α; then
z∗z = Lx∗x+αx+αx∗ + |α|2. Note that for arbitrary y ∈ A, we
have

||z(y)||2 = ||xy + αy||2
= ||(y∗x∗ + αy∗)(xy + αy)||
= ||y∗ · (z∗z)(y)||
≤ ||z∗z|| · ||y||2 ,

where we have used the C∗-identity (which is valid in A) in
the second line, and the submultiplicativity of the norm (with
respect to products), the definition of the norm on A+, and
Exercise 3.3.3(1)(b) in the last line. Since y was arbitrary, this
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shows that, indeed, we have ||z||2 ≤ ||z∗z||, and the proof is
complete. 2

Exercise 3.3.5 (1) Show that if Y is a closed subspace of a
Banach space X, and if F is a finite-dimensional subspace of
X, then also the vector sum Y + F is a closed subspace of X.
(Hint: Consider the quotient map π : X → X/Y , note that
F + Y = π−1(π(F )), and appeal to Exercise A.6.5(1)(c) and the
continuity of π.)

(2) Show that if, in (1) above, the requirement that F is finite-
dimensional is relaxed to just requiring that F is closed, then the
conclusion is no longer valid in general. (Hint: Let T ∈ L(H)
be an operator which is 1-1, but whose range is not closed - (see
Remark 1.5.15, for instance); let X = H⊕H, Y = H⊕{0}, and
F = G(T ) (the graph of T ).)

(3) If A is any (not necessarily commutative) unital Banach
algebra, and if x ∈ A, show that the equation

ex =
∞∑

n=0

xn

n!
(3.3.16)

defines a mapping A 3 x
exp7→ ex ∈ G(A) with the property that

(i) ex+y = exey, whenever x and y are two elements which
commute with one another;

(ii) for each fixed x ∈ A, the map R 3 t 7→ etx ∈ G(A)
defines a (continuous) homomorphism from the additive group
R into the multiplicative (topological) group G(A).

We are now ready to show that in order for the Gelfand
transform of a commutative Banach algebra to be an isometric
isomorphism onto the algebra of all continuous functions on its
spectrum which vanish at infinity, it is necessary and sufficient
that the algebra have the structure of a commutative C∗-algebra.
Since the necessity of the condition is obvious, we only state the
sufficiency of the condition in the following formulation of the
Gelfand-Naimark theorem for commutative C∗-algebras.

Theorem 3.3.6 Suppose A is a commutative C∗-algebra; then
the Gelfand transform is an isometric *-algebra isomorphism of
A onto C0(Â); further, Â is compact if and only if A has an
identity.
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Proof : Case (a): A has an identity.
In view of Theorem 3.2.10, we only need to show that (i) if

x ∈ A is arbitrary, then Γ(x∗) = Γ(x)∗ and ||Γ(x)|| = ||x||; (ii)
Â is compact; and (iii) Γ maps onto C(Â).

(i) We first consider the case of a self-adjoint element x =
x∗ ∈ A. Define ut = eitx , ∀t ∈ R; then, notice that the self-
adjointness assumption, and the continuity of adjunction, imply
that

u∗
t =

∞∑

n=0

(
(itx)n

n!

)∗

=
∞∑

n=0

(
(−itx)n

n!

)

= u−t ;

hence, by the C∗-identity and Exercise 3.3.5(3), we find that for
any t ∈ R,

||ut||2 = ||u−tut|| = 1 .

Now, if φ ∈ Â, since ||φ|| = 1, it follows that |φ(ut)| ≤ 1 ∀t ∈
R; on the other hand, since φ is (continuous and) multiplicative,
it is seen that φ(ut) = eitφ(x); in other words, |eitφ(x)| ≤ 1 ∀t ∈
R; this clearly implies that φ(x) ∈ R. Thus, we have shown
that x̂ is a real-valued function, for every self-adjoint element
x ∈ A. Thanks to the Cartesian decomposition (of an element
as a sum of a self-adjoint and a ‘skew-adjoint’ element), we may
now conclude that Γ is indeed a homomorphism of *-algebras.

Again, if x = x∗ ∈ A, observe that

||x||2 = ||x∗x|| = ||x2|| ,

and conclude, by an easy induction, that ||x||2n

= ||x2n|| for ev-
ery positive integer n; it follows from the spectral radius formula
that

r(x) = lim
n

||x2n|| 1
2n = ||x|| ;

on the other hand, we know that ||Γ(x)|| = r(x) - see Lemma
3.2.8(a); thus, for self-adjoint x, we find that indeed ||Γ(x)|| =
||x||; the case of general x follows from this, the fact that Γ is
a *-homomorphism, and the C∗-identity (in both A and C(Â)),



3.3. COMMUTATIVE C∗-ALGEBRAS 109

thus :

||Γ(x)||2 = ||Γ(x)∗Γ(x)||
= ||Γ(x∗x)||
= ||x∗x||
= ||x||2 ,

thereby proving (i).
(ii) This follows from Theorem 3.2.10 (1).
(iii) It follows from the already established (i) that the Γ(A)

is a norm-closed self-adjoint subalgebra of C(Â) which is easily
seen to contain the constants and to separate points of Â; accord-
ing to the Stone-Weierstrass theorem, the only such subalgebra
is C(Â).

Case (b): A does not have a unit.
Let A+ and I be as in the proof of Proposition 3.3.4. By the

already established Case (a) above, and Exercise 3.2.3(5)(d), we
know that ΓA+ is an isometric *-isomorphism of A+ onto C(Â),

and that there exists a point φ0 ∈ (A+)̂ such that ΓA+(I) = {f ∈
C(Â) : f(φ0) = 0}. As in the proof of Theorem 3.2.10, note that
if π : A → I is the natural isometric *-isomorphism of A onto
I, then the map φ 7→ φ ◦ π defines a bijective correspondence
between (A+)̂−{φ0} and Â which is a homeomorphism (from the

domain, with the subspace topology inherited from (A+)̂, and

the range); finally, it is clear that if x ∈ A, and if φ0 6= φ ∈ (A+)̂,
then (ΓA+(π(x))) (φ) = (ΓA(x)) (φ◦π), and it is thus seen that
even in the non-unital case, the Gelfand transform is an isometric
*-isomorphism of A onto C0(Â).

Finally, if X is a locally compact Hausdorff space, then since
C0(X) contains an identity precisely when X is compact, the
proof of the theorem is complete. 2

Before reaping some consequences of the powerful Theorem
3.3.6, we wish to first establish the fact that the notion of the
spectrum of an element of a unital C∗-algebra is an ‘intrinsic’
one, meaning that it is independent of the ambient algebra, un-
like the case of general Banach algebras (see Proposition 3.1.11
and Example 3.1.12).
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Proposition 3.3.7 Let A be a unital C∗-algebra, let x ∈ A,
and suppose B is a C∗-subalgebra of A such that 1, x ∈ B. Then,
σA(x) = σB(x); in particular, or equivalently, if we let A0 =
C∗({1, x}), then, σA(x) = σA0(x).

Proof : We already know that σB(x) ⊃ σA(x) - see Proposi-
tion 3.1.11; to prove the reverse inclusion, we need to show that
ρA(x) ⊂ ρB(x); i.e., we need to show that if λ ∈ C is such that
(x−λ) admits an inverse in A, then that inverse should actually
belong to B; in view of the spectral mapping theorem, we may
assume, without loss of generality, that λ = 0; thus we have to
prove the following assertion:

If 1, x ∈ B ⊂ A, and if x ∈ G(A), then x−1 ∈ B.

We prove this in two steps.
Case (i) : x = x∗.
In this case, we know from Theorem 3.3.6 - applied to the

commutative unital C∗-algebra A0 = C∗({1, x}), that σA0(x) ⊂
R; since any closed subset of the real line is, when viewed as a
subset of the complex plane, its own boundary, we may deduce
from Proposition 3.1.11 (applied to the inclusions A0 ⊂ B ⊂ A)
that

σA(x) ⊂ σB(x) ⊂ σA0(x) = ∂(σA0(x)) ⊂ ∂(σA(x)) ⊂ σA(x) ;

consequently, all the inclusions in the previous line are equalities,
and the proposition is proved in this case.

Case (ii) : Suppose x ∈ G(A) is arbitrary; then also x∗ ∈
G(A) and consequently, x∗x ∈ G(A); by Case (i), this implies
that (x∗x)−1 ∈ B; then (x∗x)−1x∗ is an element in B which is
left-inverse of x; since x is an invertible element in A, deduce
that x−1 = (x∗x)−1x∗ ∈ B, and the proposition is completely
proved. 2

Thus, in the sequel, when we discuss C∗-algebras, we may
talk unambiguously of the spectrum of an element of the algebra;
in particular, if T ∈ L(H), and if A is any unital C∗-subalgebra
of L(H) which contains T , then the spectrum of T , regarded as
an element of A, is nothing but σL(H)(T ), which, of course, is
given by the set {λ ∈ C : T − λ is either not 1-1 or not onto }.
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Further, even if we have a non-unital C∗-algebra A, we will
talk of the spectrum of an element x ∈ A, by which we will
mean the set σA+(x), where A+ is any unital C∗-algebra con-
taining A (or equivalently, where A+ is the unitisation of A, as
in Proposition 3.3.4); it should be noticed that if x belongs to
some C∗-algebra without identity, then its spectrum must nec-
essarily contain 0.

Since we wish to obtain various consequences, for a gen-
eral not necessarily commutative C∗-algebra, of Theorem 3.3.6
(which is a result about commutative C∗-algebras), we introduce
a definition which permits us to regard appropriate commutative
C∗-subalgebras of a general C∗-algebra.

Definition 3.3.8 An element x of a C∗-algebra is said to be
normal if x∗x = xx∗.

Exercise 3.3.9 Let A be a C∗-algebra and let x ∈ A. Show
that the following conditions are equivalent:

(i) x is normal;
(ii) C∗({x}) is a commutative C∗-algebra;
(iii) if x = x1 + ix2 denotes the Cartesian decomposition of

x, then x1x2 = x2x1.

We now come to the first of our powerful corollaries of Theo-
rem 3.3.6; this gives us a continuous functional calculus for
normal elements of a C∗-algebra.

Proposition 3.3.10 Let x be a normal element of a C∗-algebra
A, and define

A0 =

{
C∗({1, x}) if A has an identity 1
C∗({x}) otherwise

.

Then,
(a) if A has an identity, there exists a unique isometric iso-

morphism of C∗-algebras denoted by C(σ(x)) 3 f 7→ f(x) ∈ A0

with the property that f1(x) = x, where f1 : σ(x) (⊂ C) → C is
the identity function defined by f1(z) = z; and

(b) if A does not have an identity, and if we agree to use the
(not incorrect) notation C0(σ(x)) = {f ∈ C(σ(x)) : f(0) = 0},
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then there exists a unique isometric isomorphism of C∗-algebras
denoted by C0(σ(x)) 3 f 7→ f(x) ∈ A0 with the property that
f1(x) = x, where f1 is as in (a) above.

Proof : (a) Let Σ = σ(x). Notice first that x̂ (= ΓA0(x)) :
Â0 → Σ is a surjective continuous mapping. We assert that this
map is actually a homeomorhism; in view of the compactness of
Â0 (and the fact that C is a Hausdorff space), we only need to
show that x̂ is 1-1; suppose x̂(φ1) = x̂(φ2), φj ∈ Â0; it follows
that φ1|D = φ2|D, where D = {∑n

i,j=0 αi,jx
i(x∗)j : n ∈ IN, αi,j ∈

C}; on the other hand, the hypothesis (together with Exercise
3.3.3(3)(b)) implies that D is dense in A0, and the continuity of
the φj’s implies that φ1 = φ2, as asserted.

Hence x̂ is indeed a homeomorphism of Â0 onto Σ. Consider
the map given by

C(Σ) 3 f 7→ Γ−1
A0

(f ◦ x̂) ;

it is easily deduced that this is indeed an isometric isomorphism
of the C∗-algebra C(Σ) onto A0 with the desired properties.

On the other hand, it follows from the Stone-Weierstrass the-
orem - see Exercise A.6.10(iii) - that the set D′ = {f : f(z) =∑n

i,j=0 αi,jz
izj , n ∈ IN, αi,j ∈ C} is dense in C(Σ); so, any con-

tinuous *-homomorphism of C(Σ) is determined by its values on
the set D′, and hence by its values on the set {f0, f1}, where
fj(z) = zj, j = 0, 1; and the proof of the corollary is complete.

(b) Suppose A0 does not have an identity; again let Σ =
σ(x), and observe that 0 ∈ Σ - see the few paragraphs preceding
Definition 3.3.8. Thus, if A+ denotes the unitisation of A as
in Proposition 3.3.4, and if we regard A as a maximal ideal in
A+ (by identifying x ∈ A with Lx ∈ A+), we see that A0 gets
identified with the maximal ideal I0 = {Ly : y ∈ A0} of A+

0 =
{Ly + α : y ∈ A0, α ∈ C}. Under the isomorphism of C(Σ) with
A+

0 that is guaranteed by applying (a) to the element Lx ∈ A+
0 ,

it is easy to see that what we have called C0(Σ) gets mapped
onto A0, and this proves the existence of an isomorphism with
the desired properties. Uniqueness is established along exactly
the same lines as in (a). 2

The moral to be drawn from the preceding proposition is
this: if something is true for continuous functions defined on a
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compact subset of C (resp., R), then it is also true for normal
(resp., self-adjoint) elements of a C∗-algebra. We make precise
the sort of thing we mean by the foregoing ‘moral’ in the follow-
ing proposition.

Proposition 3.3.11 Let A be a C∗-algebra.

(a) The following conditions on an element x ∈ A are equivalent:
(i) x is normal, and σ(x) ⊂ R;
(ii) x is self-adjoint.

(b) The following conditions on an element u ∈ A are equivalent:
(i) u is normal, and σ(u) ⊂ T;
(ii) A has an identity, and u is unitary, i.e., u∗u = uu∗ = 1.

(c) The following conditions on an element p ∈ A are equivalent:
(i) p is normal, and σ(p) ⊂ {0, 1};
(ii) p is a projection, i.e., p = p2 = p∗.

(d) The following conditions on an element x ∈ A are equivalent:
(i) x is normal, and σ(x) ⊂ [0,∞);
(ii) x is positive, i.e., there exists a self-adjoint element

y ∈ A such that x = y2.

(e) If x ∈ A is positive (as in (d) above), then there exists a
unique positive element y ∈ A such that x = y2; this y actually
belongs to C∗({x}) and is given by y = f(x) where f(t) = t

1
2 ;

this unique element y is called the positive square root of x
and is denoted by y = x

1
2 .

(f) Let x be a self-adjoint element in A. Then there exists a
unique decomposition x = x+ − x−, where x+, x− are positive
elements of A (in the sense of (d) above) which satisfy the con-
dition x+x− = 0.

Proof : (a): (i) ⇒ (ii) : By Proposition 3.3.10, we have
an isomorphism C∗({x}) ∼= C(σ(x)) in which x corresponds to
the identity function f1 on σ(x); if σ(x) ⊂ R, then f1, and
consequently, also x, is self-adjoint.

(ii) ⇒ (i) : This also follows easily from Proposition 3.3.10.
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The proofs of (b) and (c) are entirely similar. (For instance,
for (i) ⇒ (ii) in (b), you would use the fact that if z ∈ T, then
|z|2 = 1, so that the identity function f1 on σ(x) would satisfy
f ∗

1 f1 = f1f
∗
1 = 1.)

(d) For (i) ⇒ (ii), put y = f(x), where f ∈ C(σ(x)) is

defined by f(t) = t
1
2 , where t

1
2 denotes the non-negative square

root of the non-negative number t. The implication (ii) ⇒ (i)
follows from Proposition 3.3.10 and the following two facts : the
square of a real-valued function is a function with non-negative
values; and, if f ∈ C(X), with X a compact Hausdorff space,
then σ(f) = f(X). (Prove this last fact!)

(e) If f is as in (d), and if we define y = f(x), it then follows
(since f(0) = 0) that y ∈ C∗({x}) and that y is positive. Suppose
now that z is some other positive element of A such that x = z2.
It follows that if we write A0 = C∗({z}), then x ∈ A0, and
consequently, also y ∈ C∗({x}) ⊂ A0; but now, by Theorem
3.3.6, there is an isomorphism of A0 with C(X) where X =
σ(z) ⊂ R, and under this isomorphism, both z and y correspond
to non-negative continuous functions on X, such that the squares
of these two functions are identical; since the non-negative square
root of a non-negative number is unique, we may conclude that
z = y.

(f) For existence of the decomposition, define x± = f±(x),
where f± is the continuous function on R (and hence on any
subset of it) defined by f±(t) = max{0,±t}, and note that
f±(t) ≥ 0, f+(t) − f−(t) = t and f+(t)f−(t) = 0 for all t ∈ R.
Also, note that f±(0) = 0, so that f±(x) ∈ C∗({x}).

For uniqueness, suppose x = x+−x− is a decomposition of the
desired sort. Then note that x−x+ = x∗

−x∗
+ = (x+x−)∗ = 0, so

that x+ and x− are commuting positive elements of A. It follows
that A0 = C∗({x+, x−}) is a commutative C∗-algebra which con-
tains {x+, x−, x} and consequently also f±(x) ∈ C∗({x}) ⊂ A0.
Now appeal to Theorem 3.3.6 (applied to A0), and the fact
(which you should prove for yourself) that if X is a compact
Hausdorff space, if f is a real-valued continuous function on
X, and if gj, j = 1, 2 are non-negative continuous functions
on X such that f = g1 − g2 and g1g2 = 0, then necessarily
g1(x) = max{f(x), 0} and g2(x) = max{−f(x), 0}, and con-
clude the proof of the proposition. 2



3.3. COMMUTATIVE C∗-ALGEBRAS 115

Given an element x of a C∗-algebra which is positive in the
sense of Proposition 3.3.11(d), we shall write x ≥ 0 or 0 ≤ x. We
wish to show that the set of positive elements of a C∗-algebra
form a positive cone - meaning that if x and y are positive ele-
ments of a C∗-algebra, and if a, b are non-negative real numbers,
then also ax + by ≥ 0; since clearly ax, by ≥ 0, we only need
to show that a sum of positive elements is positive; we proceed
towards this goal through a lemma.

Lemma 3.3.12 Let A be a unital Banach algebra, and suppose
x, y ∈ A. Then, σ(xy) ∪ {0} = σ(yx) ∪ {0}.

Proof : We wish to show that if λ 6= 0, then (λ − xy) ∈
G(A) ⇔ (λ − yx) ∈ G(A); by replacing x by x

λ
if necessary, it

is sufficient to consider the case λ = 1. By the symmetry of the
problem, it clearly suffices to show that if (1 − yx) is invertible,
then so is (1 − xy).

We first present the heuristic and non-rigorous motivation for
the proof. Write (1−yx)−1 = 1+yx+yxyx+yxyxyx+ · · ·; then,
(1−xy)−1 = 1+xy +xyxy +xyxyxy + · · · = 1+x(1− yx)−1y.

Coming back to the (rigorous) proof, suppose u = (1−yx)−1;
thus, u − uyx = u − yxu = 1. Set v = 1 + xuy, and note that

v(1 − xy) = (1 + xuy)(1 − xy)

= 1 + xuy − xy − xuyxy

= 1 + x(u − 1 − uyx)y

= 1 ,

and an entirely similar computation shows that also (1−xy)v =
1, thus showing that (1 − xy) is indeed invertible (with inverse
given by v). 2

Proposition 3.3.13 If A is a C∗-algebra, if x, y ∈ A, and if
x ≥ 0 and y ≥ 0, then also (x + y) ≥ 0.

Proof : To start with, (by embedding A in a larger unital
C∗-algebra, if necessary), we may assume that A is itself a unital
C∗-algebra. Next, we may (by scaling both x and y down by
the same small positive scalar, if necessary), assume (without
loss of generality) that ||x||, ||y|| ≤ 1. Thus r(x) ≤ 1 and we
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may conclude that σ(x) ⊂ [0, 1], and consequently deduce that
σ(1 − x) ⊂ [0, 1], and hence that (1 − x) ≥ 0 and ||1 − x|| =
r(1 − x) ≤ 1. Similarly, also ||1 − y|| ≤ 1. Then, ||1 − x+y

2
|| =

1
2
||(1 − x) + (1 − y)|| ≤ 1. Since x+y

2
is clearly self-adjoint, this

means that σ(x+y
2

) ⊂ [0, 2], whence σ(x + y) ⊂ [0, 4] (by the
spectral mapping theorem), and the proof of lemma is complete.

2

Corollary 3.3.14 If A is a C∗-algebra, let Asa denote the set
of self-adjoint elements of A. If x, y ∈ Asa, say x ≥ y (or
equivalently, y ≤ x) if it is the case that (x − y) ≥ 0. Then this
defines a partial order on the set Asa.

Proof : Reflexivity follows from 0 ≥ 0; transitivity follows
from Proposition 3.3.13; anti-symmetry amounts to the state-
ment that x = x∗, x ≥ 0 and −x ≥ 0 imply that x = 0; this is
because such an x should have the property that σ(x) ⊂ [0,∞)
and σ(x) ⊂ (−∞, 0]; this would mean that σ(x) = {0}, and
since x = x∗, it would follow that ||x|| = r(x) = 0. 2

Lemma 3.3.15 Suppose z is an element of a C∗-algebra and that
z∗z ≤ 0; then z = 0.

Proof : Deduce from Lemma 3.3.12 that the hypothesis im-
plies that also zz∗ ≤ 0; hence, we may deduce from Proposition
3.3.13 that z∗z+zz∗ ≤ 0. However, if z = u+ iv is the Cartesian
decomposition of z, note then that z∗z+zz∗ = 2(u2 +v2); hence,
we may deduce, from Proposition 3.3.13, that z∗z + zz∗ ≥ 0.
Thus, we find that z∗z+zz∗ = 0. This means that u2 = −v2; ar-
guing exactly as before, we find that u2 ≥ 0 and u2 ≤ 0, whence
u2 = 0, and so u = 0 (since ||u|| = ||u2|| 12 for self-adjoint u).
Hence also v = 0 and the proof of the lemma is complete. 2

Proposition 3.3.16 The following conditions on an element x
in a C∗-algebra are equivalent:

(i) x ≥ 0;
(ii) there exists an element z ∈ A such that x = z∗z.

Proof : The implication (i) ⇒ (ii) follows upon setting

z = x
1
2 - see Proposition 3.3.11(e).
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As for (ii) ⇒ (i), let x = x+ −x− be the canonical decompo-
sition of the self-adjoint element x into its positive and negative
parts; we then find (since x−x+ = 0) that x−xx− = −x3

− ≤ 0;
but x−xx− = (zx−)∗(zx−), and we may conclude from Lemma
3.3.15 that x3

− = 0 whence z∗z = x = x+ ≥ 0, as desired. 2

3.4 Representations of C∗-algebras

We will be interested in representing an abstract C∗-algebra
as operators on Hilbert space; i.e., we will be looking at uni-
tal *-homomorphisms from abstract unital C∗-algebras into the
concrete unital C∗-algebra L(H) of operators on Hilbert space.
Since we wish to use lower case Roman letters (such as x, y, z,
etc.) to denote elements of our abstract C∗-algebras, we shall,
for the sake of clarity of exposition, use Greek letters (such as
ξ, η, ζ, etc.) to denote vectors in Hilbert spaces, in the rest of this
chapter. Consistent with this change in notation (from Chapter
2, where we used symbols such as A, T etc., for operators on
Hilbert space), we shall adopt the following further notational
conventions in the rest of this chapter: upper case Roman let-
ters (such as A,B,M , etc.) will be used to denote C∗-algebras as
well as subsets of C∗-algebras, while calligraphic symbols (such
as S,M, etc.) will be reserved for subsets of Hilbert spaces.

We now come to the central notion of this section, and some
of the related notions.

Definition 3.4.1 (a) A representation of a unital C∗-algebra
A is a *-homomorphism π : A → L(H) (where H is some Hilbert
space), which will always be assumed to be a ‘unital homomor-
phism’, meaning that π(1) = 1 - where the symbol 1 on the left
(resp., right) denotes the identity of the C∗-algebra A (resp.,
L(H)).

(b) Two representations πi : A → L(Hi), i = 1, 2, are said
to be equivalent if there exists a unitary operator U : H1 → H2

with the property that π2(x) = Uπ1(x)U∗ ∀ x ∈ A.
(c) A representation π : A → L(H) is said to be cyclic if

there exists a vector ξ ∈ H such that {π(x)(ξ) : x ∈ A} is dense
in H. (In this case, the vector ξ is said to be a cyclic vector
for the representation π.



118 CHAPTER 3. C∗-ALGEBRAS

We commence with a useful fact about *-homomorphisms
between unital C∗-algebras.

Lemma 3.4.2 Suppose π : A → B is a unital *-homomorphism
between unital C∗-algebras; then,

(a) x ∈ A ⇒ σ(π(x)) ⊂ σ(x); and
(b) ||π(x)|| ≤ ||x|| ∀x ∈ A.

Proof : (a) Since π is a unital algebra homomorphism, it
follows that π maps invertible elements to invertible elements;
this clearly implies the asserted spectral inclusion.

(b) If x = x∗ ∈ A, then also π(x) = π(x∗) = π(x)∗ ∈ B,
and since the norm of a self-adjoint element in a C∗-algebra is
equal to its spectral radius, we find (from (a)) that

||π(x)|| = r(π(x)) ≤ r(x) = ||x|| ;

for general x ∈ A, deduce that

||π(x)||2 = ||π(x)∗π(x)|| = ||π(x∗x)|| ≤ ||x∗x|| = ||x||2 ,

and the proof of the lemma is complete. 2

Exercise 3.4.3 Let {πi : A → L(Hi)}i∈I be an arbitrary family
of representations of (an arbitrary unital C∗-algebra) A; show
that there exists a unique (unital) representation π : A → L(H),
where H = ⊕i∈IHi, such that π(x) = ⊕i∈Iπi(x). (See Exercise
2.5.8 for the definition of a direct sum of an arbitrary family of
operators.) The representation π is called the direct sum of the
representations {πi : i ∈ I}, and we write π = ⊕i∈I πi. (Hint:
Use Exercise 2.5.8 and Lemma 3.4.2.)

Definition 3.4.4 If H is a Hilbert space, and if S ⊂ L(H) is
any set of operators, then the commutant of S is denoted by
the symbol S ′, and is defined by

S ′ = {x′ ∈ L(H) : x′x = xx′ ∀x ∈ S} .

Proposition 3.4.5 (a) If S ⊂ L(H) is arbitrary, then S ′ is a
unital subalgebra of L(H) which is closed in the weak-operator
topology (and consequently also in the strong operator and norm
topologies) on L(H).
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(b) If S is closed under formation of adjoints - i.e., if S = S∗,
where of course S∗ = {x∗ : x ∈ S} - then S ′ is a C∗-subalgebra
of L(H).

(c) If S ⊂ T ⊂ L(H), then
(i) S ′ ⊃ T ′;
(ii) if we inductively define S ′(n+1) = (S ′(n))′ and S ′(1) = S ′,

then
S ′ = S ′(2n+1) ∀n ≥ 0

and
S ⊂ S ′′ = S ′(2) = S ′(2n+2) ∀n ≥ 0 .

(d) Let M be a closed subspace of H and let p denote the
orthogonal projection onto M; and let S ⊂ L(H); then the fol-
lowing conditions are equivalent:

(i) x(M) ⊂ M, ∀x ∈ S;
(ii) xp = pxp ∀x ∈ S.

If S = S∗ is ‘self-adjoint’, then the above conditions are also
equivalent to

(iii) p ∈ S ′.

Proof : The topological assertion in (a) is a consequence of
the fact that multiplication is ‘separately weakly continuous’ -
see Example 2.5.3(3); the algebraic assertions are obvious.

(b) Note that, in general,

y ∈ (S∗)′ ⇔ yx∗ = x∗y ∀x ∈ S

⇔ xy∗ = y∗x ∀x ∈ S

⇔ y∗ ∈ S ′

so that (S∗)′ = (S ′)∗, for any S ⊂ L(H).
(c) (i) is an immediate consequence of the definition, as is

the fact that
S ⊂ S ′′ ; (3.4.17)

applying (i) to the inclusion 3.4.17, we find that S ′ ⊃ S ′′′; on the
other hand, if we replace S by S ′ in the inclusion 3.4.17, we see
that S ′ ⊂ S ′′′; the proof of (c)(ii) is complete.

(d) For one operator x ∈ L(H), the condition that x(M) ⊂
M, and that xp = pxp, are both seen to be equivalent to the
requirement that if ((xi

j))1≤i,j≤2 is the ‘matrix of x with respect
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to the direct sum decomposition H = M ⊕ M⊥’ (as discussed
in Proposition 2.5.6), then x2

1 = 0; i.e., the ‘matrix of x’ has the
form

[x] =

[
a b
0 c

]
,

where, of course, a ∈ L(M)), b ∈ L(M⊥,M)) and c ∈ L(M⊥))
are the appropriate ‘compressions’ of x - where a compression of
an operator x ∈ L(H) is an operator of the form z = PM ◦ x|N
for some subspaces M,N ⊂ H.

If S is self-adjoint, and if (i) and (ii) are satisfied, then we
find that xp = pxp and x∗p = px∗p for all x ∈ S; taking adjoints
in the second equation, we find that px = pxp; combining with
the first equation, we thus find that px = xp ∀x ∈ S; i.e., p ∈ S ′.

Conversely, (iii) clearly implies (ii), since if px = xp, then
pxp = xp2 = xp. 2

We are now ready to establish a fundamental result concern-
ing self-adjoint subalgebras of L(H).

Theorem 3.4.6 (von Neumann’s density theorem)
Let A be a unital *-subalgebra of L(H). Then A′′ is the clo-

sure of A in the strong operator topology.

Proof : Since A ⊂ A′′, and since A′′ is closed in the strong
operator topology, we only need to show that A is strongly dense
in A′′.

By the definition of the strong topology, we need to prove
the following:

Assertion: Let z ∈ A′′; then for any n ∈ IN, ξ1, · · · , ξn ∈ H and
ε > 0, there exists an x ∈ A such that ||(x − z)ξi|| < ε for
1 ≤ i ≤ n.

Case (i): We first prove the assertion when n = 1.
Let us write ξ = ξ1, and let M denote the closure of the set

Aξ = {xξ : x ∈ A}. Note that Aξ is a vector space containing
ξ (since A is an algebra containing 1), and hence M is a closed
subspace of H which is obviously stable under A, meaning that
xM ⊂ M ∀x ∈ A. Hence, if p is the projection onto M, we may
deduce (from Proposition 3.4.5(d)) that p ∈ A′ and that pξ = ξ.
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Since z ∈ A′′, we find that zp = pz, whence zM ⊂ M; in
particular, zξ ∈ M; by definition of M, this means there exists
x ∈ A such that ||(zξ − xξ|| < ε.

Case (ii) : n ∈ IN arbitrary.

Let Hn = H⊕ n terms· · · ⊕H; as in Proposition 2.5.6, we shall
identify L(Hn) with Mn(L(H)).

Let us adopt the following notation: if a ∈ L(H), let us write
a(n) for the element of Mn(L(H)) with (i, j)-th entry being given
by δi

ja; thus,

a(n) =




a 0 0 · · · 0
0 a 0 · · · 0
0 0 a · · · 0
...

...
...

. . .
...

0 0 0 · · · a




.

With this notation, define

A(n) = {a(n) : a ∈ A} ,

and observe that A(n) is a unital *-subalgebra of L(H(n)).
We claim that

(A(n))′ = {((bi
j)) : bi

j ∈ A′ ∀ i, j} (3.4.18)

and that

(A(n))′′ = (A′′)(n)

= {z(n) : z ∈ A′′} . (3.4.19)

Let b = ((bi
j)). Then ba(n) = ((bi

ja)), while a(n)b = ((abi
j));

the validity of equation 3.4.18 follows.
As for equation 3.4.19, begin by observing that (in view of

equation 3.4.18), we have ei
j ∈ (A(n))′, where ei

j is the matrix
which has entry 1 = idH in the (i, j)-th place and 0’s elsewhere;
hence, if y ∈ (A(n))′′, we should, in particular, have yei

j = ei
jy

for all 1 ≤ i, j ≤ n. This is seen, fairly easily, to imply that
there must exist some z ∈ L(H) such that y = z(n); another
routine verification shows that z(n) will commute with ((bi

j)) for
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arbitrary bi
j ∈ A′ if and only if z ∈ A′′, thus completing the proof

of equation 3.4.19.
Coming back to the assertion, if z ∈ A′′, consider the element

z(n) ∈ (A(n))′′ and the vector ξ = (ξ1, ξ2, · · · , ξn) ∈ Hn, and
appeal to the already established Case (i) to find an element
of A(n) - i.e., an element of the form a(n), with a ∈ A - such
that ||(z(n) − a(n))ξ|| < ε; this implies that ||(z − a)ξi|| < ε for
1 ≤ i ≤ n. 2

Corollary 3.4.7 (Double commutant theorem)
The following conditions on a unital *-subalgebra M ⊂ L(K)

are equivalent:
(i) M is weakly closed;
(ii) M is strongly closed;
(iii) M = M ′′.

A subalgebra M as above is called a von Neumann algebra.

Proof : (i) ⇒ (ii) Obvious.
(ii) ⇒ (iii) This is an immediate consequence of the density

theorem above.
(iii) ⇒ (i) This follows from Proposition 3.4.5(a). 2

Remark 3.4.8 Suppose π : A → L(H) is a representation; a
closed subspace M ⊂ H is said to be π-stable if π(x)(M) ⊂
M, ∀x ∈ A. In view of Proposition 3.4.5(d), this is equivalent
to the condition that p ∈ π(A)′, where p is the projection of H
onto M. Thus π-stable subspaces of H are in bijective corre-
spondence with projections in the von Neumann algebra π(A)′.
In particular - since p ∈ M ⇒ 1 − p ∈ M - we see that the
orthogonal complement of a π-stable subspace is also π-stable.

Every π-stable subspace yields a new representation - call
it π|M - by restriction: thus π|M : A → L(M) is defined by
π|M(x)(ξ) = π(x)(ξ), ∀x ∈ A, ξ ∈ M. The representation π|M
is called a sub-representation of π.

Lemma 3.4.9 Any representation is equivalent to a direct sum
of cyclic (sub-)representations; any separable representation is
equivalent to a countable direct sum of cyclic representations.
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Proof : Notice, to start with, that if π : A → L(H) is
a representation and if ξ ∈ H is arbitrary, then the subspace
M = {π(x)ξ : x ∈ A} is a closed subspace which is π-stable,
and, by definition, the sub-representation π|M is cyclic (with
cyclic vector ξ). Consider the non-empty collection P whose
typical element is a non-empty collection S = {Mi : i ∈ I}
of pairwise orthogonal non-zero π-stable subspaces which are
cyclic (in the sense that the sub-representation afforded by each
of them is a cyclic representation). It is clear that the set P is
partially ordered by inclusion, and that if C = {Sλ : λ ∈ Λ} is
any totally ordered subset of P , then S = ∪λ∈ΛSλ is an element
of P ; thus every totally ordered set in P admits an upper bound.
Hence, Zorn’s lemma implies the existence of a maximal element
S = {Mi : i ∈ I} of P .

Then M = ⊕i∈I Mi is clearly a π-stable subspace of H,
and so also is M⊥. If M⊥ 6= {0}, pick a non-zero ξ ∈ M⊥,
let M0 = {π(x)ξ : x ∈ A}, and observe that S ∪ {M0} is a
member of P which contradicts the maximality of S. Thus, it
should be the case that M⊥ = {0}; i.e., H = ⊕i∈I Mi, and
the proof of the first assertion is complete.

As for the second, if H = ⊕i∈IMi is an orthogonal decompo-
sition of H as a direct sum of non-zero cyclic π-stable subspaces
as above, let ξi be any unit vector in Mi. Then {ξi : i ∈ I} is an
orthonormal set in H, and the assumed separability of H implies
that I is necessarily countable. 2

Before beginning the search for cyclic representations, a def-
inition is in order.

Definition 3.4.10 A state on a unital C∗-algebra A is a lin-
ear functional φ : A → C which satisfies the following two con-
ditions:

(i) φ is positive, meaning that φ(x∗x) ≥ 0 ∀x ∈ A - i.e., φ
assumes non-negative values on positive elements of A; and

(ii) φ(1) = 1.

If π : A → L(H) is a representation, and ξ is a unit vector in
H, the functional φ, defined by φ(x) = 〈π(x)ξ, ξ〉 for all x ∈ A,
yields an example of a state. It follows from Lemma 3.4.2 that
in fact φ is a bounded linear functional, with ||φ|| = φ(1) = 1.
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The content of the following Proposition is that this property
caharacterises a state.

Proposition 3.4.11 The following conditions on a linear func-
tional φ : A → C are equivalent:

(i) φ is a state;
(ii) φ ∈ A∗ and ||φ|| = φ(1) = 1.

Proof : (i) ⇒ (ii) : Notice, to begin with, that since any
self-adjoint element is expressible as a difference of two positive
elements - see Proposition 3.3.11(f) - that φ(x) ∈ R whenever
x = x∗; it follows now from the Cartesian decomposition, that
φ(x∗) = φ(x) for all x ∈ A.

Now, consider the sesquilinear form Bφ : A×A → C defined
by

Bφ(x, y) = φ(y∗x) , ∀ x, y ∈ A . (3.4.20)

It follows from the assumed positivity of φ (and the previous
paragraph) that Bφ is a positive-semidefinite sesquilinear form
on A - as in Remark 2.1.5; in fact, that remark now shows that

|φ(y∗x)|2 ≤ φ(x∗x) · φ(y∗y) ∀ x, y ∈ A . (3.4.21)

In particular, setting y = 1 in equation 3.4.21, and using the
obvious inequality x∗x ≤ ||x||2 1 and positivity of φ, we find that

|φ(x)|2 ≤ φ(x∗x)φ(1) ≤ ||x||2φ(1)2 = ||x||2

so that, indeed φ ∈ A∗ and ||φ|| ≤ 1; since ||1|| = 1 = φ(1), we
find that ||φ|| = φ(1) = 1, as desired.

(ii) ⇒ (i) : We shall show that if x = x∗, and if σ(x) ⊂ [a, b],
then φ(x) ∈ [a, b]. (This will imply that φ is positive and that
φ(1) = 1.) Set c = a+b

2
, r = b−a

2
; and note that σ(x − c) ⊂

[−r, r] and consequently, ||x− c|| ≤ r; hence it follows (from the
assumptions (ii)) that

|φ(x) − c| = |φ(x − c)| ≤ ||x − c|| ≤ r ;

in other words, we indeed have φ(x) ∈ [a, b] as asserted, and the
proof is complete. 2
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We are almost ready for the fundamental construction due to
Gelfand, Naimark and Segal, which associates cyclic representa-
tions to states. We will need a simple fact in the proof of this
basic construction, which we isolate as an exercise below, before
proceeding to the construction.

Exercise 3.4.12 Suppose D(k) = {x(k)
i : i ∈ I} is a dense sub-

space of Hk, for k = 1, 2, so that 〈x(1)
i , x

(1)
j 〉H1 = 〈x(2)

i , x
(2)
j 〉H2

for all i, j ∈ I. Show that there exists a unique unitary operator
U : H1 → H2 such that Ux

(1)
i = x

(2)
i ∀ i ∈ I.

Theorem 3.4.13 (GNS construction)
Let φ be a state on a unital C∗-algebra A; then there exists a

cyclic representation πφ : A → L(Hφ) with a cyclic vector ξφ of
unit norm such that

φ(x) = 〈πφ(x)ξφ, ξφ〉 ∀ x ∈ A . (3.4.22)

The triple (Hφ, πφ, ξφ) is unique in the sense that if π : A →
H is a cyclic representation with cyclic vector ξ such that φ(x) =
〈π(x)ξ, ξ〉 ∀ x ∈ A, then there exists a unique unitary operator
U : H → Hφ such that Uξ = ξφ and Uπ(x)U∗ = πφ(x) ∀x ∈ A.

Proof : Let Bφ be the positive-semidefinite sesquilinear form
defined on A using the state φ as in equation 3.4.20. Let Nφ =
{x ∈ A : Bφ(x, x) = 0}. It follows from equation 3.4.21 that
x ∈ Nφ if and only if φ(y∗x) = 0 ∀y ∈ A; this implies that
Nφ is a vector subspace of A which is in fact a left-ideal (i.e.,
x ∈ Nφ ⇒ zx ∈ Nφ ∀ z ∈ A).

Deduce now that the equation

〈x + Nφ, y + Nφ〉 = φ(y∗x)

defines a genuine inner product on the quotient space V = A/Nφ.
For notational convenience, let us write η(x) = x + Nφ so that
η : A → V ; since Nφ is a left-ideal in A, it follows that each
x ∈ A unambiguously defines a linear map Lx : V → V by the
prescription: Lxη(y) = η(xy).

We claim now that each Lx is a bounded operator on the inner
product space V and that ||Lx||L(V ) ≤ ||x||A. This amounts to
the assertion that

φ(y∗x∗xy) = ||Lxη(y)||2 ≤ ||x||2||η(y)||2 = ||x||2φ(y∗y)
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for all x, y ∈ A. Notice now that, for each fixed y ∈ A, if we
consider the functional ψ(z) = φ(y∗zy), then ψ is a positive
linear functional; consequently, we find from Proposition 3.4.11
that ||ψ|| = ψ(1) = φ(y∗y); in particular, we find that for
arbitrary x, y ∈ A, we must have φ(y∗x∗xy) = ψ(x∗x) ≤ ||ψ|| ·
||x∗x||; in other words, φ(y∗x∗xy) ≤ ||x||2φ(y∗y), as asserted.

Since V is a genuine inner product space, we may form its
completion - call it Hφ - where we think of V as a dense subspace
of Hφ. We may deduce from the previous paragraph that each
Lx extends uniquely to a bounded operator on Hφ, which we will
denote by πφ(x); the operator πφ(x) is defined by the requirement
that πφ(x)η(y) = η(xy); this immediately implies that πφ is an
unital algebra homomorphism of A into L(Hφ). To see that πφ

preserves adjoints, note that if x, y, z ∈ A are arbitrary, then

〈πφ(x)η(y), η(z)〉 = φ(z∗(xy))

= φ((x∗z)∗y)

= 〈η(y), πφ(x
∗)η(z)〉 ,

which implies, in view of the density of η(A) in Hφ, that πφ(x)∗ =
πφ(x

∗), so that πφ is indeed a representation of A on Hφ. Finally,
it should be obvious that ξφ = η(1) is a cyclic vector for this
representation.

Conversely, if (H, π, ξ) is another triple which also ‘works’
for φ as asserted in the statement of the second half of Theorem
3.4.13, observe that for arbitrary x, y ∈ A, we have

〈π(x)ξ, π(y)ξ〉H = φ(y∗x) = 〈πφ(x)ξφ, πφ(y)ξφ〉Hφ

for all x, y ∈ A; the assumptions that ξ and ξφ are cyclic vectors
for the representations π and πφ respectively imply, via Exercise
3.4.12, that there exists a unique unitary operator U : H → Hφ

with the property that U(π(x)ξ) = πφ(x)ξφ for all x ∈ A; it is
clear that U has the properties asserted in Theorem 3.4.13. 2

We now wish to establish that there exist ‘sufficiently many’
representations of any C∗-algebra.

Lemma 3.4.14 Let x be a self-adjoint element of a C∗-algebra
A. Then there exists a cyclic representation π of A such that
||π(x)|| = ||x||.
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Proof : Let A0 = C∗({1, x}) be the commutative unital C∗-
subalgebra generated by x. Since A0

∼= C(σ(x)), there exists
- see Exercise 3.2.3(5)(d) - a complex homomorphism φ0 ∈ Â0

such that |φ0(x)| = ||x||. Notice that ||φ0|| = 1 = φ0(1).
By the Hahn-Banach theorem, we can find a φ ∈ A∗ such

that φ|A0 = φ0 and ||φ|| = ||φ0||. It follows then that ||φ|| =
1 = φ(1); hence φ is a state on A, by Proposition 3.4.11.

If πφ is the (cyclic) GNS-representation afforded by the state
φ as in Theorem 3.4.13, we then see that

||x|| = |φ0(x)| = |φ(x)| = |〈πφ(x)ξφ, ξφ〉| ≤ ||πφ(x)|| ;

in view of Lemma 3.4.2 (b), the proof of the lemma is complete.
2

Theorem 3.4.15 If A is any C∗-algebra, there exists an iso-
metric representation π : A → L(H).

If A is separable, then we can choose the Hilbert space H
above to be separable.

Proof : Let {xi : i ∈ I} be a dense set in A. For each
i ∈ I, pick a cyclic representation πi : A → L(Hi) such that
||πi(x

∗
i xi)|| = ||x∗

i xi|| - which is possible, by the preceding lemma.
Note that the C∗-identity shows that we have ||πi(xi)|| = ||xi||
for all i ∈ I.

Let π = ⊕i∈Iπi ; deduce from Lemma 3.4.2 and the previous
paragraph that, for arbitrary i, j ∈ I, we have ||πj(xi)|| ≤ ||xi|| =
||πi(xi)||, and hence we see that ||π(xi)|| = ||xi|| ∀i ∈ I; since the
set {xi : i ∈ I} is dense in A, we conclude that the representation
π is necessarily isometric.

Suppose now that A is separable. Then, in the above nota-
tion, we may assume that I is countable. Further, note that if
ξi ∈ Hi is a cyclic vector for the cyclic representation πi, then it
follows that {πi(xj)ξi : j ∈ I} is a countable dense set in Hi; it
follows that each Hi is separable, and since I is countable, also
H must be separable. 2

Hence, when proving many statements regarding general C∗-
algebras, it would suffice to consider the case when the algebra
in question is concretely realised as a C∗-algebra of operators
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on some Hilbert space. The next exercise relates the notion
of positivity that we have for elements of abstract C∗-algebras
to what is customarily referred to as ‘positive-definiteness’ (or
‘positive-semidefiniteness’) in the context of matrices.

Exercise 3.4.16 Show that the following conditions on an op-
erator T ∈ L(H) are equivalent:

(i) T is positive, when regarded as an element of the C∗-
algebra L(H) (i.e., T = T ∗ and σ(T ) ⊂ [0,∞), or T = S2 for
some self-adjoint element S ∈ L(H), etc.);

(ii) there exists an operator S ∈ L(H,K) such that T = S∗S,
where K is some Hilbert space;

(iii) 〈Tx, x〉 ≥ 0 ∀ x ∈ H.

(Hint: for (i) ⇒ (ii), set K = H, S = T
1
2 ; the implication

(ii) ⇒ (iii) is obvious; for (iii) ⇒ (i), first deduce from Propo-
sition 2.4.9(a) that T must be self-adjoint; let T = T+ − T−
be its canonical decomposition as a difference of positive opera-
tors; use the validity of the implication (i) ⇒ (iii) of this exer-
cise to the operator T− to deduce that it must be the case that
〈T−x, x〉 = 0 ∀ x ∈ H; since T− is ‘determined by its quadratic
form’, conclude that T− = 0, or equivalently, that T = T+ ≥ 0.

3.5 The Hahn-Hellinger theorem

This section is devoted to the classification of separable represen-
tations of a separable commutative C∗-algebra. Hence, through-
out this section, we will be concerned with the commutative
unital C∗-algebra C(X), where X is a compact Hausdorff space
which is metrisable. (The reason for this is that for a compact
Hausdorff space X, the separability of C(X) is equivalent to
metrisability of X - i.e., the topology on X coming from some
metric on X.)

It is an immediate consequence of the Riesz representation
theorem - see §A.7 in the Appendix - that there is a bijective
correspondence between states φ on (the commutative unital C∗-
algebra) C(X) on the one hand, and probability measures on
(X,BX), on the other, given by integration, thus:

φ(f) =
∫

fdµ . (3.5.23)
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The next thing to notice is that the ‘GNS’- triple (Hµ, πµ, ξµ)
that is associated with this state (as in Theorem 3.4.13) may be
easily seen to be given as follows: Hµ = L2(X,BX , µ); ξµ is the
constant function which is identically equal to 1; and πµ is the
‘multiplication representation’ defined by πµ(f)ξ = fξ ∀ f ∈
C(X), ξ ∈ L2(X,µ).

Thus, we may, in view of this bijection between states on
C(X) and probability measures on (X,BX), deduce the following
specialisation of the general theory developed in the last section
- see Lemma 3.4.9 and Theorem 3.4.13 .

Proposition 3.5.1 If π : C(X) → L(H) is any separable rep-
resentation of C(X) - where X is a compact metric space -
then there exists a (finite or infinite) countable collection {µn}n

of probability measures on (X,BX) such that π is equivalent to
⊕nπµn

.

The problem with the preceding proposition is the lack of
‘canonical’ness in the construction of the sequence of probability
measures µn. The rest of this section is devoted, in a sense,
to establishing the exact amount of the ‘canonicalness’ of this
construction.

The first step is to identify at least some situations where
two different measures can yield equivalent representations.

Lemma 3.5.2 (a) If µ and ν are two probability measures de-
fined on (X,BX) which are mutually absolutely continuous - see
§A.5 - then the representations πµ and πν are equivalent.

(b) If µ and ν are two finite positive measures defined on
(X,BX) which are mutually singular - see §A.5 - and if we let
λ = µ + ν, then πλ

∼= πµ ⊕ πν.

Proof : (a) Let φ = ( dν
dµ

)
1
2 , and note that (by the defin-

ing property of the Radon-Nikodym derivative) the equation
(Uξ) = φξ , ξ ∈ Hν defines an isometric linear operator
U : Hν → Hµ - where, of course, we write Hλ = L2(X,B, λ).
(Reason: if ξ ∈ Hν , then

||Uξ||2 =
∫
|ξ|2φ2dµ =

∫
|ξ|2 dν

dµ
dµ =

∫
|ξ|2dν = ||ξ||2 .)



130 CHAPTER 3. C∗-ALGEBRAS

In an identical fashion, if we set ψ = (dµ
dν

)
1
2 , then the equa-

tion V η = ψη defines an isometric operator V : Hµ → Hν ; but
the uniqueness of the Radon-Nikodym derivative implies that
ψ = φ−1, and that V and U are inverses of one another.

Finally, it is easy to deduce from the definitions that

Uπν(f)ξ = φfξ = πµ(f)Uξ

whenever ξ ∈ Hν , f ∈ C(X); in other words, U is a unitary op-
erator which implements the equivalence of the representations
πν and πµ.

(b) By hypothesis, there exists a Borel partition X = A
∐

B,
such that µ = µ|A and ν = ν|B - where, as in §A.5, we use
the notation µ|E to denote the measure defined by µ|E(A) =
µ(E ∩ A). It is easily seen then that also µ = λ|A and ν =
λ|B; the mapping Hλ 3 f 7→ (1Af, 1Bf) ∈ Hµ ⊕ Hν is
a unitary operator that establishes the desired equivalence of
representations. 2

Our goal, in this section, is to prove the following classifi-
cation, up to equivalence, of separable representations of C(X),
with X a compact metric space.

Before stating our main result, we shall fix some notation.
Given a representation π, and 1 ≤ n ≤ ℵ0, we shall write πn to
denote the direct sum of n copies of π. (Here, the symbol ℵ0

refers, of course, to the ‘countable infinity’.)

Theorem 3.5.3 (Hahn-Hellinger theorem)
Let X be a compact metric space.
(1) If π is a separable representation of C(X), then there

exists a probability measure µ defined on (X,BX) and a family
{En : 1 ≤ n ≤ ℵ0} of pairwise disjoint Borel subsets of X such
that

(i) π ∼= ⊕1≤n≤ℵ0 πn
µ|En

; and

(ii) µ is supported on ∪1≤n≤ℵ0En (meaning that the comple-
ment of this set has µ-measure zero).

(2) Suppose µi, i = 1, 2 are two probability measures, and
suppose that for each i = 1, 2 we have a family {E(i)

n : 1 ≤
n ≤ ℵ0} of pairwise disjoint Borel subsets of X such that µi



3.5. THE HAHN-HELLINGER THEOREM 131

is supported on ∪1≤n≤ℵ0E
(i)
n . Then the following conditions are

equivalent:
(i) ⊕1≤n≤ℵ0 πn

µ1|
E

(1)
n

∼= ⊕1≤n≤ℵ0 πn
µ2|

E
(2)
n

;

(ii) the measures µi are mutually absolutely continuous, and
further, µi(E

(1)
n ∆E(2)

n ) = 0 for all n and for i = 1, 2 - where,
of course, the symbol ∆ has been used to signify the ‘symmetric
difference’ of sets.

Proof of (1) : According to Proposition 3.5.1, we can find
a countable family - say {µn : n ∈ N} - of probability measures
on (X,BX) such that

π ∼= ⊕n∈N πµn
. (3.5.24)

Let {εn : n ∈ N} be any set of strictly positive numbers such
that

∑
n∈N εn = 1, and define µ =

∑
n∈N εnµn. The definitions

imply the following facts:
(i) µ is a probability measure; and
(ii) if E ∈ BX , then µ(E) = 0 ⇔ µn(E) = 0 ∀ n ∈ N .
In particular, it follows from (ii) that each µn is absolutely

continuous with respect to µ; hence, if we set An = {x ∈
X :

(
dµn

dµ

)
(x) > 0}, it then follows from Exercise A.5.22(4) that

µn and µ|An
are mutually absolutely continuous; also, it follows

from (ii) above that µ is supported on ∪n∈NAn.
We thus find now that

π ∼= ⊕n∈N πµ|An
. (3.5.25)

We will find it convenient to make the following assumption
(which we clearly may): N = {1, 2, · · · , n} for some n ∈ IN (in
case N is finite), or N = IN, (in case N is infinite). We will also
find the introduction of certain sets very useful for purposes of
‘counting’.

Let K = {1, 2, · · · , |N |} (where |N | denotes the cardinality
of N), and for each k ∈ K, define

Ek = {x ∈ X :
∑

n∈N

1An
(x) = k} . (3.5.26)

Thus, x ∈ Ek precisely when x belongs to exactly k of the Ai’s;
in particular, {Ek : k ∈ K} is easily seen to be a Borel partition
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of ∪n∈NAn. (Note that we have deliberately omitted 0 in our
definition of the set K.) Thus we may now conclude - thanks to
Lemma 3.5.2(b) - that

π ∼= ⊕n∈N ⊕k∈Kπµ|(An∩Ek)
. (3.5.27)

Next, for each n ∈ N, k ∈ K, l ∈ IN such that 1 ≤ l ≤ k,
define

An,k,l = {x ∈ An ∩ Ek :
n∑

j=1

1Aj
(x) = l} . (3.5.28)

(Thus, x ∈ An,k,l if and only if x ∈ Ek and further, n is exactly
the l-th index j for which x ∈ Aj; i.e., x ∈ An ∩ Ek and there
are exactly l values of j for which 1 ≤ j ≤ n and x ∈ Aj.) A
moment’s reflection on the definitions shows that

An ∩ Ek =
∐

l∈IN,1≤l≤k

An,k,l , ∀ n ∈ N, k ∈ K

Ek =
∐

n∈N

An,k,l , ∀ k ∈ K, 1 ≤ l ≤ k.

We may once again appeal to Lemma 3.5.2(b) and deduce
from the preceding equations that

π ∼= ⊕n∈N ⊕k∈K πµ|(An∩Ek)

∼= ⊕n∈N ⊕k∈K ⊕l∈IN,1≤l≤kπµ|An,k,l∼= ⊕k∈K ⊕l∈IN,1≤l≤k πµ|Ek

∼= ⊕k∈Kπk
µ|Ek

,

and the proof of (1) of the theorem is complete. 2

We will have to proceed through a sequence of lemmas before
we can complete the proof of (2) of the Hahn-Hellinger theorem.
Thus, we have established the ‘existence of the canonical decom-
position’ of an arbitrary separable representation of C(X); we
shall in fact use this existence half fairly strongly in the proof of
the ‘uniqueness’ of the decomposition.

In the rest of this section, we assume that X is a compact
metric space, and that all Hilbert spaces (and consequently all
representations, as well) which we deal with are separable; fur-
ther, all measures we deal with will be finite positive measures
defined on (X,BX).
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Lemma 3.5.4 Let φ ∈ L∞(X,BX , µ); then there exists a se-
quence {fn}n ⊂ C(X) such that

(i) supn||fn||C(X) < ∞; and

(ii) the sequence {fn(x)}n converges to φ(x), for µ-almost
every x ∈ X.

Proof : Since C(X) is dense in L2(X,BX , µ), we may find a
sequence {hn}n in C(X) such that ||hn−φ||L2(X,BX ,µ) → 0; since
every null convergent sequence in L2(X,Bx, µ) is known - see
[Hal1], for instance - to contain a subsequence which converges
µ-a.e. to 0, we can find a subsequence - say {gn}n - of {hn}n

such that gn(x) → φ(x) a.e.

Let ||φ||L∞ = K, and define a continuous ‘retraction’ of C
onto the disc of radius K + 1 as follows:

r(z) =

{
z if |z| ≤ (K + 1)(

K+1
|z|

)
z if |z| ≥ (K + 1)

Finally, consider the continuous functions defined by fn =
r ◦ gn; it should be clear that ||fn|| ≤ (K + 1) for all n, and that
(by the assumed a.e. convergence of the sequence {gn}n to f)
also fn(x) → f(x) µ − a.e. 2

Lemma 3.5.5 (a) Let π : C(X) → L(H) be a representation;
then there exists a probability measure µ defined on BX , and a
representation π̃ : L∞(X,BX , µ) → L(H) such that:

(i) π̃ is isometric;

(ii) π̃ ‘extends’ π in the sense that π̃(f) = π(f) whenever
f ∈ C(X); and

(iii) π̃ ‘respects bounded convergence’ - meaning that when-
ever φ is the µ-a.e. limit of a sequence {φn}n ⊂ L∞(X,µ) which
is uniformly bounded (i.e., supn ||φn||L∞(µ) < ∞), then it is the
case that the sequence {π̃(φn)}n converges in the strong operator
topology to π̃(φ).

(b) Suppose that, for i = 1, 2, π̃i : L∞(X,BX , µi) → L(Hi) is
a representation which is related to a representation πi : C(X) →
L(Hi) as in (a) above; suppose π1

∼= π2; then the measures µ1

and µ2 are mutually absolutely continuous.
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Proof : (a) First consider the case when π is a cyclic rep-
resentation; then there exists a probability measure µ such that
π ∼= πµ; take this µ as the measure in the statement of (a)
and define π̃ to be the natural ‘multiplication representation’
defined by π̃(φ)ξ = φξ, ∀ φ ∈ L∞(µ), ξ ∈ L2(µ); then we
see that statement (ii) is obvious, while (iii) is an immediate
consequence of the dominated convergence theorem - see Propo-
sition A.5.16(3). As for (i), suppose φ ∈ L∞(µ) and ε > 0; if
E = {x : |φ(x)| ≥ ||φ|| − ε}, then µ(E) > 0, by the definition of

the norm on L∞(X,BX , µ); hence if ξ = µ(E)−
1
2 1E, we find that

ξ is a unit vector in L2(µ) such that ||π̃(φ)ξ|| ≥ ||φ|| − ε; the
validity of (a) - at least in the cyclic case under consideration -
follows now from the arbitrariness of ε and from Lemma 3.4.2
(applied to the C∗-algebra L∞(µ)).

For general (separable) π, we may (by the the already estab-
lished part (1) of the Hahn-Hellinger theorem) assume without
loss of generality that π = ⊕nπ

n
µ|En

; then define π̃ = ⊕n(π̃µ|En
)n,

where the summands are defined as in the last paragraph. We
assert that this π̃ does the job. Since µ is supported on ∪nEn

(by (1)(ii) of Theorem 3.5.3), and since π̃µ|En
is an isometric map

of L∞(En, µ|En
), it is fairly easy to deduce that π̃, as we have

defined it, is indeed an isometric *-homomorphism of L∞(X,µ),
thus establishing (a)(i). The assertion (ii) follows immediately
from the definition and the already established cyclic case.

As for (iii), notice that the Hilbert space underlying the rep-
resentation π̃ is of the form H = ⊕1≤n≤ℵ0 ⊕1≤m≤n Hn,m, where
Hn,m = L2(En, µ|En

) ∀1 ≤ m ≤ n ≤ ℵ0. So, if {φk}k, φ are as
in (ii), we see that π(φk) has the form x(k) = ⊕1≤m≤n≤ℵ0x

(k)
n,m,

where x(k)
n,m = π̃µ|En

(φk) for 1 ≤ m ≤ n ≤ ℵ0. Similarly π̃(φ)
has the form x = ⊕1≤m≤n≤ℵ0xn,m, where xn,m = π̃µ|En

(φ) for
1 ≤ m ≤ n ≤ ℵ0. The assumption that supk ||φk|| < ∞ shows
that the sequence {x(k)}k is uniformly bounded in norm; further,
if we let S = ∪1≤m≤n≤ℵ0Hn,m - where we naturally regard the
Hn,m’s as subspaces of the Hilbert space H - then we find that
S is a total set in H and that x(k)ξ → xξ whenever ξ ∈ S (by
the already established cyclic case); thus we may deduce - from
Lemma 2.5.2 - that the sequence {x(k)}k does indeed converge
strongly to x, and the proof of (a) is complete.

(b) Suppose U : H1 → H2 is a unitary operator such that
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Uπ1(f)U∗ = π2(f) for all f ∈ C(X). Define µ = 1
2
(µ1 + µ2),

and note that both µ1 and µ2 are absolutely continuous with
respect to (the probability measure) µ. Let φ be any bounded
measurable function on X. By Lemma 3.5.4, we may find a
sequence {fk}k ⊂ C(X) such that supk ||fk|| < ∞ and such that
fk(x) → φ(x) for all x ∈ X − N where µ(N) = 0; then also
µi(N) = 0, i = 1, 2; hence by the assumed property of the π̃i’s,
we find that {πi(fk)}k converges in the strong operator topology
to π̃i(φ); from the assumed intertwining nature of the unitary
operator U , we may deduce that Uπ̃1(φ)U∗ = π̃2(φ) for every
bounded measurable function φ : X → C. In particular, we see
that

Uπ̃1(1E)U∗ = π̃2(1E) ∀ E ∈ BX . (3.5.29)

Since the π̃i’s are isometric, we find that, for E ∈ BX ,

µ1(E) = 0 ⇔ π̃1(1E) = 0

⇔ π̃2(1E) (by 3.5.29)

⇔ µ2(E) = 0 ,

thereby completing the proof of the lemma. 2

Remark 3.5.6 Let π : C(X) → L(H) be a separable represen-
tation; first notice from Lemma 3.5.5(b) that the measure µ of
Lemma 3.5.5(a) is uniquely determined up to mutual absolute
continuity; also, the proof of Lemma 3.5.5(b) shows that if the
representations π1 and π2 of C(X) are equivalent, then the rep-
resentations π̃1 and π̃2 of L∞(X,µ) are equivalent (with the two
equivalences being implemented by the same unitary operator).
Furthermore, it is a consequence of Lemma 3.5.4 and Lemma
3.5.5(a)(iii) that the *-homomorphism π̃ is also uniquely deter-
mined by the condition that it satisfies (a) (i)-(iii). Thus, the
representation π uniquely determines the C∗-algebra L∞(X,µ)
and the representation π̃ as per Lemma 3.5.5(a)(i)-(iii). 2

Lemma 3.5.7 If π, µ, π̃ are as in Lemma 3.5.5(a), then

(π(C(X))′′ = π̃(L∞(X,µ)) .

Thus, π̃(L∞(X,µ) is the von Neumann algebra generated by
π(C(X)).
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Proof : Let us write A = π(C(X)), M = π̃(L∞(X,µ)).
Thus, we need to show that M = A′′.

Since A is clearly commutative, it follows that A ⊂ A′; since
A is a unital *-subalgebra of L(H), and since A′ is closed in the
strong operator topology, we may conclude, from the preceding
inclusion and von Neumann’s density theorem - see Theorem
3.4.6 - that we must have A′′ ⊂ A′.

Next, note that, in view of Lemma 3.5.4, Lemma 3.5.5(a)(iii)
and Theorem 3.4.6, we necessarily have M ⊂ A′′. Thus, we find
that we always have

M ⊂ A′′ ⊂ A′ . (3.5.30)

Case (i) : π is cyclic. In this case, we assert that we actually
have A′ = A′′ = M .

In the case at hand, we may assume that the underlying
Hilbert space is H = L2(X,µ), and that π̃ is the multiplication
representation of L∞(X,µ). In view of 3.5.30, we need to show
that A′ ⊂ M .

So suppose x ∈ A′; we wish to conclude that x = π̃(φ), for
some φ ∈ L∞(X,µ). Notice that if this were true, it must be the
case that φ = xξµ - where ξµ denotes the constant function 1, as
in the notation of Theorem 3.4.13. So, define φ = xξµ; we need
to show that φ ∈ L∞(X,µ) and that x = π̃(φ). For this, begin
by deducing from the inclusion 3.5.30 that if ψ ∈ L∞(X,µ) is
arbitrary, then

xψ = xπ̃(ψ)ξµ = π̃(ψ)xξµ = π̃(ψ)φ = φψ .

Further, if we set Er = {s ∈ X : |φ(s)| > r}, note that
r1Er

≤ |φ|1Er
, and consequently,

µ(Er)
1
2 = ||1Er

||H
≤ 1

r
||φ1Er

||H

=
1

r
||x1Er

||H

≤ 1

r
||x||L(H) · ||1Er

||H ,
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which clearly implies that µ(Er) = 0 ∀ r > ||x||L(H); in other
words, φ ∈ L∞(X,µ); but then x and π̃(φ) are two bounded
operators on H which agree on the dense set L∞(X,µ), and
hence x = π̃(φ), as desired.

Case (ii) : Suppose π = πn
µ, for some 1 ≤ n ≤ ℵ0.

Thus, in this case, we may assume that H = Hn
µ is the (Hilbert

space) direct sum of n copies of Hµ = L2(X,µ). We may -
and shall - identify an operator x on Hn

µ with its representing
matrix ((x(i, j))), where x(i, j) ∈ L(Hµ) ∀i, j ∈ IN such that
1 ≤ i, j ≤ n (as in Proposition 2.5.6). In the notation of the
proof of Theorem 3.4.6, we find that A = πµ(C(X))(n) = {x(n) :
x ∈ πµ(C(X))} (where x(n) is the matrix with (i, j)-th entry
being given by x or 0 according as i = j or i 6= j; arguing
exactly as in the proof of Theorem 3.4.6, (and using the fact,
proved in Case (i) above, that πµ(C(X))′ = π̃µ(L∞(X,µ))),
we find that y ∈ A′ precisely when the entries of the repre-
senting matrix satisfy y(i, j) = π̃µ(φi,j) ∀i, j, for some family
{φi,j : 1 ≤ i, j ≤ n} ⊂ L∞(X,µ). Again, arguing as in the
proof of Theorem 3.4.6, and using the fact, proved in Case (i)
above, that π̃µ(L∞(X,µ))′ = π̃µ(L∞(X,µ)), we then find that
A′′ = {z(n) : z ∈ π̃µ(L∞(X,µ))}; in other words, this says exactly
that A′′ = π̃n

µ(L∞(X,µ)) = M , as desired.

Case (iii): π arbitrary.

By the already proved Theorem 3.5.3(1), we may assume, as
in the notation of that theorem, that π = ⊕1≤n≤ℵ0π

n
µ|En

. Let

pn = π̃(1En
), for 1 ≤ n ≤ ℵ0, and let Hn = ran pn, so that the

Hilbert space underlying the representation π (as well as π̃) is
given by H = ⊕1≤n≤ℵ0Hn.

By 3.5.30, we see that pn ∈ A′′ ⊂ A′. This means that any
operator in A′ has the form ⊕nxn, with xn ∈ L(Hn); in fact,
it is not hard to see that in order that such a direct sum op-
erator belongs to A′, it is necessary and sufficient that xn ∈
πn

µ|En
(C(X))′ ∀ 1 ≤ n ≤ ℵ0. From this, it follows that an

operator belongs to A′′ if and only if it has the form ⊕nzn,
where zn ∈ πn

µ|En
(C(X))′′ ∀ 1 ≤ n ≤ ℵ0; deduce now from

(the already established) Case (ii) that there must exist φn ∈
L∞(En, µ|En

) such that zn = π̃n
µ|En

(φn) ∀n; in order for ⊕nzn
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to be bounded, it must be the case that the family {||zn|| =
||φn||L∞(En,µ|En )}m be uniformly bounded, or equivalently, that
the equation φ =

∑
n 1En

φn define an element of L∞(X,µ); in
other words, we have shown that an operator belongs to A′′ if
and only if it has the form z = π̃(φ) for some φ ∈ L∞(X,µ), i.e.,
A′′ ⊂ M and the proof of the lemma is complete. 2

Remark 3.5.8 The reader might have observed our use of the
phrase ‘the von Neumann subalgebra generated’ by a family of
operators. Analogous to our notation in the C∗-case, we shall
write W ∗(S) for the von Neumann subalgebra generated by a
subset S ⊂ L(H). It must be clear that for any such set S,
W ∗(S) is the smallest von Neumann algebra contained in L(H)
and containing S. For a more constructive description of W ∗(S),
let A denote the set of linear combinations of ‘words in S ∪ S∗’;
then A is the smallest *-subalgebra containing S, (A) = C∗(S),
and W ∗(S) is the weak (equivalently, strong) operator closure of
A. Also, W ∗(S) = (S ∪ S∗)′′. 2

We need just one more ingredient in order to complete the
proof of the Hahn-Hellinger theorem, and that is provided by
the following lemma.

Lemma 3.5.9 Let π = πn
µ and H = Hn

µ denote the (Hilbert
space) direct sum of n copies of Hµ = L2(X,µ), where 1 ≤ n ≤
ℵ0. Consider the following conditions on a family {pi : i ∈ I} ⊂
L(H):

(i) {pi : i ∈ I} is a family of pairwise orthogonal projections
in π(C(X))′; and

(ii) if F ∈ BX is any Borel set such that µ(F ) > 0, and if
π̃ is associated to π as in Lemma 3.5.5 (also see Remark 3.5.6),
then piπ̃(1F ) 6= 0 ∀i ∈ I.

(a) there exists a family {pi : i ∈ I} which satisfies conditions
(i) and (ii) above, such that |I| = n;

(b) if n < ∞ and if {pi : i ∈ I} is any family satisfying (i)
and (ii) above, then |I| ≤ n.

Proof : To start with, note that since H = Hn
µ, we may iden-

tify operators on H with their representing matrices ((x(i, j))),
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(where, of course, x(i, j) ∈ L(Hµ) ∀ 1 ≤ i, j ≤ n). Further,
A = π(C(X)) consists of those operators x whose matrices sat-
isfy x(i, j) = δi,jπµ(f) for some f ∈ C(X); and our analysis of
Case (ii) in the proof of Lemma 3.5.7 shows that A′ consists of
precisely those operators y ∈ L(H) whose matrix entries satisfy
y(i, j) ∈ πµ(C(X))′ = π̃µ(L∞(X,µ)).

(a) For 1 ≤ m ≤ n, define pm(i, j) = δi,jδi,m1 (where the 1
denotes the identity operator on Hµ); the concluding remark of
the last paragraph shows that {pm : 1 ≤ m ≤ n} is a family of
pairwise orthogonal projections in A′ - i.e., this family satisfies
condition (i) above; if F is as in (ii), note that π̃(1F ) is the pro-
jection q ∈ L(H) whose matrix is given by q(i, j) = δi,jπ̃µ(1F ),
and it follows that for any 1 ≤ m ≤ n, the operator pmq is
not zero, since it has the non-zero entry π̃µ(1F ) in the (m,m)-th
place; and (a) is proved.

(b) In order to prove that |I| ≤ n(< ∞), it is enough to
show that |I0| ≤ n for every finite subset I0 ⊂ I; hence, we may
assume, without loss of generality, that I is a finite set.

Suppose {pm : m ∈ I} is a family of pairwise orthogo-
nal projections in A′ which satisfies condition (ii) above. In
view of the concluding remarks of the first paragraph of this
proof, we can find a family {φm(i, j) : m ∈ I, 1 ≤ i, j ≤ n} ⊂
L∞(X,µ) such that the matrix of the projection pm is given by
pm(i, j) = π̃µ(φm(i, j)).

Notive now that

pm = pmp∗m ⇒ pm(i, i) =
n∑

j=1

pm(i, j)pm(i, j)∗ , ∀i ∈ I;

in view of the definition of the φm(i, j)’s and the fact that π̃ is a
*-homomorphism, it is fairly easy to deduce now, that we must
have

φm(i, i) =
n∑

j=1

|φm(i, j)|2 a.e., ∀1 ≤ i ≤ n, ∀m ∈ I . (3.5.31)

In a similar fashion, if m, k ∈ I and if m 6= k, then notice
that

pmpk = 0 ⇒ pmp∗k = 0 ⇒
n∑

j=1

pm(i, j)pk(l, j)
∗ = 0, ∀i, l ∈ I,
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which is seen to imply, as before, that

n∑

j=1

φm(i, j)φk(l, j) = 0 a.e., ∀1 ≤ i, l ≤ n, ∀m 6= k ∈ I .

(3.5.32)
Since I is finite, as is n, and since the union of a finite num-

ber of sets of measure zero is also a set of measure zero, we may,
assume that the functions φm(i, j) (have been re-defined on some
set of measure zero, if necessary, so that they now) satisfy the
conditions expressed in equations 3.5.31 and 3.5.32 not just a.e.,
but in fact, everywhere; thus, we assume that the following equa-
tions hold pointwise at every point of X:

n∑

j=1

|φm(i, j)|2 = φm(i, i) ∀1 ≤ i ≤ n, ∀m ∈ I

n∑

j=1

φm(i, j)φk(l, j) = 0 ∀1 ≤ i, l ≤ n, ∀m 6= k ∈ I .(3.5.33)

Now, for each m ∈ I, define Fm = {s ∈ X : (φm(i, i))(s) =
0 ∀1 ≤ i ≤ n}. Then, if s /∈ Fm, we can pick an index 1 ≤ im ≤ n
such that (φm(im, im))(s) 6= 0; so, if it is possible to pick a point
s which does not belong to Fm for all m ∈ I, then we could find
vectors

vm =




(φm(im, 1))(s)
(φm(im, 2))(s)

...
(φm(im, n))(s)




,m ∈ I

which would constitute a set of non-zero vectors in Cn which are
pairwise orthogonal in view of equations 3.5.33; this would show
that indeed |I| ≤ n.

So, our proof will be complete once we know that X 6=
∪m∈IFm; we make the (obviously) even stronger assertion that
µ(Fm) = 0 ∀m. Indeed, note that if s ∈ Fm, then φm(i, i)(s) =
0 ∀1 ≤ i ≤ n; but then, by equation 3.5.31, we find that
φm(i, j)(s) = 0 ∀1 ≤ i, j ≤ n; this implies that φm(i, j)1F =
0 a.e. ∀ 1 ≤ i, j ≤ n; this implies that (every entry of the matrix
representing the operator ) pmπ̃(1F ) is 0; but by the assumption
that the family {pm : m ∈ I} satisfies condition (ii), and so, this
can happen only if µ(Fm) = 0. 2
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We state, as a corollary, the form in which we will need to
use Lemma 3.5.9.

Corollary 3.5.10 Let π = ⊕1≤n≤ℵ0π
n
µ|En

. Suppose A ∈ BX

is such that µ(A) > 0, and let 1 ≤ n < ∞; then the following
conditions on A are equivalent:
(a) there exists a family {pi : 1 ≤ i ≤ n} of pairwise orthogonal
projections in π(C(X))′ such that

(i) pi = piπ̃(1A) ∀1 ≤ i ≤ n; and
(ii) F ∈ BX , µ(A ∩ F ) > 0 ⇒ piπ̃(1F ) 6= 0 ∀1 ≤ i ≤ n.

(b) A ⊂ ∐
n≤m≤ℵ0

Em (mod µ) - or equivalently, µ(A ∩ Ek) =
0 ∀ 1 ≤ k < n.

Proof : If we write en = π̃(1En
), it is seen - from the proof

of Case (iii) of Lemma 3.5.7, for instance - that any projection
p ∈ π(C(X))′ has the form p =

∑
n qn, where qn = pen is, when

thought of as an operator on enH, an element of πn
µ|En

(C(X))′.

(a) ⇒ (b) : Fix 1 ≤ k < ∞, and suppose µ(A ∩ Ek) 6= 0;
set qi = piek and note that we can apply Lemma 3.5.9(b) to
the representation πk

µ|A∩Ek
and the family {qi : 1 ≤ i ≤ n}, to

arrive at the concluion n ≤ k; in other words, if 1 ≤ k < n, then
µ(A ∩ Ek) = 0.

(b) ⇒ (a) : Fix any m ≥ n such that µ(A ∩ Em) > 0.
Then, apply Lemma 3.5.9(a) to the representation πm

µ|A∩Em
to

conclude the existence of a family {q(m)
i : 1 ≤ i ≤ m} of pair-

wise orthogonal projections in πm
µ|A∩Em

(C(X))′ with the prop-

erty that q
(m)
i

˜πm
µ|A∩Em

(1F ) 6= 0 whenever F is a Borel subset of

A ∩ Em such that µ(F ) > 0. We may, and will, regard each

q
(m)
i as a projection in the big ambient Hilbert space H, such

that q
(m)
i = q

(m)
i π̃(1A∩Em

), so that q
(m)
i ∈ π(C(X))′. Now, for

1 ≤ i ≤ n, if we define

pi =
∑

n≤m≤ℵ0
µ(A∩Em)>0

q
(m)
i ,

it is clear that {pi : 1 ≤ i ≤ n} is a family of pairwise orthogonal
projections in π(C(X))′, and that pi = piπ̃(1A) ∀1 ≤ i ≤ n;
further, if F ∈ BX satisfies µ(A ∩ F ) > 0, then (since µ(A ∩
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Ek) = 0 ∀1 ≤ k < n) there must exist an m ≥ n such that
µ(A∩F ∩Em) > 0; in this case, note that (piπ̃(1F ))π̃(1A∩Em

) =

q
(m)
i π̃(1A∩F∩Em

) which is non-zero by the way in which the q
(m)
i ’s

were chosen. Hence it must be that piπ̃(1F ) 6= 0; thus, (a) is
verified.

2

We now complete the proof of the Hahn-Hellinger theorem.

Proof of Theorem 3.5.3(2) : Suppose that for i = 1, 2,
µ(i) is a probability measure on (X,BX), and {E(i)

n : 1 ≤ i ≤ ℵ0}
is a collection of pairwise disjoint Borel sets such that µ(i) is
supported on

∐
1≤n≤ℵ0

E(i)
n ; and suppose that

⊕1≤n≤ℵ0π
n
µ(1)|

E
(1)
n

∼= ⊕1≤n≤ℵ0π
n
µ(2)|

E
(2)
n

It follows from the proof of Lemma 3.5.5 that a choice for
the measure associated to the representation ⊕1≤n≤ℵ0π

n
µ(i)|

E
(i)
n

is given by µ(i), for i = 1, 2; we may conclude from Lemma
3.5.5(b) that the measures µ(1) and µ(2) are mutually absolutely
continuous; by Lemma 3.5.2(a), it is seen that πµ(1)|F is equivalent
to πµ(2)|F for any F ∈ BX . Hence, we may assume, without loss

of generality, that µ(1) = µ(2) = µ (say).
Hence we need to show that if {E(i)

n : 1 ≤ n ≤ ℵ0}, i = 1, 2,
are two collections of pairwise disjoint Borel sets such that

µ(X −
∐

1≤n≤ℵ0

E(i)
n ) = 0 , i = 1, 2, (3.5.34)

and

π1 = ⊕1≤n≤ℵ0 πn
µ|

E
(1)
n

∼= ⊕1≤n≤ℵ0π
n
µ|

E
(2)
n

= π2 , (3.5.35)

then it is the case that µ(E(1)
n ∆E(2)

n ) = 0 ∀ 1 ≤ n ≤ ℵ0.
Let Hi be the Hilbert space underlying the representation

πi, and let U be a unitary operator U : H1 → H2 such that
Uπ1(f) = π2(f)U , ∀ f ∈ C(X); then, - see Remark 3.5.6 - also
Uπ̃1(φ) = π̃2(φ)U , ∀φ ∈ L∞(X,µ). In particular, we see that

Uπ̃1(1A)U∗ = π̃2(1A) ∀ A ∈ BX . (3.5.36)
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Thus, we need to to show that if 1 ≤ k 6= m ≤ ℵ0, then
µ(E(1)

m ∩ E
(2)
k ) = 0. (By equation 3.5.34, this will imply that

E(1)
m ⊂ E(2)

m (mod µ).) By the symmetry of the problem, we may
assume, without loss of generality, that 1 ≤ k < m ≤ ℵ0. So fix
k,m as above, and choose a finite integer n such that k < n ≤ m.

Now apply (the implication (b) ⇒ (a) of) Corollary 3.5.10 to
the representation π1 and the set E(1)

m to deduce the existence of
a family {pi : 1 ≤ i ≤ n} of pairwise orthogonal projections in
π1(C(X))′ such that

pi = piπ̃1(1E
(1)
m

) , ∀1 ≤ i ≤ n (3.5.37)

and

F ∈ BX , µ(F ∩ E(1)
m ) > 0 ⇒ piπ̃1(1F ) 6= 0 , ∀1 ≤ i ≤ n .

(3.5.38)
If we now set qi = UpiU

∗, it is easy to deduce - in view of
equation 3.5.36 and the consequent fact that Uπ1(C(X))′U∗ =
π2(C(X))′ - that equations 3.5.37 and 3.5.38 translate into the
fact that {qi : 1 ≤ i ≤ n} is a family of pairwise orthogonal
projections in π2(C(X))′ such that

qi = qiπ̃2(1E
(1)
m

) , ∀1 ≤ i ≤ n (3.5.39)

and

F ∈ BX , µ(F ∩ E(1)
m ) > 0 ⇒ piπ̃2(1F ) 6= 0 , ∀1 ≤ i ≤ n .

(3.5.40)
We may now conclude from (the implication (a) ⇒ (b) of)

Corollary 3.5.10 - when applied to the representation π2 and the
set E(1)

m - that µ(E(1)
m ∩E

(2)
k ) = 0, and the proof of the theorem

is finally complete. 2

In the remainder of this section, we shall re-phrase the results
obtained so far in this section using the language of spectral
measures.

Given a separable representation π : C(X) → L(H), consider
the mapping BX 3 E 7→ π̃(1E) that is canonically associated to
this representation (see Remark 3.5.6). Let us, for convenience,
write P (E) = π̃(1E); thus the assignment E 7→ P (E) asso-
ciates a projection in L(H) to each Borel set E. Further, it
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follows from the key continuity property of the representation
π̃ - viz. Lemma 3.5.5(a)(iii) - that if E =

∐∞
n=1 En is a par-

tition of the Borel set E into countably many Borel sets, then
P (E) =

∑∞
n=1 P (En), meaning that the family {P (En)}∞n=1 is

unconditionally summable with respect to the strong operator
topology and has sum P (E). Thus, this is an instance of a spec-
tral measure in the sense of the next definition.

Definition 3.5.11 A spectral measure on the measurable space
(X,BX) is a mapping E 7→ P (E) from BX , into the set of pro-
jections of some Hilbert space H, which satisfies the following
conditions:

(i) P (∅) = 0, P (X) = 1 (where, of course, 1 denotes the
identity operator on H); and

(ii) P is countably additive, meaning that if {En}n is a count-
able collection of pairwise disjoint Borel sets in X with E =∐

n En, then P (E) =
∑

n P (En), where the series is interpreted
in the strong operator topology on H.

Observe that the strong convergence of the series in (ii) above
is equivalent to the weak convergence of the series - see Propo-
sition 2.5.4 - and they are both equivalent to requiring that if
{En}n is as in (ii) above, then the projections {P (En)}n have
pairwise orthogonal ranges and the range of P (E) is the direct
sum of the ranges of the P (En)’s.

Given a spectral measure as above, fix ξ, η ∈ H, and notice
that the equation

µξ,η(E) = 〈P (E)ξ, η〉 (3.5.41)

defines a complex measure µξ,η on (X,BX). The Cauchy-Schwarz
inequality implies that the complex measure µξ,η has total vari-
ation norm bounded by ||ξ|| · ||η||.

Then it is fairly straightforward to verify that for fixed f ∈
C(X), the equation

Bf (ξ, η) =
∫

X
fdµξ,η (3.5.42)

defines a sesquilinear form on H; further, in view of the statement
above concerning the total variation norm of µξ,η, we find that

|Bf (ξ, η)| ≤ ||f ||C(X)||ξ|| ||η|| ;
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hence, by Proposition 2.4.4, we may deduce the existence of a
unique bounded operator - call it π(f) - on H such that

〈π(f)ξ, η〉 =
∫

X
fdµξ,η .

After a little more work, it can be verified that the passage
f 7→ π(f) actually defines a representation of π : C(X) → L(H).
It is customary to use such expressions as

π(f) =
∫

X
fdP =

∫

X
f(x)dP (x)

to denote the operator thus obtained from a spectral measure.
Thus, one sees that there is a bijective correspondence be-

tween separable representations of C(X) and spectral measures
defined on (X,BX) and taking values in projection operators
in a separable Hilbert space. Thus, for instance, one possible
choice for the measure µ that is associated to the representation
π (which is, after all, only determined up to mutual absolute
continuity) is given, in terms of the spectral measure P (·) by

µ(E) =
∑

n

〈P (E)ξn, ξn〉 =
∑

n

||P (E)ξn||2 ,

where {ξn}n is an orthonormal basis for H.
Further, the representation which we have, so far in this sec-

tion, denoted by π̃ : L∞(X,µ) → L(H) can be expressed, in
terms of the spectral measure P (·) thus:

〈π̃(φ)ξ, η〉 =
∫

X
φdµξ,η ,

or, equivalently,

π̃(φ) =
∫

X
φdP =

∫

X
φ(λ)dP (λ) .

Hence, the Hahn-Hellinger theorem can be regarded as a clas-
sification, up to a natural notion of equivalence, of separable
spectral measures on (X,BX). We summarise this re-formulation
as follows.

Given a probability measure µ defined on (X,B), let Pµ :
B → L(L2(X,B, µ)) be the spectral measure defined by

〈Pµ(E) f, g〉 =
∫

E
f(x)g(x)dµ(x) .
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For 1 ≤ n ≤ ℵ0, we have a natural spectral measure P n
µ : B →

L((L2(X,B, µ))n) obtained by defining P n
µ (E) = ⊕k∈In

Pµ(E),
where Hn denotes the direct sum of n copies of H and In is any
set with cardinality n.

In this notation, we may re-phrase the Hahn-Hellinger theo-
rem thus:

Theorem 3.5.12 If X is a compact Hausdorff space and if P :
B → L(H) is a ‘separable’ spectral measure (meaning that H is
separable), then there exists a probability measure µ : B → [0, 1]
and a partition X =

∐
0≤n≤ℵ0

En of X into measurable sets such
that µ is supported on X − E0 and

P ∼= ⊕1≤n≤ℵ0 P n
µ|En

.

If P̃ : B → L(H̃) is another spectral measure, with associated
probability measure µ̃ and partition X =

∐
0≤n≤ℵ0

Ẽn, then µ and

µ̃ are mutually absolutely continuous, and µ(En∆Ẽn) = 0 ∀ 0 ≤
n ≤ ℵ0.

Remark 3.5.13 Let X be a locally compact Hausdorff space,
and let X̂ denote the one-point compactification of X. Then
any spectral measure P : BX → L(H) may be viewed as a
spectral measure P1 defined on BX̂ with the understanding that
P1({∞}) = 0, or equivalently, P1(E) = P (E − {∞}).

Hence we may deduce that the above formulation of the
Hahn-Hellinger theorem is just as valid under the assumption
that X is a locally compact Hausdorff space; in particular, we
shall use this remark, in case X = R. 2



Chapter 4

Some Operator theory

4.1 The spectral theorem

This section is devoted to specialising several results of the pre-
ceding chapter to the case of a ‘singly generated’ commutative
C∗-algebra, or equivalently to the case of C(Σ) where Σ is a
compact subset of the complex plane, or equivalently, to facts
concerning a single normal operator on a separable Hilbert space.

We should also remark that we are going to revert to our ini-
tial notational convention, whereby x, y, z etc., denote vectors in
Hilbert spaces, and A,B, S, T, U etc., denote operators between
Hilbert spaces. (We should perhaps apologise to the reader for
this ‘jumping around’; on the other hand, this was caused by the
author’s experience with the discomfort faced by beginning grad-
uate students with vectors being ξ, η etc., and operators being
x, y, z etc.)

The starting point is the following simple consequence of
Proposition 3.3.10.

Lemma 4.1.1 The following conditions on a commutative unital
C∗-algebra A are equivalent:

(a) there exists an element x ∈ A such that A = C∗({1, x})
and σ(x) = Σ;

(b) A ∼= C(Σ).

The next step is the following consequence of the conclusions
drawn in §3.5.

147
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Theorem 4.1.2 (Spectral theorem (bounded case)
(a) Let Σ ⊂ C be compact and let H denote a separable Hilbert

space. Then there exists a 1-1 correspondence between (i) nor-
mal operators T ∈ L(H), such that σ(T ) ⊂ Σ, and (ii) spectral
measures BΣ 3 E 7→ P (E) ∈ P(H) (where we write P(H) for
the set of projection operators onto closed subspaces of H).

This correspondence is given by the equation

〈Tx, y〉 =
∫

Σ
λ dµx,y(λ) ,

where µx,y(E) = 〈P (E)x, y〉.
(b) If T, P (E) are as above, then the spectrum of T is the

‘support of the spectral measure P (·)’, meaning that λ ∈ σ(T ) if
and only if P (U) 6= 0 for every open neighbourhood of λ.

Proof : (a) If T ∈ L(H) is a normal operator such that
σ(T ) = Σ0 ⊂ Σ, then according to Proposition 3.3.10, there ex-
ists a unique representation C(Σ0) 3 f 7→ f(T ) ∈ C∗({1, T}) ⊂
L(H) such that fj(T ) = T j if fj(λ) = λj, j = 0, 1; from the
concluding discussion in §3.5, this representation gives rise to a
unique spectral measure BΣ0 3 E 7→ P (E) ∈ P(H) such that

〈f(T )x, y〉 =
∫

Σ0

fdµx,y ∀f, x, y . (4.1.1)

We may think of P as a spectral measure being defined for all
Borel subsets of Σ (in fact, even for all Borel subsets of C) by
the rule P (E) = P (E ∩ Σ0).

Conversely, every spectral measure as in (a)(ii) clearly gives
rise to a (representation of C(Σ) into H and consequently a)
normal operator T ∈ L(H) such that equation 4.1.1 is valid for
(f(λ) = λj, j = 0, 1 and hence for all) f ∈ C(Σ). Since homo-
morphisms of C∗-algebras ‘shrink spectra’ - see Lemma 3.4.2(a)
- we find that σ(T ) ⊂ Σ.

(b) Let T =
∫
Σ λdP (λ) as in (a) above. Define the measure

µ by µ(E) =
∑

n 2−n||P (E)en||2, where {en}n is an orthonormal
basis for H. Then, by our discussion in §3.5 on spectral mea-
sures, we have an isometric *-isomorphism L∞(Σ0, µ) 3 φ 7→∫
Σ0

φdP ∈ L(H), where Σ0 = σ(T ). Under this isomorphism,
the function f1(λ) = λ, λ ∈ Σ0 corresponds to T ; but it is easy to



4.1. THE SPECTRAL THEOREM 149

see that λ0 ∈ σL∞(Σ0,µ)(f1) if and only if µ({λ : |λ−λ0| < ε}) > 0
for every ε > 0. (Reason: the negation of this latter condition is
clearly equivalent to the statement that the function λ 7→ 1

λ−λ0

belongs to L∞(Σ0, µ).) Since µ(E) = 0 ⇔ P (E) = 0, the proof
of (b) is complete. 2

Corollary 4.1.3 A complex number λ0 belongs to the spec-
trum of a normal operator T ∈ L(H) if and only if λ0 is an ‘ap-
proximate eigenvalue for T ’, meaning that there exists a sequence
{xn : n ∈ IN} of unit vectors in H such that ||Txn − λ0xn|| → 0.

Proof : An approximate eigenvalue of any (not necessarily
normal) operator must necessarily belong to the spectrum of
that operator, since an invertible operator is necessarily bounded
below - see Remark 1.5.15.

On the other hand, if T is normal, if P (·) is the associated
spectral measure, and if λ0 ∈ σ(T ), then P (U) 6= 0 for every
neighbourhood U of λ0. In particular, we can find a unit vector
xn belonging to the range of the projection P (Un), where Un =
{λ ∈ C : |λ − λ0| < 1

n
}. Since |(λ − λ0)1Un

(λ)| < 1
n
∀ λ, we find

that ||(T − λ0)P (Un)|| ≤ 1
n
, and in particular, ||(T − λ0)xn|| ≤

1
n
∀ n. 2

Remark 4.1.4 Note that the assumption of normality is crucial
in the above proof that every spectral value of a normal opera-
tor is an approximate eigenvalue; indeed, if U is a non-unitary
isometry - such as the unilateral shift, for instance - then U is
not invertible, i.e., 0 ∈ σ(U), but 0 is clearly not an approximate
eigenvalue of any isometry. 2

We now make explicit, something which we have been using
all along; and this is the fact that whereas we formerly only had a
‘continuous functional calculus’ for normal elements of abstract
C∗-algebras (and which we have already used with good effect,
in Proposition 3.3.11, for instance), we now have a measurable
functional calculus for normal operators on a separable Hilbert
space. We shall only make a few small remarks in lieu of the
proof of the following Proposition, which is essentially just a
re-statement of results proved in §3.5.
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Proposition 4.1.5 Let T be a normal operator on a separable
Hilbert space H. Let Σ = σ(T ) and let P (·) be the unique spec-
tral measure associated to T and let µ(E) =

∑
n 2−n||P (E)en||2,

where {en}n is any orthonormal basis for H. Then the assign-
ment

φ 7→ φ(T ) =
∫

Σ
φ dP

defines an isometric *-isomorphism of L∞(Σ, µ) onto the von
Neumann subalgebra W ∗({1, T}) of L(H) generated by {1, T},
such that

(i) φj(T ) = T j, where φj(λ) = λj, j = 0, 1; and
(ii) the representation is ‘weakly continuous’ meaning that if

{φn}n is a sequence in L∞(X,µ) which converges to φ with re-
spect to the ‘weak * topology’ (see Remark A.5.15), then φn(T ) →
φ(T ) in the weak operator topology.

Further, the representation is uniquely determined by condi-
tions (i) and (ii), and is called the ‘measurable functional calcu-
lus’ for T .

Remarks on the proof : Note that if π : C(Σ) → L(H)
is the ‘continuous functional calculus’ for T , and if π̃ and µ are
associated with π as in Proposition 3.5.5, then

π̃(φ) =
∫

Σ
φdP

where P (E) = π̃(1E) (and we may as well assume that µ is given
as in the statement of this theorem).

The content of Lemma 3.5.7 is that the image of this rep-
resentation of L∞(Σ, µ) is precisely the von Neumann algebra
generated by π(C(Σ)) = C∗({1, T}).

It is a fairly simple matter (which only involves repeated
applications of the Cauchy-Schwarz inequality) to verify that if
{φn}n is a sequence in L∞(Σ, µ), then to say that the sequence
{π̃(φn)}n converges to π̃(φ) with respect to the weak operator
topology is exactly equivalent to requiring that

∫
Σ(φn−φ)fdµ →

0 for every f ∈ L1(Σ, µ), and this proves (ii).
The final statement is essentially contained in Remark 3.5.6.

2
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We now discuss some simple consequences of the ‘measurable
functional calculus’ for a normal operator.

Corollary 4.1.6 (a) Let U ∈ L(H) be a unitary operator.
Then there exists a self-adjoint operator A ∈ L(H) such that
U = eiA, where the right hand side is interpreted as the result
of the continuous functional calculus for A; further, given any
a ∈ R, we may choose A to satisfy σ(A) ⊂ [a, a + 2π].

(b) If T ∈ L(H) is a normal operator, and if n ∈ IN, then
there exists a normal operator A ∈ L(H) such that T = An.

Proof : (a) Let φ : C → {z ∈ C : Im z ∈ [a, a + 2π)}
be any (measurable) branch of the logarithm - for instance, we
might set φ(z) = log|z| + iθ, if z = |z|eiθ, a ≤ θ < a + 2π.
Setting A = φ(U), we find - since eφ(z) = z - that U = eiA.

(b) This is proved like (a), by taking some measurable branch
of the logarithm defined everywhere in C and choosing the n-th
root as the complex function defined using this choice of loga-
rithm. 2

Exercise 4.1.7 Show that if M ⊂ L(H) is a von Neumann al-
gebra, then M is generated as a Banach space by the set P(M) =
{p ∈ M : p = p∗ = p2}. (Hint: Thanks to the Cartesian de-
composition, it is enough to be able to express any self-adjoint
element x = x∗ ∈ M as a norm-limit of finite linear combina-
tions of projections in M ; in view of Proposition 3.3.11(f), we
may even assume that x ≥ 0; by Proposition A.5.9(3), we can
find a sequence {φn}n of simple functions such that {φn(t)}n is
a non-decreasing sequence which converges to t, for all t ∈ σ(x),
and such that the convergence is uniform on σ(x); deduce that
||φn(x) − x|| → 0.)

4.2 Polar decomposition

In this section, we establish the very useful polar decomposi-
tion for bounded operators on Hilbert space. We begin with a
few simple observations and then introduce the crucial notion of
a partial isometry.
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Lemma 4.2.1 Let T ∈ L(H,K). Then,

ker T = ker (T ∗T ) = ker (T ∗T )
1
2 = ran⊥T ∗ . (4.2.2)

In particular, also

ker⊥T = ran T ∗ .

(In the equations above, we have used the notation ran⊥T ∗

and ker⊥T , for (ran T ∗)⊥ and (ker T )⊥, respectively.)

Proof : First observe that, for arbitrary x ∈ H, we have

||Tx||2 = 〈T ∗Tx, x〉 = 〈(T ∗T )
1
2 x, (T ∗T )

1
2 x〉 = ||(T ∗T )

1
2 x||2 ,
(4.2.3)

whence it follows that ker T = ker(T ∗T )
1
2 .

Notice next that

x ∈ ran⊥T ∗ ⇔ 〈x, T ∗y〉 = 0 ∀ y ∈ K
⇔ 〈Tx, y〉 = 0 ∀ y ∈ K
⇔ Tx = 0

and hence ran⊥T ∗ = ker T . ‘Taking perps’ once again, we
find - because of the fact that V ⊥⊥ = V for any linear subspace
V ⊂ K - that the last statement of the Lemma is indeed valid.

Finally, if {pn}n is any sequence of polynomials with the prop-
erty that pn(0) = 0 ∀ n and such that {pn(t)} converges uni-

formly to
√

t on σ(T ∗T ), it follows that ||pn(T ∗T )− (T ∗T )
1
2 || →

0, and hence,

x ∈ ker(T ∗T ) ⇒ pn(T ∗T )x = 0 ∀n ⇒ (T ∗T )
1
2 x = 0

and hence we see that also ker(T ∗T ) ⊂ ker(T ∗T )
1
2 ; since the

reverse inclusion is clear, the proof of the lemma is complete. 2

Proposition 4.2.2 Let H,K be Hilbert spaces; then the follow-
ing conditions on an operator U ∈ L(H,K) are equivalent:

(i) U = UU∗U ;
(ii) P = U∗U is a projection;
(iii) U |ker⊥U is an isometry.

An operator which satisfies the equivalent conditions (i)-(iii) is
called a partial isometry.
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Proof : (i) ⇒ (ii) : The assumption (i) clearly implies that
P = P ∗, and that P 2 = U∗UU∗U = U∗U = P .

(ii) ⇒ (iii) : Let M = ran P . Then notice that, for arbitrary
x ∈ H, we have: ||Px||2 = 〈Px, x〉 = 〈U∗Ux, x〉 = ||Ux||2;
this clearly implies that ker U = ker P = M⊥, and that U is
isometric on M (since P is identity on M).

(iii) ⇒ (ii) : Let M = ker⊥U . For i = 1, 2, suppose zi ∈ H,
and xi ∈ M, yi ∈ M⊥ are such that zi = xi + yi; then note that

〈U∗Uz1, z2〉 = 〈Uz1, Uz2〉
= 〈Ux1, Ux2〉
= 〈x1, x2〉 (since U |M is isometric)

= 〈x1, z2〉 ,

and hence U∗U is the projection onto M.
(ii) ⇒ (i) : Let M = ran U∗U ; then (by Lemma 4.2.1)

M⊥ = ker U∗U = ker U , and so, if x ∈ M, y ∈ M⊥, are
arbitrary, and if z = x + y, then observe that Uz = Ux + Uy =
Ux = U(U∗Uz). 2

Remark 4.2.3 Suppose U ∈ L(H,K) is a partial isometrry.
Setting M = ker⊥U and N = ran U(= ran U), we find that
U is identically 0 on M⊥, and U maps M isometrically onto N .
It is customary to refer to M as the initial space, and to N as
the final space, of the partial isometry U .

On the other hand, upon taking adjoints in condition (ii) of
Proposition 4.2.2, it is seen that U∗ ∈ L(K,H) is also a partial
isometry. In view of the preceding lemma, we find that ker U∗ =
N⊥ and that ran U∗ = M; thus N is the inital space of U∗ and
M is the final space of U∗.

Finally, it follows from Proposition 4.2.2(ii) (and the proof
of that proposition) that U∗U is the projection (of H) onto M
while UU∗ is the projection (of K) onto N . 2

Exercise 4.2.4 If U ∈ L(H,K) is a partial isometry with ini-
tial space M and final space N , show that if y ∈ N , then U∗y
is the unique element x ∈ M such that Ux = y.

Before stating the polar decomposition theorem, we intro-
duce a convenient bit of notation: if T ∈ L(H,K) is a bounded
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operator between Hilbert spaces, we shall always use the sym-
bol |T | to denote the unique positive square root of the positive

operator |T |2 = T ∗T ∈ L(H); thus, |T | = (T ∗T )
1
2 .

Theorem 4.2.5 (Polar Decomposition)
(a) Any operator T ∈ L(H,K) admits a decomposition T =

UA such that
(i) U ∈ L(H,K) is a partial isomertry;
(ii) A ∈ L(H) is a positive operator; and
(iii) ker T = ker U = ker A .

(b) Further, if T = V B is another decomposition of T as a
product of a partial isometry V and a positive operator B such
that kerV = kerB, then necessarily U = V and B = A = |T |.
This unique decomposition is called the polar decomposition of
T .

(c) If T = U |T | is the polar decomposition of T , then |T | =
U∗T .

Proof : (a) If x, y ∈ H are arbitrary, then,

〈Tx, Ty〉 = 〈T ∗Tx, y〉 = 〈|T |2x, y〉 = 〈|T |x, |T |y〉 ,

whence it follows - see Exercise 3.4.12 - that there exists a unique
unitary operator U0 : ran |T | → ran T such that U0(|T |x) =
Tx ∀ x ∈ H. Let M = ran |T | and let P = PM denote the
orthogonal projection onto M. Then the operator U = U0P
clearly defines a partial isometry with initial space M and final
space N = ran T which further satisfies T = U |T | (by defini-
tion). It follows from Lemma 4.2.1 that kerU = ker|T | = kerT .

(b) Suppose T = V B as in (b). Then V ∗V is the projection
onto ker⊥V = ker⊥B = ran B, which clearly implies that
B = V ∗V B; hence, we see that T ∗T = BV ∗V B = B2; thus B is
a, and hence the, positive square root of |T |2, i.e., B = |T |. It
then follows that V (|T |x) = Tx = U(|T |x) ∀x; by continuity, we
see that V agrees with U on ran |T |, but since this is precisely
the initial space of both partial isometries U and V , we see that
we must have U = V .

(c) This is an immediate consequence of the definition of U
and Exercise 4.2.4. 2
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Exercise 4.2.6 (1) Prove the ‘dual’ polar decomposition the-
orem; i.e., each T ∈ L(H,K) can be uniquely expressed in the
form T = BV where V ∈ L(H,K) is a partial isometry, B ∈
L(K) is a positive operator and kerB = kerV ∗ = kerT ∗. (Hint:
Consider the usual polar decomposition of T ∗, and take adjoints.)

(2) Show that if T = U |T | is the (usual) polar decomposi-
tion of T , then U |ker⊥T implements a unitary equivalence between
|T | |ker⊥|T | and |T ∗| |ker⊥|T ∗|. (Hint: Write M = ker⊥T, N =
ker⊥T ∗, W = U |M; then W ∈ L(M,N ) is unitary; further
|T ∗|2 = TT ∗ = U |T |2U∗; deduce that if A (resp., B) denotes
the restriction of |T | (resp., |T ∗|) to M (resp., N ), then B2 =
WA2W ∗; now deduce, from the uniqueness of the positive square
root, that B = WAW ∗.)

(3) Apply (2) above to the case when H and K are finite-
dimensional, and prove that if T ∈ L(V,W ) is a linear map
of vector spaces (over C), then dim V = rank(T ) + nullity(T ),
where rank(T ) and nullity(T ) denote the dimensions of the range
and null-space, respectively, of the map T .

(4) Show that an operator T ∈ L(H,K) can be expressed
in the form T = WA, where A ∈ L(H) is a positive opera-
tor and W ∈ L(H,K) is unitary if and only if dim(ker T ) =
dim(ker T ∗). (Hint: In order for such a decomposition to exist,
show that it must be the case that A = |T | and that the W should
agree, on ker⊥T , with the U of the polar decomposition, so that
W must map ker T isometrically onto ker T ∗.)

(5) In particular, deduce from (4) that in case H is a finite-
dimensional inner product space, then any operator T ∈ L(H)
admits a decomposition as the product of a unitary operator and
a positive operator. (In view of Proposition 3.3.11(b) and (d),
note that when H = C, this boils down to the usual polar decom-
position of a complex number.)

Several problems concerning a general bounded operator be-
tween Hilbert spaces can be solved in two stages: in the first step,
the problem is ‘reduced’, using the polar decomposition theorem,
to a problem concerning positive operators on a Hilbert space;
and in the next step, the positive case is settled using the spectral
theorem. This is illustrated, for instance, in exercise 4.2.7(2).
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Exercise 4.2.7 (1) Recall that a subset ∆ of a (real or com-
plex) vector space V is said to be convex if it contains the
‘line segment joining any two of its points’; i.e., ∆ is convex
if x, y ∈ ∆, 0 ≤ t ≤ 1 ⇒ tx + (1 − t)y ∈ ∆.

(a) If V is a normed (or simply a topological) vector space,
and if ∆ is a closed subset of V , show that ∆ is convex if and
only if it contains the mid-point of any two of its points - i.e., ∆
is convex if and only if x, y ∈ ∆ ⇒ 1

2
(x + y) ∈ ∆. (Hint: The

set of dyadic rationals, i.e., numbers of the form k
2n is dense in

R.)

(b) If S ⊂ V is a subset of a vector space, show that there
exists a smallest convex subset of V which contains S; this set
is called the convex hull of the set S and we shall denote it by
the symbol co(S). Show that co(S) = {∑n

i=1 θixi : n ∈ IN, θi ≥
0,

∑n
i=1 θi = 1}.
(c) Let ∆ be a convex subset of a vector space; show that the

following conditions on a point x ∈ ∆ are equivalent:

(i) x = 1
2
(y + z), y, z ∈ ∆ ⇒ x = y = z;

(ii) x = ty + (1 − t)z, 0 < t < 1, y, z ∈ ∆ ⇒ x = y = z.

The point x is called an extreme point of a convex set ∆ if
x ∈ ∆ and if x satisfies the equivalent conditions (i) and (ii)
above.

(d) It is a fact, called the Krein-Milman theorem - see [Yos],
for instance - that if K is a compact convex subset of a Banach
space (or more generally, of a locally convex topological vector
space which satisfies appropriate ‘completeness conditions’), then
K = co(∂eK), where ∂eK denotes the set of extreme points of K.
Verify the above fact in case K = ball(H) = {x ∈ H : ||x|| ≤ 1},
where H is a Hilbert space, by showing that ∂e(ball H) = {x ∈
H : ||x|| = 1}. (Hint: Use the parallelogram law - see Exercise
2.1.3(4).)

(e) Show that ∂e(ball X) 6= {x ∈ X : ||x|| = 1}, when
X = `1

n, n > 1. (Thus, not every point on the unit sphere of a
normed space need be an extreme point of the unit ball.)

(2) Let H and K denote (separable) Hilbert spaces, and let
IB = {A ∈ L(H,K) : ||A|| ≤ 1} denote the unit ball of L(H,K).
The aim of the following exercise is to show that an operator
T ∈ IB is an extreme point of IB if and only if either T or T ∗ is
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an isometry. (See (1)(c) above, for the definition of an extreme
point.)

(a) Let IB+ = {T ∈ L(H) : T ≥ 0, ||T || ≤ 1}. Show that
T ∈ ∂eIB+ ⇔ T is a projection. (Hint: suppose P is a projection
and P = 1

2
(A + B), A,B ∈ IB+; then for arbitrary x ∈ ball(H),

note that 0 ≤ 1
2
(〈Ax, x〉 + 〈Bx, x〉) ≤ 1; since ∂e[0, 1] = {0, 1},

deduce that 〈Ax, x〉 = 〈Bx, x〉 = 〈Px, x〉 ∀ x ∈ (ker P ∪ ran P );
but A ≥ 0 and ker P ⊂ ker A imply that A(ran P ) ⊂ ran P ;
similarly also B(ran P ) ⊂ ran P ; conclude (from Exercise
2.4.2) that A = B = P . Conversely, if T ∈ IB+ and T is not a
projection, then it must be the case - see Proposition 3.3.11(c) -
that there exists λ ∈ σ(T ) such that 0 < λ < 1; fix ε > 0 such that
(λ−2ε, λ+2ε) ⊂ (0, 1); since λ ∈ σ(T ), deduce that P 6= 0 where
P = 1(λ−ε,λ+ε)(T ); notice now that if we set A = T − εP,B =
T + εP , then the choices ensure that A,B ∈ IB+, T = 1

2
(A + B),

but A 6= T 6= B, whence T /∈ ∂eIB+.)

(b) Show that the only extreme point of ball L(H) = {T ∈
L(H) : ||T || ≤ 1} which is a positive operator is 1, the iden-
tity operator on H. (Hint: Prove that 1 is an extreme point of
ball L(H) by using the fact that 1 is an extreme point of the unit
disc in the complex plane; for the other implication, by (a) above,
it is enough to show that if P is a projection which is not equal
to 1, then P is not an extreme point in ball L(H); if P 6= 1, note
that P = 1

2
(U+ + U−), where U± = P ± (1 − P ).)

(c) Suppose T ∈ ∂eIB; if T = U |T | is the polar decomposition
of T , show that |T | |M is an extreme point of the set {A ∈
L(M) : ||A|| ≤ 1}, where M = ker⊥|T |, and hence deduce,
from (b) above, that T = U . (Hint: if |T | = 1

2
(C + D), with

C,D ∈ ball L(M) and C 6= |T | 6= D, note that T = 1
2
(A + B),

where A = UC,B = UD, and A 6= T 6= B.)

(d) Show that T ∈ ∂eIB if and only if T or T ∗ is an isometry.
(Hint: suppose T is an isometry; suppose T = 1

2
(A + B), with

A,B ∈ IB; deduce from (1)(d) that Tx = Ax = Bx ∀x ∈ H; thus
T ∈ ∂eIB; similarly, if T ∗ is an isometry, then T ∗ ∈ ∂eIB. Con-
versely, if T ∈ ∂eIB, deduce from (c) that T is a partial isometry;
suppose it is possible to find unit vectors x ∈ kerT, y ∈ kerT ∗;
define U±z = Tz ± 〈z, x〉y, and note that U± are partial isome-
tries which are distinct from T and that T = 1

2
(U+ + U−).)
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4.3 Compact operators

Definition 4.3.1 A linear map T : X → Y between Banach
spaces is said to be compact if it satisfies the following con-
dition: for every bounded sequence {xn}n ⊂ X, the sequence
{Txn}n has a subsequence which converges with respect to the
norm in Y .

The collection of compact operators from X to Y is denoted
by K(X,Y ) (or simply K(X) if X = Y ).

Thus, a linear map is compact precisely when it maps the unit
ball of X into a set whose closure is compact - or equivalently,
if it maps bounded sets into totally bounded sets; in particular,
every compact operator is bounded.

Although we have given the definition of a compact operator
in the context of general Banach spaces, we shall really only be
interested in the case of Hilbert spaces. Nevertheless, we state
our first result for general Banach spaces, after which we shall
specialise to the case of Hilbert spaces.

Proposition 4.3.2 Let X,Y, Z denote Banach spaces.
(a) K(X,Y ) is a norm-closed subspace of L(X,Y ).
(b) if A ∈ L(Y, Z), B ∈ L(X,Y ), and if either A or B is

compact, then AB is also compact.
(c) In particular, K(X) is a closed two-sided ideal in the Ba-

nach algebra L(X).

Proof : (a) Suppose A,B ∈ K(X,Y ) and α ∈ C, and sup-
pose {xn} is a bounded sequence in X; since A is compact, there
exists a subsequence - call it {yn} of {xn} - such that {Ayn} is
a norm-convergent sequence; since {yn} is a bounded sequence
and B is compact, we may extract a further subsequence - call
it {zn} - with the property that {Bzn} is norm-convergent. It
is clear then that {(αA + B)zn} is a norm-convergent sequence;
thus (αA+B) is compact; in other words, K(X,Y ) is a subspace
of L(X,Y ).

Suppose now that {An} is a sequence in K(X,Y ) and that
A ∈ L(X,Y ) is such that ||An − A|| → 0. We wish to prove
that A is compact. We will do this by a typical instance of the
‘diagonal argument’ described in Remark A.4.9. Thus, suppose
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S0 = {xn}n is a bounded sequence in X. Since A1 is compact, we
can extract a subsequence S1 = {x(1)

n }n of S0 such that {Ax(1)
n }n

is convergent in Y . Since A2 is compact, we can extract a sub-
sequence S2 = {x(2)

n }n of S1 such that {Ax(2)
n }n is convergent

in Y . Proceeding in this fashion, we can find a sequence {Sk}
such that Sk = {x(k)

n }n is a subsequence of Sk−1 and {Akx
(k)
n }n

is convergent in Y , for each k ≥ 1. Let us write zn = x(n)
n ; since

{zn : n ≥ k} is a subsequence of Sk, note that {Akzn}n is a
convergent sequence in Y , for every k ≥ 1.

The proof of (a) will be completed once we establish that
{Azn}n is a Cauchy sequence in Y . Indeed, suppose ε > 0 is
given; let K = 1 + supn||zn||; first pick an integer N such that
||AN − A|| < ε

3K
; next, choose an integer n0 such that ||ANzn −

ANzm|| < ε
3
∀ n,m ≥ n0; then observe that if n,m ≥ n0, we

have:

||Azn − Azm|| ≤ ||(A − AN)zn|| + ||ANzn − ANzm||
+ ||(AN − A)zm||

≤ ε

3K
K +

ε

3
+

ε

3K
K

= ε .

(b) Let IB denote the unit ball in X; we need to show that
(AB)(IB) is totally bounded (see Definition A.4.6); this is true in
case (i) A is compact, since then B(IB) is bounded, and A maps
bounded sets to totally bounded sets, and (ii) B is compact,
since then B(IB) is totally bounded, and A (being bounded) maps
totally bounded sets to totally bounded sets. 2

Corollary 4.3.3 Let T ∈ L(H1,H2), where Hi are Hilbert
spaces. Then

(a) T is compact if and only if |T | (= (T ∗T )
1
2 ) is compact;

(b) in particular, T is compact if and only if T ∗ is compact.

Proof : If T = U |T | is the polar decomposition of T , then
also U∗T = |T | - see Theorem 4.2.5; so each of T and |T | is
a multiple of the other. Now appeal to Proposition 4.3.2(b)
to deduce (a) above. Also, since T ∗ = |T |U∗, we see that the
compactness of T implies that of T ∗; and (b) follows from the
fact that we may interchange the roles of T and T ∗. 2
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Recall that if T ∈ L(H,K) and if M is a subspace of H, then
T is said to be ‘bounded below’ on M if there exists an ε > 0
such that ||Tx|| ≥ ε||x|| ∀ x ∈ M.

Lemma 4.3.4 If T ∈ K(H1,H2) and if T is bounded below on a
subspace M of H1, then M is finite-dimensional.

In particular, if N is a closed subspace of H2 such that N is
contained in the range of T , then N is finite-dimensional.

Proof : If T is bounded below on M, then T is also bounded
below (by the same constant) on M; we may therefore assume,
without loss of generality, that M is closed. If M contains an
infinite orthonormal set, say {en : n ∈ IN}, and if T is bounded
below by ε on M, then note that ||Ten − Tem|| ≥ ε

√
2 ∀n 6= m;

then {en}n would be a bounded sequence in H such that {Ten}n

would have no Cauchy subsequence, thus contradicting the as-
sumed compactness of T ; hence M must be finite-dimensional.

As for the second assertion, let M = T−1(N )∩(ker⊥T ); note
that T maps M 1-1 onto N ; by the open mapping theorem, T
must be bounded below on M; hence by the first assertion of
this Lemma, M is finite-dimensional, and so also is N . 2

The purpose of the next exercise is to convince the reader
of the fact that compactness is an essentially ‘separable phe-
nomenon’, so that we may - and will - restrict ourselves in the
rest of this section to separable Hilbert spaces.

Exercise 4.3.5 (a) Let T ∈ L(H) be a positive operator on
a (possibly non-separable) Hilbert space H. Let ε > 0 and let
Sε = {f(T )x : f ∈ C(σ(T )), f(t) = 0 ∀t ∈ [0, ε]}. If Mε =
[Sε] denotes the closed subspace generated by Sε, then show that
Mε ⊂ ran T . (Hint: let g ∈ C(σ(T )) be any continuous func-
tion such that g(t) = t−1 ∀ t ≥ ε

2
; for instance, you could take

g(t) =

{
1
t

if t ≥ ε
2

4t
ε2

if 0 ≤ t ≤ ε
2

;

then notice that if f ∈ C(σ(T )) satisfies f(t) = 0 ∀t ≤ ε, then
f(t) = tg(t)f(t) ∀t; deduce that Sε is a subset of N = {z ∈ H :
z = Tg(T )z}; but N is a closed subspace of H which is contained
in ran T .)
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(b) Let T ∈ K(H1,H2), where H1,H2 are arbitrary (possi-
bly non-separable) Hilbert spaces. Show that ker⊥T and ran T
are separable Hilbert spaces. (Hint: Let T = U |T | be the po-
lar decomposition, and let Mε be associated to |T | as in (a)
above; show that U(Mε) is a closed subspace of ran T and de-
duce from Lemma 4.3.4 that Mε is finite-dimensional; note that
ker⊥T = ker⊥|T | is the closure of ∪∞

n=1M 1
n
, and that ran T =

U(ker⊥T ).)

In the following discussion of compact operators between
Hilbert spaces, we shall make the standing assumption that all
Hilbert spaces considered here are separable. This is for two rea-
sons: (a) by Exercise 4.3.5, this is no real loss of generality; and
(b) we can feel free to use the measurable functional calculus
for normal operators, whose validity was established - in the last
chapter - only under the standing assumption of separability.

Proposition 4.3.6 The following conditions on an operator
T ∈ L(H1,H2) are equivalent:

(a) T is compact;
(b) |T | is compact;
(c) if Mε = ran 1[ε,∞)(|T |), then Mε is finite-dimensional,

for every ε > 0;
(d) there exists a sequence {Tn}∞n=1 ⊂ L(H1,H2) such that (i)

||Tn −T || → 0, and (ii) ran Tn is finite-dimensional, for each n;
(e) ran T does not contain any infinite-dimensional closed

subspace of H2.

Proof : For ε > 0, let us use the notation 1ε = 1[ε,∞) and
Pε = 1ε(|T |).

(a) ⇒ (b) : See Corollary 4.3.3.
(b) ⇒ (c) : Since t ≥ ε1ε(t) ∀ t ≥ 0, we find easily that |T |

is bounded below (by ε) on ran Pε, and (c) follows from Lemma
4.3.4.

(c) ⇒ (d) : Define Tn = TP 1
n
; notice that 0 ≤ t(1 − 1 1

n
(t)) ≤

1
n
∀ t ≥ 0; conclude that || |T |(1− 1 1

n
(|T |))|| ≤ 1

n
; if T = U |T | is

the polar decomposition of T , deduce that ||T −Tn|| ≤ 1
n
; finally,

the condition (c) clearly implies that each (P 1
n

and consequently)
Tn has finite-dimensional range.
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(d) ⇒ (a) : In view of Proposition 4.3.2(a), it suffices to show
that each Tn is a compact operator; but any bounded operator
with finite-dimensional range is necessarily compact, since any
bounded set in a finite-dimensional space is totally bounded.

(a) ⇒ (e) : See Lemma 4.3.4.
(e) ⇒ (c) : Pick any bounded measurable function g such that

g(t) = 1
t
, ∀t ≥ ε; then tg(t) = 1 ∀t ≥ 1; deduce that |T |g(|T |)x =

x, ∀ x ∈ Mε, and hence that Mε = |T |(Mε) is a closed subspace
of (ran |T |, and consequently of) the initial space of the partial
isometry U ; deduce that T (Mε) = U(Mε) is a closed subspace
of ran T ; by condition (e), this implies that T (Mε) is finite-
dimensional. But |T | and consequently T is bounded below (by
ε) on Mε; in particular, T maps Mε 1-1 onto T (Mε); hence Mε

is finite-dimensional, as desired. 2

We now discuss normal compact operators.

Proposition 4.3.7 Let T ∈ K(H) be a normal (compact) op-
erator on a separable Hilbert space, and let E 7→ P (E) = 1E(T )
be the associated spectral measure.

(a) If ε > 0, let Pε = P ({λ ∈ C : |λ| ≥ ε}) denote the spectral
projection associated to the complement of an ε-neighbourhood of
0. Then ran Pε is finite-dimensional.

(b) If Σ = σ(T ) − {0}, then
(i) Σ is a countable set;
(ii) λ ∈ Σ ⇒ λ is an eigenvalue of finite multiplicity; i.e.,

0 < dim ker(T − λ) < ∞;
(iii) the only possible accumulation point of Σ is 0; and
(iv) there exist scalars λn ∈ Σ, n ∈ N and an orthonormal

basis {xn : n ∈ N} of ran P (Σ) such that

Tx =
∑

n∈N

λn 〈x, xn〉 xn , ∀x ∈ H .

Proof : (a) Note that the function defined by the equation

g(λ) =

{
1
λ

if |λ| ≥ ε
0 otherwise

is a bounded measurable function on σ(T ) such that g(λ)λ =
1Fε

(λ), where Fε = {z ∈ C : |z| ≥ ε}. It follows that g(T )T =
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Tg(T ) = Pε. Hence ran Pε is contained in ran T , and the desired
conclusion follows from Proposition 4.3.6(e).

(b) Let µ be the measure defined by µ(E) =
∑

n ||P (E)en||2,
where {en}n is some orthonormal basis for H. Then the measur-
able functional calculus yields an embedding of L∞(Fε,BFε

, µ|Fε
)

into L(ran Pε); it follows from (a) above that L∞(Fε,BFε
, µ|Fε

)
is finite-dimensional, where Fε is as in the last paragraph. This
implies - see Exercise 4.3.8, below - that there exists a finite set
{λ1, · · · , λn} ⊂ Fε such that µ|Fε

=
∑n

i=1 µ{λi}; assume, with-
out loss of generality, that µ({λi}) > 0 ∀i; then Pε =

∑n
i=1 Pi

is a decomposition of Pε as a finite sum of non-zero (pairwise
orthogonal) projections, where Pi = P ({λi}); since Pi is the pro-
jection onto ker(T − λi) (see Exercise 4.3.8), we thus find that
(i) {λi : 1 ≤ i ≤ n} = Σ∩Fε; and (ii) each λi is an eigenvalue of
T which has finite multiplicity.

By allowing ε to decrease to 0 through a countable sequence
of values, we thus find that we have proved (i) - (iii) (since a
countable union of finite sets is countable). For (iv), observe
that if Σ = {λn : n ∈ N}, then λ =

∑
n∈N λn1{λn}(λ) µ −

a.e..; hence T =
∑

λ∈Σ λP ({λ}); finally, if {xn(λ) : n ∈ Nλ}
is an orthonormal basis for ran P ({λ}), for each λ ∈ Σ, then
P ({λ})x =

∑
n∈Nλ

〈x, xn(λ)〉 xn(λ) ∀ x ∈ H; letting {xn}n∈N

be an enumeration of ∪λ∈Σ{xn(λ) : n ∈ Nλ}, we find that we do
indeed have the desired decomposition of T . 2

Exercise 4.3.8 Let X be a compact Hausdorff space and let
BX 3 E 7→ P (E) be a spectral measure; let µ be a measure which
is ‘mutually absolutely continuous’ with respect to P - thus, for
instance, we may take µ(E) =

∑ ||P (E)en||2, where {en}n is
some orthonormal basis for the underlying Hilbert space H - and
let π : C(X) → L(H) be the associated representation.

(a) Show that the following conditions are equivalent:
(i) H is finite-dimensional;
(ii) there exists a finite set F ⊂ X such that µ = µ|F , and

such that ran P ({x}) is finite-dimensional, for each x ∈ F .
(b) If x0 ∈ X, show that the following conditions on a vector

ξ ∈ H are equivalent:
(i) π(f)ξ = f(x0)ξ ∀ f ∈ C(X);
(ii) ξ ∈ ran P ({x0}).
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Remark 4.3.9 In the notation of the Proposition 4.3.7, note
that if λ ∈ Σ, then λ features (as some λn) in the expression for
T that is displayed in Proposition 4.3.7(iv); in fact, the number
of n for which λ = λn is exactly the dimension of (the eigenspace
corresponding to λ, which is) ker(T − λ). Furthermore, there is
nothing canonical about the choice of the sequence {xn}; all that
can be said about the sequence {xn}n is that if λ ∈ Σ is fixed,
then {xn : λn = λ} is an orthonormal basis for ker(T − λ). In
fact, the ‘canonical formulation’ of Proposition 4.3.7(iv) is this:
T =

∑
λ∈Σ λPλ, where Pλ = 1{λ}(T ).

The λn’s admit a ‘canonical choice’ in some special cases;
thus, for instance, if T is positive, then Σ is a subset of (0,∞)
which has no limit points except possibly for 0; so the members
of Σ may be arranged in non-increasing order; further,in the
expression in Proposition 4.3.7(iv), we may assume that N =
{1, 2, · · · , n} or N = {1, 2, · · ·}, according as dim ran |T | = n
or ℵ0, and also λ1 ≥ λ2 ≥ · · · . In this case, it must be clear
that if λ1 is an eigenvalue of ‘multiplicity m1’ - meaning that
dim ker(T − λ1) = m1, then λn = λ1 for 1 ≤ n ≤ m1; and sim-
ilar statements are valid for the ‘multiplicities’ of the remaining
eigenvalues of T . 2

We leave the proof of the following Proposition to the reader,
since it is obtained by simply piecing together our description
(see Proposition 4.3.7 and Remark 4.3.9) of normal compact op-
erators, and the polar decomposition to arrive at a canonical
‘singular value decomposition’ of a general compact operator.

Proposition 4.3.10 Let T ∈ K(H1,H2). Then T admits the
following decomposition:

Tx =
∑

n∈N

λn


 ∑

k∈In

〈x, x
(n)
k 〉y(n)

k


 , (4.3.4)

where
(i) σ(|T |)−{0} = {λn : n ∈ N}, where N is some countable

set; and
(ii) {x(n)

k : k ∈ In} (resp., {y(n)
k : k ∈ In}) is an orthonormal

basis for ker(|T |−λn) (resp., T (ker(|T |−λn)) = ker(|T ∗|−λn)).
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In particular, we may assume that N = {1, 2, · · · , n} or
{1, 2, · · ·} according as dim ran |T | < ∞ or ℵ0, and that λ1 ≥
λ2 ≥ · · ·; if the sequence {sn = sn(T )} - which is indexed by
{n ∈ IN : 1 ≤ n ≤ dim H1} in case H1 is finite-dimensional,
and by IN if H1 is infinite-dimensional - is defined by

sn =





λ1 if 0 < n ≤ card(I1)
λ2 if card(I1) < n ≤ (card(I1) + card(I2))
· · ·
λm if

∑
1≤k<m card(Ik) < n ≤ ∑

1≤k≤m card(Ik)
0 if

∑
k∈N card(Ik) < n

(4.3.5)
then we obtain a non-increasing sequence

s1(T ) ≥ s2(T ) ≥ · · · ≥ sn(T ) ≥ · · ·

of (uniquely defined) non-negative real numbers, called the se-
quence of singular values of the compact operator T .

Some more useful properties of singular values are listed in
the following exercises.

Exercise 4.3.11 (1) Let T ∈ L(H) be a positive compact oper-
ator on a Hilbert space. In this case, we write λn = sn(T ), since
(T = |T | and consequently) each λn is then an eigenvalue of T .
Show that

λn = max
dimM≤n

min{〈Tx, x〉 : x ∈ M, ||x|| = 1} , (4.3.6)

where the the maximum is to be interpreted as a supremum, over
the collection of all subspaces M ⊂ H with appropriate dimen-
sion, and part of the assertion of the exercise is that this supre-
mum is actually attained (and is consequently a maximum); in
a similar fashion, the minimum is to be interpreted as an infi-
mum which is attained. (This identity is called the max-min
principle and is also referred to as the ‘Rayleigh-Ritz princi-
ple’.) (Hint: To start with, note that if M is a finite-dimensional
subspace of H, then the minimum in equation 4.3.6 is attained
since the unit sphere of M is compact and T is continuous. Let
{xn : n ∈ IN} be an orthonormal set in H such that Tx =
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∑
n∈IN λn〈x, xn〉xn, - see Proposition 4.3.7 and Remark 4.3.9. De-

fine Mn = [{xj : 1 ≤ j ≤ n}]; observe that λn = min{〈Tx, x〉 :
x ∈ Mn, ||x|| = 1}; this proves the inequality ≤ in 4.3.6. Con-
versely, if dim M ≤ n, argue that there must exist a unit vector
x0 ∈ M∩M⊥

n−1 (since the projection onto Mn−1 cannot be in-
jective on M ), to conclude that min{〈Tx, x〉 : x ∈ M, ||x|| =
1} ≤ λn.)

(2) If T : H1 → H2 is a compact operator between Hilbert
spaces, show that

sn(T ) = max
dimM≤n

min{||Tx|| : x ∈ M, ||x|| = 1} . (4.3.7)

(Hint: Note that ||Tx||2 = 〈|T |2x, x〉, apply (1) above to |T |2,
and note that sn(|T |2) = sn(|T |)2.)

(3) If T ∈ K(H1,H2) and if sn(T ) > 0, then show that n ≤
dim H2 (so that sn(T ∗) is defined) and sn(T ∗) = sn(T ). (Hint:
Use Exercise 4.2.6(2).)

We conclude this discussion with a discussion of an important
class of compact operators.

Lemma 4.3.12 The following conditions on a linear operator
T ∈ L(H1,H2) are equivalent:

(i)
∑

n ||Ten||2 < ∞ , for some orthonormal basis {en}n of
H1;

(ii)
∑

m ||T ∗fm||2 < ∞ , for every orthonormal basis {fm}m

of H2.
(iii)

∑
n ||Ten||2 < ∞ , for some orthonormal basis {en}n

of H1.
If these equivalent conditions are satisfied, then the sums of the
series in (ii) and (iii) are independent of the choice of the or-
thonormal bases and are all equal to one another.

Proof: If {en}n (resp., {fm}m) is any orthonormal basis for
H1 (resp., H2), then note that

∑

n

||Ten||2 =
∑

n

∑

m

|〈Ten, fm〉|2
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=
∑

m

∑

n

|〈T ∗fm, en〉|2

=
∑

m

||T ∗fm||2 ,

and all the assertions of the proposition are seen to follow. 2

Definition 4.3.13 An operator T ∈ L(H1,H2) is said to be
a Hilbert-Schmidt operator if it satisfies the equivalent con-
ditions of Lemma 4.3.12, and the Hilbert-Schmidt norm of
such an operator is defined to be

||T ||2 =

( ∑

n

||Ten||2
) 1

2

, (4.3.8)

where {en}n is any orthonormal basis for H1. The collection of
all Hilbert-Schmidt operators from H1 to H2 will be denoted by
L2(H1,H2).

Some elementary properties of the class of Hilbert-Schmidt
operators are contained in the following proposition.

Proposition 4.3.14 Suppose T ∈ L(H1,H2), S ∈ L(H2,H3),
where H1,H2,H3 are Hilbert spaces.

(a) T ∈ L2(H1,H2) ⇒ T ∗ ∈ L2(H2,H1); and furthermore,
||T ∗||2 = ||T ||2 ≥ ||T ||∞, where we write || · ||∞ to denote the
usual operator norm;

(b) if either S or T is a Hilbert-Schmidt operator, so is ST ,
and

||ST ||2 ≤
{

||S||2||T ||∞ if S ∈ L2(H2,H3)
||S||∞||T ||2 if T ∈ L2(H1,H2) ;

(4.3.9)

(c) L2(H1,H2) ⊂ K(H1,H2); and conversely,

(d) if T ∈ K(H1,H2), then T is a Hilbert-Schmidt operator
if and only if

∑
n sn(T )2 < ∞; in fact,

||T ||22 =
∑

n

sn(T )2 .
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Proof : (a) The equality ||T ||2 = ||T ∗||2 was proved in
Lemma 4.3.12. If x is any unit vector in H1, pick an orthonormal
basis {en}n for H1 such that e1 = x, and note that

||T ||2 =

( ∑

n

||Ten||2
) 1

2

≥ ||Tx|| ;

since x was an arbitrary unit vector in H1, deduce that ||T ||2 ≥
||T ||∞, as desired.

(b) Suppose T is a Hilbert-Schmidt operator; then, for an
arbitrary orthonormal basis {en}n of H1, we find that

∑

n

||STen||2 ≤ ||S||2∞
∑

n

||Ten||2 ,

whence we find that ST is also a Hilbert-Schmidt operator and
that ||ST ||2 ≤ ||S||∞||T ||2; if T is a Hilbert-Schmidt operator,
then, so is T ∗, and by the already proved case, also S∗T ∗ is a
Hilbert-Schmidt operator, and

||TS||2 = ||(TS)∗||2 ≤ ||S∗||∞||T ∗||2 = ||S||∞||T ||2 .

(c) Let Mε = ran 1[ε,∞)(|T |); then Mε is a closed subspace
of H1 on which T is bounded below, by ε; so, if {e1, · · · , eN} is any
orthonormal set in Mε, we find that Nε2 ≤ ∑N

n=1 ||Ten||2 ≤
||T ||22, which clearly implies that dim Mε is finite (and can not

be greater than
( ||T ||2

ε

)2
). We may now infer from Proposition

4.3.6 that T is necessarily compact.
(d) Let Tx =

∑
n sn(T )〈x, xn〉yn for all x ∈ H1, as in Propo-

sition 4.3.10, for an appropriate orthonormal (finite or infinite)
sequence {xn}n (resp., {yn}n) in H1 (resp., in H2). Then no-
tice that ||Txn|| = sn(T ) and that Tx = 0 if x ⊥ xn ∀n. If
we compute the Hilbert-Schmidt norm of T with respect to an
orthonormal basis obtained by extending the orthonormal set
{xn}n, we find that ||T ||22 =

∑
n sn(T )2, as desired. 2

Probably the most useful fact concerning Hilbert-Schmidt
operators is their connection with integral operators. (Recall
that a measure space (Z,BZ , λ) is said to be σ-finite if there exists
a partition Z =

∐∞
n=1 En, such that En ∈ BZ , µ(En) < ∞ ∀n.

The reason for our restricting ourselves to σ-finite measure spaces
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is that it is only in the presence of some such hypothesis that
Fubini’s theorem - see Proposition A.5.18(d)) regarding product
measures is applicable.)

Proposition 4.3.15 Let (X,BX , µ) and (Y,BY , ν) be σ-finite
measure spaces. Let H = L2(X,BX , µ) and K = L2(Y,BY , ν).
Then the following conditions on an operator T ∈ L(H,K) are
equivalent:

(i) T ∈ L2(K,H);
(ii) there exists k ∈ L2(X × Y,BX ⊗ BY , µ × ν) such that

(Tg)(x) =
∫

Y
k(x, y)g(y) dν(y) ν − a.e. ∀ g ∈ K . (4.3.10)

If these equivalent conditions are satisfied, then,

||T ||L2(K,H) = ||k||L2(µ×ν) .

Proof : (ii) ⇒ (i): Suppose k ∈ L2(µ×ν); then, by Tonelli’s
theorem - see Proposition A.5.18(c) - we can find a set A ∈ BX

such that µ(A) = 0 and such that x /∈ A ⇒ kx (= k(x, ·) ) ∈
L2(ν), and further,

||k||2L2(µ×ν) =
∫

X−A
||kx||2L2(ν)dµ(x) .

It follows from the Cauchy-Schwarz inequality that if g ∈ L2(ν),
then kxg ∈ L1(ν) ∀ x /∈ A; hence equation 4.3.10 does indeed
meaningfully define a function Tg on X−A, so that Tg is defined
almost everywhere; another application of the Cauchy-Schwarz
inequality shows that

||Tg||2L2(µ) =
∫

X
|
∫

Y
k(x, y)g(y) dν(y)|2 dµ(x)

=
∫

X−A
|〈kx, g〉K|2 dµ(x)

≤
∫

X−A
||kx||2L2(ν)||g||2L2(ν) dµ(x)

= ||k||2L2(µ×ν)||g||2L2(ν) ,

and we thus find that equation 4.3.10 indeed defines a bounded
operator T ∈ L(K,H).



170 CHAPTER 4. SOME OPERATOR THEORY

Before proceeding further, note that if g ∈ K and f ∈ H are
arbitrary, then, (by Fubini’s theorem), we find that

〈Tg, f〉 =
∫

X
(Tg)(x)f(x)dµ(x)

=
∫

X

( ∫

Y
k(x, y)g(y)dν(y)

)
f(x)dµ(x)

= 〈k, f ⊗ g〉L2(µ×ν) , (4.3.11)

where we have used the notation (f ⊗ g) to denote the function
on X × Y defined by (f ⊗ g)(x, y) = f(x)g(y).

Suppose now that {en : n ∈ N} and {gm : m ∈ M} are
orthonormal bases for H and K respectively; then, notice that
also {gm : m ∈ M} is an orthonormal basis for K; deduce from
equation 4.3.11 above and Exercise A.5.19 that

∑

m∈M,n∈N

|〈Tgm, en〉H|2 =
∑

m∈M,n∈N

|〈k, en ⊗ gm〉L2(µ×ν)|2

= ||k||2L2(µ×ν) ;

thus T is a Hilbert-Schmidt operator with Hilbert-Schmidt norm
agreeing with the norm of k as an element of L2(µ × ν).

(i) ⇒ (ii) : If T : K → H is a Hilbert-Schmidt operator,
then, in particular - see Proposition 4.3.14(c) - T is compact; let

Tg =
∑

n

λn〈g, gn〉fn

be the singular value decomposition of T (see Proposition 4.3.10).
Thus {gn}n (resp., {fn}n) is an orthonormal sequence in K (resp.,
H) and λn = sn(T ). It follows from Proposition 4.3.14(d) that∑

n λ2
n < ∞, and hence we find that the equation

k =
∑

n

λn fn ⊗ gn

defines a unique element k ∈ L2(µ×ν); if T̃ denotes the ‘integral
operator’ associated to the ‘kernel function’ k as in equation
4.3.10, we find from equation 4.3.11 that for arbitrary g ∈ K, f ∈
H, we have

〈T̃ g, f〉H = 〈k, f ⊗ g〉L2(µ×ν)
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=
∑

n

λn〈fn ⊗ gn, f ⊗ g〉L2(µ×ν)

=
∑

n

λn〈fn, f〉H〈gn, g〉K

=
∑

n

λn〈fn, f〉H〈g, gn〉K
= 〈Tg, f〉H ,

whence we find that T = T̃ and so T is, indeed, the integral
operator induced by the kernel function k. 2

Exercise 4.3.16 If T and k are related as in equation 4.3.10,
we say that T is the integral operator induced by the kernel k,
and we shall write T = Int k.

For i = 1, 2, 3, let Hi = L2(Xi,Bi, µi), where (Xi,Bi, µi) is a
σ-finite measure space.

(a) Let h ∈ L2(X2 × X3,B2 ⊗ B3, µ2 × µ3), k, k1 ∈ L2(X1 ×
X2,B1 ⊗ B2, µ1 × µ2), and let S = Int h ∈ L2(H3,H2), T =
Int k, T1 = Int k1 ∈ L2(H2,H1); show that

(i) if α ∈ C, then T + αT1 = Int (k + αk1);

(ii) if we define k∗(x2, x1) = k(x1, x2), then k∗ ∈ L2(X2 ×
X1,B2 ⊗ B1, µ2 × µ1) and T ∗ = Int k∗;

(iii) TS ∈ L2(H3,H1) and TS = Int (k ∗ h), where

(k ∗ h)(x1, x3) =
∫

X2

k(x1, x2)h(x2, x3) dµ2(x2)

for (µ1 × µ3)-almost all (x1, x3) ∈ X × X.

(Hint: for (ii), note that k∗ is a square-integrable kernel, and
use equation 4.3.11 to show that Int k∗ = (Int k)∗; for (iii),
note that |(k ∗ h)(x1, x3)| ≤ ||kx1 ||L2(µ2)||hx3||L2(µ2) to conclude
that k ∗ h ∈ L2(µ1 × µ3); again use Fubini’s theorem to justify
interchanging the orders of integration in the verification that
Int(k ∗ h) = (Int k)(Int h).)

4.4 Fredholm operators and index

We begin with a fact which is a simple consequence of results in
the last section.
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Lemma 4.4.1 Suppose I ⊂ L(H) is an ideal in the C∗-algebra
L(H).

(a) If I 6= {0}, then I contains every ‘finite-rank operator’
- i.e., if K ∈ L(H) and if ran K is finite-dimensional, then
K ∈ I.

(b) If H is separable and if I is not contained in K(H), then
I = L(H).

Proof : (a) If K is as in (a), then (by the singular value
decomposition) there exists an orthonormal basis {yn : 1 ≤ n ≤
d} for ker⊥K and an orthonormal basis {zn : 1 ≤ n ≤ d} for
ranT such that Kv =

∑d
n=1 sn(K)〈v, yn〉zn ∀ v ∈ H.

If I 6= {0}, we can find 0 6= T ∈ I, and a unit vector x ∈ H
such that Tx 6= 0; define An, Bn ∈ L(H), 1 ≤ n ≤ d by

Bnv = 〈v, yn〉x ,Anv =
1

||Tx||2 〈v, Tx〉zn

and note that

AnTBnv = 〈v, yn〉zn ∀ v ∈ H ;

in particular, K =
∑d

n=1 sn(K)AnTBn ∈ I.
(b) Suppose there exists a non-compact operator T ∈ I;

then, by Proposition 4.3.6(e), there exists an infinite-dimensional
closed subspace N ⊂ ran T . If M = T−1(N )∩ ker⊥T, it follows
from the open mapping theorem that there exists a bounded op-
erator S0 ∈ L(N ,M) such that S0T |M = idM; hence if we
write S = S0PN , then S ∈ L(H) and STPM = PM; thus,
PM ∈ I; since M is an infinite-dimensional subspace of the
separable Hilbert space H, we can find an isometry U ∈ L(H)
such that UU∗ = PM; but then, idH = UPMU∗ ∈ I, and hence
I = L(H). 2

Corollary 4.4.2 If H is an infinite-dimensional, separable
Hilbert space, then K(H) is the unique non-trivial (norm-)closed
ideal in L(H).

Proof : Suppose I is a closed non-trivial ideal in L(H); since
the set of finite-rank operators is dense in K(H) (by Proposition
4.3.6(d)), it follows from Lemma 4.4.1(a) and the assumption
that I is a non-zero closed ideal, that I ⊃ K(H); the assumption
that I 6= L(H) and Lemma 4.4.1(b) ensure that I ⊂ K(H). 2
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Remark 4.4.3 Suppose H is a non-separable Hilbert space; let
{ei : i ∈ I} denote any one fixed orthonormal basis for H. There
is a natural equivalence relation on the collection 2I of subsets of
I given by I1 ∼ I2 if and only if |I1| = |I2| (i.e., there exists a bi-
jective map f : I1 → I2); we shall think of every equivalence class
as determining a ‘cardinal number α such that α ≤ dim H’. Let
us write J for the set of ‘infinite cardinal numbers’ so obtained;
thus,

J = {{I1 ⊂ I : I1 ∼ I0} : I0 ⊂ I, I0 is infinite}
“ = {ℵ0, · · · , α, · · · , dimH} ′′.

Thus we say α ∈ J if there exists an infinite subset I0 ⊂ I
(which is uniquely determined up to ∼) such that α “ = |I0|′′.

For each α ∈ J , consider the collection Kα(H) of operators on
H with the property that if N is any closed subspace contained
in ran T , then dim N < α. It is a fact that {Kα(H) : α ∈ J}
is precisely the collection of all closed ideals of L(H).

Most discussions of non-separable Hilbert spaces degenerate,
as in this remark, to an exercise in transfinite considerations
invovling infinite cardinals; almost all ‘operator theory’ is, in a
sense, contained in the separable case; and this is why we can
safely restrict ourselves to separable Hilbert spaces in general.

2

Proposition 4.4.4 (Atkinson’s theorem) If T ∈ L(H1,H2),
then the following conditions are equivalent:

(a) there exist operators S1, S2 ∈ L(H2,H1) and compact op-
erators Ki ∈ L(Hi), i = 1, 2, such that

S1T = 1H1 + K1 and TS2 = 1H2 + K2 .

(b) T satisfies the following conditions:
(i) ran T is closed; and
(ii) ker T and ker T ∗ are both finite-dimensional.
(c) There exists S ∈ L(H2,H1) and finite-dimensional sub-

spaces Ni ⊂ Hi, i = 1, 2, such that

ST = 1H1 − PN1 and TS = 1H2 − PN2 .
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Proof : (a) ⇒ (b): Begin by fixing a finite-rank operator F
such that ||K1 − F || < 1

2
(see Proposition 4.3.6(d)); set M =

ker F and note that if x ∈ M, then

||S1||·||Tx|| ≥ ||S1Tx|| = ||x+K1x|| = ||x+(K1−F )x|| ≥ 1

2
||x||,

which shows that T is bounded below on M; it follows that
T (M) is a closed subspace of H2; note, however, that M⊥ is
finite-dimensional (since F maps this space injectively onto its
finite-dimensional range); hence T satisfies condition (i) thanks
to Exercise A.6.5(3) and the obvious identity ran T = T (M)+
T (M⊥).

As for (ii), since S1T = 1H1 + K1, note that K1x = −x for
all x ∈ ker T ; this means that ker T is a closed subspace which
is contained in ran K1 and the compactness of K1 now demands
the finite-dimensionality of ker T . Similarly, ker T ∗ ⊂ ran K∗

2

and condition (ii) is verified.
(b) ⇒ (c) : Let N1 = ker T, N2 = ker T ∗ (= ran⊥T ); thus

T maps N⊥
1 1-1 onto ran T ; the condition (b) and the open

mapping theorem imply the existence of a bounded operator
S0 ∈ L(N⊥

2 ,N⊥
1 ) such that S0 is the inverse of the restricted

operator T |N⊥
1

; if we set S = S0PN⊥
2

, then S ∈ L(H2,H1) and
by definition, we have ST = 1H1 −PN1 and TS = 1H2 −PN2 ; by
condition (ii), both subspaces Ni are finite-dimensional.

(c) ⇒ (a) : Obvious. 2

Remark 4.4.5 (1) An operator which satisfies the equivalent
conditions of Atkinson’s theorem is called a Fredholm oper-
ator, and the collection of Fredholm operators from H1 to H2

is denoted by F(H1,H2), and as usual, we shall write F(H) =
F(H,H). It must be observed - as a consequence of Atkinson’s
theorem, for instance - that a necessary and sufficient condition
for F(H1,H2) to be non-empty is that either (i) H1 and H2 are
both finite-dimensional, in which case L(H1,H2) = F(H1,H2),
or (ii) neither H1 nor H2 is finite-dimensional, and dim H1 =
dim H2.

(2) Suppose H is a separable infinite-dimensional Hilbert
space. Then the quotient Q(H) = L(H)/K(H) (of L(H) by
the ideal K(H)) is a Banach algebra, which is called the Calkin
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algebra. If we write πK : L(H) → Q(H) for the quotient map-
ping, then we find that an operator T ∈ L(H) is a Fredholm
operator precisely when πK(T ) is invertible in the Calkin alge-
bra; thus, F(H) = π−1

K (G(Q(H))). (It is a fact, which we shall
not need and consequently go into here, that the Calkin algebra
is in fact a C∗-algebra - as is the quotient of any C∗-algebra by
a norm-closed *-ideal.)

(3) It is customary to use the adjective ‘essential’ to describe
a property of an operator T ∈ L(H) which is actually a property
of the corresponding element πK(T ) of the Calkin algebra, thus,
for instance, the essential spectrum of T is defined to be

σess(T ) = σQ(H)(πK(T )) = {λ ∈ C : (T − λ) /∈ F(H)} .
(4.4.12)

2

The next exercise is devoted to understanding the notions of
Fredholm operator and essential spectrum at least in the case of
normal operators.

Exercise 4.4.6 (1) Let T ∈ L(H1,H2) have polar decomposi-
tion T = U |T |. Then show that

(a) T ∈ F(H) ⇔ U ∈ F(H1,H2) and |T | ∈ F(H1).
(b) A partial isometry is a Fredholm operator if and only if

both its initial and final spaces have finite co-dimension (i.e.,
have finite-dimensional orthogonal complements).
(Hint: for both parts, use the characterisation of a Fredholm
operator which is given by Proposition 4.4.4(b).)

(2) If H1 = H2 = H, consider the following conditions on an
operator T ∈ L(H):

(i) T is normal;
(ii) U and |T | commute.

Show that (i) ⇒ (ii), and find an example to show that the re-
verse implication is not valid in general.
(Hint: if T is normal, then note that

|T |2U = T ∗TU = TT ∗U = U |T |2U∗U = U |T |2 ;

thus U commutes with |T |2; deduce that in the decomposition
H = kerT ⊕ ker⊥T , we have U = 0 ⊕ U0, |T | = 0 ⊕ A, where
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U0 (resp., A) is a unitary (resp., positive injective) operator of
ker⊥ T onto (resp., into) itself; and infer that U0 and A2 com-
mute; since U0 is unitary, deduce from the uniqueness of positive
square roots that U0 commutes with A, and finally that U and
|T | commute; for the ‘reverse implication’, let T denote the uni-
lateral shift, and note that U = T and |T | = 1.)

(3) Suppose T = U |T | is a normal operator as in (2) above.
Then show that the following conditions on T are equivalent:

(i) T is a Fredholm operator;

(ii) there exists an orthogonal direct-sum decomposition H =
M ⊕ N , where dim N < ∞, with respect to which T has the
form T = T1 ⊕ 0, where T1 is an invertible normal operator on
M;

(iii) there exists an ε > 0 such that 1IDε
(T ) = 1{0}(T ) = P0,

where (a) E 7→ 1E(T ) denotes the measurable functional calculus
for T , (b) IDε = {z ∈ C : |z| < ε} is the ε-disc around the origin,
and (c) P0 is some finite-rank projection.

(Hint: For (i) ⇒ (ii), note, as in the hint for exercise (2) above,
that we have decompositions U = U0 ⊕ 0, |T | = A ⊕ 0 - with
respect to H = M⊕N , where M = ker⊥T and N = kerT (is
finite-dimensional under the assumption (i))- where U0 is uni-
tary, A is positive and 1-1, and U0 and A commute; deduce from
the Fredholm condition that N is finite-dimensional and that A is
invertible; conclude that in this decomposition, T = U0A⊕0 and
U0A is normal and invertible. For (ii) ⇒ (iii), if T = T1 ⊕ 0
has polar decomposition T = U |T |, then |T | = |T1| ⊕ 0 and
U = U0⊕0 with U0 unitary and |T1| positive and invertible; then
if ε > 0 is such that T1 is bounded below by ε, then argue that
1IDε

(T ) = 1[0,ε)(|T |) = 1{0}(|T |) = 1{0}(T ) = PN .)

(4) Let T ∈ L(H) be normal; prove that the following condi-
tions on a complex number λ are equivalent:

(i) λ ∈ σess(T );

(ii) there exists an orthogonal direct-sum decomposition H =
M ⊕ N , where dim N < ∞, with respect to which T has the
form T = T1⊕λ, where (T1−λ) is an invertible normal operator
on M;

(iii) there exists ε > 0 such that 1IDε+λ(T ) = 1{λ}(T ) = Pλ,
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where IDε + λ denotes the ε-disc around the point λ, and Pλ is
some finite-rank projection.
(Hint: apply (3) above to T − λ.)

We now come to an important definition.

Definition 4.4.7 If T ∈ F(H1,H2) is a Fredholm operator, its
index is the integer defined by

ind T = dim(ker T ) − dim(ker T ∗).

Several elementary consequences of the definition are dis-
cussed in the following remark.

Remark 4.4.8 (1) The index of a normal Fredholm operator
is always 0. (Reason: If T ∈ L(H) is a normal operator, then
|T |2 = |T ∗|2, and the uniqueness of the square root implies that
|T | = |T ∗|; it follows that ker T = ker |T | = ker T ∗.)

(2) It should be clear from the definitions that if T = U |T | is
the polar decomposition of a Fredholm operator, then ind T =
ind U .

(3) If H1 and H2 are finite-dimensional, then L(H1,H2) =
F(H1,H2) and ind T = dim H1 − dim H2 ∀ T ∈ L(H1,H2); in
particular, the index is independent of the operator in this case.
(Reason: let us write ρ = dim(ran T ) (resp., ρ∗ = dim(ran T ∗))
and ν = dim(ker T ) (resp., ν∗ = dim(ker T ∗)) for the rank and
nullity of T (resp., T ∗); on the one hand, deduce from Exercise
4.2.6(3) that if dim Hi = ni, then ρ = n1 − ν and ρ∗ = n2 − ν∗;
on the other hand, by Exercise 4.2.6(2), we find that ρ = ρ∗;
hence,

ind T = ν − ν∗ = (n1 − ρ) − (n2 − ρ) = n1 − n2 .)

(4) If S = UTV , where S ∈ L(H1,H4), U ∈ L(H3,H4), T ∈
L(H2,H3), V ∈ L(H1,H2), and if U and V are invertible (i.e.,
are 1-1 and onto), then S is a Fredholm operator if and only if
T is, in which case, ind S = ind T . (This should be clear from
Atkinson’s theorem and the definition of the index.)
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(5) Suppose Hi = Ni ⊕Mi and dim Ni < ∞, for i = 1, 2,;
suppose T ∈ L(H1,H2) is such that T maps N1 into N2, and
such that T maps M1 1-1 onto M2. Thus, with respect to these
decompositions, T has the matrix decomposition

T =

[
A 0
0 D

]
,

where D is invertible; then it follows from Atkinson’s theorem
that T is a Fredholm operator, and the assumed invertibility of
D implies that ind T = ind A = dim N1 − dim N2 - see (3)
above. 2

Lemma 4.4.9 Suppose Hi = Ni ⊕ Mi, for i = 1, 2; suppose
T ∈ L(H1,H2) has the associated matrix decomposition

T =

[
A B
C D

]
,

where A ∈ L(N1,N2), B ∈ L(M1,N2), C ∈ L(N1,M2), and
D ∈ L(M1,M2); assume that D is invertible - i.e, D maps M1

1-1 onto M2. Then

T ∈ F(H1,H2) ⇔ (A − BD−1C) ∈ F(N1,N2) ,

and ind T = ind (A − BD−1C); further, if it is the case that
dim Ni < ∞, i = 1, 2, then T is necessarily a Fredholm operator
and ind T = dimN1 − dimN2.

Proof : Let U ∈ L(H2) (resp., V ∈ L(H1)) be the operator
which has the matrix decomposition

U =

[
1N2 −BD−1

0 1M2

]
, (resp., V =

[
1N1 0

−D−1C 1M2

]
)

with respect to H2 = N2 ⊕M2 (resp., H1 = N1 ⊕M1).
Note that U and V are invertible operators, and that

UTV =

[
A − BD−1C 0

0 D

]
;

since D is invertible, we see that ker(UTV ) = ker(A−BD−1C)
and that ker(UTV )∗ = ker(A − BD−1C)∗; also, it should be
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clear that UTV has closed range if and only if (A−BD−1C) has
closed range; we thus see that T is a Fredholm operator precisely
when (A − BD−1C) is Fredholm, and that ind T = ind(A −
BD−1C) in that case. For the final assertion of the lemma (con-
cerning finite-dimensional Ni’s), appeal now to Remark 4.4.8(5).
2

We now state some simple facts in an exercise, before pro-
ceeding to establish the main facts concerning the index of Fred-
holm operators.

Exercise 4.4.10 (1) Suppose D0 ∈ L(H1,H2) is an invertible
operator; show that there exists ε > 0 such that if D ∈ L(H1,H2)
satisfies ||D − D0|| < ε, then D is invertible. (Hint: let D0 =
U0|D0| be the polar decomposition; write D = U0(U

∗
0 D), note

that ||D − D0|| = ||(U∗
0 D − |D0|)||, and that D is invertible if

and only if U∗
0 D is invertible, and use the fact that the set of

invertible elements in the Banach algebra L(H1) form an open
set.)

(2) Show that a function φ : [0, 1] → Z which is locally con-
stant, is necessarily constant.

(3) Suppose Hi = Ni ⊕ Mi, i = 1, 2, are orthogonal direct
sum decompositions of Hilbert spaces.

(a) Suppose T ∈ L(H1,H2) is represented by the operator
matrix

T =

[
A 0
C D

]
,

where A and D are invertible operators; show, then, that T is
also invertible and that T−1 is represented by the operator matrix

T−1 =

[
A−1 0

−D−1CA−1 D−1

]
.

(b) Suppose T ∈ L(H1,H2) is represented by the operator
matrix

T =

[
0 B
C 0

]
,
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where B is an invertible operator; show that T ∈ F(H1,H2)
if and only if C ∈ F(N1,M2), and that if this happens, then
ind T = ind C.

Theorem 4.4.11 (a) F(H1,H2) is an open set in L(H1,H2)
and the function ind : F(H1,H2) → C is ‘locally constant’; i.e.,
if T0 ∈ F(H1,H2), then there exists δ > 0 such that whenever
T ∈ L(H1,H2) satisfies ||T − T0|| < δ, it is then the case that
T ∈ F(H1,H2) and ind T = ind T0.

(b) T ∈ F(H1,H2), K ∈ K(H1,H2) ⇒ (T + K) ∈ F(H1,H2)
and ind(T + K) = ind T .

(c) S ∈ F(H2,H3), T ∈ F(H1,H2) ⇒ ST ∈ F(H1,H3) and
ind(ST ) = ind S + ind T .

Proof : (a) Suppose T0 ∈ F(H1,H2). Set N1 = ker T0 and
N2 = ker T ∗

0 , so that Ni, i = 1, 2, are finite-dimensional spaces
and we have the orthogonal decompositions Hi = Ni ⊕Mi, i =
1, 2, where M1 = ran T ∗

0 and M2 = ran T0. With respect to
these decompositions of H1 and H2, it is clear that the matrix
of T0 has the form

T0 =

[
0 0
0 D0

]
,

where the operator D0 : M1 → M2 is (a bounded bijection, and
hence) invertible.

Since D0 is invertible, it follows - see Exercise 4.4.10(1) - that
there exists a δ > 0 such that D ∈ L(M1,M2), ||D − D0|| <
δ ⇒ D is invertible. Suppose now that T ∈ L(H1,H2) and
||T − T0|| < δ; let

T =

[
A B
C D

]

be the matrix decomposition associated to T ; then note that
||D − D0|| < δ and consequently D is an invertible operator.
Conclude from Lemma 4.4.9 that T is a Fredholm operator and
that

ind T = ind(A − BD−1C) = dimN1 − dimN2 = ind T0 .

(b) If T is a Fredholm operator and K is compact, as in (b),
define Tt = T + tK, for 0 ≤ t ≤ 1. It follows from Proposi-
tion 4.4.4 that each Tt is a Fredholm operator; further, it is a
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consequence of (a) above that the function [0, 1] 3 t 7→ ind Tt

is a locally constant function on the interval [0, 1]; the desired
conlcusion follows easily - see Exercise 4.4.10(2).

(c) Let us write K1 = H1 ⊕H2 and K2 = H2 ⊕H3, and con-
sider the operators U ∈ L(K2), R ∈ L(K1,K2) and V ∈ L(K1)
defined, by their matrices with respect to the afore-mentioned
direct-sum decompositions of these spaces, as follows:

U =

[
1H2 0

−ε−1S 1H3

]
, R =

[
T ε1H2

0 S

]
,

V =

[
−ε1H1 0

T ε−11H2

]
,

where we first choose ε > 0 to be so small as to ensure that R is
a Fredholm operator with index equal to ind T + ind S; this is
possible by (a) above, since the operator R0, which is defined by
modifying the definition of R so that the ‘off-diagonal’ terms are
zero and the diagonal terms are unaffected, is clearly a Fredholm
operator with index equal to the sum of the indices of S and T .

It is easy to see that U and V are invertible operators - see
Exercise 4.4.10(3)(a) - and that the matrix decomposition of the
product URV ∈ F(K1,K2) is given by:

URV =

[
0 1H2

ST 0

]
,

which is seen - see Exercise 4.4.10(3)(b) - to imply that ST ∈
F(H1,H3) and that ind(ST ) = ind R = ind S + ind T , as
desired. 2

Example 4.4.12 Fix a separable infinite-dimensional Hilbert
space H; for definiteness’ sake, we assume that H = `2. Let S ∈
L(H) denote the unilateral shift - see Example 2.4.15(1). Then,
S is a Fredholm operator with ind S = −1, and ind S∗ = 1;
hence Theorem 4.4.11((c) implies that if n ∈ IN, then Sn ∈ F(H)
and ind(Sn) = −n and ind(S∗)n = n; in particular, there exist
operators with all possible indices.

Let us write Fn = {T ∈ F(H) : ind T = n}, for each n ∈ Z.
First consider the case n = 0. Suppose T ∈ F0; then it is

possible to find a partial isometry U0 with initial space equal to
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ker T and final space equal to ker T ∗); then define Tt = T + tU0.
Observe that t 6= 0 ⇒ Tt is invertible; and hence, the map
[0, 1] 3 t 7→ Tt ∈ L(H) (which is clearly norm-continuous) is seen
to define a path - see Exercise 4.4.13(1) - which is contained in
F0 and connects T0 to an invertible operator; on the other hand,
the set of invertible operators is a path-connected subset of F0;
it follows that F0 is path-connected.

Next consider the case n > 0. Suppose T ∈ Fn, n < 0.
Then note that T (S∗)n ∈ F0 (by Theorem 4.4.11(c)) and since
(S∗)nSn = 1, we find that T = T (S∗)nSn ∈ F0S

n; conversely
since Theorem 4.4.11(c) implies that F0S

n ⊂ Fn, we thus find
that Fn = F0S

n.
For n > 0, we find, by taking adjoints, that Fn = F∗

−n =
(S∗)nF0.

We conclude that for all n ∈ Z, the set Fn is path-connected;
on the other hand, since the index is ‘locally constant’, we can
conclude that {Fn : n ∈ Z} is precisely the collection of ‘path-
components’ (= maximal path-connected subsets) of F(H). 2

Exercise 4.4.13 (1) A path in a topological space X is a con-
tinuous function f : [0, 1] → X; if f(0) = x, f(1) = y, then f is
called a path joining (or connecting) x to y. Define a relation ∼
on X by stipulating that x ∼ y if and only if there exists a path
joining x to y.

Show that ∼ is an equivalence relation on X.
The equivalence classes associated to the relation ∼ are called

the path-components of X; the space X is said to be path-
connected if X is itself a path component.

(2) Let H be a separable Hilbert space. In this exercise, we
regard L(H) as being topologised by the operator norm.

(a) Show that the set Lsa(H) of self-adjoint operators on H
is path-connected. (Hint: Consider t 7→ tT .)

(b) Show that the set L+(H) of positive operators on H is
path-connected. (Hint: Note that if T ≥ 0, t ∈ [0, 1], then tT ≥
0.)

(c) Show that the set GL+(H) of invertible positive operators
on H form a connected set. (Hint: If T ∈ GL+(H), use straight
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line segments to first connect T to ||T || · 1, and then ||T || · 1 to
1.)

(d) Show that the set U(H) of unitary operators on H is path-
connected. (Hint: If U ∈ U(H), find a self-adjoint A such that
U = eiA - see Corollary 4.1.6(a) - and look at Ut = eitA.)

We would like to conclude this section with the so-called
‘spectral theorem for a general compact operator’. As a pream-
ble, we start with an exercise which is devoted to ‘algebraic
(possibly non-orthogonal) direct sums’ and associated non-self-
adjoint projections.

Exercise 4.4.14 (1) Let H be a Hilbert space, and let M and
N denote closed subspaces of H. Show that the following condi-
tions are equivalent:

(a) H = M + N and M∩N = {0};
(b) every vector z ∈ H is uniquely expressible in the form

z = x + y with x ∈ M, y ∈ N .

(2) If the equivalent conditions of (1) above are satisfied, show
that there exists a unique E ∈ L(H) such that Ez = x, whenever
z and x are as in (b) above. (Hint: note that z = Ez + (z −Ez)
and use the closed graph theorem to establish the boundedness of
E.)

(3) If E is as in (2) above, then show that
(a) E = E2;
(b) the following conditions on a vector x ∈ H are equivalent:
(i) x ∈ ran E;
(ii) Ex = x.
(c) ker E = N .

The operator E is said to be the ‘projection on M along N ’.

(4) Show that the following conditions on an operator E ∈
L(H) are equivalent:

(i) E = E2;
(ii) there exists a closed subspace M ⊂ H such that E has

the following operator-matrix with respect to the decomposition
H = M⊕M⊥:

E =

[
1M B
0 0

]
;
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(iii) there exists a closed subspace N ⊂ H such that E has
the following operator-matrix with respect to the decomposition
H = N⊥ ⊕N :

E =

[
1N⊥ 0
C 0

]
;

(iv) there exists closed subspaces M,N satisfying the equiv-
alent conditions of (1) such that E is the projection of M along
N .

(Hint: (i) ⇒ (ii) : M = ran E (= ker(1 − E)) is a closed
subspace and Ex = x ∀ x ∈ M; since M = ran E, (ii) fol-
lows. The implication (ii) ⇒ (i) is verified by easy matrix-
multiplication. Finally, if we let (i)∗ (resp., (ii)∗) denote the con-
dition obtained by replacing E by E∗ in condition (i) (resp., (ii)),
then (i) ⇔ (i)∗ ⇔ (ii)∗; take adjoints to find that (ii)∗ ⇔ (iii).
The implication (i) ⇔ (iv) is clear.)

(5) Show that the following conditions on an idempotent op-
erator E ∈ L(H) - i.e., E2 = E - are equivalent:

(i) E = E∗;

(ii) ||E|| = 1.

(Hint: Assume E is represented in matrix form, as in (4)(iii)
above; notice that x ∈ N⊥ ⇒ ||Ex||2 = ||x||2 + ||Cx||2; conclude
that ||E|| = 1 ⇔ C = 0.)

(6) If E is the projection onto M along N - as above -
show that there exists an invertible operator S ∈ L(H) such that
SES−1 = PM. (Hint: Assume E and B are related as in (4)(ii)
above; define

S =

[
1M B
0 1M⊥

]
;

deduce from (a transposed version of) Exercise 4.4.10 that S is
invertible, and that

SES−1 =

[
1M B
0 1M⊥

] [
1M B
0 0

] [
1M −B
0 1M⊥

]

=

[
1M 0
0 0

]
.
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(7) Show that the following conditions on an operator T ∈
L(H) are equivalent:

(a) there exists closed subspaces M,N as in (1) above such
that

(i) T (M) ⊂ M and T |M = A; and
(ii) T (N ) ⊂ N and T |N = B;
(b) there exists an invertible operator S ∈ L(H,M ⊕ N ) -

where the direct sum considered is an ‘external direct sum’ - such
that STS−1 = A ⊕ B.

We will find the following bit of terminology convenient. Call
operators Ti ∈ L(Hi), i = 1, 2, similar if there exists an invert-
ible operator S ∈ L(H1,H2) such that T2 = ST1S

−1.

Lemma 4.4.15 The following conditions on an operator T ∈
L(H) are equivalent:

(a) T is similar to an operator of the form T0 ⊕Q ∈ L(M⊕
N ), where

(i) N is finite-dimensional;
(ii) T0 is invertible, and Q is nilpotent.

(b) T ∈ F(H), ind(T ) = 0 and there exists a positive integer
n such that ker T n = ker Tm ∀ m ≥ n.

Proof : (a) ⇒ (b) : If STS−1 = T0 ⊕ Q, then it is obvious
that ST nS−1 = T n

0 ⊕Qn, which implies - because of the assumed
invertibility of T0 - that ker T n = S−1({0} ⊕ ker Qn), and
hence, if n = dimN , then for any m ≥ n, we see that kerTm =
S−1({0} ⊕ N ).

In particular, kerT is finite-dimensional; similarly ker T ∗ is
also finite-dimensional, since (S∗)−1T ∗S∗ = T ∗

0 ⊕ Q∗; further,

ran T = S−1(ran (T0 ⊕ Q)) = S−1(M⊕ (ran Q)) ,

which is closed since S−1 is a homeomorphism, and since the
sum of the closed subspace M⊕ {0} and the finite-dimensional
space ({0}⊕ ran Q) is closed in M⊕N - see Exercise A.6.5(3).
Hence T is a Fredholm operator.

Finally,

ind(T ) = ind(STS−1) = ind(T0 ⊕ Q) = ind(Q) = 0.
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(b) ⇒ (a) : Let us write Mn = ran T n and Nn = ker T n for
all n ∈ IN; then, clearly,

N1 ⊂ N2 ⊂ · · · ; M1 ⊃ M2 ⊃ · · · .

We are told that Nn = Nm ∀ m ≥ n. The assumption
ind T = 0 implies that ind Tm = 0 ∀ m, and hence, we find that
dim(ker T ∗m) = dim(ker Tm) = dim(ker T n) = dim(ker T ∗n) <
∞ for all m ≥ n. But since ker T ∗m = M⊥

m, we find that M⊥
m ⊂

M⊥
n , from which we may conclude that Mm = Mn ∀ m ≥ n.

Let N = Nn, M = Mn, so that we have

N = ker Tm and M = ran Tm ∀ m ≥ n . (4.4.13)

The definitions clearly imply that T (M) ⊂ M and T (N ) ⊂ N
(since M and N are actually invariant under any operator which
commutes with T n).

We assert that M and N yield an algebraic direct sum de-
composition of H (in the sense of Exercise 4.4.14(1)). Firstly, if
z ∈ H, then T nz ∈ Mn = M2n, and hence we can find v ∈ H
such that T nz = T 2nv; thus z − T nv ∈ ker T n; i.e., if x = T nv
and y = z − x, then x ∈ M, y ∈ N and z = x + y; thus, indeed
H = M+N . Notice that T (and hence also T n) maps M onto it-
self; in particular, if z ∈ M∩N , we can find an x ∈ M such that
z = T nx; the assumption z ∈ N implies that 0 = T nz = T 2nx;
this means that x ∈ N2n = Nn, whence z = T nx = 0; since z was
arbitrary, we have shown that N ∩M = {0}, and our assertion
has been substantiated.

If T0 = T |M and Q = T |N , the (already proved) fact that
M∩N = {0} implies that T n is 1-1 on M; thus T n

0 is 1-1; hence
A is 1-1; it has already been noted that T0 maps M onto M;
hence T0 is indeed invertible; on the other hand, it is obvious
that Qn is the zero operator on N . 2

Corollary 4.4.16 Let K ∈ K(H); assume 0 6= λ ∈ σ(K);
then K is similar to an operator of the form K1⊕A ∈ L(M⊕N ),
where

(a) K1 ∈ K(M) and λ /∈ σ(K1); and

(b) N is a finite-dimensional space, and σ(A) = {λ}.
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Proof : Put T = K − λ; then, the hypothesis and Theorem
4.4.11 ensure that T is a Fredholm operator with ind(T ) = 0.
Consider the non-decreasing sequence

kerT ⊂ kerT 2 ⊂ · · · ⊂ kerT n ⊂ · · · . (4.4.14)

Suppose ker T n 6= kerT n+1 ∀ n; then we can pick a unit
vector xn ∈ (ker T n+1) ∩ (ker T n)⊥ for each n. Clearly the
sequence {xn}∞n=1 is an orthonormal set. Hence, limn||Kxn|| = 0
(by Exercise 4.4.17(3)).

On the other hand,

xn ∈ ker T n+1 ⇒ Txn ∈ ker T n

⇒ 〈Txn, xn〉 = 0

⇒ 〈Kxn, xn〉 = λ

contradicting the hypothesis that λ 6= 0 and the already drawn
conclusion that Kxn → 0.

Hence, it must be the case that ker T n = ker T n+1 for some
n ∈ IN; it follows easily from this that ker T n = ker Tm ∀ m ≥ n.

Thus, we may conclude from Lemma 4.4.15 that there ex-
ists an invertible operator S ∈ L(H,M ⊕ N ) - where N is
finite-dimensional - such that STS−1 = T0 ⊕ Q, where T0 is
invertible and σ(Q) = {0}; since K = T + λ, conclude that
SKS−1 = (T0 + λ)⊕ (Q + λ); set K1 = T0 + λ,A = Q + λ, and
conclude that indeed K1 is compact, λ /∈ σ(K1) and σ(A) = {λ}.

2

Exercise 4.4.17 (1) Let X be a metric space; if x, x1, x2, · · · ∈
X, show that the following conditions are equivalent:

(i) the sequence {xn}n converges to x;
(ii) every subsequence of {xn}n has a further subsequence

which converges to x.
(Hint: for the non-trivial implication, note that if the sequence
{xn}n does not converge to x, then there must exist a subsequence
whose members are ‘bounded away from x’.)

(2) Show that the following conditions on an operator T ∈
L(H1,H2) are equivalent:

(i) T is compact;
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(ii) if {xn} is a sequence in H1 which converges weakly to 0
- i.e, 〈x, xn〉 → 0 ∀ x ∈ H1 - then ||Txn|| → 0.

(iii) if {en} is any infinite orthonormal sequance in H1, then
||Ten|| → 0.
(Hint: for (i) ⇒ (ii), suppose {yn}n is a subsequence of {xn}n;
by compactness, there is a further subsequence {zn}n of {yn}n

such that {Tzn}n converges, to z, say; since zn → 0 weakly,
deduce that Tzn → 0 weakly; this means z = 0, since strong
convergence implies weak convergence; by (1) above, this proves
(ii). The implication (ii) ⇒ (iii) follows form the fact that any
orthonormal sequence converges weakly to 0. For (iii) ⇒ (i),
deduce from Proposition 4.3.6(c) that if T is not compact, there
exists an ε > 0 such that Mε = ran 1[ε,∞)(|T |) is infinite-
dimensional; then any infinite orthonormal set{en : n ∈ IN} in
Mε would violate condition (iii).)

We are finally ready to state the spectral theorm for a com-
pact operator.

Theorem 4.4.18 Let K ∈ K(H) be a compact operator on a
Hilbert space H. Then,

(a) λ ∈ σ(K) − {0} ⇒ λ is an eigenvalue of K and λ
is ‘isolated’ in the sense that there exists ε > 0 such that 0 <
|z − λ| < ε ⇒ z /∈ σ(K);

(b) if λ ∈ σ(K) − {0}, then λ is an eigenvalue with ‘finite
algebraic multiplicity’ in the strong sense described by Corollary
4.4.16;

(c) σ(K) is countable, and the only possible accumulation
point of σ(K) is 0.

Proof : Assertions (a) and (b) are immediate consequences
of Corollary 4.4.16, while (c) follows immediately from (a). 2



Chapter 5

Unbounded operators

5.1 Closed operators

This chapter will be concerned with some of the basic facts con-
cerning unbounded operators on Hilbert spaces. We begin with
some definitions. It will be necessary for us to consider operators
which are not defined everywhere in a Hilbert space, but only on
some linear subspace which is typically not closed; in fact, our
primary interest will be in operators which are defined on a dense
proper subspace. (Since we shall only consider Hilbert spaces,
we adopt the following conventions throughout this chapter.)

Symbols H and K (and primed and subscripted variations
thereof) will be reserved for separable complex Hilbert spaces,
and the symbol D (and its variants) will be reserved for linear
(typically non-closed) subspaces of Hilbert spaces.

Definition 5.1.1 A linear operator ‘from H to K’ is a linear
map T : D → K, where D is a linear subspace of H; the subspace
D is referred to as the domain (of definition) of the operator T ,
and we shall write D = dom(T ) to indicate this relationship
between D and T .

The linear operator T is said to be densely defined if D =
domT is dense in H.

The reason for our interest in densely defined operators lies
in the following fact.

189
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Proposition 5.1.2 Let T : D(⊂ H) → K be a linear operator;
assume that T is densely defined.

(a) The following conditions on a vector y ∈ K are equivalent:
(i) there exists a constant C > 0 such that |〈Tx, y〉| ≤

C||x|| ∀ x ∈ D;
(ii) there exists a vector z ∈ H such that 〈Tx, y〉 = 〈x, z〉

for all x ∈ D.

(b) Let D∗ denote the set of all y ∈ K which satisfy the
equivalent conditions of (a); then

(i) if y ∈ D∗, there exists a unique z ∈ H satisfying the
requirements listed in (a)(ii); and

(ii) there exists a unique linear operator T ∗ : D∗ → H such
that

〈Tx, y〉 = 〈x, T ∗y〉 ∀ x ∈ D, y ∈ D∗ .

Proof : (a) (i) ⇒ (ii) : If (i) is satisfied, then the mapping
D 3 x 7→ 〈Tx, y〉 ∈ C defines a bounded linear functional on
D which consequently - see Exercise 1.5.5(1)(b) - has a unique
extension to a bounded linear functional on D = H; the assertion
(ii) follows now from the Riesz representation.

(ii) ⇒ (i) : Obvious, by Cauchy-Schwarz.
(b) (i) The uniqueness of z is a direct consequence of the

assumed density of D.
(ii) If y ∈ D∗, define T ∗y to be the unique element z as in

(a)(ii); the uniqueness assertion in (b)(i) above clearly implies
the linearity of T ∗ (in exactly the same manner in which the
linearity of the adjoint of a bounded operator was established).
The operator T ∗ has the stipulated property by definition, and it
is uniquely determined by this property in view of the uniqueness
assertion (b)(i). 2

Definition 5.1.3 The adjoint of a densely defined operator T
(as in Proposition 5.1.2) is the unique operator T ∗ whose domain
and action are as prescribed in part (b) of Proposition 5.1.2. (It
should be noted that we will talk about the adjoint of an operator
only when it is densely defined; hence if we do talk about the
adjoint of an operator, it will always be understood - even
if it has not been explicitly stated - that the original operator is
densely defined.)
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We now list a few useful examples of unbounded operators.

Example 5.1.4 (1) Let H = L2(X,B, µ), where (X,B, µ) is a
σ-finite measure space; given any measurable function φ : X →
C, let

Dφ = {f ∈ L2(µ) : φf ∈ L2(µ)} , (5.1.1)

and define Mφ to be the operator given by

Mφf = φf , ∀ f ∈ Dφ = dom Mφ .

(2) If k : X × Y → C is a measurable function, where
(X,BX , µ) and (Y,BY , ν) are σ-finite measure spaces, we can
associate the integral operator Int k, whose natural domain Dk

is the set of those g ∈ L2(Y, ν) which satisfy the following two
conditions: (a) k(x, ·)g ∈ L1(Y, ν) for µ-almost every x, and (b)
the function given by ((Int k)g)(x) =

∫
X k(x, y)g(y) dν(y),

(which, by (a), is µ-a.e. defined), satisfies (Int k)g ∈ L2(X,µ).

(3) A very important source of examples of unbounded opera-
tors is the study of differential equations. To be specific, suppose
we wish to study the differential expression

τ = − d2

dx2
+ q(x) (5.1.2)

on the interval [a, b]. By this we mean we want to study the

passage f 7→ τf , where (τf)(x) = −d2f
dx2 + q(x)f(x), it being

assumed, of course, that the function f is appropriately defined
and is sufficiently ‘smooth’ as to make sense of τf .

The typical Hilbert space approach to such a problem is to
start with the Hilbert space H = L2([a, b]) = L2([a, b],B[a,b],m),
where m denotes Lebesgue measure restricted to [a,b], and to
study the operator Tf = τf defined on the ‘natural domain’
dom T consisting of those functions f ∈ H for which the second
derivative f ′′ ‘makes sense’ and τf ∈ L2([a, b]).

(4) Let ((αi
j))0≤i,j<∞ be an arbitrary matrix of complex num-

bers, with rows and columns indexed as indicated. We wish to
define the associated operator on `2 given by matrix multiplica-
tion; to be precise, we think of the typical element of `2 as a col-
umn vector ((xj)) of complex numbers such that

∑
j |xj|2 < ∞;
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define D to be the set of those x = (xj) ∈ `2 which satisfy the
following two conditions:

(i)
∑∞

j=0 |αi
j xj| < ∞ for all i ≥ 0; and

(ii) if we define yi =
∑∞

j=0 αi
j xj, then the vector y = ((yi))

belongs to `2; in short, we require that
∑∞

i=0 |yj|2 < ∞.
It is easily verified that D is a vector subspace of `2 and

that the passage x 7→ y = Ax defines a linear operator A with
domain given by D. (The astute reader would have noticed that
this example is a special case of example (2) above.)

It is an interesting exercise to determine when such a matrix
yields a densely defined operator and what the adjoint looks like.
The reader who pursues this line of thinking should, for instance,
be able to come up with densely defined operators A such that
dom A∗ = {0}. 2

As must have been clear with the preceding examples, it is
possible to consider various different domains for the same ‘for-
mal expression’ which defines the operator. This leads us to the
notion of extensions and restrictions of operators, which is made
precise in the following exercises.

Exercise 5.1.5 (1) For i = 1, 2, let Di ⊂ H and let Ti : Di →
K be a linear operator. Show that the following conditions are
equivalent:

(i) G(T1) ⊂ G(T2), where the graph G(T ) of a linear op-
erator T ‘from H to K’ is defined by G(T ) = {(x, y) ∈ H⊕K :
x ∈ dom T, y = Tx};

(ii) D1 ⊂ D2 and T1x = T2x ∀ x ∈ D1.
When these equivalent conditions are met, we say that T2 is an
extension of T1 or that T1 is a restriction of T2, and we denote
this relationship by T2 ⊃ T1 or by T1 ⊂ T2.

(2) (a) If S and T are linear operators, show that S ⊂ T ∗ if
and only if 〈Tx, y〉 = 〈x, Sy〉 for all x ∈ dom T, y ∈ dom S.

(b) If S ⊂ T , and if S is densely defined, then show that (also
T is densely defined so that T ∗ makes sense, and that) S∗ ⊃ T ∗.

We now come to one of the fundamental observations.
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Proposition 5.1.6 Suppose T : D → K is a densely defined
linear operator, where D ⊂ H. Then the graph G(T ∗) of the
adjoint operator is a closed subspace of the Hilbert space K⊕H;
in fact, we have:

G(T ∗) = {(Tx,−x) : x ∈ D}⊥ . (5.1.3)

Proof : Let us write S = {(Tx,−x) : x ∈ D}; thus S is a
linear subspace of K⊕H. If y ∈ dom T ∗, then, by definition, we
have 〈Tx, y〉 = 〈x, T ∗y〉 ∀ x ∈ D, or equivalently, (y, T ∗y) ∈
S⊥.

Conversely, suppose (y, z) ∈ S⊥; this means that 〈Tx, y〉 +
〈−x, z〉 = 0 ∀x ∈ D, or equivalently, 〈Tx, y〉 = 〈x, z〉 ∀ x ∈ D.
Deduce from Proposition 5.1.2(a)(ii) that y ∈ domT ∗ and that
T ∗y = z; thus, we also have S⊥ ⊂ G(T ∗). 2

Definition 5.1.7 A linear operator T : D (⊂ H) → K is said
to be closed if its graph G(T ) is a closed subspace of H⊕K.

A linear operator T is said to be closable if it has a closed
extension.

Thus proposition 5.1.6 shows that the adjoint of a densely
defined operator is always a closed operator. Some further con-
sequences of the preceding definitions and proposition are con-
tained in the following exercises.

Exercise 5.1.8 In the following exercise, it will be assumed
that D ⊂ H is a linear subspace.

(a) Show that the following conditions on a linear subspace
S ⊂ H ⊕K are equivalent:

(i) there exists some linear operator T ‘from H to K’ such
that S = G(T );

(ii) S ∩ ({0} ⊕ K) = {(0, 0)}.
(Hint: Clearly (i) implies (ii) since linear maps map 0 to 0; to
see that (ii) implies (i), define D = P1(S), where P1 denotes
the projection of H⊕K onto the first co-ordinate, and note that
(ii) may be re-phrased thus: if x ∈ D, then there exists a unique
y ∈ K such that (x, y) ∈ S.)

(b) Show that the following conditions on the linear operator
T : D → H2 are equivalent:
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(i) T is closable;
(ii) if {xn}n is a sequence in D such that xn → 0 ∈ H and

Txn → y ∈ K, then y = 0.
(Hint: (ii) is just a restatement of the fact that if (0, y) ∈ G(T ),
then y = 0. It is clear now that (i) ⇒ (ii). Conversely, if con-
dition (ii) is satisfied, we find that S = G(T ) satisfies condition
(a)(ii) above, and it follows from this and (a) that S is the graph
of an operator which is necessarily a closed extension - in fact,
the closure, in the sense of (c) below - of T .)

(c) If T : D → K is a closable operator, then show that
there exists a unique closed operator - always denoted by T , and
referred to as the closure of T - such that G(T ) is the closure
G(T ) of the graph of T ; and deduce that T is the smallest closed
extension of T in the sense that it is a restriction of any closed
extension of T .

We now reap some consequences of Proposition 5.1.6.

Corollary 5.1.9 Let T : D (⊂ H) → K be a densely defined
linear operator. Then, T is closable if and only if T ∗ is densely
defined, in which case T = T ∗∗.

In particular, if T is a closed densely defined operator, then
T = T ∗∗.

Proof : (a) If T ∗ were densely defined, then T ∗∗ = (T ∗)∗

makes sense and it follows from Exercise 5.1.5(2)(a), for instance,
that T ⊂ T ∗∗, and hence T ∗∗ is a closed extension of T .

Conversely, suppose T is closable. Let y ∈ (dom T ∗)⊥; note
that (y, 0) ∈ G(T ∗)⊥ and deduce from equation 5.1.3 that (y, 0)
belongs to the closure of {(Tx,−x) : x ∈ dom T}; this, in turn,
implies that (0, y) belongs to G(T ) = G(T ), and consequently
that y = 0. So ‘T closable’ implies ‘T ∗ densely defined’.

Let W : H⊕K → K⊕H denote the (clearly unitary) operator
defined by W (x, y) = (y,−x), then equation 5.1.3 can be re-
stated as

G(T ∗) = W ( G(T ) )⊥ . (5.1.4)

On the other hand, observe that W ∗ : K ⊕ H → H ⊕ K is
the unitary operator given by W ∗(y, x) = (−x, y), and equation
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5.1.4 (applied to T ∗ in place of T ) shows that

G(T ∗∗) = (−W ∗)( G(T ∗) )⊥

= ( W ∗(G(T ∗) )⊥

= ( G(T )⊥)⊥ (by 5.1.4)

= G(T )

= G(T ) .

2

We thus find that the class of closed densely defined opera-
tors between Hilbert spaces is closed under the adjoint operation
(which is an ‘involutory operation’ on this class). We shall, in
the sequel, be primarily interested in this class; we shall use the
symbol Lc(H,K) to denote the class of densely defined closed
linear operators T : dom T (⊂ H) → K. Some more elementary
facts about (domains of combinations of) unbounded operators
are listed in the following exercise.

Exercise 5.1.10 (a) The following conditions on a closed op-
erator T are equivalent:

(i) dom T is closed;
(ii) T is bounded.
(Hint: (i) ⇒ (ii) is a consequence of the closed graph theo-

rem. (ii) ⇒ (i): if x ∈ dom T , and if {xn}n ⊂ dom T is such
that xn → x, then {Txn}n converges, to y say; thus (x, y) ∈ G(T )
and in particular (since T is closed) x ∈ dom T .)

(b) If T (resp. T1) : dom T (resp. T1) (⊂ H) → K and S :
dom S (⊂ K) → K1 are linear operators, the composite ST , the
sum T + T1 and the scalar multiple αT are the operators defined
‘pointwise’ by the obvious formulae, on the following domains:

dom(ST ) = {x ∈ dom T : Tx ∈ dom S}
dom(T + T1) = dom T ∩ dom T1

dom(αT ) = dom T .

Show that:
(i) T + T1 = T1 + T ;
(ii) S(αT + T1) ⊃ (αST + ST1).
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(iii) if ST is densely defined, then T ∗S∗ ⊂ (ST )∗.
(iv) if A ∈ L(H,K) is an everywhere defined bounded opera-

tor, then (T + A)∗ = T ∗ + A∗ and (AT )∗ = T ∗A∗.

(c) In this problem, we only consider (one Hilbert space H
and) linear operators ‘from H into itself ’. Let T be a linear op-
erator, and let A ∈ L(H) (so A is an everywhere defined bounded
operator). Say that T commutes with A if it is the case that
AT ⊂ TA.

(i) Why is the inclusion oriented the way it is? (also answer
the same question for the inclusions in (b) above!)

(ii) For T and A as above, show that

AT ⊂ TA ⇒ A∗T ∗ ⊂ T ∗A∗ ;

in other words, if A and T commute, then A∗ and T ∗ commute.
(Hint: Fix y ∈ dom T ∗ = dom A∗T ∗; it is to be verified that
then, also A∗y ∈ dom T ∗ and T ∗(A∗y) = A∗T ∗y; for this, fix
x ∈ dom T ; then by hypothesis, Ax ∈ dom T and TAx = ATx;
then observe that

〈x,A∗T ∗y〉 = 〈Ax, T ∗y〉 = 〈T (Ax), y〉 = 〈ATx, y〉 = 〈Tx,A∗y〉 ,

which indeed implies - since x ∈ dom T was arbitrary - that
A∗y ∈ dom T ∗ and that T ∗(A∗y) = A∗T ∗y.)

(d) For an arbitrary set S ⊂ Lc(H) (of densely defined closed
operators ‘from H to itself ’), define

S ′ = {A ∈ L(H) : AT ⊂ TA ∀ T ∈ S}

and show that:
(i) S ′ is a unital weakly closed subalgebra of L(H);
(ii) if S is self-adjoint - meaning that S = S∗ = {A∗ : A ∈ S}

- then S ′ is also self-adjoint, and is consequently a von Neumann
algebra.
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5.2 Symmetric and Self-adjoint oper-

ators

Definition 5.2.1 A densely defined linear operator T : D (⊂
H) → H is said to be symmetric if it is the case that T ⊂ T ∗.

A linear operator T : D (⊂ H) → H is said to be self-
adjoint if T = T ∗.

Note that symmetric operators are assumed to be densely
defined - since we have to first make sense of their adjoint!
Also, observe (as a consequence of Exercise 5.1.52(b)) that any
(densely-defined) restriction of any symmetric (in particular, a
self-adjoint) operator is again symmetric, and so symmetric op-
erators are much more common than self-adjoint ones.

Some elementary consequences of the definitions are listed in
the following proposition.

Proposition 5.2.2 (a) The following conditions on a densely
defined linear operator T0 : dom T0 (⊂ H) → H are equivalent:

(i) T0 is symmetric;
(ii) 〈T0x, y〉 = 〈x, T0y〉 ∀ x, y ∈ dom T0;
(iii) 〈T0x, x〉 ∈ R ∀ x ∈ dom T0.

(b) If T0 is a symmetric operator, then

||(T0 ± i)x||2 = ||T0x||2 + ||x||2 , ∀ x ∈ dom T0 , (5.2.5)

and, in particular, the operators (T0± i) are (bounded below, and
consequently) 1-1.

(c) If T0 is symmetric, and if T is a self-adjoint extension of
T , then necessarily T0 ⊂ T ⊂ T ∗

0 .

Proof : (a) Condition (ii) is essentially just a re-statement
of condition (i) - see Exercise 5.1.5(2)(a); the implication (ii) ⇒
(iii) is obvious, while (iii) ⇒ (ii) is a consequence of the polari-
sation identity.

(b) follows from (a)(iii) - simply ‘expand’ the left side and
note that the cross terms cancel out under the hypothesis.

(c) This is an immediate consequence of Exercise 5.1.5(2)(b).
2
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Example 5.2.3 Consider the operator D = d
dt

of differentia-
tion, which may be applied on the space of functions which are
at least once differentiable. Suppose we are interested in the
interval [0,1]. We then regard the Hilbert space H = L2[0, 1] -
where the measure in question is usual Lebesgue measure. Con-
sider the following possible choices of domains for this operator:

D0 = C∞
c (0, 1) (⊂ H)

D1 = {f ∈ C1([0, 1]) : f(0) = f(1) = 0}
D2 = C1([0, 1])

Let us write Tjf = iDf, f ∈ Dj , j = 0, 1, 2. Notice that
T0 ⊂ T1 ⊂ T2, and that if f, g ∈ D2, then since (fg)′ = f ′g + fg′

and since
∫ 1
0 h′(t)dt = h(1) − h(0), we see that

f(1)g(1) − f(0)g(0) =
∫ 1

0
(fg)′(t)dt

=
∫ 1

0
( f(t)g′(t) + f ′(t)g(t) )dt ,

and consequently we find (what is customarily referred to as the
formula obtained by ‘integration by parts’):

i(f(1)g(1) − f(0)g(0)) = − 〈f, iDg〉 + 〈iDf, g〉 .

In particular, we see that T2 is not symmetric (since there exist
f, g ∈ D2 such that (f(1)g(1) − f(0)g(0)) 6= 0), but that T1 is
indeed symmetric; in fact, we also see that T2 ⊂ T ∗

1 ⊂ T ∗
0 . 2

Lemma 5.2.4 Suppose T : dom T (⊂ H) → H is a (densely
defined) closed symmetric operator. Suppose λ ∈ C is a complex
number with non-zero imaginary part. Then (T−λ) maps dom T
1-1 onto a closed subspace of H.

Proof : Let λ = a + ib, with a, b ∈ R, b 6= 0. It must be
observed, exactly as in equation 5.2.5 (which corresponds to the
case a = 0, b = ∓1 of equation 5.2.6), that

||(T − λ)x||2 = ||(T − a)x||2 + |b|2||x||2 ≥ |b|2||x||2 , (5.2.6)
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with the consequence that (T − λ) is indeed bounded below. In
particular, (T −λ) is injective. If xn ∈ dom T and if (T −λ)xn →
y (say), then it follows that {xn} is also a Cauchy sequence,
and that if x = limnxn, then (x, y + λx) belongs to the closure
of the graph of the closed operator T ; hence x ∈ dom T and
(T − λ)x = y, thereby establishing that (T − λ) indeed maps
dom T onto a closed subspace . 2

In the sequel, we shall write ker S = {x ∈ dom S : Sx = 0}
and ran S = {Sx : x ∈ dom S}, for any linear operator S.

Lemma 5.2.5 (a) If T : dom T (⊂ H) → K is a closed opera-
tor, then ker T is a closed subspace of H.

(b) If T : dom T (⊂ H) → K is a densely defined operator,
then

(ran T )⊥ = ker T ∗ .

Proof : (a) Suppose xn → x, where xn ∈ ker T ∀n; then

(xn, Txn) = (xn, 0) → (x, 0) ∈ H ⊕K ,

and the desired conclusion is a consequence of the assumption
that G(T ) is closed.

(b) If y ∈ K, note that

y ∈ (ran T )⊥ ⇔ 〈Tx, y〉 = 0 ∀ x ∈ dom T

⇔ y ∈ ker T ∗ ,

as desired. 2

Proposition 5.2.6 The following conditions on a closed sym-
metric operator T : dom T (⊂ H) → H are equivalent:

(i) ran (T − i) = ran (T + i) = H;
(ii) ker (T ∗ + i) = ker (T ∗ − i) = {0};
(iii) T is self-adjoint.

Proof : (i) ⇔ (ii): This is an immediate consequence of
Lemma 5.2.5(b), Exercise 5.1.10(b)(iv), and Lemma 5.2.4.

(i) ⇒ (iii) : Let x ∈ dom T ∗ be arbitrary; since (T − i)
is assumed to be onto, we can find a y ∈ dom T such that
(T − i)y = (T ∗− i)x; on the other hand, since T ⊂ T ∗, we find
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that (x − y) ∈ ker(T ∗ − i) = ran(T + i)⊥ = {0}; in particular
x ∈ dom T and T ∗x = Tx; i.e., also T ∗ ⊂ T , as desired.

(iii) ⇒ (ii) If T = T ∗, then ker(T ∗ ± i) = ker(T ± i) which
is trivial, by Proposition 5.2.2(b). 2

We now turn to the important construction of the Cayley
transform of a closed symmetric operator.

Proposition 5.2.7 Let T0 : dom T0 (⊂ H) → H be a closed
symmetric operator. Let R0(±) = ran(T0±i) = ker⊥(T ∗

0 ∓i).
Then,

(a) there exists a unique partial isometry UT0 ∈ L(H) such
that

UT0z =

{
(T0 − i)x if z = (T0 + i)x

0 if z ∈ R0(+)⊥ ;
(5.2.7)

furthermore,

(i) UT0 has initial (resp., final) space equal to R0(+) (resp.,
R0(−));

(ii) 1 is not an eigenvalue of UT0.

We shall refer to UT0 as the Cayley transform of the closed
symmetric operator T .

(b) If T ⊃ T0 is a closed symmetric extension of T0, and if
the initial and final spaces of the partial isometry UT are denoted
by R(+) and R(−) respectively, then

(i) UT ‘dominates’ the partial isometry UT0 in the sense that
R(+) ⊃ R0(+) and UT z = UT0z, ∀ z ∈ R0(+), so that also
R(−) ⊃ R0(−); and

(ii) 1 is not an eigenvalue of UT .

(c) Conversely suppose U is a partial isometry with initial
space R, say, and suppose (i) U ‘dominates’ UT0 (meaning that
R ⊃ R0(+) and Uz = UT0z ∀ z ∈ R0(+)), and (ii) 1 is not an
eigenvalue of U .

Then there exists a unique closed symmetric extension T ⊃
T0 such that U = UT .
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Proof : (a) Equation 5.2.5 implies that the passage

R0(+) 3 z = (T + i)x
UT7→ (T − i)x = y ∈ R0(−) (5.2.8)

defines an isometric (linear) map of R0(+) onto R0(−). Hence
there does indeed exist a partial isometry with initial (resp. final)
space R0(+) (resp., R0(−)), which satisfies the rule 5.2.8; the
uniqueness assertion is clear since a partial isometry is uniquely
determined by its action on its initial space.

As for (ii), suppose Uz = z for some partial isometry U .
Then, ||z|| = ||Uz|| = ||UU∗Uz|| ≤ ||U∗Uz|| ; deduce from Exer-
cise 2.3.15(2)(b) that z = U∗Uz = U∗z. Hence 1 is an eigenvalue
of a partial isometry U if and only if it is an eigenvalue of U∗;
and ker(U − 1) = ker(U∗ − 1) ⊂ ker(U∗U − 1).

In particular, suppose UT0z = z for some z ∈ H. It then
follows from the last paragraph that z ∈ R0(+). Finally, if
z, x, y are as in 5.2.8, then, observe that

z = T0x + ix, y = T0x − ix,

x =
1

2i
(z − y) =

1

2i
(1 − UT0)z, T0x = 1

2
(z + y) = 1

2
(1 + U)z ;

(5.2.9)

and so, we find that

UT0z = z ⇒ z = T0x + ix, where x = 0 ⇒ z = 0 .

(b) If z ∈ R0(+), then there exists a (necessarily unique, by
Lemma 5.2.4) x ∈ dom T0, y ∈ R0(−) as in 5.2.8; then, z =
T0x + ix = Tx + ix ∈ R(+) and UT z = Tx− ix = T0x− ix = y,
and hence UT does ‘dominate’ UT0 , as asserted in (i); assertion
(ii) follows from (a)(ii) (applied with T in place of T0).

(c) Suppose U,R are as in (c). Let D = {x ∈ H : ∃ z ∈ R
such that x = z−Uz}. Then, the hypothesis that U ‘dominates’
UT0 shows that

D = (1 − U)(R) ⊃ (1 − UT0)(R0(+)) = dom T0

and hence D is dense in H. This D will be the domain of the T
that we seek.
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If x ∈ D, then by definition of D and the assumed injectivity
of (1 − U), there exists a unique z ∈ R such that 2ix = z − Uz.
Define Tx = 1

2
(z + Uz).

We first verify that T is closed; so suppose G(T ) 3 (xn, yn) →
(x, y) ∈ H ⊕ H. Thus there exist {zn}n ⊂ R such that 2ixn =
zn − Uzn, and 2yn = 2Txn = zn + Uzn for all n. Then

zn = (yn + ixn) and Uzn = yn − ixn ; (5.2.10)

hence zn → y+ix = z (say) and Uz = lim Uzn = y−ix; since R
is closed, it follows that z ∈ R and that z−Uz = 2ix, z +Uz =
2y; hence x ∈ D and Tx = y, thereby verifying that T is indeed
closed.

With x, y, z as above, we find that (for arbitrary x ∈ dom T )

〈Tx, x〉 = 〈1
2
(z + Uz),

1

2i
(z − Uz)〉

=
−1

4i

[
||z||2 − ||Uz||2 + 〈Uz, z〉 − 〈z, Uz〉

]

=
−1

4i
2i Im〈Uz, z〉

∈ R

and conclude - see Proposition 5.2.2(a)(iii) - that T is indeed
symmetric. It is clear from the definitions that indeed U = UT .

2

We spell out some facts concerning what we have called the
Cayley transform in the following remark.

Remark 5.2.8 (1) The proof of Proposition 5.2.7 actually es-
tablishes the following fact: let T denote the set of all (densely
defined) closed symmetric operators ‘from H to itself’; then the
assignment

T 3 T 7→ UT ∈ U (5.2.11)

defines a bijective correspondence from T to U , where U is the
collection of all partial isometries U on H with the following two
properties: (i) (U − 1) is 1-1; and (ii) ran (U − 1)U∗U is dense
in H; further, the ‘inverse transform’ is the map

U 3 U 7→ T = −i(1 + U)(1 − U)(−1) , (5.2.12)
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where we have written (1 − U)(−1) to denote the inverse of the
1-1 map (1−U)|ran(U∗U) - thus, the domain of T is just ran((U−
1)U∗U).

Note that the condition (ii) (defining the class U in the last
paragraph) is equivalent to the requirement that ker(U∗U(U∗ −
1)) = {0}; note that U∗U(U∗ − 1) = U∗ − U∗U = U∗(1 − U)
(since U∗ is a partial isometry); hence, condition (ii) is equivalent
to the condition that ker(U∗(1 − U)) = {0}; and this condition
clearly implies that (1 − U) must be 1-1. Thus, (ii) ⇒ (i), and
we may hence equivalently define

U = {U ∈ L(H) : U = UU∗U, ker(U∗ − U∗U) = {0}} .

(2) Suppose T is a self-adjoint operator; then it follows from
Proposition 5.2.6 that the Cayley transform UT is a unitary op-
erator, and this is the way in which we shall derive the spectral
theorem for (possibly unbounded) self-adjoint operators from the
spectral theorem for unitary operators. 2

It is time we introduced the terminology that is customar-
ily used to describe many of the objects that we have already
encountered.

Definition 5.2.9 Let T be a closed (densely defined) symmet-
ric operator. The closed subspaces

D+(T ) = ker(T ∗ − i) = {x ∈ dom T ∗ : T ∗x = ix}
D−(T ) = ker(T ∗ + i) = {x ∈ dom T ∗ : T ∗x = −ix}

are called the (positive and negative) deficiency spaces of T ,
and the (cardinal numbers)

δ±(T ) = dim D±(T )

are called the deficiency indices of T .

Thus, if UT is the Cayley transform of the closed symmetric
operator T , then D+(T ) = kerUT and D−(T ) = kerU∗

T .
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Corollary 5.2.10 Let T ∈ T (in the notation of Remark
5.2.8(1)).

(a) If T ⊂ T1 and if also T1 ∈ T , then D±(T ) ⊂ D±(T1).
(b) A necessary and sufficient condition for T to be self-

adjoint is that δ+(T ) = δ−(T ) = 0.
(c) A necessary and sufficient condition for T to admit a

self-adjoint extension is that δ+(T ) = δ−(T ).

Proof : Assertions (a) and (b) are immediate consequences
of Proposition 5.2.7(b) and Proposition 5.2.6.

As for (c), if T1 is a symmetric extension of T , then, by
Proposition 5.2.7(b), it follows that D±(T1) ⊃ D±(T ). In par-
ticular, if T1 is self-adjoint, then the Cayley transform U of T1

is a unitary operator which dominates the Cayley transform of
T and consequently maps D⊥

+ onto D−(T )⊥; this implies that
δ+(T ) = δ−(T ).

Conversely, suppose δ+(T ) = δ−(T ). Then there exists a
unitary operator U1 such that U1|D+(T )⊥ = UT . (Why?) If it so
happens that 1 is an eigenvalue of U1, define

Ux =

{
−x if Ux = x
U1x if x ∈ ker⊥(U1 − 1)

and note that U is also a unitary operator which ‘dominates’ UT

and which does not have 1 as an eigenvalue; so that U must be
the Cayley transform of a self-adjoint extension of T . 2

5.3 Spectral theorem and polar de-

composition

In the following exercises, we will begin the process of applying
the spectral theorem for bounded normal operators to construct
some examples of unbounded closed densely defined normal op-
erators.

Exercise 5.3.1 (1) Let H = L2(X,B, µ) and let C denote the
collection of all measurable functions φ : X → C; for φ ∈ C,
let Mφ be as in Example 5.1.4(1). Show that if φ, ψ ∈ C are
arbitrary, then,
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(a) Mφ is densely defined.

(b) Mφ is a closed operator.

(c) M∗
φ = Mφ.

(d) Mαφ+ψ ⊃ αMφ + Mψ, for all α ∈ C.

(e) MφMψ ⊃ Mφψ ⊂ MψMφ.

(f) MφMφ = MφMφ.

(Hint: (a) let En = {x ∈ X : |φ(x)| ≤ n} and let Pn =
M1En

; show that X = ∪nEn, hence the sequence {Pn}n con-
verges strongly to 1, and note that ran Pn = {f ∈ L2(µ) :
f = 0 a.e. outside En} ⊂ dom Mφ; (b) if fn → f in L2(µ),
then there exists a subsequence {fnk

}k which converges to f a.e.
(c) First note that dom Mφ = dom Mφ and deduce from Ex-
ercise 5.1.5(2)(a) that Mφ ⊂ M∗

φ; then observe that if En, Pn

are as above, then ran Pn ⊂ domM∗
φ and in fact PnM∗

φ ⊂
M∗

φPn = Mφ1En
∈ L(H); i.e., if g ∈ dom M∗

φ, and n is arbi-

trary, then, PnM∗
φg = φ1En

g a.e.; deduce (from the fact that

M∗
φ is closed) that M∗

φg = φg; i.e., M∗
φ ⊂ Mφ. (d) - (f) are

consequences of the definition.)

(2) Let Sn : Dn (⊂ Hn) → Kn be a linear operator, for n =
1, 2, · · ·. Define S : D (⊂ ⊕nHn) → ⊕nKn by (Sx)n = Snxn,
where D = {x = ((xn))n : xn ∈ Dn ∀n,

∑
n ||Snxn||2 < ∞}.Then

show that:

(a) S is a linear operator;

(b) S is densely defined if and only if each Sn is;

(c) S is closed if and only if each Sn is.

(Hint: (a) is clear, as are the ‘only if ’ statements in (b) and (c);
if Dn is dense in Hn for each n, then the set {((xn)) ∈ ⊕nHn :
xn ∈ Dn ∀n and xn = 0 for all but finitely many n} is (a subset of
D which is) dense in ⊕nHn; as for (c), if D 3 x(k) → x ∈ ⊕nHn

and Sx(k) → y ∈ ⊕nKn, where x(k) = ((x(k)n)), x = ((xn))
and y = ((yn)), then we see that x(k)n ∈ dom Sn ∀n, x(k)n → xn

and Snx(k)n → yn for all n; so the hypothesis that each Sn is
closed would then imply that xn ∈ dom Sn and Snxn = yn ∀ n;
i.e., x ∈ dom S and Sx = y.)

(3) If Sn, S are the operators in (2) above, with domains spec-
ified therein, let us use the notation S = ⊕nSn. If S is densely
defined, show that S∗ = ⊕n S∗

n.
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(4) Let X be a locally compact Hausdorff space and let BX 3
E 7→ P (E) denote a separable spectral measure on X. To each
measurable function φ : X → C, we wish to construct a closed
operator ∫

X
φdP =

∫

X
φ(λ)dP (λ) (5.3.13)

satisfying the following constraints:
(i) if P = Pµ, then

∫
X φdP agrees with the operator we de-

noted by Mφ in (1) above; and
(ii)

∫
X φd(⊕iPi) = ⊕i

∫
X φdPi, for any countable direct

sum of spectral measures, where the direct sum is interpreted as
in (2) above.

(a) Show that there exists a unique way to define an as-
signment C × P 3 (φ, P ) 7→ ∫

X φdP ∈ Lc(H) - where P de-
notes the class of all separable spectral measures on (X,B) - in
such a way that the requirements (i) and (ii) above, are satis-
fied. (Hint: by the Hahn-Hellinger theorem - see Remark 3.5.13
- there exist a probability measure µ : BX → [0, 1] and a partition
{En : 0 ≤ n ≤ ℵ0} ⊂ BX such that P ∼= ⊕0≤n≤ℵ0 P n

µEn
; appeal

to (1)(a),(b) and (2)(a),(b) above.)

(b) (An alternative description of the operator
∫
X φdP - con-

structed in (a) above - is furnished by this exercise.)
Let φ : X → C be a measurable function and let P : BX →

L(H) be a separable spectral measure; set En = {x ∈ X :
|φ(x)| < n} and Pn = P (En). Then show that

(i) φ1En
∈ L∞(X,B, µ) and Tn =

∫
X φ1En

dP is a bounded
normal operator, for each n;

(ii) in fact, if we set T =
∫
X φdP , then show that Tn = TPn;

(iii) the following conditions on a vector x ∈ H are equiva-
lent:

(α) supn ||Tnx|| < ∞;
(β) {Tnx}n is a Cauchy sequence;

(iv) if we define D(P )
φ to be the set of those vectors in H which

satisfy the equivalent conditions of (iii), then D(P )
φ is precisely

equal to dom (
∫
X φdP ) and further,

(
∫

X
φdP )x = lim

n
Tnx ∀ x ∈ D(P )

φ .
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(v) Show that

(
∫

X
φdP )∗ =

∫

X
φdP

and that

(
∫

X
φdP ) (

∫

X
φdP ) = (

∫

X
φdP ) (

∫

X
φdP ) .

(Hint: Appeal to (1)(c) and (3) of these exercises for the asser-
tion about the adjoint; for the other, appeal to (1)(f) and (2).)

Remark 5.3.2 (1) The operator
∫
X φdP constructed in the pre-

ceding exercises is an example of an unbounded normal opera-
tor, meaning a densely defined operator T which satisfies the
condition TT ∗ = T ∗T - where, of course, this equality of two un-
bounded operators is interpreted as the equality of their graphs.

(2) Thus, for example, if T is a bounded normal operator on a
separable Hilbert space H, and if PT (E) = 1E(T ) for E ∈ Bσ(T ),
and if φ : σ(T ) → C is any measurable function, then we shall
define (the ‘unbounded functional calculus’ for T by considering)
the (in general unbounded) operator φ(T ) by the rule

φ(T ) =
∫

σ(T )
φdPT . (5.3.14)

It should be noted that it is not strictly necessary that the func-
tion φ be defined everywhere; it suffices that it be defined P a.e.;
(i.e., in the complement of some set N such that P (N) = 0).
Thus, for instance, so long as λ0 is not an eigenvalue of T , we
may talk of the operator φ(T ) where φ(λ) = (λ − λ0)

−1 - this
follows easily from Exercise 4.3.8.) 2

We are now ready for the spectral theorem.

Theorem 5.3.3 (Spectral Theorem for unbounded self-
adjoint operators)

(a) If T is a self-adjoint operator on H, then there exists
a spectral measure (or equivalently, a projection-valued strongly
continuous mapping) BR 3 E 7→ P (E) ∈ L(H) such that

T =
∫

R
λ dP (λ) (5.3.15)
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in the sense of equation 5.3.14.
(b) Furthermore, the spectral measure associated with a self-

adjoint operator is unique in the following sense: if Ti is a self-
adjoint operator on Hi with associated spectral measures Pi :
BR → L(H), for i = 1, 2, then the following conditions on a
unitary operator W : H1 → H2 are equivalent:

(i) T2 = WT1W
∗;

(ii) P2(E) = WP1(E)W ∗ ∀ E ∈ BR.

Proof : (a) If U = UT is the Cayley-transform of A, then
U is a unitary operator on H; let PU : Bσ(U) → L(H) be the
associated spectral measure (defined by PU(E) = 1E(U)).

The functions

R 3 t
f7→ t − i

t + i
, (T − {1}) 3 z

g7→ i
(

1 + z

1 − z

)
,

are easily verified to be homeomorphisms which are inverses of
one another.

Our earlier discussion on Cayley transforms shows that U −1
is 1-1 and hence PU({1}) = 0; hence g ◦f = idσ(U) (PU a.e.) Our
construction of the Cayley transform also shows that T = g(U)
in the sense of the unbounded functional calculus - see 5.3.14; it
is a routine matter to now verify that equation 5.3.15 is indeed
satisfied if we define the spectral measure P : BR → L(H) by
the prescription P (E) = PU(f(E)).

(b) This is an easy consequence of the fact that if we let
P (i)

n = Pi([n − 1, n)) and T (i)
n = Ti|ranPn

, then Ti = ⊕n∈Z T (i)
n .

2

We now introduce the notion, due to von Neumann, of an
unbounded operator being affiliated to a von Neumann algebra.
This relies on the notion - already discussed in Exercise 5.1.10(c)
- of a bounded operator commuting with an unbounded one .

Proposition 5.3.4 Let M ⊂ L(H) be a von Neumann alge-
bra; then the following conditions on a linear operator T ‘from
H into itself ’ are equivalent:

(i) A′T ⊂ TA′, ∀ A′ ∈ M ′;
(ii) U ′T = TU ′, ∀ unitary U ′ ∈ M ′;
(iii) U ′TU ′∗ = T, ∀ unitary U ′ ∈ M ′.
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If it is further true that if T = T ∗, then the preceding three
conditions are all equivalent to the following fourth condition:

(iv) PT (E) ∈ M ∀ E ∈ BR, where PT denotes the unique
spectral measure associated with T , as in Theorem 5.3.3.

If T and M are as above, then we shall say that T is affiliated
with M and we shall write TηM .

Proof : (i) ⇒ (ii) : The hypothesis (i) amounts to the
requirement that if x ∈ dom T , and if A′ ∈ M ′ is arbitrary,
then A′x ∈ dom T and TA′x = A′Tx. In particular, if U ′

is any unitary element of M ′, then U ′x, U ′∗x ∈ dom T and
TU ′x = U ′Tx and TU ′∗x = U ′∗Tx. Since U ′ is a bijective map,
it follows easily from this that we actually have TU ′ = U ′T .

The implication (ii) ⇔ (iii) is an easy exercise, while the
implication (ii) ⇒ (i) is a consequence of the simple fact that
every element A′ ∈ M ′ is expressible as a linear combination of
(no more that four) unitary elements of M ′. (Proof of the above
fact: by looking at the Cartesian decomposition, and using the
fact that M is closed under taking ‘real’ and ‘imaginary’ parts,
it is seen that it suffices to prove that any self-adjoint element
of a C∗-algebra is a linear combination of two unitary elements;
but this is true because, if A is self-adjoint and if ||A|| ≤ 1,
then we may write A = 1

2
(U+ + U−), where U± = g±(A), and

g±(t) = t ± i
√

1 − t2.)
Finally the implication (iii) ⇔ (iv) - when T is self-adjoint

- is a special case of Theorem 5.3.3(b) (applied to the case Ti =
T, i = 1, 2.) 2

It should be noted that if T is a (possibly unbounded) self-
adjoint operator on H, if φ 7→ φ(T ) denotes the associated
‘unbounded functional calculus’, and if M ⊂ L(H) is a von
Neumann algebra of bounded operators on H, then TηM ⇒
φ(T )ηM for every measurable function φ : R → C; also, it should
be clear - from the double commutant theorem, for instance -
that if T ∈ L(H) is an everywhere defined bounded operator,
then TηM ⇔ T ∈ M .

We collect some elementary properties of this notion of affil-
iation in the following exercises.
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Exercise 5.3.5 (1) Let S, T denote linear operators ‘from H
into itself ’, and let M ⊂ L(H) be a von Neumann algebra such
that S, TηM . Show that

(i) if T is closable, then TηM ;
(ii) if T is densely defined, then also T ∗ηM ;
(iii) STηM .

(2) Given any family S of linear operators ‘from H into it-
self ’, let WS denote the collection of all von Neumann algebras
M ⊂ L(H) with the property that TηM ∀ T ∈ S; and define

W ∗(S) = ∩ {M : M ∈ WS} .

Then show that:
(i) W ∗(S) is the smallest von-Neumann subalgebra M of

L(H) with the property that TηM ∀ T ∈ S;
(ii) if S ⊂ T ⊂ Lc(H), then

W ∗(S) ⊂ W ∗(T ) = W ∗(T ∗) = (T ∪ T ∗)′′ ,

where, of course, T ∗ = {T ∗ : TηT }, and S ′ = {A ∈ L(H) :
AT ⊂ TA ∀ T ∈ S} (as in Exercise 5.1.10(d)).

(3) Let (X,B) be any measurable space and suppose B 3
E 7→ P (E) ∈ L(H) is a countably additive projection-valued
spectral measure (taking values in projection operators in L(H)),
where H is assumed to be a separable Hilbert space with orthonor-
mal basis {en}n∈IN.

For x, y ∈ H, let px,y : B → C be the complex measure defined
by px,y(E) = 〈P (E)x, y〉. Let us write pα =

∑
n αnpen,en

, when
either α = ((αn))n ∈ `1 or α ∈ RIN

+ (so that pα makes sense as a
finite complex measure or a (possibly infinite-valued, but) σ-finite
positive measure defined on (X,B).

(a) Show that the following conditions on a set E ∈ B are
equivalent:

(i) P (E) = 0;
(ii) pα(E) = 0 for some α = ((αn))n where αn > 0 ∀ n ∈ IN;
(iii) pα(E) = 0 for every α = ((αn))n where αn > 0 ∀ n ∈ IN.
(b) Show that the collection NP = {E ∈ B : P (B) = 0} is a

σ-ideal in B - meaning that if {Nn : n ∈ IN} ⊂ NP and E ∈ B
are arbitrary, then ∪n∈INNn ∈ NP and N1 ∩ E ∈ NP .
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(c) Let L0(X,B) denote the algebra of all (B,BC)-measurable
complex-valued functions on X. Let ZP denote the set of func-
tions h ∈ L0(X,B) such that h = 0 P − a.e. (meaning, of
course, that P ({x : h(x) 6= 0}) = 0). Verify that ZP is an
ideal in L0(X,B) which is closed under pointwise convergence
of sequences; in fact, show more generally, that if {fn} is a se-
quence in ZP and if f ∈ L0(X,B) is such that fn → f P − a.e.,
then f ∈ ZP .

(d) With the notation of (c) above, define the quotient spaces

L0(X,B, P ) = L0(X,B)/ZP (5.3.16)

L∞(X,B, P ) = L∞(X,B)/(L∞(X,B) ∩ ZP ) (5.3.17)

where we write L∞(X,B) to denote the class of all bounded mea-
suable complex-valued functions on X. Verify that L∞(X,B, P )
is a Banach space with respect to the norm defined by

||f ||L∞(X,B,P ) = inf{sup{|f(x)| : x ∈ E} : (X − E) ∈ NP} .

(4) Let T be a self-adjoint operator on H, and let PT : BR →
L(H) be the associated spectral measure as in Theorem 5.3.3.
Show that:

(i) we have a bounded functional calculus for T ; i.e.,
there exists a unique *-algebra isomorphism L∞(R,BR, PT ) 3
φ 7→ φ(T ) ∈ W ∗({T}) with the property that 1E(T ) (= PT (E))
for all E ∈ BR; and

(ii) if S ∈ Lc(H) is such that SηW ∗({T}), then there exists
a φ ∈ L0(X,BX , P ) such that S = φ(T ) in the sense that S =∫

φ(λ)dP (λ).

Before we can get to the polar decomposition for unbounded
operators, we should first identify just what we should mean by
an unbounded self-adjoint operator being positive.

We begin with a lemma.

Lemma 5.3.6 Let T ∈ Lc(H,K). Then,
(a) for arbitrary z ∈ H, there exists a unique x ∈ dom(T ∗T )

such that z = x + T ∗Tx;
(b) in fact, there exists an everywhere defined bounded oper-

ator A ∈ L(H) such that
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(i) A is a positive 1-1 operator satisfying ||A|| ≤ 1; and
(ii) (1 + T ∗T )−1 = A, meaning that ran A = dom(1 +

T ∗T ) = {x ∈ dom T : Tx ∈ dom T ∗} and Az + T ∗T (Az) =
z ∀z ∈ H.

Proof : Temporarily fix z ∈ H; then, by Proposition 5.1.6,
there exists unique elements x ∈ dom(T ) and y ∈ dom(T ∗) such
that

(0, z) = (y, T ∗y) − (Tx,−x) .

Thus, z = T ∗y + x, where y = Tx; i.e., x ∈ dom(T ∗T ) and
z = (1 + T ∗T )x, thereby establishing (a).

With the preceding notation, define Az = x, so that A : H →
H is an everywhere defined (clearly) linear operator satisfying
(1 + T ∗T )A = 1, so that A is necessarily 1-1. Notice that

〈Az, z〉 = 〈x, z〉 = ||x||2 + ||Tx||2 , (5.3.18)

and hence ||Az||2 = ||x||2 ≤ 〈Az, z〉 ≤ ||Az|| ||z||. In
other words, A is indeed a bounded positive contraction; i.e.,
0 ≤ A ≤ 1. Hence (b)(i) is true, and (b)(ii) is a consequence of
the construction. 2

Proposition 5.3.7 (1) The following conditions on a closed
densely defined operator S ∈ Lc(H) are equivalent:

(i) S is self-adjoint and 〈Sx, x〉 ≥ 0 ∀ x ∈ dom S;
(i)′ S is self-adjoint and σ(S) ⊂ [0,∞), where of course σ(S)

is called the spectrum of S, and ρ(S) = C−σ(S) is the resolvent
set of S which consists of those complex scalars λ for which (S−
λ)−1 ∈ L(H); (thus, λ /∈ σ(S) precisely when (S − λ) maps
dom S 1-1 onto all of H;)

(ii) there exists a self-adjoint operator T acting in H such
that S = T 2;

(iii) there exists T ∈ Lc(H,K) (for some Hilbert space K)
such that S = T ∗T .

A linear operator S ∈ Lc(H) is said to be a positive self-
adjoint operator if the three preceding equivalent conditions are
met.

(2) Furthermore, a positive operator has a unique positive
square root - meaning that if S is a positive self-adjoint operator
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acting in H, then there exists a unique positive self-adjoint op-
erator acting in H - which is usually denoted by the symbol S

1
2

- such that S = (S
1
2 )2.

Proof: (i) ⇔ (i)′ : If S is self-adjoint, let P : BRL(H)
be the (projection-valued) spectral measure asdsociated with
S as in Theorem 5.3.3; as usual, if x ∈ H, let px,x denote
the (genuine scalar-valued finite) positive measure defined by
px,x(E) = 〈P (E)x, x〉 = ||P (E)x||2. Given that S =

∫
R λdP (λ),

it is easy to see that the (second part of) condition (i) (resp., (i)′)
amounts to saying that (a)

∫
R λdpx,x(λ) > 0 for all x ∈ H (resp.,

(a)′ P is supported in [0,∞) - meaning that P ((−∞, 0)) = 0);
the proof of the equivalence (i) ⇔ (i)′ reduces now to the verifi-
cation that conditions (a) and (a)′ are equivalent; but this is an
easy verification.

(i) ⇒ (ii) : According to the hypothesis, we are given that
S =

∫
R λ dP (λ), where P : BR → L(H) is some spectral measure

which is actually supported on the positive line [0,∞). Now, let

T =
∫
R λ

1
2 dP (λ), and deduce (from Exercise 5.3.1(1)(c)) that T

is indeed a self-adjoint operator and that S = T 2.
(ii) ⇒ (iii) : Obvious.
(iii) ⇒ (i) : It is seen from Lemma 5.3.6 that (1+T ∗T )−1 = A

is a positive bounded operator A (which is 1-1). It follows that
σ(A) ⊂ [0, 1] and that A =

∫
[0,1] λdPA(λ), where PA : B[0,1] →

L(H) is the spectral measure given by PA(E) = 1E(A). Now it
follows readily that T ∗T is the self-adjoint operator given by S =
T ∗T =

∫
[0,1] ( 1

λ
− 1) dPA(λ); finally, since ( 1

λ
− 1) > 0 P − a.e.,

we find also that 〈Sx, x〉 ≥ 0.
(2) Suppose that S is a positive operator; and suppose T

is some positive self-adjoint operator such that S = T 2. Let
P = PT be the spectral measure associated with T , so that
T =

∫
R λ dP (λ). Define M = W ∗({T}) (∼= L∞(R,BR, P )); then

TηM by definition, and so - see Exercise 5.3.5(1)(iii) - also SηM .
It follows - from Proposition 5.3.4 - that

SηM ⇒ 1S(E) ∈ M ∀ E ∈ B
R

+ .

This implies that W ∗({S}) = {1S(E) : E ∈ BR}′′ ⊂ M . If

we use the symbol S
1
2 to denote the positive square root of S

that was constructed in the proof of (i) ⇒ (ii) above, note that
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S
1
2 η W ∗({S}) ⊂ M ; let φ ∈ L∞(R,B, P ) be such that S =

φ(T ); the properties of the operators concerned now imply that
φ is a measurable function which is (i) non-negative P -a.e., and
(ii) φ(λ)2 = λ2 P -a.e.; it follows that φ(λ) = λ P − a.e., thus
establishing the uniqueness of the positive square root. 2

Theorem 5.3.8 Let T ∈ Lc(H,K). Then there exists a unique
pair U, |T | of operators satisfying the following conditions:

(i) T = U |T |;
(ii) U ∈ L(H,K) is a partial isometry;
(iii) |T | is a positive self-adjoint operator acting in H; and
(iv) ker T = ker U = ker |T |.

Furthermore, |T | is the unique positive square root of the positive
self-adjoint operator T ∗T .

Proof: : As for the uniqueness assertion, first deduce from
condition (iv) that U∗U |T | = |T |, and then deduce that |T | has
to be the unique positive square root of T ∗T ; the uniqueness of
the U in the polar decomposition is proved, exactly as in the
bounded case.

Let Pn = 1T ∗T ([0, n]) and let Hn = ran Pn. Then {Pn} is an
increasing sequence of projections such that Pn → 1 strongly.

Observe also that Hn ⊂ dom φ(T ∗T ) for every continuous
(and more generally, any ‘locally bounded measurable) function
φ : R → C, and that, in particular,

x ∈ Hn ⇒ x ∈ dom T ∗T and ||Tx|| = || |T | x|| . (5.3.19)

(Reason: ||Tx||2 = 〈Tx, Tx〉 = 〈|T |2x, x〉 = || |T |x||2 .)
An appeal to Exercise 3.4.12 now ensures the existence of an

isometric operator U0 : ran |T | → K such that U0(|T |x) = Tx
for all x ∈ ∪nHn. Let U = U0 ◦ 1(0,∞)(|T |). Then it is clear
that U is a partial isometry with initial space ker⊥|T |, and that
U |T |x = Tx for all x ∈ ∪nHn.

We now claim that the following conditions on a vector x ∈ H
are equivalent:

(i) x ∈ dom T ;
(ii) supn ||TPnx|| < ∞;
(ii)′ supn || |T |Pnx|| < ∞;
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(i)′ x ∈ dom(|T |).

The equivalence (ii) ⇔ (ii)′ is an immediate consequence of
equation (5.3.19); then for any x ∈ H and n ∈ IN, we see that
|T |Pnx is the sum of the family {|T |(Pj − Pj−1) : 1 ≤ j ≤ n}
of mutually orthogonal vectors - where we write P0 = 0 - and
hence condition (ii)′ is seen to be equivalent to the convergence
of the (orthogonal, as well as collapsing) sum

∞∑

j=1

|T |(Pj − Pj−1)x = limn|T |Pnx .

Since Pnx → x, the fact that |T | is closed shows that the conver-
gence of the displayed limit above would imply that x ∈ dom |T |
and that |T |x = limn |T |Pnx, hence (ii)′ ⇒ (i)′.

On the other hand, if x ∈ dom (|T |), then since |T | and Pn

commute, we have:

|T |x = lim
n

Pn|T |x = lim
n

|T |Pnx ,

and the sequence {|| (|T |Pnx)||}n is convergent and necessarily
bounded, thus (i)′ ⇒ (ii)′.

We just saw that if x ∈ dom |T |, then {|T |Pnx}n is a con-
vergent sequence; the fact that the partial isometry U has initial
space given by ∪nHn implies that also {TPnx = U(|T |Pnx)}n

is convergent; since T is closed, this implies x ∈ dom T , and so
(i)′ ⇒ (i).

We claim that the implication (i) ⇒ (i)′ would be complete
once we prove the following assertion: if x ∈ dom T , then there
exists a sequence {xk}k ⊂ ∪n Hn such that xk → x and
Txk → Tx. (Reason: if this assertion is true, if x ∈ dom T ,
and if xk ∈ ∪nHn is as in the assertion, then |||T |xk − |T |xl|| =
||Txk − Txl|| (by equation (5.3.19)) and hence also {|T |xk}k is
a (Cauchy, hence convergent) sequence; and finally, since |T | is
closed, this would ensure that x ∈ dom|T |.)

In order for the assertion of the previous paragraph to be
false, it must be the case that the graph G(T ) properly contains
the closure of the graph of the restriction T0 of T to ∪nHn;
equivalently, there must be a non-zero vector y ∈ dom T such
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that (y, Ty) is orthogonal to (x, Tx) for every x ∈ ∪nHn; i.e.,

x ∈ ∪nHn ⇒ 〈x, y〉 + 〈Tx, Ty〉 = 0

⇒ 〈(1 + T ∗T )x, y〉 = 0 ;

hence y ∈ ((1 + T ∗T )(∪nHn))⊥.
On the other hand, if z ∈ dom T ∗T = dom |T |2, notice

that

(1 + T ∗T )z = lim
n

Pn(1 + |T |2)z = lim
n

(1 + |T |2)Pnz

and hence (ran(1 + T ∗T ))⊥ = ((1 + T ∗T )(∪nHn))⊥.
Thus, we find that in order for the implication (i) ⇒ (i)′ to

be false, we should be able to find a non-zero vector y such that
y ∈ (ran(1 + T ∗T ))⊥; but by Lemma 5.3.6(a), there is no such
non-zero vector y. Thus, we have indeed completed the proof
of the equation dom T = dom |T |. Finally since the equation
T = U |T | has already been verified on dom|T |, the proof of the
existence half of the polar decomposition is also complete.

2



Appendix A

Appendix

A.1 Some linear algebra

In this section, we quickly go through some basic linear algebra
- i.e., the study of finite-dimensional vector spaces. Although we
have restricted ourselves to complex vector spaces in the text, it
might be fruitful to discuss vector spaces over general fields in
this appendix. We begin by recalling the definition of a field.

Definition A.1.1 A field is a set - which we will usually de-
note by the symbol IK - which is equipped with two binary oper-
ations called addition and multiplication, respectively, such that
the following conditions are satisfied:

(1) (Addition axioms) There exsits a map IK× IK 3 (α, β) 7→
(α + β) ∈ IK, such that the following conditions hold, for all
α, β, γ ∈ IK:

(i) (commutativity) α + β = β + α;
(ii) (associativity) (α + β) + γ = α + (β + γ);
(iii) (zero) there exists an element in IK, always denoted sim-

ply by 0, such that α + 0 = α;
(iv) (negatives) there exists an element in IK, always denoted

by −α, with the property that α + (−α) = 0.

(2) (Multiplication axioms) There exsits a map IK × IK 3
(α, β) 7→ (αβ) ∈ IK, such that the following conditions hold, for
all α, β, γ ∈ IK:

(i) (commutativity) αβ = βα;

217
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(ii) (associativity) (αβ)γ = α(βγ);
(iii) (one) there exists an element in IK, always denoted sim-

ply by 1, such that 1 6= 0 and α1 = α;
(iv) (inverses) if α 6= 0, there exists an element in IK, always

denoted by α−1, with the property that αα−1 = 1.

(3) (Distributive law) Addition and multiplication are related
by the following axiom, valid for all α, β, γ ∈ IK:

α(β + γ) = αβ + αγ.

Some simple properties of a field are listed in the following
exercises.

Exercise A.1.2 Let IK be a field.
(1) Show that if α, β, γ ∈ IK are such that α + β = α + γ,

then β = γ; deduce, in particular, that the additive identity 0 is
unique, and that the additive inverse −α is uniquely determined
by α.

(2) Show that if α, β, γ ∈ IK are such that αβ = αγ, and if
α 6= 0, then β = γ; deduce, in particular, that the multiplicative
identity 1 is unique, and that the multiplicative inverse α−1 of a
non-zero element α is uniquely determined by α.

(3) Show that α · 0 = 0 for all α ∈ IK; and conversely, show
that if αβ = 0 for some β 6= 0, show that α = 0. (Thus, a field
has no ‘zero divisors’.)

(4) Prove that if α1, · · · , αn ∈ IK, and if π ∈ Sn is any permu-
tation of {1, · · · , n}, then α1 +(α2 +(· · ·+(αn−1 +αn) · · ·))) =
απ(1)+(απ(2)+(· · ·+(απ(n−1)+απ(n)) · · ·))) , so that the expression∑n

i=1 αi may be given an unambiguous meaning.

(5) If α1 = · · · = αn = α in (3), define nα =
∑n

i=1 αi.
Show that if m,n are arbitrary positive integers, and if α ∈ IK,
then

(i) (m + n)α = mα + nα;
(ii) (mn)α = m(nα);
(iii) −(nα) = n(−α);
(iv) if we define 0α = 0 and (−n)α = − (nα) (for n ∈ IN),

then (i) and (ii) are valid for all m,n ∈ Z;
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(v) (n · 1)α = nα, where the 1 on the left denotes the 1 in
IK and we write n · 1 for

∑n
i=1 1.

Remark A.1.3 If IK is a field, there are two possibilities: either
(i) m · 1 6= 0 ∀m ∈ IN or (ii) there exists a positive integer m
such that m · 1 = 0; if we let p denote the smallest positive
integer with this property, it follows from (5)(ii), (5)(v) and (3)
of Exercise A.1.2 that p should necessarily be a prime number.

We say that the field IK has characteristic equal to 0 or p
according as possibility (i) or (ii) occurs for IK.

Example A.1.4 (1) The sets of real (R), complex (C) and ra-
tional (Q) numbers are examples of fields of characteristic 0.

(2) Consider Zp, the set of congruence classes of integers mod-
ulo p, where p is a prime number. If we define addition and
multiplication ‘modulo p’, then Zp is a field of characteristic p,
which has the property that it has exactly p elements.

For instance, addition and multiplication in the field Z3 =
{0, 1, 2} are given thus:

0 + x = x ∀x ∈ {0, 1, 2}; 1 + 1 = 2, 1 + 2 = 0, 2 + 2 = 1;

0 · x = 0, 1 · x = x ∀x ∈ {1, 2}, 2 · 2 = 1.

(3) Given any field IK, let IK[t] denote the set of all poly-
nomials in the indeterminate variable t, with coefficients com-
ing from IK; thus, the typical element of IK[t] has the form
p = α0 + α1t + α2t

2 + · · · + αnt
n, where αi ∈ IK ∀i. If we

add and multiply polynomials in the usual fashion, then IK[t] is
a commutative ring with identity - meaning that it has addition
and multiplication defined on it, which satisfy all the axioms of
a field except for the axiom demanding the existence of inverses
of non-zero elements.

Consider the set of all expressions of the form p
q
, where p, q ∈

IK[t]; regard two such expressions, say pi

qi
, i = 1, 2 as being equiv-

alent if p1q2 = p2q1; it can then be verified that the collection of
all (equivalence classes of) such expressions forms a field IK(t),
with respect to the natural definitions of addition and multipli-
cation.

(4)If IK is any field, consider two possibilities: (a) char IK = 0;
in this case, it is not hard to see that the mapping Z 3 m →



220 APPENDIX A. APPENDIX

m · 1 ∈ IK is a 1-1 map, which extends to an embedding of the
field Q into IK via m

n
7→ (m · 1)(n · 1)−1; (b) char IK = p 6= 0; in

this case, we see that there is a natural embedding of the field
Zp into IK. In either case, the ‘subfield generated by 1’ is called
the prime field of IK; (thus, we have seen that this prime field
is isomorphic to Q or Zp, according as the characteristic of IK is
0 or p). 2

Before proceeding further, we first note that the definition of
a vector space that we gave in Definition 1.1.1 makes perfectly
good sense if we replace every occurrence of C in that definition
with IK - see Remark 1.1.2 - and the result is called a vector
space over the field IK.

Throughout this section, the symbol V will denote a vector
space over IK. As in the case of C, there are some easy examples
of vector spces over any field IK, given thus: for each positive
integer n, the set IKn = {(α1, · · · , αn) : αi ∈ IK ∀i} acquires the
structure of a vector space over IK with respect to coordinate-
wise definitions of vector addition and scalar mulitplication. The
reader should note that if IK = Zp, then Zn

p is a vector space with
pn elements and is, in particular, a finite set! (The vector spaces
Zn

2 play a central role in practical day-to-day affairs related to
computer programming, coding theory, etc.)

Recall (from §1.1) that a subset W ⊂ V is called a subspace
of V if x, y ∈ W,α ∈ IK ⇒ (αx+y) ∈ W . The following exercise
is devoted to a notion which is the counterpart, for vector spaces
and subspaces, of something seen several times in the course
of this text - for instance, Hilbert spaces and closed subspaces,
Banach algebras and closed subalgebras, C∗-algebras and C∗-
subalgebras, etc.; its content is that there exist two descriptions
- one existential, and one ‘constructive’ - of the ‘sub-object’ and
that both descriptions describe the same object.

Exercise A.1.5 Let V be a vector space over IK.
(a) If {Wi : i ∈ I} is any collection of subspaces of V , show

that ∩i∈IWi is a subspace of V .
(b) If S ⊂ V is any subset, define

∨
S = ∩ {W : W is a

subspace of V , and S ⊂ W}, and show that
∨

S is a subspace
which contains S and is the smallest such subspace; we refer
to

∨
S as the subspace generated by S; conversely, if W is
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a subspace of V and if S is any set such that W =
∨

S, we
shall say that S spans or generates W , and we shall call S a
spanning set for W .

(c) If S1 ⊂ S2 ⊂ V , then show that
∨

S1 ⊂
∨

S2.
(d) Show that

∨
S = {∑n

i=1 αixi : αi ∈ IK, xi ∈ S, n ∈ IN},
for any subset S of V . (The expression

∑n
i=1 αixi is called a

linear combination of the vectors x1, · · · , xn; thus the subspace
spanned by a set is the collection of all linear combinations of
vectors from that set.)

Lemma A.1.6 The following conditions on a set S ⊂ (V −{0})
are equivalent:

(i) if S0 is a proper subset of S, then
∨

S0 6=
∨

S;
(ii) if n ∈ IN, if x1, x2, · · · , xn are distinct elements of S, and

if α1, α2, · · · , αn ∈ IK are such that
∑n

i=1 αixi = 0, then αi = 0∀i.

A set S which satisfies the above conditions is said to be lin-
early independent; and a set which is not linearly independent
is said to be linearly dependent.

Proof : (i) ⇒ (ii) : If
∑n

i=1 αixi = 0, with x1, · · · , xn being
distinct elements of S and if some coefficient, say αj, is not 0,
then we find that xj =

∑
i6=j βixi, where βi = −αi

αj
; this implies

that
∨

(S − {xj}) =
∨

S, contradicting the hypothesis (i).
(ii) ⇒ (i) : Suppose (ii) is satisfied and suppose S0 ⊂ (S −

{x}; (thus S0 is a proper subset of S;) then we assert that x /∈∨
S0; if this assertion were false, we should be able to express x as

a linear combination, say x =
∑n

i=1 βixi, where x1, · · · , xn are ele-
ments of S0, where we may assume without loss of generality that
the xi’s are all distinct; then, setting x = x0, α0 = 1, αi = −βi

for 1 ≤ i ≤ n, we find that x0, x1, · · · , xn are distinct elements
of S and that the αi’s are scalars not all of which are 0 (since
α0 6= 0), such that

∑n
i=0 αixi = 0, contradicting the hypothesis

(ii). 2

Proposition A.1.7 Let S be a subset of a vector space V ; the
following conditions are equivalent:

(i) S is a minimal spanning set for V ;
(ii) S is a maximal linearly independent set in V .
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A set S satisfying these conditions is called a (linear) basis for
V .

Proof : (i) ⇒ (ii) : The content of Lemma A.1.6 is that if
S is a minimal spanning set for

∨
S, then (and only then) S is

linearly independent; if S1 ⊃ S is a strictly larger set than S,
then we have V =

∨
S ⊂ ∨

S1 ⊂ V , whence V =
∨

S1; since S
is a proper subset of S1 such that

∨
S =

∨
S1, it follows from

Lemma A.1.6 that S1 is not linearly independent; hence S is
indeed a maximal linearly independent subset of V .

(ii) ⇒ (i) : Let W =
∨

S; suppose W 6= V ; pick x ∈ V − W ;
we claim that S1 = S ∪ {x} is linearly independent; indeed,
suppose

∑n
i=1 αixi = 0, where x1, · · · , xn are distinct elements

of S1, and not all αi’s are 0; since S is assumed to be linearly
independent, it must be the case that there exists an index i ∈
{1, · · · , n} such that x = xi and αi 6= 0; but this would mean
that we can express x as a linear combination of the remaining
xj’s, and consequently that x ∈ W , conradicting the choice of x.
Thus, it must be the case that S is a spanning set of V , and since
S is linearly independent, it follows from Lemma A.1.6 that in
fact S must be a minimal spanning set for V . 2

Lemma A.1.8 Let L = {x1, · · · , xm} be any linearly indepen-
dent set in a vector space V , and let S be any spanning set for
V ; then there exists a subset S0 ⊂ S such that (i) S − S0 has
exactly m elements and (ii) L∪ S0 is also a spanning set for V .

In particular, any spanning set for V has at least as many
elements as any linearly independent set.

Proof : The proof is by induction on m. If m = 1, since
x1 ∈ V =

∨
S, there exist a decomposition x1 =

∑n
j=1 αjyj,

with yj ∈ S. Since x1 6= 0 (why?), there must be some j
such that αjyj 6= 0; it is then easy to see (upon dividing the
previous equation by αj - which is non-zero - and rearranging
the terms of the resulting equation appropriately) that yj ∈∨{y1, · · · , yj−1, x1, yj+1, · · · , yn}, so that S0 = S − {yj} does the
job.

Suppose the lemma is valid when L has (m−1) elements; then
we can, by the induction hypothesis - applied to L − {xm} and
S - find a subset S1 ⊂ S such that S − S1 has (m− 1) elements,
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and such that
∨

(S1 ∪{x1, · · · , xm−1}) = V . In particular, since
xm ∈ V , this means we can find vectors yj ∈ S1 and scalars
αi, βj ∈ IK, for i < m, j ≤ n, such that xm =

∑m−1
i=1 αixi +∑n

j=1 βjyj. The assumed linear independence of L shows that
(xm 6= 0 and hence that) βj0yj0 6= 0, for some j0. As in the
last paragraph, we may deduce from this that yj0 ∈ ∨

({yj :
1 ≤ j ≤ n, j 6= j0} ∪ {x1, · · · , xm}; this implies that V =∨

(S1 ∪ {x1, · · · , xm−1}) =
∨

(S0 ∪ L), where S0 = S1 − {yj0},
and this S0 does the job. 2

Exercise A.1.9 Suppose a vector space V over IK has a basis
with n elements, for some n ∈ IN. (Such a vector space is said
to be finite-dimensional.) Show that:

(i) any linearly independent set in V has at most n elements;
(ii) any spanning set for V has at least n elements;
(iii) any linearly independent set in V can be ‘extended’ to a

basis for V .

Corollary A.1.10 Suppose a vector space V over IK admits a
finite spanning set. Then it has at least one basis; further, any
two bases of V have the same number of elements.

Proof : If S is a finite spanning set for V , it should be
clear that (in view of the assumed finiteness of S that) S must
contain a minimal spanning set; i.e., S contains a finite basis -
say B = {v1, · · · , vn} - for V (by Proposition A.1.7).

If B1 is any other basis for V , then by Lemma A.1.8, (applied
with S = B and L as any finite subset of B1) we find that B1

is finite and has at most n elements; by reversing the roles of B
and B1, we find that any basis of V has exactly n elements. 2

It is a fact, which we shall prove in §A.2, that every vector
space admits a basis, and that any two bases have the same
‘cardinality’, meaning that a bijective correspondence can be
established between any two bases; this common cardinality is
called the (linear) dimension of the vector space, and denoted
by dimIKV .

In the rest of this section, we restrict ourselves to finite-
dimensional vector spaces. If {x1, · · · , xn} is a basis for (the
n-dimensional vector space) V , we know that any element x of
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V may be expressed as a linear combination
∑n

i=1 αixi; the fact
that the xi’s form a linearly independent set, ensures that the
coefficients are uniquely determined by x; thus we see that the

mapping IKn 3 (α1, · · · , αn)
T7→ ∑n

i=1 αixi ∈ V establishes a bi-
jective correspondence between IKn and V ; this correspondence
is easily see to be a linear isomorphism - i.e., the map T is 1-1
and onto, and it satisfies T (αx + y) = αTx + Ty, for all α ∈ IK
and x, y ∈ IKn.

As in the case of C, we may - and will - consider linear trans-
formations between vector spaces over IK; once we have fixed
bases B1 = {v1, · · · , vn} and B2 = {w1, · · · , wm} for the vector
spaces V and W respectively, then there is a 1-1 correspondence
between the set L(V,W ) of (IK-) linear transformations from V
to W on the one hand, and the set Mm×n(IK) of m× n matrices
with entries coming from IK, on the other; the linear transforma-
tion T ∈ L(V,W ) corresponds to the matrix ((tij)) ∈ Mm×n(IK)
precisely when Tvj =

∑m
i=1 tijwi for all j = 1, 2, · · · , n. Again, as

in the case of C, when V = W , we take B2 = B1, and in this case,
the assignment T 7→ ((tij)) sets up a linear isomorphism of the
(IK-) vector space L(V ) onto the vector space Mn(IK), which is
an isomorphism of IK-algebras - meaning that if products in L(V )
and Mn(IK) are defined by composition of transformations and
matrix-multiplication (defined exactly as in Exercise 1.3.1(7)(ii))
respectively, then the passage (defined above) from linear trans-
formations to matrices respects these products. (In fact, this is
precisely the reason that matrix multiplication is defined in this
manner.)

Thus the study of linear transformations on an n-dimensional
vector space over IK is exactly equivalent - once we have chosen
some basis for V - to the study of n × n matrices over IK.

We conclude this section with some remarks concerning de-
terminants. Given a matrix A = ((ai

j)) ∈ Mn(IK), the determi-
nant of A is a scalar (i.e., an element of IK), usually denoted by
the symbol det A, which captures some important features of the
matrix A. In case IK = R, these features can be quantified as
consisting of two parts: (a) the sign (i.e., positive or negative) of
det A determines whether the linear transformation of Rn cor-
responding to A ‘preserves’ or ‘reverses’ the ‘orientation’ in Rn;
and (b) the absolute value of det A is the quantity by which
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volumes of regions in Rn get magnified under the application of
the transformation corresponding to A.

The group of permutations of the set {1, 2, · · · , n} is denoted
Sn; as is well known, every permutation is expressible as a prod-
uct of transpositions (i.e., those which interchange two letters
and leave everything else fixed); while the expression of a per-
mutation as a product of transpositions is far from unique, it is
nevertheless true - see [Art], for instance - that the number of
transpositions needed in any decomposition of a fixed σ ∈ Sn is
either always even or always odd; a permutation is called even or
odd depending upon which of these possibilities occurs for that
permutation. The set An of even permutations is a subgroup
of Sn which contains exactly half the number of elements of Sn;
i.e., An has ‘index’ 2 in Sn.

The so-called alternating character of Sn is the function
defined by

Sn 3 σ 7→ εσ =

{
1 if σ ∈ An

−1 otherwise
, (A.1.1)

which is easily seen to be a homomorphism from the group Sn

into the multiplicative group {+1,−1}.
We are now ready for the definition of the determinant.

Definition A.1.11 If A = ((ai
j)) ∈ Mn(IK), the determinant

of A is the scalar defined by

det A =
∑

σ∈Sn

εσ

n∏

i=1

ai
σ(i) .

The best way to think of a determinant stems from viewing a
matrix A = ((ai

j)) ∈ Mn(IK) as the ordered tuple of its rows; thus
we think of A as (a1, a2, · · · , an) where ai = (ai

1, · · · , ai
n) denotes

the i-th row of the matrix A. Let R : IKn× n terms· · · ×IKn →
Mn(IK) denote the map given by R(a1, · · · , an) = ((ai

j)), and let

D : IKn× n terms· · · ×IKn → IK be defined by D = det ◦ R. Then,
R is clearly a linear isomorphism of vector spaces, while D is
just the determinant mapping, but when viewed as a mapping

from IKn× n terms· · · ×IKn into IK.
We list some simple consequences of the definitions in the

following proposition.
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Proposition A.1.12 (1) If A′ denotes the transpose of the ma-
trix A, then det A = det A′.

(2) The mapping D is an ‘alternating multilinear form’: i.e.,
(a) if x1, · · · , xn ∈ IKn and σ ∈ Sn are arbitrary, then,

D(xσ(1), · · · , xσ(n)) = εσD(x1, x2, · · · , xn) ;

and
(b) if all but one of the n arguments of D are fixed, then D is

linear as a function of the remining argument; thus, for instance,
if x1, y1, x2, x3, · · · , xn ∈ IKn and α ∈ IK are arbitrary, then

D(αx1 +y1, x2, · · · , xn) = αD(x1, x2, · · · , xn)+D(y1, x2, · · · , xn).

Proof : (1) Let B = A′, so that bi
j = aj

i∀i, j. Since σ 7→ σ−1

is a bijection of SN such that εσ = εσ−1 ∀σ ∈ Sn, we have

det A =
∑

σ∈Sn

εσ

n∏

i=1

ai
σ(i)

=
∑

σ∈Sn

εσ

n∏

j=1

a
σ−1(j)
j

=
∑

σ∈Sn

εσ−1

n∏

i=1

bi
σ−1(i)

=
∑

π∈Sn

επ

n∏

i=1

bi
π(i)

= det B ,

as desired.
(2) (a) Let us write yi = xσ(i) . Then,

D(xσ(1), · · · , xσ(xn)) = D(y1, · · · , yn)

=
∑

π∈Sn

επ

n∏

i=1

yi
π(i)

=
∑

π∈Sn

επ

n∏

i=1

x
σ(i)
π(i)

=
∑

π∈Sn

επ

n∏

j=1

xj

π(σ−1(j))

=
∑

τ∈Sn

ετ εσ

n∏

j=1

xj
τ(j)

= εσ D(x1, · · · , xn) .
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(b) This is an immediate consequence of the definition of the
determinant and the distributive law in IK. 2

Exercise A.1.13 (a) Show that if x1, · · · , xn ∈ IKn are vectors
which are not all distinct, then D(x1, · · · , xn) = 0. (Hint: if
xi = xj, where i 6= j, let τ ∈ Sn be the transposition (ij), which
switches i and j and leaves other letters unaffected; then, on the
one hand ετ = −1, while on the other, xτ(k) = xk ∀k; now appeal
to the alternating character of the determinant, i.e., Proposition
A.1.12(1).)

(b) Show that if the rows of a matrix are linearly dependent,
then its determinant must vanish. (Hint: if the i-th row is a
linear combination of the other rows, use multilinearity of the
determinant (i.e., Proposition A.1.12(2)) and (a) of this exer-
cise.)

(c) Show that if a matrix A is not invertible, then det A = 0.
(Hint: note that the transpose matrix A′ is also not invertible,
deduce from Exercise 1.3.1(4)(iii) that the (columns of A′, or
equivalently) the rows of A are linearly dependent; now use (b)
above.

The way one computes determinants in practice is by ‘ex-
panding along rows’ (or columns) as follows: first consider the
sets X i

j = {σ ∈ Sn : σ(i) = j}, and notice that, for each
fixed i, Sn is partitioned by the sets X i

1, · · · , X i
n. Suppose A =

((ai
j)) ∈ Mn(IK); for arbitrary i, j ∈ {1, 2, · · · , n}, let Ai

j denote
the (n − 1) × (n − 1) matrix obtained by deleting the i-th row
and the j-th column of A. Notice then that, for any fixed i, we
have

det A =
∑

σ∈Sn

εσ

n∏

k=1

ak
σ(k)

=
n∑

j=1

ai
j




∑

σ∈Xi
j

εσ

n∏

k=1

k 6=i

ak
σ(k)


 . (A.1.2)

After some careful book-keeping involving several changes of
variables, it can be verified that the sum within the parentheses
in equation A.1.2 is nothing but (−1)i+j det Ai

j, and we find
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the following useful prescription for computing the determinant,
which is what we called ‘expanding along rows’:

det A =
n∑

j=1

(−1)i+jai
j det Ai

j , ∀ i . (A.1.3)

An entirely similar reasoning (or an adroit application of
Proposition A.1.12(1) together with equation A.1.3) shows that
we can also ‘expand along columns’: i.e.,

det A =
n∑

i=1

(−1)i+jai
j det Ai

j , ∀ i . (A.1.4)

We are now ready for one of the most important features of
the determinant.

Proposition A.1.14 A matrix is invertible if and only if det A
6= 0; in case det A 6= 0, the inverse matrix B = A−1 is given by
the formula

bi
j = (−1)i+j(det A)−1 det Aj

i .

Proof : That a non-invertible matrix must have vanishing
determinant is the content of Exercise A.1.13. Suppose con-
versely that d = det A 6= 0. Define bi

j = (−)i+j 1
d

det Aj
i . We

find that if C = AB, then ci
j =

∑n
k=1 ai

kb
k
j , ∀i, j. It follows

directly from equation A.1.3 that ci
i = 1 ∀i. In order to show

that C is the identity matrix, we need to verify that

n∑

k=1

(−1)k+j ai
k det Aj

k = 0 , ∀i 6= j. (A.1.5)

Fix i 6= j and let P be the matrix with l-th row pl, where

pl =

{
al if l 6= j
ai if l = j

and note that (a) the i-th and j-th rows of P are identical (and
equal to ai) - which implies, by Exercise A.1.13 that det P = 0;
(b) P j

k = Aj
k ∀k, since P and A differ only in the j-th row; and (c)

pj
k = ai

k ∀k. Consequently, we may deduce that the expression
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on the left side of equation A.1.5 is nothing but the expansion,
along the j-th row of the determinant of P , and thus equation
A.1.5 is indeed valid.

Thus we have AB = I; this implies that A is onto, and since
we are in finite dimensions, we may conclulde that A must also
be 1-1, and hence invertible. 2

The second most important property of the determinant is
contained in the next result.

Proposition A.1.15 (a) If A,B ∈ Mn(IK), then

det(AB) = (det A)(det B) .

(b) If S ∈ Mn(IK) is invertible, and if A ∈ Mn(IK), then

det (SAS−1) = det A . (A.1.6)

Proof : (a) Let AB = C and let ai, bi and ci denote the i-th
row of A,B and C respectively; then since ci

j =
∑n

k=1 ai
kb

k
j , we

find that ci =
∑n

k=1 ai
kb

k. Hence we see that

det (AB) = D(c1, · · · , cn)

= D(
n∑

k1=1

a1
k1

bk1 , · · · ,
n∑

kn=1

an
kn

bkn)

=
n∑

k1,···,kn=1

a1
k1
· · · an

kn
D(bk1 , · · · , bkn)

=
∑

σ∈Sn

(
n∏

i=1

ai
σ(i))D(bσ(1), · · · , bσ(n))

=
∑

σ∈Sn

(
n∏

i=1

ai
σ(i))εσD(b1, · · · , bn)

= (det A)(det B)

where we have used (i) the multilinearity of D (i.e., Proposition
A.1.12(2)) in the third line, (ii) the fact that D(xi, · · · , xn) = 0
if xi = xj for some i 6= j, so that D(bk1 , · · · , bkn) can be non-zero
only if there exists a permutation σ ∈ Sn such that σ(i) = ki ∀i,
in the fourth line, and (iii) the fact that D is alternating (i.e.,
Proposition A.1.12(1)) in the fifth line.
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(b) If I denotes the identity matrix, it is clear that det I = 1;
it follows from (a) that det S−1 = (det S)−1, and hence the
desired conclusion (b) follows from another application of (a)
(to a triple-product). 2

The second part of the preceding proposition has the impor-
tant consequence that we can unambiguously talk of the deter-
minant of a linear transformation of a finite-dimensional vector
space into itself.

Corollary A.1.16 If V is an n-dimensional vector space over
IK, if T ∈ L(V ), if B1 = {x1, · · · , xn} and B2 = {y1, · · · , yn} are
two bases for V , and if A = [T ]B1 , B = [T ]B2 are the matrices
representing T with respect to the basis Bi, for i = 1, 2, then there
exists an invertible matrix S ∈ Mn(IK) such that B = S−1AS,
and consequently, det B = det A.

Proof : Consider the unique (obviously invertible) linear
transformation U ∈ L(V ) with the property that Uxj = yj, 1 ≤
j ≤ n. Let A = ((ai

j)), B = ((bi
j)), and let S = ((si

j)) = [U ]B2
B1

be
the matrix representing U with respect to the two bases (in the
notation of Exercise 1.3.1(7)(i)); thus, by definition, we have:

Txj =
n∑

i=1

ai
jxi

Tyj =
n∑

i=1

bi
jyi

yj =
n∑

i=1

si
jxi ;

deduce that

Tyj =
n∑

i=1

bi
jyi

=
n∑

i,k=1

bi
js

k
i xk

=
n∑

k=1

(
n∑

i=1

sk
i b

i
j

)
xk ,
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while, also

Tyj = T

(
n∑

i=1

si
jxi

)

=
n∑

i=1

si
jTxi

=
n∑

i,k=1

si
ja

k
i xk

=
n∑

k=1

(
n∑

i=1

ak
i s

i
j

)
xk ;

conclude that
[T ]B2

B1
= SB = AS .

Since S is invertible, we thus have B = S−1AS, and the proof
of the corollary is complete (since the last statement follows from
Proposition A.1.15(b)). 2

Hence, given a linear transformation T ∈ L(V ), we may un-
ambiguously define the determinant of T as the determinant of
any matrix which represents T with respect to some basis for V ;
thus, det T = det [T ]BB, where B is any (ordered) basis of V . In
particular, we have the following pleasant consequence.

Proposition A.1.17 Let T ∈ L(V ); define the characteristic
polynomial of T by the equation

pT (λ) = det (T − λ1V ) , λ ∈ IK (A.1.7)

where 1V denotes the identity operator on V . Then the following
conditions on a scalar λ ∈ IK are equivalent:

(i) (T − λ1V ) is not invertible;
(ii) there exists a non-zero vector x ∈ V such that Tx = λx;
(iii) pT (λ) = 0.

Proof : It is easily shown, using induction and expansion of
the determinant along the first row (for instance), that pT (λ) is
a polynomial of degree n, with the coefficient of λn being (−1)n.

The equivalence (i) ⇔ (iii) is an immediate consequence of
Corollary A.1.16, Proposition A.1.14. The equivalence (i) ⇔ (ii)
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is a consequence of the fact that a 1-1 linear transformation of a
finite-dimensional vector space into itself is necessarily onto and
hence invertible. (Reason: if B is a basis for V , and if T is 1-1,
then T (B) is a linearly independent set with n elements in the
n-dimensional space, and any such set is necessarily a basis.) 2

Definition A.1.18 If T, λ, x are as in Proposition A.1.17(ii),
then λ is said to be an eigenvalue of T , and x is said to be an
eigenvector of T corresponding to the eigenvalue λ.

We conclude this section with a couple of exercises.

Exercise A.1.19 Let T ∈ L(V ), where V is an n-dimensional
vector space over IK.

(a) Show that there are at most n distinct eigenvalues of T .
(Hint: a polynomial of degree n with coefficients from IK cannot
have (n + 1) distinct roots.)

(b) Let IK = R, V = R2 and let T denote the transformation
of rotation (of the plane about the origin) by 90o in the counter-
clockwise direction.

(i) Show that the matrix of T with respect to the standard
basis B = {(1, 0), (0, 1)} is given by the matrix

[T ]B =

[
0 −1
1 0

]
,

and deduce that pT (λ) = λ2 + 1. Hence, deduce that T has no
(real) eigenvalue.

(ii) Give a geometric proof of the fact that T has no (real)
eigenvalue.

(c) Let p(λ) = (−1)nλn +
∑n−1

k=0 αkλ
k be any polynomial

of degree n with leading coefficient (−1)n. Show that there ex-
ists a linear transformation on any n-dimensional space with the
property that pT = p. (Hint: consider the matrix

A =




0 0 0 0 · · · 0 β0

1 0 0 0 · · · 0 β1

0 1 0 0 · · · 0 β2

0 0 1 0 · · · 0 β3
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 βn−1




,
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wher βj = (−1)n+1αj, ∀0 ≤ j < n.)

(d) Show that the following conditions on IK are equivalent:

(i) every non-canstant polynomial p with coefficients from IK
has a root - i.e., there exists an α ∈ IK such that p(α) = 0;

(ii) every linear transformation on a finite-dimensional vec-
tor space over IK has an eigenvalue.

(Hint: Use Proposition A.1.17 and (c) of this exercise).

A.2 Transfinite considerations

One of the most useful arguments when dealing with ‘infinite
constructions’ is the celebrated Zorn’s lemma, which is equiv-
alent to one of the basic axioms of set theory, the ‘Axiom of
Choice’. The latter axiom amounts to the statement that if
{Xi : i ∈ I} is a non-empty collection of non-empty sets, then
their Cartesian product

∏
i∈I Xi is also non-empty. It is a curious

fact that this axiom is actually equivalent to Tychonoff’s theo-
rem on the compactness of the Cartesian product of compact
spaces; in any case, we just state Zorn’s Lemma below, since the
question of ‘proving’ an axiom does not arise, and then discuss
some of the typical ways in which it will be used.

Lemma A.2.1 (Zorn’s lemma) Suppose a non-empty partially
ordered set (P ,≤) satisfies the following condition: every totally
ordered set in P has an upper bound (i.e., whenever C is a subset
of P with the property that any two elements of C are comparable
- meaning that if x, y ∈ C, then either x ≤ y or y ≤ x - then
there exists an element z ∈ P such that x ≤ z ∀x ∈ C).

Then P admits a maximal element - i.e., there exists an
element z ∈ P such that if x ∈ P and z ≤ x, then necessarily
x = z.

A prototypical instance of the manner in which Zorn’s lemma
is usually applied is contained in the proof of the following result.

Proposition A.2.2 Every vector space (over an arbitrary field
IK), with the single exception of V = {0}, has a basis.
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Proof : In view of Proposition A.1.7, we need to establish
the existence of a maximal linearly independent subset of the
given vector space V .

Let P denote the collection of all linearly independent subsets
of V . Clearly the set P is partially ordered with respect to
inclusion. We show now that Zorn’s lemma is applicable to this
situation.

To start with, P is not empty. This is because V is assumed
to be non-zero, and so, if x is any non-zero vector in V , then
{x} ∈ P.

Next, suppose C = {Si : i ∈ I} is a totally ordered subset
of P ; thus for each i ∈ I, we are given a linearly independent
set Si in P ; we are further told that whenever i, j ∈ I, either
Si ⊂ Sj or Sj ⊂ Si. Let S = ∪i∈I Si; we contend that S is
a linearly independent set; for, suppose

∑n
k=1 αkxk = 0 where

n ∈ IN, αk ∈ IK and xk ∈ S for 1 ≤ k ≤ n; by definition,
there exist indices ik ∈ I such that xk ∈ Sik∀k; the assumed
total ordering on C clearly implies that we may assume, after
re-labelling, if necessary, that Si1 ⊂ Si2 ⊂ · · · ⊂ Sin . This means
that xk ∈ Sin ∀ 1 ≤ k ≤ n; the assumed linear independence
of Sin now shows that αk = 0 ∀ 1 ≤ k ≤ n. This establishes
our contention that S is a linearly independent set. Since Si ⊂
S ∀ i ∈ I, we have in fact verified that the arbitrary totally
ordered set C ⊂ P admits an upper bound, namely S.

Thus, we may conclude from Zorn’s lemma that there exists a
maximal element, say B, in P ; i.e., we have produced a maximal
linearly independent set, namely B, in V , and this is the desired
basis. 2

The following exercise lists a couple of instances in the body
of this book where Zorn’s lemma is used. In each case, the
solution is an almost verbatim repetition of the above proof.

Exercise A.2.3 (1) Show that every Hilbert space admits an
orthonormal basis.

(2) Show that every (proper) ideal in a unital algebra is con-
tained in a maximal (proper) ideal. (Hint: If I is an ideal in
an algebra A, consider the collection P of all ideals of A which
contain I; show that this is a non-empty set which is partially
ordered by inclusion; verify that every totally ordered set in P
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has an upper bound (namely the union of its members); show
that a maximal element of P is necessarily a maximal ideal in
A.)

The rest of this section is devoted to an informal discussion
of cardinal numbers. We will not be very precise here, so as
to not get into various logical technicalities. In fact we shall not
define what a cardinal number is, but we shall talk about the
cardinality of a set.

Loosely speaking, we shall agree to say that two sets have the
same cardinality if it is possible to set up a 1-1 correspondence
between their members; thus, if X,Y are sets, and if there exists
a 1-1 function f which maps X onto Y , we shall write |X| = |Y |
(and say that X and Y have the same cardinality). When this
happens, let us agree to also write X ∼ Y .

Also, we shall adopt the convention that the symbol
∐

i∈I Xi

(resp., A
∐

B) denotes the union of a collection of (resp., two)
sets which are pairwise disjoint.

We come now to an elementary proposition, whose obvious
proof we omit.

Proposition A.2.4 If X =
∐

i∈I Xi and Y =
∐

i∈I Yi are
partitions of two sets such that |Xi| = |Yi| ∀ i ∈ I, then also
|X| = |Y |.

Thus, ‘cardinality is a completely additive function’ (just as
a measure is a countably additive function, while there is no
‘countability restriction’ now).

More generally than before, if X and Y are sets, we shall
say that |X| ≤ |Y | if there exists some subset Y0 ⊂ Y such
that |X| = |Y0|. It should be clear that ‘≤ ’ is a reflexive (ie.,
|X| ≤ |X| ∀X) and transitive (i.e., |X| ≤ |Y | and |Y | ≤ |Z|
imply |X| ≤ |Z|) relation.

The next basic fact is the so-called Schroeder-Bernstein
theorem, which asserts that ‘≤ ’ is an anti-symmetric relation.
(We are skirting close to serious logical problems here - such as:
what is a cardinal number? does it make sense to talk of the set of
all cardinal numbers? etc.; but we ignore such questions and hide
behind the apology that we are only speaking loosely, as stated
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earlier. The reader who wants to know more about such logical
subtleties might look at [Hal], for instance, for a primer, as well
as an introduction to more serious (and less ‘naive’) literature,
on the subject.)

Theorem A.2.5 Let X and Y be sets. Then,

|X| ≤ |Y |, |Y | ≤ |X| ⇒ |X| = |Y | .

Proof : The hypothesis translates into the existence of 1-1
functions f : X → Y and g : Y → X; to prove the theorem, we
need to exhibit a 1-1 function which maps X onto Y .

Let g(Y ) = Y0. Set h = g ◦ f . Then h is a 1-1 map of X
into itself. Define Xn = h(n)(X) and Yn = h(n)(Y0), where h(n)

denotes the composition of h with itself n times. The definitions
imply that

X = X0 ⊃ Y0 ⊃ X1 ⊃ Y1 ⊃ · · · ,

and consequently, we see that

X∞ = ∩∞
n=1 Xn = ∩∞

n=1 Yn .

It follows that we have the following partitions of X and Y0

respectively:

X =

( ∞∐

n=0

(Xn − Yn)

) ∐ ( ∞∐

n=0

(Yn − Xn+1)

) ∐
X∞

Y0 =

( ∞∐

n=0

(Yn − Xn+1)

) ∐ ( ∞∐

n=1

(Xn − Yn)

) ∐
X∞ ;

consider the function φ : X = X0 → Y0 defined by

φ(x) =

{
h(x) if x /∈ X∞
x if x ∈ X∞

It is clear that φ is a bijection and consequently, g−1 ◦ φ is
a bijection of X onto Y (where, of course, g−1 denotes the map
from Y0 to Y which is the inverse of the bijection g : Y → Y0).

2

The next step is to show that ≤ ′ is a ‘total order’.
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Lemma A.2.6 Let X and Y be arbitrary sets. Then, either
|X| ≤ |Y | or |Y | ≤ |X|.

Proof : Assume, without loss of generality, that both X
and Y are non-empty sets. In particular, there exists (singleton)
subsets X0 ⊂ X,Y0 ⊂ Y such that |X0| = |Y0|.

Let P = {(A, f,B) : A ⊂ X,B ⊂ Y, and f : A → B is
a bijection}. Then by the previous paragraph, P 6= ∅. Define
an ordering on P as follows: if (A, f,B), (C, g,D) ∈ P, say that
(A, f,B) ≤ (C, g,D) if it is the case that A ⊂ C and that g|A = f
(so that, in particular, we should also have B ⊂ D).

It should be easy to see that this defines a partial order on P ;
further, if C = {(Ai, fi, Bi) : i ∈ I} is a totally ordered set in P ,
it should be clear that if we define A = ∪i∈IAi and B = ∪i∈IBi,
then there exists a unique map f of A onto B with the property
that f |Ai

= fi; in other words, (A, f,B) is an upper bound for
P .

Thus Zorn’s lemma is applicable; if (X0, f, Y0) is a maximal
element of P - whose existence is assured by Zorn’s lemma - then
it cannot be the case that both X−X0 and Y −Y0 are non-empty;
for, in that case, we could arbitrarily pick x ∈ X−X0, y ∈ Y −Y0,
and define the bijection F of A = X0 ∪ {x} onto B = Y0 ∪ {y}
by F (x) = y and F |X0 = f ; then the element (A,F,B) would
contradict the maximality of (X0, f, Y0).

In conclusion, either X0 = X (in which case |X| ≤ |Y |) or
Y0 = Y (in which case |Y | ≤ |X|). 2

Definition A.2.7 A set X is said to be infinite if there exists
a proper subset X0 ⊂ X (and X0 6= X) such that |X| = |X0|.
(Thus X is infinite if and only if there exists a 1-1 finction of X
onto a proper subset of itself.)

A set X is said to be finite if it is not infinite.

Lemma A.2.8 A set X is infinite if and only if |IN| ≤ |X|.

Proof : Suppose X is an infinite set; then there exists a 1-1
function f : X → X−{x0}, for some x0 ∈ X. Inductively define
xn+1 = f(xn) for all n = 0, 1, 2, · · ·. If we set Xn = f (n)(X),
where f (n) denotes the composition of f with itself n times, it
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follows that xn ∈ Xn − Xn+1 ∀n, whence xn 6= xm ∀n 6= m; i.e.,
the map n 7→ xn is a 1-1 map of IN into X and hence |IN| ≤ |X|.

Conversely, if g : IN → X is a 1-1 map, consider the map
f : X → X defined by

f(x) =

{
g(n + 1) if x = g(n)
x if x /∈ g(IN)

and note that f : X → X − {g(1)} is a 1-1 map, whence X is
infinite. 2

The following bit of natural notation will come in handy; if
X and Y are sets, let us write |X| < |Y | if it is the case that
|X| ≤ |Y | and |X| 6= |Y |.

The next result is a sort of ‘Euclidean algorithm’ for general
cardinal numbers.

Proposition A.2.9 Let X and Y be arbitrary sets. Suppose Y
is not empty. Then, there exists a partition

X =

(∐

i∈I

Xi

) ∐
R , (A.2.8)

where I is some (possibly empty) index set, such that |Xi| =
|Y | ∀ i ∈ I, and |R| < |Y |; further, if I is infinite, then there
exists a (possibly different) partition X =

∐
i∈I Yi with the

property that |Y | = |Yi| ∀i ∈ I. (The R in equation A.2.8 is
supposed to signify the ‘remainder after having divided X by Y ’.)

Proof : If it is not true that |Y | ≤ |X|, then, by Lemma
A.2.6, we must have |X| < |Y | and we may set I = ∅ and
R = X to obtain a decomposition of the desired sort.

So suppose |Y | ≤ |X|. Let P denote the collection of all
families S = {Xi : i ∈ I} of pairwise disjoint subsets of X,
where I is some non-empty index set, with the property that
|Xi| = |Y | ∀i ∈ I. The assumption |Y | ≤ |X| implies that
there exists X0 ⊂ X such that |Y | = |X0|; thus {X0} ∈ P, and
consequently P is non-empty.

It should be clear that P is partially ordered by inclusion,
and that if C = {Sλ : λ ∈ Λ} is a totally ordered set in P , then
S = ∪λ∈ΛSλ is an element of P which is ‘greater than or equal
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to’ (i.e., contains) each member Sλ of C. Thus, every totally
ordered set in P has an upper bound.

Hence, by Zorn’s lemma, there exists a maximal element in
P , say S = {Xi : i ∈ I}. Let R = X − (

∐
i∈I Xi). Clearly, then,

equation A.2.8 is satisfied. Further, if it is not the case that
|R| < |Y |, then, by Lemma A.2.6, we must have |Y | = |A|, with
A ⊂ R; but then the family S ′ = S ∪ {A} would contradict
the maximality of S. This contradiction shows that it must have
been the case that |R| < |Y |, as desired.

Finally, suppose we have a decomposition as in equation
A.2.8, such that I is infinite. Then, by Lemma A.2.8, we can
find a subset I0 = {in : n ∈ IN}, where in 6= im ∀n 6= m. Since
|R| ≤ |Xi1 |, we can find a subset R0 ⊂ Xi1 such that |R| = |R0|;
notice now that

|Xin | = |Xin+1 | ∀ n ∈ IN

|Xi| = |Xi| ∀ i ∈ I − I0

|R| = |R0|
and deduce from Proposition A.2.4 that

|X| = |
( ∞∐

n=1

Xin

) ∐

 ∐

i∈(I−I0)

Xi


 ∐

R|

= |
( ∞∐

n=2

Xin

) ∐

 ∐

i∈(I−I0)

Xi


 ∐

R0| ; (A.2.9)

since the set on the right of equation A.2.9 is clearly a subset
of Z =

∐
i∈I Xi, we may deduce - from Theorem A.2.5 - that

|X| = |Z|; if f : Z → X is a bijection (whose existence is thus
guaranteed), let Yi = f(Xi) ∀i ∈ I; these Yi’s do what is wanted
of them. 2

Exercise A.2.10 (0) Show that Proposition A.2.9 is false if Y
is the empty set, and find out where the non-emptiness of Y was
used in the proof presented above.

(1) Why is Proposition A.2.9 a generalisation of the Eu-
clidean algorithm (for natural numbers)?

Proposition A.2.11 A set X is infinite if and only if X is
non-empty and there exists a partition X = =

∐∞
n=1 An with

the property that |X| = |An| ∀n.
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Proof : We only prove the non-trivial (‘only if’) implication.

Case (i) : X = IN.
Consider the following listing of elements of IN × IN:

(1, 1); (1, 2), (2, 1); (1, 3), (2, 2), (3, 1); (1, 4), · · · , (4, 1); · · · ;

this yields a bijection f : IN → IN× IN; let An = f−1({n}× IN);
then IN =

∐
n∈IN An and |An| = |IN| ∀n ∈ IN.

Case (ii) : X arbitrary.
Suppose X is infinite. Thus there exists a 1-1 function f of

X onto a proper subset X1 ⊂ X; let Y = X −X1, which is non-
empty, by hypothesis. Inductively define Y1 = Y, and Yn+1 =
f(Yn); note that {Yn : n = 1, 2, · · ·} is a sequence of pairwise
disjoint subsets of X with |Y | = |Yn| ∀n. By case (i), we may
write IN =

∐∞
n=1 An, where |An| = |IN| ∀n. Set Wn =

∐
k∈An

Yk,
and note that |Wn| = |Y × IN| ∀n. Set R = X − ∪∞

n=0Yn, and
observe that X = (

∐∞
n=1 Wn)

∐
R.

Deduce - from the second half of Proposition A.2.9(b) - that
there exists an infinite set I such that |X| = |Y ×IN×I|. Observe
now that Y ×IN×I =

∐∞
n=1 (Y ×An×I), and that |Y ×IN×I| =

|Y × An × I|, ∀n.
Thus, we find that we do indeed have a partition of the form

X =
∐∞

n=1 Xn, where |X| = |Xn| ∀n, as desired. 2

The following Corollary follows immediately from Proposi-
tion A.2.11, and we omit the easy proof.

Corollary A.2.12 If X is an infinite set, then |X×IN| = |X|.

It is true, more generally, that if X and Y are infinite sets
such that |Y | ≤ |X|, then |X × Y | = |X|; we do not need this
fact and so we do not prove it here. The version with Y = IN is
sufficient, for instance, to prove the fact that makes sense of the
dimension of a Hilbert space.

Proposition A.2.13 Any two orthonormal bases of a Hilbert
space have the same cardinality, and consequently, it makes sense
to define the dimension of the Hilbert space H as the ‘cardinal-
ity’ of any orthonormal basis.
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Proof : Suppose {ei : i ∈ I} and {fj : j ∈ J} are two
orthonormal bases of a Hilbert space H.

First consider the case when I or J is finite. Then, the con-
clusion that |I| = |J | is a consequence of Corollary A.1.10.

We may assume, therefore, that both I and J are infinite.
For each i ∈ I, since {fj : j ∈ J} is an orthonormal set,

we know, from Bessel’s inequality - see Proposition 2.3.3 - that
the set Ji = {j ∈ J : 〈ei, fj〉 6= 0} is countable. On the other
hand, since {ei : i ∈ I} is an orthonormal basis, each j ∈ J must
belong to at least one Ji (for some i ∈ I). Hence J = ∪i∈IJi.
Set K = {(i, j) : i ∈ I, j ∈ Ji} ⊂ I × J ; thus, the projection
onto the second factor maps K onto J , which clearly implies that
|J | ≤ |K|.

Pick a 1-1 function fi : Ji → IN, and consider the function
F : K → I × IN defined by F (i, j) = (i, fi(j)). It must be
obvious that F is a 1-1 map, and hence we find (from Corollary
A.2.12) that

|J | ≤ |K| = |F (K)| ≤ |I × IN| = |I|.

By reversing the roles of I and J , we find that the proof of
the proposition is complete. 2

Exercise A.2.14 Show that every vector space (over any field)
has a basis, and that any two bases have the same cardinality.
(Hint: Imitate the proof of Proposition A.2.13.)

A.3 Topological spaces

A topological space is a set X, where there is a notion of ‘near-
ness’ of points (although there is no metric in the background),
and which (experience shows) is the natural context to discuss
notions of continuity. Thus, to each point x ∈ X, there is sin-
gled out some family N (x) of subsets of X, whose members are
called ‘neighbourhoods of the point x’. (If X is a metric space,
we say that N is a neighbourhood of a point x if it contains all
points sufficiently close to x - i.e., if there exists some ε > 0 such
that N ⊃ B(x, ε) = {y ∈ X : d(x, y) < ε}.) A set is thought
of as being ‘open’ if it is a neighbourhood of each of its points
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- i.e., U is open if and only if U ∈ N (x) whenever x ∈ U . A
topological space is an axiomatisation of this set-up; what we
find is a simple set of requirements (or axioms) to be met by the
family, call it τ , of all those sets which are open, in the sense
above.

Definition A.3.1 A topological space is a set X, equipped
with a distinguished collection τ of subsets of X, the members of
τ being referred to as open sets, such that the following axioms
are satisfied:

(1) X, ∅ ∈ τ ; thus, the universe of discourse and the empty
set are assumed to be empty;

(2) U, V ∈ τ ⇒ U ∩ V ∈ τ ; (and consequently, any finite
intersection of open sets is open); and

(3) {Ui : i ∈ I} ⊂ τ ⇒ ∪i∈I Ui ∈ τ .

The family τ is called the topology on X. A subset F ⊂ X
will be said to be closed precisely when its complement X − F is
open.

Thus a topology on X is just a family of sets which contains
the whole space and the empty set, and which is closed under the
formation of finite intersections and arbitrary unions. Of course,
every metric space is a topological space in a natural way; thus,
we declare that a set is open precisely when it is expressible as
a union of open balls. Some other easy (but perhaps somewhat
pathological) examples of topological spaces are given below.

Example A.3.2 (1) Let X be any set; define τ = {X, ∅}.
This is a topology, called the indiscrete topology.

(2) Let X be any set; define τ = 2X = {A : A ⊂ X}; thus,
every set is open in this topology, and this is called the discrete
topology.

(3) Let X be any set; the so-called ‘co-finite topology’ is
defined by declaring a set to be open if it is either empty or if
its complement is finite.

(4) Replacing every occurrence of the word ‘finite’ in (3)
above, by the word ‘countable’, gives rise to a topology, called,
naturally, the ‘co-countable topology’ on X. (Of course, this
topology would be interesting only if the set X is uncountable
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- just as the co-finite topology would be interesting only for in-
finite sets X - since in the contrary case, the resulting topology
would degenerate into the discrete topology.) 2

Just as convergent sequences are a useful notion when dealing
with metric spaces, we will find that nets - see Definition 2.2.3, as
well as Example 2.2.4(3) - will be very useful while dealing with
general topological spaces. As an instance, we cite the following
result:

Proposition A.3.3 The following conditions on a subset F of
a topological space are equivalent:

(i) F is closed; i.e., U = X − F is open;
(ii) if {xi : i ∈ I} is any net in F which converges to a limit

x ∈ X, then x ∈ F .

Proof : (i) ⇒ (ii) : Suppose xi → x as in (ii); suppose x /∈ F ;
then x ∈ U , and since U is open, the definition of a convergent
net shows that there exists some i0 ∈ I such that xi ∈ U ∀i ≥ i0;
but this contradicts the assumption that xi ∈ F ∀i.

(ii) ⇒ (i) : Suppose (ii) is satisfied; we assert that if x ∈ U ,
then there exists an open set Bx ⊂ U such that x ∈ Bx. (This
will exhibit U as the union ∪x∈UBx of open sets and thereby
establish (i).) Suppose our assertion were false; this would mean
that there exists an x ∈ U such that for every open neighbour-
hood V of x - i.e., an open set containing x - there exists a point
xV ∈ V ∩ F . Then - see Example 2.2.4(3) - {xV : V ∈ N (x)}
would be a net in F which converges to the point x /∈ F , and
the desired contradiction has been reached. 2

We gather a few more simple facts concerning closed sets in
the next result.

Proposition A.3.4 Let X be a topological space. Let us tem-
porarily write F for the class of all closed sets in X.

(1) The family F has the following properties (and a topolog-
ical space can clearly be equivalently defined as a set where there
is a distinguished class F of subets of X which are closed sets
and which satisfy the following properties):

(a) X, ∅ ∈ F ;
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(b) F1, F2 ∈ F ⇒ (F1 ∪ F2) ∈ F ;

(c) if I is an arbitrary set, then {Fi : i ∈ I} ⊂ F ⇒ ∩i∈IFi ∈
F .

(2) if A ⊂ X is any subset of X, the closure of A is the set
- which will always be denoted by the symbol A - defined by

A = ∩ {F ∈ F : A ⊂ F} ; (A.3.10)

then

(a) A is a closed set, and it is the smallest closed set which
contains A;

(b) A ⊂ B ⇒ A ⊂ B;

(c) x ∈ A ⇔ U ∩ A 6= ∅ for every open set containing x.

Proof : The proof of (1) is a simple exercise in complemen-
tation (and uses nothing more than the so-called ‘de Morgan’s
laws’).

(2) (a) is a consequence of (1)(c), while (b) follows immedi-
ately from (a); and (c) follows from the definitions (and the fact
that a set is closed precisely when its complement is open). 2

The following exercise lists some simple consequences of the
definition of the closure operation, and also contains a basic def-
inition.

Exercise A.3.5 (1) Let A be a subset of a topological space X,
and let x ∈ A; then show that x ∈ A if and only if there is a net
{xi : i ∈ I} in A such that xi → x.

(2) If X is a metric space, show that nets can be replaced by
sequences in (1).

(3) A subset D of a topological space is said to be dense if
D = X. (More generally, a set A is said to be ‘dense in a set
B’ if B ⊂ A.) Show that the following conditions on the subset
D ⊂ X are equivalent:

(i) D is dense (in X);

(ii) for each x ∈ X, there exists a net {xi : i ∈ I} in D such
that xi → x;

(iii) if U is any non-empty open set in X, then D ∩ U 6= ∅.
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In dealing with metric spaces, we rarely have to deal explicitly
with general open sets; open balls suffice in most contexts. These
are generalised in the following manner.

Proposition A.3.6 (1) Let (X, τ) be a topological space. The
following conditions on a a subcollection B ⊂ τ are equivalent:

(i) U ∈ τ ⇒ ∃ {Bi : i ∈ I} ⊂ B such that U = ∪i∈I Bi;

(ii) x ∈ U,U open ⇒ ∃ B ∈ B such that x ∈ B ⊂ U .

A collection B satisfying these equivalent conditions is called a
base for the topology τ .

(2) A family B is a base for some topology τ on X if and
only if B satisfies the two following conditions:

(a) B covers X, meaning that X = ∪B∈BB; and

(b) B1, B2 ∈ B, x ∈ B1 ∩B2 ⇒ ∃ B ∈ B such that x ∈ B ⊂
(B1 ∩ B2).

The elementary proof of this proposition is left as an exercise
for the reader. It should be fairly clear that if B is a base for
a topology τ on X, and if τ ′ is any topology such that B ⊂ τ ′,
then, necessarily τ ⊂ τ ′. Thus, if B is a base for a topology τ ,
then τ is the ‘smallest topology’ with respect to which all the
members of B are open. However, as condition (ii) of Propo-
sition A.3.6 shows, not any collection of sets can be a base for
some topology. This state of affairs is partially remedied in the
following proposition.

Proposition A.3.7 (a) Let X be a set and let S be an arbitrary
family of subsets of X. Then there exists a smallest topology τ(S)
on X such that S ⊂ τ(S); we shall refer to τ(S) as the topology
generated by S.

(b) Let X,S, τ(S) be as in (a) above. Let B = {X} ∪ {B :
∃ n ∈ IN, and S1, S2, · · · , Sn ∈ S such that B = ∩n

i=1Si}. Then
B is a base for the topology τ ; in particular, a typical element of
τ(S) is expressible as an arbitrary union of finite intersections
of members of S.

If (X, τ) is a topological space, a family S is said to be a
sub-base for the topology τ if it is the case that τ = τ(S).
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Proof : For (a), we may simply define

τ(S) = ∩ {τ ′ : τ ′ is a topology and S ⊂ τ ′} ,

and note that this does the job.
As for (b), it is clear that the family B, as defined in (b),

covers X and is closed under finite intersections; consequently, if
we define τ = {∪B∈B0B : B0 ⊂ B} , it may be verified that τ is a
topology on X for which B is a base; on the other hand, it is clear
from the construction (and the definition of a topology) that if
τ ′ is any topology which contains S, then τ ′ must necessarily
contain τ , and we find that, hence, τ = τ(S). 2

The usefulness of sub-bases may be seen as follows: very
often, in wanting to define a topology, we will find that it is
natural to require that sets belonging to a certain class S should
be open; then the topology we seek is any topology which is at
least large as τ(S), and we will find that this minimal topology
is quite a good one to work with, since we know, by the last
proposition, precisely what the open sets in this topology look
like. In order to make all this precise, as well as for other reasons,
we need to discuss the notion of continuity, in the context of
topological spaces.

Definition A.3.8 A function f : X → Y between topological
spaces is said to be:

(a) continuous at the point x ∈ X, if f−1(U) is an open
neighbourhood of x in the topological space X, whenever U is an
open neighbourhood of the point f(x) in the topological space Y ;

(b) continuous if it is continuous at each x ∈ X, or equiva-
lently, if f−1(U) is an open set in X, whenever U is an open set
in Y .

The proof of the following elementary proposition is left as
an exercise for the reader.

Proposition A.3.9 Let f : X → Y be a map between topolog-
ical spaces.

(1) if x ∈ X, then f is continuous at x if and only if {f(xi) :
i ∈ I} is a net converging to f(x) in Y , whenever {xi : i ∈ I} is
a net converging to x in X;
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(2) the following conditions on f are equivalent:
(i) f is continuous;
(ii) f−1(F ) is a closed subset of X whenever F is a closed

subset of Y ;
(iii) {f(xi) : i ∈ I} is a net converging to f(x) in Y , when-

ever {xi : i ∈ I} is a net converging to x in X;
(iv) f−1(B) is open in X, whenever B belongs to some base

for the topology on Y ;
(v) f−1(S) is open in X, whenever S belongs to some sub-base

for the topology on Y .

(3) The composition of continuous maps is continuous; i.e.,
if f : X → Y and g : Y → Z are continuous maps of topological
spaces, then g ◦ f : X → Z is continuous.

We ae now ready to illustrate what we meant in our earlier
discussion of the usefulness of sub-bases. Typically, we have the
following situation in mind: suppose X is just some set, that
{Yi : i ∈ I} is some family of topological spaces, and suppose we
have maps fi : X → Yi,∀i ∈ I. We would want to topologise
X in such a way that each of the maps fi is continuous. This,
by itself, is not difficult, since if X is equipped with the discrete
topology, any map from X into any topological space would be
continuous; but if we wnat to topologise X in an efficient, as well
as natural, manner with respect to the requirement that each fi

is continuous, then the method of sub-bases tells us what to do.
Let us make all this explicit.

Proposition A.3.10 Suppose {fi : X → Xi|i ∈ I} is a family
of maps, and suppose τi is a topology on Xi for each i ∈ I. Let Si

be an arbitrary sub-base for the topology τi. Define τ = τ(S),
where

S = {f−1
i (Vi) : Vi ∈ Si, i ∈ I} .

Then,
(a) fi is continuous as a mapping from the topological space

(X, τ) into the topological space (Xi, τi), for each i ∈ I;
(b) the topology τ is the smallest topology on X for which (a)

above is valid; and consequently, this topology is independent of
the choice of the sub-bases Si, i ∈ I and depends only upon the
data {fi, τi, i ∈ I}.
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This topology τ on X is called the weak topology induced
by the family {fi : i ∈ I} of maps, and we shall write τ = τ({fi :
i ∈ I}).

The proposition is an immediate consequence of Proposition
A.3.9(2)(ii) and Proposition A.3.7.

Exercise A.3.11 Let X,Xi, τi, fi and τ = τ({fi : i ∈ I}) be as
in Proposition A.3.10.

(a) Suppose Z is a topological space and g : Z → X is a
function. Then, show that g is continuous if and only if fi ◦ g is
continuous for each i ∈ I.

(b) Show that the family B = {∩n
j=1f

−1
ij

(Vij) : i1, · · · , in ∈
I, n ∈ IN, Vij ∈ τij ∀j} is a base for the topology τ .

(c) Show that a net {xλ : λ ∈ Λ} converges to x in (X, τ) if
and only if the net {fi(xλ) : λ ∈ Λ} converges to fi(x) in (Xi, τi),
for each i ∈ I.

As in a metric space, any subspace (= subset) of a topological
space acquires a natural structure of a topological space in the
manner indicated in the following exercise.

Exercise A.3.12 Let (Y, τ) be a topological space, and let X ⊂
Y be a subset. Let iX→Y : X → Y denote the inclusion map.
Then the subspace topology on X (or the topology on X in-
duced by the topology τ on Y ) is, by definition, the weak topology
τ({iX→Y }). This topology will be denoted by τ |X .

(a) Show that τ |X = {U ∩X : U ∈ τ}, or equivalently, that
a subset F ⊂ X is closed in (X, τ |X) if and only if there exists
a closed set F1 in (Y, τ) such that F = F1 ∩ X.

(b) Show that if Z is some topological space and if f : Z → X
is a function, then f is continuous when regarded as a map into
the topological space (X, τ |X) if and only if it is continuous when
regarded as a map into the topological space (Y, τ).

One of the most important special cases of this construction
is the product of topological spaces. Suppose {(Xi, τi) : i ∈ I}
is an arbirary family of topological spaces. Let X =

∏
i∈I Xi

denote their Cartesian product. Then the product topology
is, by definition, the weak topology on X induced by the family
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{πi : X → Xi|i ∈ I}, where πi denotes, for each i ∈ I, the
natural ‘projection’ of X onto Xi. We shall denote this product
topology by

∏
i∈I τi. Note that if Bi is a base for the topology τi,

then a base for the product topology is given by the family B,
where a typical element of B has the form

B = {x ∈ X : πi(x) ∈ Bi ∀i ∈ I0} ,

where I0 is an arbitrary finite subset of I and Bi ∈ Bi for each i ∈
I0. Thus, a typical basic open set is prescribed by constraining
some finitely many co-ordinates to lie in specified basic open sets
in the appropriate spaces.

Note that if Z is any set, then maps F : Z → X are in a
1-1 correspondence with families {fi : Z → Xi|i ∈ I} of maps -
where fi = πi ◦f ; and it follows from Exercise A.3.11 that if Z is
a topological space, then the mapping f is continuous precisely
when each fi is continuous. To make sure that you have really
understood the definition of the product topology, you are urged
to work out the following exercise.

Exercise A.3.13 If (X, τ) is a topological space, and if I is
any set, let XI denote the space of functions f : I → X.

(a) Show that XI may be identified with the product
∏

i∈I Xi,
where Xi = X ∀i ∈ I.

(b) Let XI be equipped with the product topology; fix x0 ∈ X
and show that the set D = {f ∈ XI : f(i) = x0 for all but a
finite number of i’s } is dense in X, meaning that if U is any
open set in X, then D ∩ U 6= ∅.

(c) If Λ is a directed set, show that a net {fλ : λ ∈ Λ} in
XI converges to a point f ∈ XI if and only if the net {fλ(i) :
λ ∈ Λ} converges to f(i), for each i ∈ I. (In other words, the
product topology on XI is nothing but the topology of ‘pointwise
convergence’.)

We conclude this section with a brief discussion of ‘homeo-
morphisms’.

Definition A.3.14 Two topological spaces X and Y are said
to be homeomorphic if there exists continuous functions f :
X → Y, g : Y → X such that f ◦ g = idY and g ◦ f = idX . A
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homeomorphism is a map f as above - i.e., a continuous bijec-
tion between two topological spaces whose (set-theoretic) inverse
is also continuous.

The reader should observe that requiring that a function f :
X → Y is a homeomorphism is more than just requiring that
f is 1-1, onto and continuous; if only so much is required of
the function, then the inverse f−1 may fail to be continuous;
an example of this phenomenon is provided by the function f :
[0, 1) → T defined by f(t) = exp(2πit).

The proof of the following proposition is elementary, and left
as an exercise to the reader.

Proposition A.3.15 Suppose f is a continuous bijective map
of a topological space X onto a space Y ; then the following con-
ditions are equivalent:

(i) f is a homeomorphism;
(ii) f is an open map - i.e., if U is an open set in X, then

f(U) is an open set in Y ;
(iii) f is a closed map - i.e., if F is a closed set in X, then

f(F ) is a closed set in Y .

A.4 Compactness

This section is devoted to a quick review of the theory of compact
spaces. For the uninitiated reader, the best way to get a feeling
for compactness is by understanding this notion for subsets of
the real line. The features of compact subsets of R (and, more
generally, of any Rn) are summarised in the following result.

Theorem A.4.1 The following conditions on a subset K ⊂ Rn

are equivalent:
(i) K is closed and bounded;
(ii) every sequence in K has a subsequence which converges

to some point in K;
(iii) every open cover of K has a finite sub-cover - i.e., if

{Ui : i ∈ I} is any collection of open sets such that K ⊂ ∪i∈IUi,
then there exists a finite subcollection {Uij : 1 ≤ j ≤ n} which
still covers K (meaning that K ⊂ ∪n

j=1Uij).
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(iv) Suppose {Fi : i ∈ I} is any family of closed subsets which
has the finite intersection property with respect to K - i.e.,
∩i∈I0Fi∩K 6= ∅ for any finite subset I0 ⊂ I; then it is necessarily
the case that ∩i∈IFi ∩ K 6= ∅.

A subset K ⊂ R which satisfies the equivalent conditions
above is said to be compact. 2

We will not prove this here, since we shall be proving more
general statements.

To start with, note that the conditions (iii) and (iv) of Theo-
rem A.4.1 make sense for any subset K of a topological space X,
and are easily seen to be equivalent (by considering the equation
Fi = X − Ui); also, while conditions (i) and (ii) makes sense in
any topological space, they may not be very strong in general.
What we shall see is that conditions (ii) - (iv) are equivalent
for any subset of a metric space, and these are equivalent to a
stronger version of (i). We begin with the appropriate definition.

Definition A.4.2 A subset K of a topological space is said to
be compact if it satisfies the equivalent conditions (iii) and (iv)
of Theorem A.4.1.

‘Compactness’ is an intrinsic property, as asserted in the fol-
lowing exercise.

Exercise A.4.3 Suppose K is a subset of a topological space
(X, τ). Then show that K is compact when regarded as a sub-
set of the topological space (X, τ) if and only if K is compact
when regarded as a subset of the topological space (K, τ |K) - see
Exercise A.3.12.

Proposition A.4.4 (a) Let B be any base for the topology un-
derlying a topological space X. Then, a subset K ⊂ X is compact
if and only if any cover of K by open sets, all of which belong to
the base B, admits a finite sub-cover.

(b) A closed subset of a compact set is compact.

Proof : (a) Clearly every ‘basic open cover’ of a compact
set admits a finite subcover. Conversely, suppose {Ui : i ∈ I}
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is an open cover of a set K which has the property that every
cover of K by members of B admits a finite subcover. For each
i ∈ I, find a subfamily Bi ⊂ B such that Ui = ∪B∈Bi

B; then
{B : B ∈ Bi, i ∈ I} is a cover of K by members of B; so there
exist B1, · · · , Bn in this family such that K ⊂ ∪n

i=1Bi; for each
j = 1, · · · , n, by construction, we can find ij ∈ I such that
Bj ⊂ Uij ; it follows that K ⊂ ∪n

j=1Uij .
(b) Suppose C ⊂ K ⊂ X where K is a compact subset

of X and C is a subset of K which is closed in the subspace
topology of K. Thus, there exists a closed set F ⊂ X such that
C = F ∩ K. Now, suppose {Ui : i ∈ I} is an open cover of C.
Then {Ui : i ∈ I} ∪ {X − F} is an open cover of K; so there
exists a finite subfamily I0 ⊂ I such that K ⊂ ∪i∈I0Ui∪(X−F ),
which clearly implies that C ⊂ ∪i∈I0Ui. 2

Corollary A.4.5 Let K be a compact subset of a metric space
X. Then, for any ε > 0, there exists a finite subset Nε ⊂ K
such that K ⊂ ∪x∈Nε

B(x, ε), (where, of course, the symbol
B(x, ε) = {y ∈ X : d(y, x) < ε} denotes the open ball with
centre X and radius ε).

Any set Nε as above is called an ε-net for K.

Proof : The family of all open balls with (arbitrary cen-
tres and) radii bounded by ε

2
, clearly constitutes a base for the

topology of the metric space X. (Verify this!) Hence, by the
preceding proposition, we can find y1, · · · , yn ∈ X such that
K ⊂ ∪n

i=1 B(yi,
ε
2
). We may assume, without loss of generality,

that K is not contained in any proper sub-family of these n open
balls; i.e., we may assume that there exists xi ∈ K∩B(yi,

ε
2
), ∀i.

Then, clearly K ⊂ ∪n
i=1 B(xi, ε), and so Nε = {x1, · · · , xn} is

an ε-net for K. 2

Definition A.4.6 A subset A of a metric space X is said to be
totally bounded if, for each ε > 0, there exists a finite ε-net
for A.

Thus, compact subsets of metric spaces are totally bounded.
The next proposition provides an alternative criterion for total
boundedness.
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Proposition A.4.7 The following conditions on a subset A of
a metric space X are equivalent:

(i) A is totally bounded;
(ii) every sequence in A has a Cauchy subsequence.

Proof : (i) ⇒ (ii) : Suppose S0 = {xk}∞k=1 is a sequence in
A. We assert that there exist (a) a sequence {Bn = B(zn, 2

−n)}
of open balls (with shrinking radii) in X; and (b) sequences

Sn = {x(n)
k }∞k=1, n = 1, 2, · · · with the property that Sn ⊂ Bn

and Sn is a subsequence of Sn−1, for all n ≥ 1.
We construct the Bn’s and the Sn’s inductively. To start

with, pick a finite 1
2
-net N 1

2
for A; clearly, there must be some

z1 ∈ N 1
2

with the property that xk ∈ B(z1,
1
2
) for infinitely many

values of k; define B1 = B(z1,
1
2
) and choose S1 to be any subse-

quence {x(1)
k }∞k=1 of S0 with the property that x

(1)
k ∈ B1 ∀k.

Suppose now that open balls Bj = B(zj, 2
−j) and sequences

Sj, 1 ≤ j ≤ n have been chosen so that Sj is a subsequence of
Sj−1 which lies in Bj ∀1 ≤ j ≤ n.

Now, let N2−(n+1) be a finite 2−(n+1)-net for A; as before, we
may argue that there must exist some zn+1 ∈ N2−(n+1) with the

property that if Bn+1 = B(zn+1, 2
−(n+1)), then x

(n)
k ∈ Bn+1 for

infinitely many values of k; we choose Sn+1 to be a subsequence
of Sn which lies entirely in Bn+1.

Thus, by induction, we can conclude the existence of se-
quences of open balls Bn and sequences Sn with the asserted
properties. Now, define yn = x(n)

n and note that (i) {yn} is
a subsequence of the initial sequence S0, and (ii) if n,m ≥ k,
then yn, ym ∈ Bk and hence d(yn, ym) < 21−k; this is the desired
Cauchy subsequence.

(ii) ⇒ (i) : Suppose A is not totally bounded; then there
exists some ε > 0 such that A admits no finite ε-net; this means
that given any finite subset F ⊂ A, there exists some a ∈ A
such that d(a, x) ≥ ε ∀ x ∈ F . Pick x1 ∈ A; (this is possible,
since we may take F = ∅ in the previous sentence); then pick
x2 ∈ A such that d(x1, x2) ≥ ε; (this is possible, by setting
F = {x1} in the previous sentence); then (set F = {x1, x2} in
the previous sentence and) pick x3 ∈ A such that d(x3, xi) ≥
ε , i = 1, 2; and so on. This yields a sequence {xn}∞n=1 in A
such that d(xn, xm) ≥ ε ∀ n 6= m. This sequence clearly has no
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Cauchy subsequence, thereby contradicting the assumption (ii),
and the proof is complete. 2

Corollary A.4.8 If A is a totally bounded set in a metric
space, so also are its closure A and any subset of A.

Remark A.4.9 The argument to prove (i) ⇒ (ii) in the above
theorem has a very useful component which we wish to sin-
gle out; starting with a sequence S = {xk}, we proceeded, by
some method - which method was dictated by the specific pur-
pose on hand, and is not relevant here - to construct sequences
Sn = {x(n)

k } with the property that each Sn+1 was a subsequence
of Sn (and with some additional desirable properties); we then
considered the sequence {x(n)

n }∞n=1. This process is sometimes
referred to as the diagonal argument.

Exercise A.4.10 (1) Show that any totally bounded set in a
metric space is bounded, meaning that it is a subset of some
open ball.

(2) Show that a subset of Rn is bounded if and only if it is
totally bounded. (Hint: by Corollary A.4.8 and (1) above, it
is enough to establish the total-boundedness of the set given by
K = {x = (x1, · · · , xn) : |xi| ≤ N ∀i}; given ε, pick k such
that the diameter of an n-cube of side 2

k
is smaller than ε, and

consider the points of the form ( i1
k
, i2

k
, · · · , in

k
) in order to find an

ε-net.)

We are almost ready to prove the announced equivalence of
the various conditions for compactness; but first, we need a tech-
nical result which we take care of before proceeding to the desired
assertion.

Lemma A.4.11 The following conditions on a metric space X
are equivalent:

(i) X is separable - i.e., there exists a countable set D which
is dense in X (meaning that X = D);

(ii) X satisfies the second axiom of countability - mean-
ing that there is a countable base for the topology of X.
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Proof : (i) ⇒ (ii) : Let B = {B(x, r) : x ∈ D, 0 < r ∈ Q}
where D is some countable dense set in X, and Q denotes the
(countable) set of rational numbers. We assert that this is a base
for the topology on X; for, if U is an open set and if y ∈ U , we
may find s > 0 such that B(y, s) ⊂ U ; pick x ∈ D ∩B(y, s

2
) and

pick a positive rational number r such that d(x, y) < r < s
2

and
note that y ∈ B(x, r) ⊂ U ; thus, for each y ∈ U , we have found
a ball By ∈ B such that y ∈ By ⊂ U ; hence U = ∪y∈UBy.

(ii) ⇒ (i) : If B = {Bn}∞n=1 is a countable base for the
topology of X, (where we may assume that each Bn is a non-
empty set, without loss of generality), pick a point xn ∈ Bn for
each n and verify that D = {xn}∞n=1 is indeed a countable dense
set in X. 2

Theorem A.4.12 The following conditions on a subset K of a
metric space X are equivalent:

(i) K is compact;
(ii) K is complete and totally bounded;
(iii) every sequence in K has a subsequence which converges

to some point of K.

Proof : (i) ⇒ (ii) : We have already seen that compactness
implies total boundedness. Suppose now that {xn} is a Cauchy
sequence in K. Let Fn be the closure of the set {xm : m ≥ n}, for
all n = 1, 2, · · ·. Then {Fn}∞n=1 is clearly a decreasing sequence
of closed sets in X; further, the Cauchy criterion implies that
diam Fn → 0 as n → ∞. By invoking the finite intersection
property, we see that there must exist a point x ∈ ∩∞

n=1Fn ∩ K.
Since the diameters of the Fn’s shrink to 0, we may conclude
that (such an x is unique and that) xn → x as n → ∞.

(ii) ⇔ (iii) : This is an immediate consequence of Proposi-
tion A.4.7.

(ii) ⇒ (i) : For each n = 1, 2, · · · , let N 1
n

be a 1
n
-net for K.

It should be clear that D = ∪∞
n=1N 1

n
is a countable dense set in

K. Consequently K is separable; hence, by Lemma A.4.11, K
admits a countable base B.

In order to check that K is compact in X, it is enough, by
Exercise A.4.3, to check that K is compact in itself. Hence, by
Proposition A.4.4, it is enough to check that any countable open
cover of X has a finite sub-cover; by the reasoning that goes in to
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establish the equivalence of conditions (iii) and (iv) in Theorem
A.4.1, we have, therefore, to show that if {Fn}∞n=1 is a sequence
of closed sets in K such that ∩N

n=1Fn 6= ∅ for each N = 1, 2, · · · ,
then necessarily ∩∞

n=1Fn 6= ∅. For this, pick a point xN ∈ ∩N
n=1Fn

for each N ; appeal to the hypothesis to find a subsequence {yn}
of {xn} such that yn → x ∈ K, for some point x ∈ K. Now
notice that {ym}∞m=N is a sequence in ∩N

n=1Fn which converges
to x; conclude that x ∈ Fn∀n; hence ∩∞

n=1Fn 6= ∅. 2

In view of Exercise A.4.10(2), we see that Theorem A.4.12
does indeed generalise Theorem A.4.1.

We now wish to discuss compactness in general topological
spaces. We begin with some elementary results.

Proposition A.4.13 (a) Suppose f : X → Y is a continuous
map of topological spaces; if K is a compact subset of X, then
f(K) is a compact subset of Y ; in other words, a continuous
image of a compact set is compact.

(b) If f : K → R is continuous, and if K is a compact
set in X, then (i) f(K) is bounded, and (ii) there exist points
x, y ∈ K such that f(x) ≤ f(z) ≤ f(y) ∀ z ∈ K; in other words,
a continuous real-valued function on a compact set is bounded
and attains its bounds.

Proof : (a) If {Ui : i ∈ I} is an open cover of f(K), then
{f−1(Ui) : i ∈ I} is an open cover of K; if {f−1(Ui) : i ∈ I0} is
a finite sub- cover of K, then {Ui : i ∈ I0} is a finite sub- cover
of f(K) .

(b) This follows from (a), since compact subsets of R are
closed and bounded (and hence contain their supremum and in-
fimum). 2

The following result is considerably stronger than Proposition
A.4.4(a).

Theorem A.4.14 (Alexander sub-base theorem)
Let S be a sub-base for the topology τ underlying a topological

space X. Then a subspace K ⊂ X is compact if and only if any
open cover of K by a sub-family of S admits a finite sub-cover.

Proof : Suppose S is a sub-base for the topology of X and
suppose that any open cover of K by a sub-family of S admits
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a finite sub-cover. Let B be the base generated by S - i.e., a
typical element of B is a finite intersection of members of S. In
view of Proposition A.4.4(a), the theorem will be proved once we
establish that any cover of X by members of B admits a finite
sub-cover.

Assume this is false; thus, suppose U0 = {Bi : i ∈ I0} ⊂ B
is an open cover of X, which does not admit a finite subcover.
Let P denote the set of all subfamilies U ⊂ U0 with the property
that no finite sub-family of U covers X. (Notice that U is an
open cover of X, since U ⊂ U0.) It should be obvious that P
is partially ordered by inclusion, and that P 6= ∅ since U ∈ P.
Suppose {Ui : i ∈ I} is a totally ordered subset of P ; we assert
that then U = ∪i∈IUi ∈ P. (Reason: Clearly U0 ⊂ ∪i∈IUi ⊂ B;
further, suppose {B1, · · · , Bn} ⊂ ∪i∈IUi; the assumption of the
family {Ui} being totally ordered then shows that in fact there
must exist some i ∈ I such that {B1, · · · , Bn} ⊂ Ui; by definition
of P , it cannot be the case that {B1, · · · , Bn} covers X; thus, we
have shown that no finite sub-family of U covers X. Hence,
Zorn’s lemma is applicable to the partially ordered set P .

Thus, if the theorem were false, it would be possible to find
a family U ⊂ B which is an open cover of X, and further has the
following properties: (i) no finite sub-family of U covers X; and
(ii) U is a maximal element of P - which means that whenever
B ∈ B − U , there exists a finite subfamily UB of U such that
UB ∪ {B} is a (finite ) cover of X.

Now, by definition of B, each element B of U has the form
B = S1 ∩ S2 · · · ∩ Sn, for some S1, · · · , Sn ∈ S. Assume for the
moment that none of the Si’s belongs to U . Then property (ii)
of U (in the previous paragraph) implies that for each 1 ≤ i ≤ n,
we can find a finite subfamily Ui ⊂ U such that Ui ∪ {Si} is a
finite open cover of X. Since this is true for all i, this implies
that ∪n

i=1Ui∪{B = ∩n
i=1Si} is a finite open cover of X; but since

B ∈ U , we have produced a finite subcover of X from U , which
contradicts the defining property (i) (in the previous paragraph)
of U . Hence at least one of the Si’s must belong to U .

Thus, we have shown that if U is as above, then each B ∈ U
is of the form B = ∩n

i=1Si, where Si ∈ S ∀i and further there
exists at least one i0 such that Si0 ∈ U . The passage B 7→ Si0

yields a mapping U 3 B 7→ S(B) ∈ U ∩ S with the property
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that B ⊂ S(B) for all B ∈ U . Since U is an open cover of X by
definition, we find that U ∩S is an open cover of X by members
of S, which admits a finite sub-cover, by hypothesis.

The contradiction we have reached is a consequence of our
assuming that there exists an open cover U0 ⊂ B which does
not admit a finite sub-cover. The proof of the theorem is finally
complete. 2

We are now ready to prove the important result, due to Ty-
chonoff, which asserts that if a family of topological spaces is
compact, then so is their topological product.

Theorem A.4.15 (Tychonoff’s theorem)

Suppose {(Xi, τi) : i ∈ I} is a family of non-empty topolog-
ical spaces. Let (X, τ) denote the product space X =

∏
i∈I Xi,

equipped with the product topology. Then X is compact if and
only if each Xi is compact.

Proof : Since Xi = πi(X), where πi denotes the (continuous)
projection onto the i-th co-ordinate, it follows from Proposition
A.4.13(a) that if X is compact, so is each Xi.

Suppose conversely that each Xi is compact. For a subset
A ⊂ Xi, let Ai = π−1

i (A). Thus, by the definition of the
product topology, S = {U i : U ∈ τi} is a sub-base for the
product topology τ . Thus, we need to prove the following: if
J is any set, if J 3 j 7→ i(j) ∈ I is a map, if A(i(j)) is a
closed set in Xi(j) for each j ∈ J , and if ∩j∈F A(i(j))i(j) 6= ∅ for
every finite subset F ⊂ J , then it is necessarily the case that
∩j∈JA(i(j))i(j) 6= ∅.

Let I1 = {i(j) : j ∈ J} denote the range of the mapping j 7→
i(j). For each fixed i ∈ I1, let Ji = {j ∈ J : i(j) = i} ; observe
that {A(i(j)) : j ∈ Ji} is a family of closed sets in Xi; we assert
that ∩j∈F A(i(j)) 6= ∅ for every finite subset F ⊂ Ji. (Reason: if
this were empty, then, ∩j∈F A(i(j))i(j) = ( ∩j∈F A(i(j)) )i would
have to be empty, which would contradict the hypothesis.) We
conclude from the compactness of Xi that ∩j∈Ji

A(i(j)) 6= ∅.
Let xi be any point from this intersection. Thus xi ∈ A(i(j))
whenever j ∈ J and i(j) = i. For i ∈ I − I1, pick an arbitrary
point xi ∈ Xi. It is now readily verified that if x ∈ X is the
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point such that πi(x) = xi ∀i ∈ I, then x ∈ A(i(j))i(j) ∀j ∈ J ,
and the proof of the theorem is complete. 2

Among topological spaces, there is an important subclass
of spaces which exhibit some pleasing features (in that certain
pathological situations cannot occur). We briefly discuss these
spaces now.

Definition A.4.16 A topological space is called a Hausdorff
space if, whenever x and y are two distinct points in X, there
exist open sets U, V in X such that x ∈ U, y ∈ V and U ∩V = ∅.
Thus, any two distinct points can be ‘separated’ (by a pair of
disjoint open sets). (For obvious reasons, the preceding require-
ment is sometimes also referred to as the Hausdorff separation
axiom.)

Exercise A.4.17 (1) Show that any metric space is a Haus-
dorff space.

(2) Show that if {fi : X → Xi : i ∈ I} is a family of functions
from a set X into topological spaces (Xi, τi), and if each (Xi, τi)
is a Hausdorff space, then show that the weak topology τ({fi : i ∈
I}) on X (which is induced by this family of maps) is a Hausdorff
topology if and only if the fi’s separate points - meaning that
whenever x and y are distinct points in X, then there exists an
index i ∈ I such that fi(x) 6= fi(y).

(3) Show that if {(Xi, τi) : i ∈ I} is a family of topological
spaces, then the topological product space (

∏
i∈I Xi,

∏
i∈I τi) is a

Hausdorff space if and only if each (Xi, τi) is a Hausdorff space.

(4) Show that a subspace of a Hausdorff space is also a Haus-
dorff space (with respect to the subspace topology).

(5) Show that Exercise (4), as well as the ‘only if ’ assertion
of Exercise (3) above, are consequences of Exercise (2).

We list some elementary properties of Hausdorff spaces in the
following Proposition.

Proposition A.4.18 (a) If (X, τ) is a Hausdorff space, then
every finite subset of X is closed.



260 APPENDIX A. APPENDIX

(b) A topological space is a Hausdorff space if and only if
‘limits of convergent nets are unique’ - i.e., if and only if, when-
ever {xi : i ∈ I} is a net in X, and if the net converges to both
x ∈ X and y ∈ X, then x = y.

(c) Suppose K is a compact subset of a Hausdorff space X
and suppose y /∈ K; then there exist open sets U, V in X such
that K ⊂ U, y ∈ V and U ∩ V = ∅; in particular, a compact
subset of a Hausdorff space is closed.

(d) If X is a compact Hausdorff space, and if C and K are
closed subsets of X which are disjoint - i.e., if C ∩ K = ∅ -
then there exist a pair of disjoint open sets U, V in X such that
K ⊂ U and C ⊂ V .

Proof : (a) Since finite unions of closed sets are closed, it is
enough to prove that {x} is closed, for each x ∈ X; the Hausdorff
separation axiom clearly implies that X − {x} is open.

(b) Suppose X is Hausdorff, and suppose a net {xi : i ∈ I}
converges to x ∈ X and suppose x 6= y ∈ X. Pick open sets U, V
as in Definition A.4.16; by definition of convergence of a net, we
can find i0 ∈ I such that xi ∈ U ∀i ≥ i0; it follows then that
xi /∈ V ∀i ≥ i0, and hence the net {xi} clearly does not converge
to y.

Conversely, suppose X is not a Hausdorff space; then there
exists a pair x, y of distinct points which cannot be separated.
Let N (x) (resp., N (y)) denote the directed set of open neigh-
bourhoods of the point x (resp., y) - see Example 2.2.4(3). Let
I = N (x)×N (y) be the directed set obtained from the Cartesian
product as in Example 2.2.4(4). By the assumption that x and
y cannot be separated, we can find a point xi ∈ U ∩ V for each
i = (U, V ) ∈ I. It is fairly easily seen that the net {xi : i ∈ I}
simultaneously converges to both x and y.

(c) Suppose K is a compact subset of a Hausdorff space X.
Fix y /∈ K; then, for each x ∈ K, find open sets Ux, Vx so that
x ∈ Ux, y ∈ Vx and Ux ∩ Vx = ∅; now the family {Ux : x ∈ K}
is an open cover of the compact set K, and we can hence find
x1, · · · , xn ∈ K such that K ⊂ U = ∪n

i=1Uxi
; conclude that if

V = ∩n
i=1Vxi

, then V is an open neighbourhood of y such that
U ∩ V = ∅; and the proof of (c) is complete.

(d) Since closed subsets of compact spaces are compact, we
see that C and K are compact. Hence, by (c) above, we may,
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for each y ∈ C, find a pair Uy, Vy of disjoint open subsets of
X such that K ⊂ Uy, y ∈ Vy, and Uy ∩ Vy = ∅. Now, the
family {Vy : y ∈ C} is an open cover of the compact set C,
and hence we can find y1, · · · , yn ∈ C such that if V = ∪n

i=1Vyi

and U = ∩n
i=1Uyi

, then U and V are open sets which satisfy the
assertion in (d). 2

Corollary A.4.19 (1) A continuous mapping from a com-
pact space to a Hausdorff space is a closed map (see Proposition
A.3.15).

(2) If f : X → Y is a continuous map, if Y is a Hausdorff
space, and if K ⊂ X is a compact subset such that f |K is 1-1,
then f |K is a homeomorphism of K onto f(K).

Proof : (1) Closed subsets of compact sets are compact;
continuous images of compact sets are compact; and compact
subsets of Hausdorff spaces are closed.

(2) This follows directly from (1) and Proposition A.3.15. 2

Proposition A.4.18 shows that in compact Hausdorff spaces,
disjoint closed sets can be separated (just like points). There
are other spaces which have this property; metric spaces, for
instance, have this property, as shown by the following exercise.

Exercise A.4.20 Let (X, d) be a metric space. Given a subset
A ⊂ X, define the distance from a point x to the set A by the
formula

d(x,A) = inf{d(x, a) : a ∈ A} ; (A.4.11)

(a) Show that d(x,A) = 0 if and only if x belongs to the
closure A of A.

(b) Show that

|d(x,A) − d(y,A)| ≤ d(x, y) , ∀x, y ∈ X ,

and hence conclude that d : X → R is a continuous function.
(c) If A and B are disjoint closed sets in X, show that the

function defined by

f(x) =
d(x,A)

d(x,A) + d(x,B)
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is a (meaningfully defined and uniformly) continuous function
f : X → [0, 1] with the property that

f(x) =

{
0 if x ∈ A
1 if x ∈ B

. (A.4.12)

(d) Deduce from (c) that disjoint closed sets in a metric space
can be separated (by disjoint open sets). (Hint: if the closed sets
are A and B, consider the set U (resp., V ) of points where the
function f of (c) is ‘close to 0’ (resp., ‘close to 1’).

The preceding exercise shows, in addition to the fact that
disjoint closed sets in a metric space can be separated by dis-
joint open sets, that there exists lots of continuous real-valued
functions on a metric space. It is a fact that the two notions are
closely related. To get to this fact, we first introduce a conve-
nient notion, and then establish the relevant theorem.

Definition A.4.21 A topological space X is said to be normal
if (a) it is a Hausdorff space, and (b) whenever A,B are closed
sets in X such that A ∩ B = ∅, it is possible to find open sets
U, V in X such that A ⊂ U,B ⊂ V and U ∩ V = ∅.

The reason that we had to separately assume the Hausdorff
condition in the definition given above is that the Hausdorff ax-
iom is not a consequence of condition (b) of the preceding def-
inition. (For example, let X = {1, 2} and let τ = {∅, {1}, X};
then τ is indeed a non-Hausdorff topology, and there do not ex-
ist a pair of non-empty closed sets which are disjoint from one
another, so that condition (b) is vacuously satisfied.)

We first observe an easy consequence of normality, and state
it as an exercise.

Exercise A.4.22 Show that a Hausdorff space X is normal if
and only if it satisfies the following condition: whenever A ⊂
W ⊂ X, where A is closed and W is open, then there exists
an open set U such that A ⊂ U ⊂ U ⊂ W . (Hint: consider
B = X − W .)
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Thus, we find - from Proposition A.4.18(d) and Exercise
A.4.20(d) - that compact Hausdorff spaces and metric spaces are
examples of normal spaces. One of the results relating normal
spaces and continuous functions is the useful Urysohn’s lemma
which we now establish.

Theorem A.4.23 (Urysohn’s lemma)

Suppose A and B are disjoint closed subsets of a normal space
X; then there exists a continuous function f : X → [0, 1] such
that

f(x) =

{
0 if x ∈ A
1 if x ∈ B

. (A.4.13)

Proof : Write Q2 for the set of ‘dyadic rational numbers’ in
[0,1]. Thus, Q2 = { k

2n : n = 0, 1, 2, · · · , 0 ≤ k ≤ 2n}.

Assertion : There exist open sets {Ur : r ∈ Q2} such that

(i) A ⊂ U0, U1 = X − B; and

(ii)

r, s ∈ Q2, r < s ⇒ Ur ⊂ Us . (A.4.14)

Proof of assertion : , Define Q2(n) = { k
2n : 0 ≤ k ≤ 2n}, for

n = 0, 1, 2, · · ·. Then, we clearly have Q2 = ∪∞
n=0 Q2(n). We

shall use induction on n to construct Ur, r ∈ Q2(n).

First, we have Q2(0) = {0, 1}. Define U1 = X − B, and
appeal to Exercise A.4.22 to find an open set U0 such that A ⊂
U0 ⊂ U0 ⊂ U1.

Suppose that we have constructed open sets {Ur : r ∈ Q2(n)}
such that the condition A.4.14 is satisfied whenever r, s ∈ Q2(n).
Notice now that if t ∈ Q2(n+1)−Q2(n), then t = 2m+1

2n+1 for some
unique integer 0 ≤ m < 2n. Set r = 2m

2n+1 , s = 2m+2
2n+1 , and note

that r < t < s and that r, s ∈ Q2(n). Now apply Exercise A.4.22
to the inclusion Ur ⊂ Us to deduce the existence of an open set
Ut such that Ur ⊂ Ut ⊂ Ut ⊂ Us. It is a simple matter to verify
that the condition A.4.14 is satisfied now for all r, s ∈ Q2(n+1);
and the proof of the assertion is also complete.
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Now define the function f : X → [0, 1] by the following
prescription:

f(x) =

{
inf{t ∈ Q2 : x ∈ Ut} if x ∈ U1

1 if x /∈ U1

This function is clearly defined on all of X, takes values in
[0,1], is identically equal to 0 on A, and is identically equal to 1
on B. So we only need to establish the continuity of f , in order
to complete the proof of the theorem. We check continuity of
f at a point x ∈ X; suppose ε > 0 is given. (In the following
proof, we will use the (obvious) fact that Q2 is dense in [0,1].)

Case (i) : f(x) = 0: In this case, pick r ∈ Q2 such that
r < ε. The assumption that f(x) = 0 implies that x ∈ Ur; also
y ∈ Ur ⇒ f(y) ≤ r < ε.

Case(ii) : 0 < f(x) < 1. First pick p, t ∈ Q2 such that
f(x) − ε < p < f(x) < t < f(x) + ε. By the definition of
f , we can find s ∈ Q2 ∩ (f(x), t) such that x ∈ Us. Then pick
r ∈ Q2∩(p, f(x)) and observe that f(x) > r ⇒ x /∈ Ur ⇒ x /∈ Up.
Hence we see that V = Us − Up is an open neighbourhood of x;
it is also easy to see that y ∈ V ⇒ p ≤ f(y) ≤ s and hence
y ∈ V ⇒ |f(y) − f(x)| < ε.

Case (iii) : f(x) = 1: The proof of this case is similar to part
of the proof of Case (ii), and is left as an exercise for the reader.

2

We conclude this section with another result concerning the
existence of ‘sufficiently many’ continuous functions on a normal
space.

Theorem A.4.24 (Tietze’s extension theorem)
Suppose f : A → [−1, 1] is a continuous function defined on

a closed subspace A of a normal space X. Then there exists a
continuous function F : X → [−1, 1] such that F |A = f .

Proof : Let us set f = f0 (for reasons that will soon become
clear).

Let A0 = {x ∈ A : f0(x) ≤ −1
3
} and B0 = {x ∈ A : f0(x) ≥

1
3
}; then A0 and B0 are disjoint sets which are closed in A and

hence also in X. By Urysohn’s lemma, we can find a contin-
uous function g0 : X → [−1

3
, 1

3
] such that g0(A0) = {−1

3
} and
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g0(B0) = {1
3
}. Set f1 = f0 − g0|A and observe that f1 : A →

[−2
3
, 2

3
].

Next, let A1 = {x ∈ A : f1(x) ≤ −1
3
· 2

3
} and B1 = {x ∈ A :

f1(x) ≥ 1
3
· 2

3
}; and as before, construct a continuous function

g1 : X → [−1
3
· 2

3
, 1

3
· 2

3
] such that g1(A1) = {−1

3
· 2

3
} and g1(B1) =

{1
3
· 2

3
}. Then define f2 = f1−g1|A = f0−(g0 +g1)|A, and observe

that f2 : A → [−(2
3
)2, (2

3
)2].

Repeating this argument indefinitely, we find that we can find
(i) a sequence {fn}∞n=0 of continuous functions on A such that
fn : A → [−(2

3
)n, (2

3
)n], for each n; and (ii) a sequence {gn}∞n=0 of

continuous functions on X such that gn(A) ⊂ [−1
3
· (2

3
)n, 1

3
· (2

3
)n],

for each n; and such that these sequences satisfy

fn = f0 − (g0 + g1 + · · · + gn−1)|A .

The series
∑∞

n=0 gn is absolutely summable, and consequently,
summable in the Banach space Cb(X) of all bounded continuous
functions on X. Let F be the limit of this sum. Finally, the
estimate we have on fn (see (i) above) and the equation displayed
above show that F |A = f0 = f and the proof is complete. 2

Exercise A.4.25 (1) Show that Urysohn’s lemma is valid with
the unit interval [0,1] replaced by any closed interval [a, b], and
thus justify the manner in which Urysohn’s lemma was used in
the proof of Tietze’s extension theorem. (Hint: use appropriate
‘affine maps’ to map any closed interval homeomorphically onto
any other closed interval.)

(2) Show that Tietze’s extension theorem remains valid if
[0,1] is replaced by (a) R, (b) C, (c) Rn.

A.5 Measure and integration

In this section, we review some of the basic aspects of measure
and integration. We begin with the fundamental notion of a
σ-algebra of sets.

Definition A.5.1 A σ-algebra of subsets of a set X is, by
definition, a collection B of subsets of X which satisfies the
following requirements:
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(a) X ∈ B;

(b) A ∈ B ⇒ Ac ∈ B, where Ac = X − A denotes the
complement of the set A; and

(c) {An}∞n=1 ⊂ B ⇒ ∪n An ∈ A.

A measurable space is a pair (X,B) consisting of a set X
and a σ-algebra B of subsets of X.

Thus, a σ-algebra is nothing but a collection of sets which
contains the whole space and is closed under the formation of
complements and countable unions. Since ∩nAn = (∪nA

c
n)c, it

is clear that a σ-algebra is closed under the formation of count-
able intersections; further, every σ-algebra always contains the
empty set (since ∅ = Xc).

Example A.5.2 (1) The collection 2X of all subsets of X is a
σ-algebra, as is the two-element collection {∅, X}. These are
called the ‘trivial’ σ-algebras; if B is any σ-algebra of subsets of
X, then {∅, X} ⊂ B ⊂ 2X .

(2) The intersection of an arbitrary collection of σ-algebras of
subsets of X is also a σ-algebra of subsets of X. It follows that if
S is any collection of subsets of X, and if we set B(S) = ∩{B :
S ⊂ B,B is a σ-algebra of subsets of X}, then B(S) is a σ-algebra
of subsets of X, and it is the smallest σ-algebra of subsets of X
which contains the initial family S of sets; we shall refer to B(S)
as the σ-algebra generated by S.

(3) If X is a topological space, we shall write BX = B(τ),
where τ is the family of all open sets in X; members of this
σ-algebra are called Borel sets and BX is called the Borel σ-
algebra of X.

(4) Suppose {(Xi,Bi) : i ∈ I} is a family of measurable
spaces. Let X =

∏
i∈I Xi denote the Cartesian product, and let

πi : X → Xi denote the i-th coordinate projection, for each i ∈ I.
Then the product σ-algebra B =

∏
i∈I Bi is the σ-algebra of

subsets of X defined as B = B(S), where S = {π−1
i (Ai) : Ai ∈

Bi, i ∈ I}, and (X,B) is called the ‘product measurable space’.
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(5) If (X,B) is a measurable space, and if X0 ⊂ X is an ar-
bitrary subset, define B|X0 = {A ∩ X0 : A ∈ B}; equivalently,
B|X0 = {i−1(A) : A ∈ B}, where i : X0 → X denotes the in-
clusion map. The σ-algebra B|X0 is called the σ-algebra induced
by B. 2

Exercise A.5.3 (1) Let H be a separable Hilbert space. Let τ
(resp., τw) denote the family of all open (resp., weakly open) sets
in H. Show that BH = B(τ) = B(τw). (Hint: It suffices to prove
that if x ∈ H and if ε > 0, then B(x, ε) = {y ∈ H : ||y − x|| ≤
ε} ∈ B(τw); pick a countable (norm-) dense set {xn} in H, and
note that B(x, ε) = ∩n {y : |〈(y − x), xn〉| ≤ ε||xn||}.)

(2) Let τn (resp., τs, τw) denote the set of all subsets of L(H)
which are open with respect to the norm topology (resp., strong
operator topology, weak operator topology) on L(H). If H is
separable, show that BL(H) = B(τn) = B(τs) = B(τw). (Hint: use
(1) above.)

We now come to the appropriate class of maps in the category
of measurable spaces.

Definition A.5.4 If (Xi,Bi), i = 1, 2, are measurable spaces,
then a function f : X1 → X2 is said to be measurable if
f−1(A) ∈ B1 ∀ A ∈ B2.

Proposition A.5.5 (a) The composite of measurable maps is
measurable.

(b) If (Xi,Bi), i = 1, 2, are measurable spaces, and if B2 =
B(S) for some family S ⊂ 2X2, then a function f : X1 → X2 is
measurable if and only if f−1(A) ∈ B1 for all A ∈ S.

(c) If Xi, i = 1, 2 are topological spaces, and if f : X1 → X2

is a continuous map, then f is measurable as a map between the
measurable spaces (Xi,BXi

), i = 1, 2.

Proof: (a) If (Xi,Bi), i = 1, 2, 3, are measurable spaces, and
if f : X1 → X2 and g : X2 → X3 are measurable maps, and if A ∈
B3, then g−1(A) ∈ B2 (since g is measurable), and consequently,
(g ◦ f)−1(A) = f−1(g−1(A)) ∈ B1 (since f is measurable).

(b) Suppose f−1(A) ∈ B1 for all A ∈ S. Since (f−1(A))c =
f−1(Ac), f−1(X2) = X1 and f−1(∪iAi) = ∪if

−1(Ai), it is seen
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that the family B = {A ⊂ X2 : f−1(A) ∈ B1} is a σ-algebra of
subsets of B2 which contains S, and consequently, B ⊃ B(S) =
B2, and hence f is measurable.

(c) Apply (b) with S as the set of all open sets in X2. 2

Some consequences of the preceding proposition are listed in
the following exercises.

Exercise A.5.6 (1) Suppose {(Xi,Bi) : i ∈ I} is a family of
measurable spaces. Let (X,B) be the product measurable space,
as in Example A.5.2(4). Let (Y,B0) be any measurable space.

(a) Show that there exists a bijective correspondence between
maps f : Y → X and families {fi : Y → Xi}i∈I of maps, this
correspondence being given by f(y) = ((fi(y))); the map f is
written as f =

∏
i∈I fi.

(b) Show that if f, fi are as in (a) above, then f is measurable
if and only if each fi is measurable. (Hint: Use the family S
used to define the product σ-algebra, Proposition A.5.5(b), and
the fact that πi ◦ f = fi ∀i, where πi denotes the projection of
the product onto the i-th factor.)

(2) If (X,B) is a measurable space, if fi : X → R, i ∈ I, are
measurable maps (with respect to the Borel σ-algebra on R), and
if F : RI → R is a continuous map (where RI is endowed with
the product topology), then show that the map g : X → R defined
by g = F ◦ (

∏
i∈I fi) is a (B,BR)-measurable function.

(3) If (X,B) is a measurable space, and if f, g : X → R
are measurable maps, show that each of the following maps is
measurable: |f |, af + bg (where a, b are arbitrary real numbers),
fg, f 2 + 3f 3, x 7→ sin(g(x)).

(4) The indicator function of a subset E ⊂ X is the real-
valued function on X, always denoted in these notes by the sym-
bol 1E, which is defined by

1E(x) =

{
1 if x ∈ E
0 if x /∈ E

.

Show that 1E is measurable if and only if E ∈ B. (For this rea-
son, the members of B are sometimes referred to as measurable
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sets. Also, the correspondence E → 1E sets up a bijection be-
tween the family of subsets of X on the one hand, and functions
from X into the 2-element set {0, 1}, on the other; this is one of
the reasons for using the notation 2X to denote the class of all
subsets of the set X.)

In the sequel, we will have occasion to deal with possibly
infinite-valued functions. We shall write R = R ∪ {∞,−∞}.
Using any reasonable bijection between R and [−1, 1] - say, the
one given by the map

f(x) =

{
±1 if x = ±∞

x
1+|x| if x ∈ R

- we may regard R as a (compact Hausdorff) topological space,
and hence equip it with the corresponding Borel σ-algebra. If
we have an extended real-valued function defined on a set X -
i.e., a map f : X → R - and if B is a σ-algebra on X, we shall
say that f is measurable if f−1(A) ∈ B ∀ A ∈ B

R
. The reader

should have little difficulty in verifying the following fact: given
a map f : X → R, let X0 = f−1(R), f0 = f |X0 , and let B|X0 be
the induced σ-algebra on the subset X0 - see Example A.5.2(5);
then the extended real-valued function f is measurable if and
only if the following conditions are satisfied: (i) f−1({a}) ∈ B,
for a ∈ {−∞,∞}, and (ii) f0 : X0 → R is measurable.

We will, in particular, be interested in limits of sequences of
functions (when they converge). Before systematically discussing
such (pointwise) limits, we pause to recall some facts about the
limit-superior and the limit-inferior of sequences.

Suppose, to start with, that {an} is a sequence of real num-
bers. For each (temporarily fixed) m ∈ IN, define

bm = infn≥man , cm = supn≥man , (A.5.15)

with the understanding, of course, that bm = −∞ (resp., cm =
+∞) if the sequence {an} is not bounded below (resp., bounded
above).

Hence,

n ≥ m ⇒ bm ≤ an ≤ cm ;
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and in particular,

b1 ≤ b2 ≤ · · · ≤ bm ≤ · · · ≤ cm ≤ · · · ≤ c2 ≤ c1 ;

thus, {bm : m ∈ IN} (resp., {cm : m ∈ IN}) is a non-decreasing
(resp., non-increasing) sequence of extended real numbers. Con-
sequently, we may find extended real numbers b, c such that
b = supmbm = limmbm and c = infmcm = limmcm.

We define b = lim infnan and c = lim supnan. Thus, we
have

lim infn an = lim
m→∞ inf

n≥m
am = sup

m∈IN
inf
n≥m

am (A.5.16)

and

lim supn an = lim
m→∞ sup

n≥m

am = inf
m∈IN

sup
n≥m

am . (A.5.17)

We state one useful alternative description of the ‘inferior’
and ‘superior’ limits of a sequence, in the following exercise.

Exercise A.5.7 Let {an : n ∈ IN} be any sequence of real num-
bers. Let L be the set of all ‘limit-points’ of this sequence; thus,
l ∈ L if and only if there exists some subsequence for which
l = limk→∞ ank

. Thus L ⊂ R. Show that:
(a) lim inf an , lim sup an ∈ L; and
(b) l ∈ L ⇒ lim inf an ≤ l ≤ lim sup an.
(c) the sequence {an} converges to an extended real number

if and only if lim inf an = lim sup an.

If X is a set and if {fn : n ∈ IN} is a sequence of real-valued
functions on X, we define the extended real-vallued functions
lim inf fn and lim sup fn in the obvious pointwise manner,
thus:

(lim inf fn)(x) = lim inf fn(x),

(lim sup fn)(x) = lim sup fn(x).

Proposition A.5.8 Suppose (X,B) is a measurable space, and
suppose {fn : n ∈ IN} is a sequence of real-valued measurable
functions on X. Then,
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(a) supnfn and infnfn are measurable extended real-valued
functions on X;

(b) lim inf fn and lim sup fn are measurable extended real-
valued functions on X;

(c) the set C = {x ∈ X : {fn(x)} converges to a finite real
number} is measurable, i.e., C ∈ B; further, the function f :
C → R defined by f(x) = limnfn(x) is measurable (with respect
to the induced σ-algebra B|C . (In particular, the pointwise limit
of a (pointwise) convergent sequence of measurable real-valued
functions is also a measurable function.)

Proof : (a) Since infn fn = − supn(−fn), it is enough
to prove the assertion concerning suprema. So, suppose f =
supn fn, where {fn} is a sequence of measurable real-valued
functions on X. In view of Proposition A.5.5(b), and since the
class of sets of the form {t ∈ R : t > a} - as a varies over R
- generates the Borel σ-algebra B

R
, we only need to check that

{x ∈ X : f(x) > a} ∈ B, for each a ∈ R; but this follows from
the identity

{x ∈ X : f(x) > a} = ∪∞
n=1 {x ∈ X : fn(x) > a}

(b) This follows quite easily from repeated applications of (a)
(or rather, the extension of (a) which covers suprema and infima
of sequences of extended real-valued functions).

(c) Observe, to start with, that if Z is a Hausdorff space,
then ∆ = {(z, z) : z ∈ Z} is a closed set in Z × Z; hence,
if f, g : X → Z are (B,BZ)-measurable functions, then (f, g) :
X → Z ×Z is a (B,BZ×Z)-measurable function, and hence {x ∈
X : f(x) = g(x)} ∈ B.

In particular, if we apply the preceding fact to the case when
f = lim supnfn, g = lim infn fn and Z = R, we find that if
D is the set of points x ∈ X for which the sequence {fn(x)}
converges to a point in R, then D ∈ B. Since R is a measurable
set in R, the set F = {x ∈ X : lim supn fn(x) ∈ R} must also
belong to B, and consequently, C = D ∩ F ∈ B. Also since f |C
is clearly a measurable function, all parts of (c) are proved. 2

The following proposition describes, in a sense, how to con-
struct all possible measurable real-valued functions on a measur-
able space (X,B).
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Proposition A.5.9 Let (X,B) be a measurable space.
(1) The following conditions on a (B,BR)-measurable func-

tion f : X → R are equivalent:
(i) f(X) is a finite set;
(ii) there exists n ∈ IN, real numbers a1, · · · , an ∈ R and a

partition X =
∐n

i=1 Ei such that Ei ∈ B ∀i, and f =
∑n

i=1 ai1Ei
.

A function satisfying the above conditions is called a simple
function (on (X,B)).

(2) The following conditions on a (B,BR)-measurable func-
tion f : X → R are equivalent:

(i) f(X) is a countable set;
(ii) there exists a countable set I, real numbers an, n ∈ I,

and a partiton X =
∐

n∈I En such that En ∈ B ∀n ∈ I, and
f =

∑
n∈I an1En

.

A function satisfying the above conditions is called an elemen-
tary function (on (X,B)).

(3) If f : X → R is any non-negative measurable function,
then there exists a sequence {fn} of simple functions on (X,B)
such that:

(i) f1(x) ≤ f2(x) ≤ · · · ≤ fn(x) ≤ fn+1(x) ≤ · · · ,
for all x ∈ X; and

(ii) f(x) = limn fn(x) = supn fn(x) ∀ x ∈ X.

Proof : (1) The implication (ii) ⇒ (i) is obvious, and as for
(i) ⇒ (ii), if f(X) = {a1, · · · , an}, set Ei = f−1({ai}), and
note that these do what they are expected to do.

(2) This is proved in the same way as was (1).
(3) Fix a positive integer n, let Ik

n = [ k
2n , k+1

2n ) and define
Ek

n = f−1(Ik
n), for k = 0, 1, 2, · · ·. Define hn =

∑∞
k=1

k
2n 1Ek

n
. It

should be clear that (the Ek
n’s inherit measurability from f and

consequently) hn is an elementary function in the sense of (2)
above.

The definitions further show that, for each x ∈ X, we have

f(x) − 1

2n
< hn(x) ≤ hn+1(x) ≤ f(x) .
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Thus, the hn’s form a non-decreasing sequence of non-negative
elementary functions which converge uniformly to the function
f . If we set fn = min{hn, n}, it is readily verified that these
fn’s are simple functions which satisfy the requirements of (3).

2

Now we come to the all important notion of a measure.
(Throughout this section, we shall use the word measure to de-
note what should be more accurately referred to as a positive
measure; we will make the necessary distinctions when we need
to.)

Definition A.5.10 Let (X,B) be a measurable space. A mea-
sure on (X,B) is a function µ : B → [0,∞] with the following
two properties:

(0) µ(∅) = 0; and
(1) µ is countably additive - i.e., if E =

∐∞
n=1 En is a

countable ‘measurable’ partition, meaning that E,En ∈ B ∀n,
then µ(E) =

∑∞
n=1 µ(En).

A measure space is a triple (X,B, µ), consisting of a mea-
surable space together with a measure defined on it.

A measure µ is said to be finite (resp., a probability mea-
sure) if µ(X) < ∞ (resp., µ(X) = 1).

We list a few elementary consequences of the definition in the
next proposition.

Proposition A.5.11 Let (X,B, µ) be a measure space; then,
(1) µ is ‘monotone’: i.e., A,B ∈ B, A ⊂ B ⇒ µ(A) ≤

µ(B);
(2) µ is ‘countably subadditive’: i.e., if En ∈ B ∀n = 1, 2, · · ·,

then µ(∪∞
n=1En),≤ ∑∞

n=1 µ(En);
(3) µ is ‘continuous from below’: i.e., if E1 ⊂ E2 ⊂ · · · ⊂

En ⊂ · · · is an increasing sequence of sets in B, and if E =
∪∞

n=1En, then µ(E) = limnµ(En);
(4) µ is ‘continuous from above if it is restricted to sets of

finite measure’: i.e., if if E1 ⊃ E2 ⊃ · · · ⊃ En ⊃ · · · is a
decreasing sequence of sets in B, if E = ∩∞

n=1En, and if µ(E1) <
∞, then µ(E) = limnµ(En).
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Proof : (1) Since B = A
∐

(B − A), deduce from the
positivity and countable additivity of µ that

µ(A) ≤ µ(A) + µ(B − A)

= µ(A) + µ(B − A) + µ(∅) + µ(∅) + · · ·
= µ(A

∐
(B − A)

∐
∅

∐
∅

∐
· · ·)

= µ(B) .

(2) Define Sn = ∪n
i=1Ei, for each n = 1, 2, · · ·; then it is clear

that {Sn} is an increasing sequence of sets and that Sn ∈ B ∀n;
now set An = Sn−Sn−1 for each n (with the understanding that
S0 = ∅); it is seen that {An} is a sequence of pairwise disjoint
sets and that An ∈ B for each n; finally, the construction also
ensures that

Sn = ∪n
i=1 Ei =

n∐

i=1

Ai, ∀n = 1, 2, · · · . (A.5.18)

Further, we see that

∪∞
n=1En =

∞∐

n=1

An , (A.5.19)

and hence by the assumed countable additivity and the already
established monotonicity of µ, we see that

µ(∪∞
n=1En) = µ(

∞∐

n=1

An)

=
∞∑

n=1

µ(An)

≤
∞∑

n=1

µ(En) ,

since An ⊂ En ∀n.
(3) If the sequence {En} is already increasing, then, in the

notation of the proof of (2) above, we find that Sn = En and
that An = En − En−1. Since countable additivity implies ‘finite
additivity’ (by tagging on infinitely many copies of the empty
set, as in the proof of (1) above), we may deduce from equation
A.5.18 that

µ(En) = µ(Sn) =
n∑

i=1

µ(Ai) ;
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similarly, we see from equation A.5.19 that

µ(E) =
∞∑

n=1

µ(An) ;

the desired conclusion is a consequence of the last two equations.
(4) Define Fn = E1−En, note that (i) Fn ∈ B ∀n, (ii) {Fn} is

an increasing sequence of sets, and (iii) ∪∞
n=1Fn = E1−∩∞

n=1En;
the desired conclusion is a consequence of one application of
(the already proved) (3) above to the sequence {Fn}, and the
following immediate consequence of (1): if A,B ∈ B, A ⊂ B
and if µ(B) < ∞, then µ(A) = µ(B) − µ(B − A). 2

We now give some examples of measures; we do not prove
the various assertions made in these examples; the reader inter-
ested in further details, may consult any of the standard texts
on measure theory (such as [Hal1], for instance).

Example A.5.12 (1) Let X be any set, let B = 2X and de-
fine µ(E) to be n if E is finite and has exactly n elements, and
define µ(E) to be ∞ if E is an infinite set. This µ is easily veri-
fied to define a measure on (X, 2X), and is called the counting
measure on X.

For instance, if X = IN, if En = {n, n+1, n+2, · · ·}, and if µ
denotes counting measure on IN, we see that {En} is a decreasing
sequence of sets in IN, with ∩∞

n=1En = ∅; but µ(En) = ∞ ∀n,
and so limn µ(En) 6= µ(∩nEn); thus, if we do not restrict our-
selves to sets of finite measure, a measure need not be continuous
from above - see Proposition A.5.11(4).

(2) It is a fact, whose proof we will not go into here, that
there exists a unique measure m defined on (R,BR) with the
propertythat m([a, b]) = b − a whenever a, b ∈ R, a < b. This
measure is called Lebesgue measure on R. (Thus the Lebesgue
measure of an interval is its length.)

More generally, for any n ∈ IN, there exists a unique measure
mn defined on (Rn,BR

n) such that if B =
∏n

i=1[ai, bi] is the
n-dimensional ‘box’ with sides [ai, bi], then mn(B) =

∏n
i=1(bi−

ai); this measure is called n-dimensional Lebesgue measure;
thus, the n-dimensional Lebesgue measure of a box is just its
(n-dimensional) volume.
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(3) Suppose {(Xi,Bi, µi) : i ∈ I} is an arbitrary family of
‘probability spaces’ : i.e., each (Xi,Bi) is a measurable space
and µi is a probability measure defined on it. Let (X,B) be the
product measurable space, as in Example A.5.2(4). (Recall that
B is the σ-algebra generated by all ‘finite-dimensional cylinder
sets’; i.e., B = B(C), where a typical member of C is obtained by
fixing finitely many co-ordinates (i.e., a finite set I0 ⊂ I), fixing
measurable sets Ei ∈ Bi ∀i ∈ I0, and looking at the ‘cylinder C
with base

∏
i∈I0 Ei’ - thus C = {((xi)) ∈ X : xi ∈ Ei ∀i ∈ I0}.

It is a fact that there exists a unique probability measure µ
defined on (X,B) with the property that if C is as above, then
µ(C) =

∏
i∈I0 µi(Ei). This measure µ is called the product of

the probability measures µi.
It should be mentioned that if the family I is finite, then the

initial measures µi do not have to be probability measures for us
to be able to construct the product measure. (In fact mn is the
product of n copies of m.) In fact, existence and uniqueness of
the ‘product’ of finitely many measures can be established if we
only impose the condition that each µi be a σ-finite measure
- meaning that Xi admits a countable partition Xi =

∐∞
n=1 En

such that En ∈ Bi and µi(En) < ∞ for all n.
It is only when we wish to construct the product of an infinite

family of measures, that we have to impose the requirement that
(at least all but finitely many of) the measures concerned are
probability measures. 2

Given a measure space (X,B, µ) and a non-negative (B,BR)-
measurable function f : X → R, there is a unique (natural) way
of assigning a value (in [0,∞]) to the expression

∫
fdµ. We will

not go into the details of how this is proved; we will, instead,
content ourselves with showing the reader how this ‘integral’ is
computed, and leave the interested reader to go to such standard
references as [Hal1], for instance, to become convinced that all
these things work out as they are stated to. We shall state,
in one long Proposition, the various features of the assignment
f 7→ ∫

fdµ.

Proposition A.5.13 Let (X,B, µ) be a measure space; let us
write M+ to denote the class of all functions f : X → [0,∞)
which are (B,BR)-measurable.
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(1) There exists a unique map M+ 3 f 7→ ∫
fdµ ∈ [0,∞]

which satisfies the following properties:

(i)
∫

1Edµ = µ(E) ∀ E ∈ B;

(ii) f, g ∈ M+, a, b ∈ [0,∞) ⇒ ∫
(af + bg)dµ = a

∫
fdµ +

b
∫

gdµ;

(iii) for any f ∈ M+, we have

∫
fdµ = lim

n

∫
fndµ ,

for any non-decreasing sequence {fn} of simple functions which
converges pointwise to f . (See Proposition A.5.9(3).)

(2) Further, in case the measure µ is σ-finite, and if f ∈ M+,
then the quantity (

∫
fdµ) which is called the integral of f with

respect to µ, admits the following interpretation as ‘area under
the curve’: let A(f) = {(x, t) ∈ X × R : 0 ≤ t ≤ f(x)}
denote the ‘region under the graph of f ’; let B ⊗ BR denote the
natural product σ-algebra on X×R (see Example A.5.2), and let
λ = µ×m denote the product-measure - see Example A.5.12(3)
- of µ with Lebesgue measure on R; then,

(i) A(f) ∈ B ⊗ BR; and

(ii)
∫

fdµ = λ( A(f) ). 2

Exercise A.5.14 Let (X,B, µ) be a measure space. Then show
that

(a) a function f : X → C is (B,BC)-measurable if and only
if Re f and Im f are (B,BR)-measurable, where, of course Re f
andf Im f denote the real- and imaginary- parts of f , respec-
tively;

(b) a function f : X → R is (B,BR)-measurable if and only
if f± are (B,BR)-measurable, where f± are the ‘positive and neg-
ative parts of f (as in the proof of Proposition 3.3.11(f), for
instance);

(c) if f : X → C then f = (f1 − f2) + i(f3 − f4), where
{fj : 1 ≤ j ≤ 4} are the non-negative functions defined by f1 =
(Re f)+, f2 = (Re f)−, f3 = (Im f)+, f4 = (Im f)−; show
further that 0 ≤ fj(x) ≤ |f(x)| ∀x ∈ X;

(d) if f, g : X → [0,∞) are non-negative measurable func-
tions on X such that f(x) ≤ g(x) ∀x, then

∫
fdµ ≤ ∫

gdµ.
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Using the preceding exercise, we can talk of the integral of
appropriate complex-valued functions. Thus, let us agree to call
a function f : X → C integrable with respect to the measure
µ if (i) f is (B,BC)-measurable, and if (ii)

∫ |f |dµ < ∞. (This
makes sense since the measurability of f implies that of |f |.)
Further, if {fj : 1 ≤ j ≤ 4} are as in Exercise A.5.14(d) above,
then we may define

∫
fdµ = (

∫
f1dµ −

∫
f2dµ) + i(

∫
f3dµ −

∫
f4dµ) .

It is an easy exercise to verify that the set of µ-integrable func-
tions form a vector space and that the map f → ∫

fdµ defines a
linear functional on this vector space.

Remark A.5.15 The space L1(X,B, µ):

If (X,B, µ) is a measure space, let L1 = L1(X,B, µ) denote
the vector space of all µ-integrable functions f : X → C. Let
N = {f ∈ L1 :

∫ |f |dµ = 0}; it is then not hard to show
that in order for a measurable function f to belong to N , it is
necessary and sufficient that f vanish µ-almost everywhere,
meaning that µ({f 6= 0}) = 0. It follows that N is a vector
subspace of L1; define L1 = L1(X,B, µ) to be the quotient space
L1/N ; (thus two integrable functions define the same element
of L1 precisely when they agree µ-almost everywhere); it is true,
furthermore, that the equation

||f ||1 =
∫
|f |dµ

can be thought of as defining a norm on L1. (Strictly speaking,
an element of L1 is not one function, but a whole equivalence
class of functions, (any two of which agree a.e.), but the integral
in the above equation depends only on the equivalence class of
the function f ; in other words, the above equation defines a semi-
norm on L1, which ‘descends’ to a norm on the quotient space
L1.) It is further true that L1(X,B, µ) is a Banach space.

In an exactly similar manner, the spaces Lp(X,B, µ) are de-
fined; since the cases p ∈ {1, 2,∞} will be of importance for us,
and since we shall not have to deal with other values of p in this
book, we shall only discuss these cases.
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The space L2(X,B, µ):

Let L2 = L2(X,B, µ) denote the set of (B,BC)-measurable
functions f : X → C such that |f |2 ∈ L1; for f, g ∈ L2, define
〈f, g〉 =

∫
fgdµ. It is then true that L2 is a vector space

and that the equation ||f ||2 = 〈f, f〉 1
2 defines a semi-norm on

L2; as before, if we let N = {f ∈ L2 : ||f ||2 = 0} (= the
set of measurable functions which are equal to 0 a.e.), then the
semi-norm || · ||2 descends to a genuine norm on the quotient
space L2 = L2(X,B, µ) = L2/N . As in the case of L1, we
shall regard elements of L2 as functions (rather than equivalence
classes of functions) with the proviso that we shall consider two
functions as being the same if they agree a.e. (which is the
standard abbreviation for the expression ‘almost everywhere’);
when it is necessary to draw attention to the measure in question,
we shall use expressions such as f = g µ−a.e. It is a fact - perhaps
not too surprising - that L2 is a Hilbert space with respect to
the natural definition of inner product.

It should be mentioned that much of what was stated here
for p = 1, 2 has extensions that are valid for p ≥ 1; (of course, it
is only for p = 2 that L2 is a Hilbert space;) in general, we get a
Banach space Lp with

||f ||p =
(∫

|f |pdµ
) 1

p

.

The space L∞(X,B, µ):

The case L∞ deserves a special discussion because of certain
features of the norm in question; naturally, we wish, here, to
regard bounded measurable functions with the norm being given
by the ‘supremum norm’; the only mild complication is caused by
our being forced to consider two measurable functions as being
identical if they agree a.e.; hence, what happens on a set of (µ-
) measure zero should not be relevant to the discussion; thus,
for instance, if we are dealing with the example of Lebesgue
measure m on R, then since m(A) = 0 for every countable set,
we should regard the function f(x) = 0 ∀x as being the same as
the function g which is defined to agree with f outside the set
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IN of natural numbers but satisfies g(n) = n ∀ n ∈ IN; note that
g is not bounded, while f is as trivial as can be.

Hence, define L∞ = L∞(X,B, µ) to be the class of all
(B,BC)-measurable functions which are essentially bounded;
thus f ∈ L∞ precisely when there exists E ∈ B (which could
very well depend upon f) such that µ(X − E) = 0 and f is
bounded on E; thus the elements of L∞ are those measurable
functions which are ‘bounded a.e.’

Define ||f ||∞ = inf{K > 0 : ∃ N ∈ B such that µ(N) =
0 and |f(x)| ≤ K whenever x ∈ X − N}.

Finally, we define L∞ = L∞(X,B, µ) to be the quotient
space L∞ = L∞/N , where, as before, N is the set of measurable
functions which vanish a.e. (which is also the same as {f ∈ L∞ :
||f ||∞ = 0). It is then the case that L∞ is a Banach space.

It is a fact that if µ is a finite measure (and even more gener-
ally, but not without some restrictions on µ), and if 1 ≤ p < ∞,
then the Banach dual space of Lp(X,B, µ) may be naturally iden-
tified with Lq(X,B, µ), where the ‘dual-index’ q is related to p
by the equation 1

p
+ 1

q
= 1, or equivalently, q is defined thus:

q =

{
p

p−1
if 1 < p < ∞

∞ if p = 1

where the ‘duality’ is given by integration, thus: if f ∈ Lp, g ∈
Lq, then it is true that fg ∈ L1 and if we define

φg(f) =
∫

fgdµ , f ∈ Lp

then the correspondence g 7→ φg is the one which establishes the
desired isometric isomorphism Lq ∼= (Lp)∗. 2

We list some of the basic results on integration theorey in
one proposition, for convenience of reference.

Proposition A.5.16 Let (X,B, µ) be a measure space.
(1) (Fatou’s lemma) if {fn} is a sequence of non-negative

measurable functions on X, then,

∫
lim inf fn dµ ≤ lim inf (

∫
fndµ) .
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(2) (monotone convergence theorem) Suppose {fn} is
a sequence of non-negative measurable functions on X, suppose
f is a non-negative measurable function, and suppose that for
almost every x ∈ X, it is true that the sequence {fn(x)} is a
non-decreasing sequence of real numbers which converges to f(x);
then, ∫

fdµ = lim
∫

fndµ = sup
∫

fndµ .

(3) (dominated convergence theorem) Suppose {fn} is a
sequence in Lp(X,B, µ) for some p ∈ [1,∞); suppose there exists
g ∈ Lp such that |fn| ≤ g a.e., for each n; suppose further that
the sequence {fn(x)} converges to f(x) for µ-almost every x in
X; then f ∈ Lp and ||fn − f ||p → 0 as n → ∞.

Remark A.5.17 It is true, conversely, that if {fn} is a sequence
which converges to f in Lp, then there exists a subsequence, call
it {fnk

: k ∈ IN} and a g ∈ Lp such that |fnk
| ≤ g a.e., for each

k, and such that {fnk
(x)} converges to f(x) for µ-almost every

x ∈ X; all this is for p ∈ [1,∞). Thus, modulo the need for
passing to a subsequence, the dominated convergence theorem
essentially describes convergence in Lp, provided 1 ≤ p < ∞.
(The reader should be able to construct examples to see that
the statement of the dominated convergence theorem is not true
for p = ∞.) 2

For convenience of reference, we now recall the basic facts
concerning product measures (see Example A.5.12(3)) and inte-
gration with respect to them.

Proposition A.5.18 Let (X,BX , µ) and (Y,BY , ν) be σ-finite
measure spaces. Let B = BX ⊗ BY be the ‘product σ-algebra’,
which is defined as the σ-algebra generated by all ‘measurable
rectangles’ - i.e., sets of the form A × B,A ∈ BX , B ∈ BY .

(a) There exists a unique σ-finite measure λ (which is usually
denoted by µ × ν and called the product measure) defined on B
with the property that

λ(A × B) = µ(A)ν(B) , ∀ A ∈ BX , B ∈ BY ; (A.5.20)
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(b) more generally than in (a), if E ∈ B is arbitrary, define
the vertical (resp., horizontal) slice of E by Ex = {y ∈ Y :
(x, y) ∈ E} (resp., Ey = {x ∈ X : (x, y) ∈ E}); then

(i) Ex ∈ BY ∀ x ∈ X (resp., Ey ∈ BX ∀ y ∈ Y );
(ii) the function x 7→ ν(Ex) (resp., y 7→ µ(Ey)) is a measur-

able extended real-valued function on X (resp., Y ); and

∫

X
ν(Ex) dµ(x) = λ(E) =

∫

Y
µ(Ey) dν(y). (A.5.21)

(c) (Tonelli’s theorem) Let f : X × Y → R+ be a non-
negative (B,BR)-measurable function; define the vertical (resp.,
horizontal) slice of f to be the function fx : Y → R+ (resp.,
fy : X → R+) given by fx(y) = f(x, y) = fy(x); then,

(i) fx (resp., fy) is a (BY ,BR)-measurable (resp., (BX ,BR)-
measurable) function, for every x ∈ X (resp., y ∈ Y );

(ii) the function x 7→ ∫
Y fxdν (resp., y 7→ ∫

X fydµ) is a
(BX ,B

R
)-measurable (resp., (BY ,B

R
)-measurable) extended real-

valued function on X (resp., Y ), and

∫

X

( ∫

Y
fxdν

)
dµ(x) =

∫

X×Y
fdλ =

∫

Y

( ∫

X
fydµ

)
dν(y) .

(A.5.22)
(d) (Fubini’s theorem) Suppose f ∈ L1(X ×Y,B, λ); if the

vertical and horizontal slices of f are defined as in (c) above,
then

(i) fx (resp., fy) is a (BY ,BC)-measurable (resp., (BX ,BC)-
measurable) function, for µ-almost every x ∈ X (resp., for ν-
almost every y ∈ Y );

(ii) fx ∈ L1(Y,BY , ν) for µ-almost all x ∈ X (resp., fy ∈
L1(X,BX , µ) for ν-almost all y ∈ Y );

(iii) the function x 7→ ∫
Y fxdν (resp., y 7→ ∫

X fydµ) is a
µ-a.e. (resp., ν-a.e.) meaningfully defined (BX ,BC)-measurable
(resp., (BY ,BC)-measurable) complex-valued function, which de-
fines an element of L1(X,BX , µ) (resp., L1(Y,BY , ν)); further,

∫

X

( ∫

Y
fxdν

)
dµ(x) =

∫

X×Y
fdλ =

∫

Y

( ∫

X
fydµ

)
dν(y) .

(A.5.23)
2
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One consequence of Fubini’s theorem, which will be used in
the text, is stated as an exercise below.

Exercise A.5.19 Let (X,BX , µ) and (Y,BY , ν) be σ-finite mea-
sure spaces, and let {en : n ∈ N} (resp., {fm : m ∈ M}) be an
orthonormal basis for L2(X,BX , µ) (resp., L2(Y,BY , ν)). Define
en⊗fm : X ×Y → C by (en⊗fm)(x, y) = en(x)fm(y). Assume
that both measure spaces are ‘separable’ meaning that the index
sets M and N above are countable. Show that {en ⊗ fm : n ∈
N,m ∈ M} is an orthonormal basis for L2(X×Y,BX⊗BY , µ×ν).
(Hint: Use Proposition A.5.5 and the definition of BX ⊗ BY to
show that each en⊗fm is (BX⊗BY ,BC)-measurable; use Fubini’s
theorem to check that {en ⊗ fm}n,m is an orthonormal set; now,
if k ∈ L2(X ×Y,BX ⊗BY , µ×ν), apply Tonelli’s theorem to |k|2
to deduce the existence of a set A ∈ BX such that (i) µ(A) = 0,
(ii) x /∈ A ⇒ kx ∈ L2(Y,BY , ν), and

||k||2L2(µ×ν) =
∫

X
||kx||2L2(ν) dµ(x)

=
∫

X

( ∑

m∈M

|〈kx, fm〉|2
)

dµ(x)

=
∑

m∈M

∫

X
|〈kx, fm〉|2 dµ(x) ;

set gm(x) = 〈kx, fm〉, ∀ m ∈ M, x /∈ A, and note that each gm

is defined µ-a.e., and that

||k||2L2(µ×ν) =
∑

m

||gm||2L2(µ)

=
∑

m∈M

∑

n∈N

|〈gm, en〉|2 ;

note finally - by yet another application of Fubini’s theorem - that
〈gm, en〉 = 〈k, en⊗fm〉, to conclude that ||k||2 =

∑
m,n |〈k, en⊗

fm〉|2 and consequently that {en ⊗ fm : m ∈ M,n ∈ N} is indeed
an orthonormal basis for L2(µ × ν).

We conclude this brief discussion on measure theory with
a brief reference to absolute continuity and the fundamental
Radon-Nikodym theorem.
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Proposition A.5.20 Let (X,B, µ) be a measure space, and let
f : X → [0,∞) be a non-negative integrable function. Then the
equation

ν(E) =
∫

E
fdµ =

∫
1Efdµ (A.5.24)

defines a finite measure on (X,B), which is sometimes called the
‘indefinite integral’ of f ; this measure has the property that

E ∈ B, µ(E) = 0 ⇒ ν(E) = 0 . (A.5.25)

If measures µ and ν are related as in the condition A.5.25,
the measure ν is said to be absolutely continuous with respect
to µ.

The following result is basic, and we will have occasion to use
it in Chapter III. We omit the proof. Proofs of various results in
this section can be found in any standard reference on measure
theory, such as [Hal1], for instance. (The result is true in greater
generality than is stated here, but this will suffice for our needs.)

Theorem A.5.21 (Radon-Nikodym theorem)
Suppose µ and ν are finite measures defined on the measur-

able space (X,B). Suppose ν is absolutely continuous with respect
to µ. Then there exists a non-negative function g ∈ L1(X,B, µ)
with the property that

ν(E) =
∫

E
gdµ , ∀ E ∈ B ;

the function g is uniquely determined µ-a.e. by the above require-
ment, in the sense that if g1 is any other function in L1(X,B, µ)
which satisfies the above condition, then g = g1 µ − a.e.

Further, it is true that if f : X → [0,∞) is any measurable
function, then ∫

fdν =
∫

fgdµ .

Thus, a finite measure is absolutely continuous with respect
to µ if and only if it arises as the indefinite integral of some
non-negative function which is integrable with respect to µ; the
function g, whose µ-equivalence class is uniquely determined by
ν, is called the Radon-Nikodym derivative of ν with respect
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to µ, and both of the following expressions are used to denote
this relationship:

g =
dν

dµ
, dν = g dµ . (A.5.26)

We will outline a proof of the uniqueness of the Radon-
Nikodym derivative in the following sequence of exercises.

Exercise A.5.22 Let (X,B, µ) be a finite measure space. We
use the notation M+ to denote the class of all non-negative mea-
surable functions on (X,B).

(1) Suppose f ∈ M+ satisfies the following condition: if
E ∈ B and if a1E ≤ f ≤ b1E µ-a.e. Show that

aµ(E) ≤
∫

E
f dµ ≤ bµ(E) .

(2) If f ∈ M+ and if
∫
A fdµ = 0 for some A ∈ B, show that

f = 0 a.e. on A - i.e., show that µ({x ∈ A : f(x) > 0}) = 0.
(Hint: Consider the sets En = {x ∈ A : 1

n
≤ f(x) ≤ n}, and

appeal to (1).)
(3) If f ∈ L1(X,B, µ) satisfies

∫
E fdµ = 0 for every E ∈ B,

show that f = 0 a.e.; hence deduce the uniqueness assertion in
the Radon-Nikodym theorem. (Hint: Write f = g + ih, where
g and h are real-valued functions; let g = g+ − g− and h =
h+−h− be the canonical decompositions of g and h as differences
of non-negative functions; show that (2) is applicable to each of
the functions g±, h± and the set A = X.)

(4) Suppose dν = g dµ as in Theorem A.5.21. Let A = {x :
g(x) > 0}, and let µ|A be the measure defined by

µ|A(E) = µ(E ∩ A) ∀ E ∈ B ; (A.5.27)

show that
(i) µ|A is absolutely continuous with respect to µ and more-

over, d(µ|A) = 1Adµ; and
(ii) µ|A and ν are mutually absolutely continuous, mean-

ing that each measure is absolutely continuous with respect to the
other, or equivalently, that they have the same null sets. (Hint:
use (2) above to show that ν(E) = 0 if and only if g vanishes
µ-a.e. on E.)
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Two measures are said to be singular with respect to one
another if they are ‘supported on disjoint sets’; explicitly, if µ and
ν are measures defined on (X,B), we write µ ⊥ ν if it is possible
to find A,B ∈ B such that X = A

∐
B and µ = µ|A, ν =

ν|B (in the sense of equation A.5.27). The purpose of the next
exercise is to show that for several purposes, deciding various
issues concerning two measures - such as absolutely continuity
of one with respect to the other, or mutual singularity, etc.) -
is as easy as deciding corresponding issues concerning two sets
- such as whether one is essentially contained in the other, or
essentially disjoint from another, etc.

Exercise A.5.23 Let {µi : 1 ≤ i ≤ n} be a finite collection of
finite positive measures on (X,B). Let λ =

∑n
i=1 µi; then show

that:
(a) λ is a finite positive measure and µi is absolutely contin-

uous with respect to λ, for each i = 1, · · · , n;
(b) if gi = dµi

dλ
, and if Ai = {gi > 0}, then

(i) µi is absolutely continuous with respect to µj if and only
if Ai ⊂ Aj (mod λ) (meaning that λ(Ai − Aj) = 0); and

(ii) µi ⊥ µj if and only if Ai and Aj are disjoint mod λ
(meaning that λ(Ai ∩ Aj) = 0).

We will find the following consequence of the Radon-Nikodym
theorem (and Exercise A.5.23) very useful. (This theorem is also
not stated here in its greatest generality.)

Theorem A.5.24 (Lebesgue decomposition)
Let µ and ν be finite measures defined on (X,B). Then there

exists a unique decomposition ν = νa +νs with the property that
(i) νa is absolutely continuous with respect to µ, and (ii) νs and
µ are singular with respect to each other.

Proof : Define λ = µ+ν; it should be clear that λ is also a
finite measure and that both µ and ν are absolutely continuous
with respect to λ. Define

f =
dµ

dλ
, g =

dν

dλ
, A = {f > 0}, B = {g > 0} .
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Define the measures νa and νs by the equations

νa(E) =
∫

E∩A
g dλ , νs(E) =

∫

E−A
g dλ ;

the definitions clearly imply that ν = νa + νs; further, the facts
that νa is absolutely continuous with respect to µ, and that νs

and µ are mutually singular, are both immediate consequences
of Exercise A.5.23(b).

Suppose ν = ν1 + ν2 is some other decomposition of ν as a
sum of finite positive measures with the property that ν1 is abso-
lutely continuous with respect to µ and ν2 ⊥ µ. Notice, to start
with, that both the νi are necessarily absolutely continuous with
respect to ν and hence also with respect to λ. Write gi = dνi

dλ

and Fi = {gi > 0}, for i = 1, 2. We may now deduce from the
hypotheses and Exercise A.5.23(b) that we have the following
inclusions mod λ:

F1, F2 ⊂ B, F1 ⊂ A, F2 ⊂ (X − A) .

note that d(νa)
dλ

= 1Ag and d(νs)
dλ

= 1X−Ag, and hence, we have the
following inclusions (mod λ):

F1 ⊂ A ∩ B = {d(νa)

dλ
> 0}

(resp.,

F2 ⊂ B − A = {d(νs)

dλ
> 0} );

whence we may deduce from Exercise A.5.23(b) that ν1 (resp.,
ν2) is absolutely continuous with respect to νa (resp., νs).

The equation ν = ν1 + ν2 must necessarily imply (again be-
cause of Exercise A.5.23(b)) that B = F1 ∪ F2 (mod λ), which
can only happen if F1 = A∩B and F2 = B −A (mod λ), which
means (again by the same exercise) that ν1 (resp., ν2) and νa

(resp., νs) are mutually absolutely continuous. 2

A.6 The Stone-Weierstrass theorem

We begin this section by introducing a class of spaces which,
although not necessarily compact, nevertheless exhibit several
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features of compact spaces and are closely related to compact
spaces in a manner we shall describe. At the end of this section,
we prove the very useful Stone-Weierstrass theorem concerning
the algebra of continuous functions on such spaces.

The spaces we shall be concerned with are the so-called locally
compact spaces, which we now proceed to describe.

Definition A.6.1 A topological space X is said to be locally
compact if it has a base B of sets with the property that given
any open set U in X and a point x ∈ U , there exists a set B ∈ B
and a compact set K such that x ∈ B ⊂ K ⊂ U .

Euclidean space Rn is easily seen to be locally compact, for
every n ∈ IN. More examples of locally compact spaces are
provided by the following proposition.

Proposition A.6.2 (1) If X is a Hausdorff space, the follow-
ing conditions are equivalent:

(i) X is locally compact;
(ii) every point in X has an open neighbourhood whose clo-

sure is compact.

(2) Every compact Hausdorff space is locally compact.

(3) If X is a locally compact space, and if A is a subset of
X which is either open or closed, then A, with respect to the
subspace topology, is locally compact.

Proof : (1) (i) ⇒ (ii) : Recall that compact subsets of
Hausdorff spaces are closed - see Proposition A.4.18(c) - while
closed subsets of compact sets are compact in any topological
space - see Proposition A.4.4(b). It follows that if B is as in
Definition A.6.1, then the closure of every set in B is compact.

(ii) ⇒ (i): Let B be the class of all open sets in X whose
closures are compact. For each x ∈ X, pick a neighbourhood Ux

whose closure - call it Kx - is compact. Suppose now that U is
any open neighbourhood of x. Let U1 = U ∩ Ux, which is also
an open neighbourhood of x. Now, x ∈ U1 ⊂ Ux ⊂ Kx.

Consider Kx as a compact Hausdorff space (with the subspace
topology). In this compact space, we see that (a) Kx − U1 is a
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closed, and hence compact, subset of Kx, and (b) x /∈ Kx − U1.
Hence, by Proposition A.4.18(c), we can find open sets V1, V2

in Kx such that x ∈ V1, Kx − U1 ⊂ V2 and V1 ∩ V2 = ∅. In
particular, this means that V1 ⊂ Kx − V2 = F (say); the set
F is a closed subset of the compact set Kx and is consequently
compact (in Kx and hence also in X - see Exercise A.4.3). Hence
F is a closed set in (the Hausdorff space) X, and consequently,
the closure, in X, of V1 is contained in F and is compact. Also,
since V1 is open in Kx, there exists an open set V in X such that
V1 = V ∩ Kx; but since V1 ⊂ V1 ⊂ F ⊂ U1 ⊂ Kx, we find that
also V1 = V ∩ Kx ∩ U1 = V ∩ U1; i.e., V1 is open in X.

Thus, we have shown that for any x ∈ X and any open
neighbourhood U of x, there exists an open set V ∈ B such that
x ∈ V1 ⊂ V1 ⊂ U , and such that V1 is compact; thus, we have
verified local compactness of X.

(2) This is an immediate consequence of (1).

(3) Suppose A is a closed subset of X. Let x ∈ A. Then,
by (1), there exists an open set U in X and a compact subset
K of X such that x ∈ U ⊂ K. Then x ∈ A ∩ U ⊂ A ∩ K; but
A∩K is compact (in X, being a closed subset of a compact set,
and hence also compact in A), and A ∩ U is an open set in the
subspace topology of A. Thus A is locally compact.

Suppose A is an open set. Then by Definition A.6.1, if x ∈ A,
then there exists sets U,K ⊂ A such that x ∈ U ⊂ K ⊂ A, where
U is open in X and K is compact; clearly this means that U is
also open in A, and we may conclude from (1) that A is indeed
locally compact, in this case as well. 2

In particular, we see from Proposition A.4.18(a) and Propo-
sition A.6.2(3) that if X is a compact Hausdorff space, and if
x0 ∈ X, then the subspace A = X − {x0} is a locally compact
Hausdorff space with respect to the subspace topology. The sur-
prising and exceedingly useful fact is that every locally compact
Hausdorff space arises in this fashion.

Theorem A.6.3 Let X be a locally compact Hausdorff space.
Then there exists a compact Hausdorff space X̂ and a point in
X̂ - which is usually referred to as the ‘point at infinity’, and de-
noted simply by ∞ - such that X is homeomorphic to the subspace
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X̂ −{∞} of X̂. The compact space X̂ is customarily referred to
as the one-point compactification of X.

Proof : Define X̂ = X ∪{∞}, where ∞ is an artificial point
(not in X) which is adjoined to X. We make X̂ a topological
space as follows: say that a set U ⊂ X̂ is open if either (i)
U ⊂ X, and U is an open subset of X; or (ii) ∞ ∈ U , and X̂−U
is a compact subset of X.

Let us first verify that this prescription does indeed define
a topology on X̂. It is clear that ∅ and X̂ are open according
to our definition. Suppose U and V are open in X̂; there are
four cases; (i) U, V ⊂ X: in this case U, V and U ∩ V are all
open sets in X; (ii) U is an open subset of X and V = X̂ − K
for some compact subset of X: in this case, since X − K is
open in X, we find that U ∩ V = U ∩ (X − K) is an open
subset of X; (iii) V is an open subset of X and U = X̂ − K for
some compact subset of X: in this case, since X − K is open
in X, we find that U ∩ V = V ∩ (X − K) is an open subset
of X; (iv) there exist compact subsets C,K ⊂ X such that
U = X̂ − C, V == X̂ − K: in this case, C ∪ K is a compact
subset of X and U ∩ V = X̂ − (C ∪ K). We find that in all
four cases, U ∩V is open in X̂. A similar case-by-case reasoning
shows that an arbitrary union of open sets in X̂ is also open,
and so we have indeed defined a topology on X̂.

Finally it should be obvious that the subspace topology that
X inherits from X̂ is the same as the given topology.

Since open sets in X are open in X̂ and since X is Hausdorff,
it is clear that distinct points in X can be separated in X̂. Sup-
pose now that x ∈ X; then, by Proposition A.6.2(1), we can find
an open neighbourhood of x in X such that the closure (in X)
of U is compact; if we call this closure K, then V = X̂ − K is
an open neighbourhood of ∞ such that U ∩ V = ∅. Thus X̂ is
indeed a Hausdorff space.

Suppose now that {Ui : i ∈ I} is an open cover of X̂. Then,
pick a Uj such that ∞ ∈ Uj; since Uj is open, the definition of the

topology on X̂ implies that X̂−Uj = K is a compact subset of X.
Then we can find a finite subset I0 ⊂ I such that K ⊂ ∪i∈I0Ui;
it follows that {Ui : i ∈ I0 ∪ {j}} is a finite subcover, thereby
establishing the compactness of X̂. 2



A.6. THE STONE-WEIERSTRASS THEOREM 291

Exercise A.6.4 (1) Show that X is closed in X̂ if and only if
X is compact. (Hence if X is not compact, then X is dense in
X̂; this is the reason for calling X̂ a compactification of X (since
it is ‘minimal’ in some sense).

(2) The following table has two columns which are labelled X
and X̂ respectively; if the i-th row has spaces A and B appearing
in the the first and second columns, respectively, show that B is
homeomorphic to Â.

X X̂
1. {1, 2, 3, · · ·} {0} ∪ { 1

n
: n = 1, 2, · · ·}

2. [0, 1) [0, 1]
3. Rn Sn = {x ∈ Rn+1 : ||x||2 = 1}

The purpose of the next sequence of exercises is to lead up to
a proof of the fact that a normed vector space is locally compact
if and only if it is finite-dimensional.

Exercise A.6.5 (1) Let X be a normed space, with finite di-
mension n, say. Let `1

n be the vector space Cn equipped with the
norm || · ||1 - see Example 1.2.2(1). Fix a basis {x1, · · · , xn} for
X and define T : `1

n → X by T (α1, · · · , αn) =
∑n

i=1 αixi.
(a) Show that T ∈ L(`1

n, X), and that T is 1-1 and onto.
(b) Prove that the unit sphere S = {x ∈ `1

n : ||x|| = 1} is com-
pact, and conclude (using the injectivity of T ) that inf{||Tx|| :
x ∈ S} > 0; hence deduce that T−1 is also continuous.

(c) Conclude that any finite dimensional normed space is lo-
cally compact and complete, and that any two norms on such a
space are equivalent - meaning that if || · ||i : i = 1, 2 are two
norms on a finite-dimensional space X, then there exist con-
stants k,K > 0 such that k||x||1 ≤ ||x||2 ≤ K||x||1 for all x ∈ X.

(2) (a) Let X0 be a closed subspace of a normed space X;
suppose X0 6= X. Show that, for each ε > 0, there exists a vector
x ∈ X such that ||x|| = 1 and ||x − x0|| ≥ 1 − ε for all x0 ∈ X0.
(Hint: Consider a vector of norm (1 − 2ε) in the quotient space
X/X0 - see Exercise 1.5.3(3). )

(b) If X is an infinite dimensional normed space, and if ε > 0
is arbitrary, show that there exists a sequence {xn}∞n=1 in X such
that ||xn|| = 1 for all N , and ||xn−xm|| ≥ (1− ε), whenever n 6=
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m. (Hint : Suppose unit vectors x1, · · · , xn have been constructed
so that any two of them are at a distance of at least (1− ε) from
one another; let Xn be the subspace spanned by {x1, · · · , xn};
deduce from (1)(c) above that Xn is a proper closed subspace of
X and appeal to (2)(a) above to pick a unit vector xn+1 which is
at a distance of at least (1 − ε) from each of the first n xi’s.)

(c) Deduce that no infinite-dimensional normed space is lo-
cally compact.

(3) Suppose M and N are closed subspaces of a Banach space
X and suppose N is finite-dimensional; show that M + N is a
closed subspace of X. (Hint: Let π : X → X/M be the natural
quotient mapping; deduce from (1) above that π(N ) is a closed
subspace of X/M, and that, consequently, N+M = π−1(π(N ))
is a closed subspace of X.)

(4) Show that the conclusion of (3) above is not valid, in
general, if we only assume that N and M are closed, even when
X is a Hilbert space. (Hint: Let T ∈ L(H) be a 1-1 operator
whose range is not closed - for instance, see Remark 1.5.15; and
consider X = H ⊕ H, M = H ⊕ {0},N = G(T ) = {(x, Tx) :
x ∈ H}.)

We now wish to discuss continuous (real or complex-valued)
functions on a locally compact space. We start with an easy con-
sequence of Urysohn’s lemma, Tietze’s extension theorem and
one-point compactifications of locally compact Hausdorff spaces.

Proposition A.6.6 Suppose X is a locally compact Hausdorff
space.

(a) If A and K are disjoint subsets of X such that A is closed
and K is compact, then there exists a continuous function f :
X → [0, 1] such that f(A) = {0}, f(K) = {1}.

(b) If K is a compact subspace of X, and if f : K → R is
any continuous function, then there exists a continuous function
F : X → R such that F |K = f .

Proof : (a) In the one-point compactification X̂, consider
the subsets K and B = A∪{∞}. Then, X̂ −B = X −A is open
(in X, hence in X̂); thus B and K are disjoint closed subsets
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in a compact Hausdorff space; hence, by Urysohn’s lemma, we
can find a continuous function g : X̂ → [0, 1] such that g(B) =
{0}, g(K) = {1}. Let f = g|X .

(b) This follows from applying Tietze’s extension theorem
(or rather, from its extension stated in Exercise A.4.25(2)) to the
closed subset K of the one-point compactification of X, and then
restricting the continuous function (which extends f : K → X̂)
to X. 2

The next result introduces a very important function space.
(By the theory discussed in Chapter 2, these are the most general
commutative C∗-algebras.)

Proposition A.6.7 Let X̂ be the one-point compactification of
a locally compact Hausdorff space X. Let C(X̂) denote the space
of all complex-valued continuous functions on X̂, equipped with
the sup-norm || · ||∞.

(a) The following conditions on a continuous function f :
X → C are equivalent:

(i) f is the uniform limit of a sequence {fn}∞n=1 ⊂ Cc(X);
i.e., there exists a sequence {fn}∞n=1 of continuous functions fn :
X → C such that each fn vanishes outside some compact sub-
set of X, with the property that the sequence {fn} of functions
converges uniformly to f on X.

(ii) f is continuous and f vanishes at ‘infinity’ - meaning
that for each ε > 0, there exists a compact subset K ⊂ X such
that |f(x)| < ε whenever x /∈ K;

(iii) f extends to a continuous function F : X̂ → C with the
property that F (∞) = 0.

The set of functions which satisfy these equivalent conditions
is denoted by C0(X).

(b) Let I = {F ∈ C(X̂) : F (∞) = 0}; then I is a maximal
ideal in C(X̂), and the mapping F 7→ F |X defines an isometric
isomorphism of I onto C0(X).

Proof : (a) (i) ⇒ (ii) : If ε > 0, pick n such that |fn(x) −
f(x)| < ε; let K be a compact set such that fn(x) = 0 ∀ x /∈ K;
then, clearly |fn(x)| < ε ∀ x /∈ K .
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(ii) ⇒ (iii) : Define F : X̂ → C by

F (x) =

{
f(x) if x ∈ X
0 if x = ∞ ;

the function F is clearly continuous at all points of X (since X
is an open set in X̂; the continuity of F at ∞ follows from the
hypothesis on f and the definition of open neighbourhoods of ∞
in X̂ (as complements of compact sets in X).

(iii) ⇒ (i) : Fix n. Let An = {x ∈ X̂ : |F (x)| ≥ 1
n
} and Bn =

{x ∈ X̂ : |F (x)| ≤ 1
2n
}. Note that An and Bn are disjoint closed

subsets of X̂, and that in fact An ⊂ X (so that, in particular, An

is a compact subset of X). By Urysohn’s theorem we can find
a continuous function φn : X̂ → [0, 1] such that φn(An) = {1}
and φn(Bn) = {0}. Consider the function fn = (Fφn)|X ; then
fn : X → C is continuous; also, if we set Kn = {x ∈ X̂ : |F (x)| ≥
1
2n
}, then Kn is a compact subset of X and X − Kn ⊂ Bn, and

so fn(x) = 0∀ x ∈ X − Kn. Finally, notice that fn agrees with
f on An, while if x /∈ An, then

|f(x) − fn(x)| ≤ |f(x)| (1 + |φn(x)|) ≤ 2

n

and consequently the sequence {fn} converges uniformly to f .
(b) This is obvious. 2

Now we proceed to the Stone-Weierstrass theorem via its
more classical special case, the Weierstrass approximation theo-
rem.

Theorem A.6.8 (Weierstrass approximation theorem)
The set of polynomials is dense in the Banach algebra C[a, b],

where −∞ < a ≤ b < ∞.

Proof : Without loss of generality - why? - we may restrict
ourselves to the case where a = 0, b = 1.

We begin with the binomial theorem

n∑

k=0

(
n

k

)
xkyn−k = (x + y)n ; (A.6.28)



A.6. THE STONE-WEIERSTRASS THEOREM 295

first set y = 1 − x and observe that

n∑

k=0

(
n

k

)
xk(1 − x)n−k = 1 . (A.6.29)

Next, differentiate equation A.6.28 once (with respect to x,
treating y as a constant) to get:

n∑

k=0

k
(

n

k

)
xk−1yn−k = n(x + y)n−1 ; (A.6.30)

multiply by x, and set y = 1 − x, to obtain

n∑

k=0

k
(

n

k

)
xk(1 − x)n−k = nx . (A.6.31)

Similarly, another differentiation (of equation A.6.30 with re-
spect to x), subsequent multiplication by x2, and the specialisa-
tion y = 1 − x yields the identity

n∑

k=0

k(k − 1)
(

n

k

)
xk(1 − x)n−k = n(n − 1)x2 . (A.6.32)

We may now deduce from the three preceding equations that

n∑

k=0

(k − nx)2
(

n

k

)
xk(1 − x)n−k

= n2x2 − 2nx · nx + (nx + n(n − 1)x2)

= nx(1 − x) . (A.6.33)

In order to show that any complex-valued continuous func-
tion on [0, 1] is uniformly approximable by polynomials (with
complex coefficients), it clearly suffices (by considering real and
imaginary parts) to show that any real-valued continuous func-
tion on [0, 1] is uniformly approximable by polynomials with real
coefficients.

So, suppose now that f : [0, 1] → R is a continuous real-
valued function, and that ε > 0 is arbitrary. Since [0, 1] is
compact, the function f is bounded; let M = ||f ||∞. Also,
since f is uniformly continuous, we can find δ > 0 such that
|f(x) − f(y)| < ε whenever |x − y| < δ. (If you do not know
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what uniform continuity means, the ε − δ statement given here
is the definition; try to use the compactness of [0, 1] and prove
this assertion directly.)

We assert that if p(x) =
∑n

k=0 f( k
n
)
(

n

k

)
xk(1−x)n−k, and if

n is sufficiently large, than ||f − p|| < ε. For this, first observe -
thanks to equation A.6.29 - that if x ∈ [0, 1] is temporarily fixed,
then

|f(x) − p(x)| = |
n∑

k=0

(f(x) − f(
k

n
))

(
n

k

)
xk(1 − x)n−k |

≤ S1 + S2 ,

where Si = |∑k∈Ii
(f(x) − f( k

n
))

(
n

k

)
xk(1 − x)n−k |, and the

sets Ii are defined by I1 = {k : 0 ≤ k ≤ n, | k
n
− x| < δ} and

I2 = {k : 0 ≤ k ≤ n, | k
n
− x| ≥ δ}.

Notice now that, by the defining property of δ, that

S1 ≤
∑

k∈I1

ε
(

n

k

)
xk(1 − x)n−k

≤ ε
n∑

k=0

(
n

k

)
xk(1 − x)n−k

= ε ,

while

S2 ≤ 2M
∑

k∈I2

(
n

k

)
xk(1 − x)n−k

≤ 2M
∑

k∈I2

(
k − nx

nδ
)2

(
n

k

)
xk(1 − x)n−k

≤ 2M

n2δ2

n∑

k=0

(k − nx)2
(

n

k

)
xk(1 − x)n−k

=
2Mx(1 − x)

nδ2

≤ M

2nδ2

→ 0 as n → ∞ ,

where we used (a) the identity A.6.33 in the 4th line above, and
(b) the fact that x(1 − x) ≤ 1

4
in the 5th line above; and the

proof is complete. 2
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We now proceed to the Stone-Weierstrass theorem, which
is a very useful generalisation of the Weierstrass theorem.

Theorem A.6.9 (a) (Real version) Let X be a compact Haus-
dorff space; let A be a (not necessarily closed) subalgebra of the
real Banach algebra CR(X); suppose that A satisfies the follow-
ing conditions:

(i) A contains the constant functions (or equivalently, A is
a unital sub-algebra of CR(X)); and

(ii) A separates points in X - meaning, of course, that if x, y
are any two distinct points in X, then there exists f ∈ A such
that f(x) 6= f(y).
Then, A is dense in CR(X).

(b) (Complex version) Let X be as above, and suppose A is
a self-adjoint subalgebra of C(X); suppose A satisfies conditions
(i) and (ii) above. Then, A is dense in C(X).

Proof : To begin with, we may (replace A by its closure),
consequently assume that A is closed, and seek to prove that
A = CR(X) (resp., C(X)).

(a) Begin by noting that since the function t 7→ |t| can be
uniformly approximated on any compact interval of R by poly-
nomials (thanks to the Weierstrass’ theorem), it follows that

f ∈ A ⇒ |f | ∈ A; since x ∨ y = max{x, y} = x+y+|x−y|
2

, and
x∧y = min{x, y} = x+y−x∨y

2
, it follows that A is a ‘sub-lattice’

of CR(X) - meaning that f, g ∈ A ⇒ f ∨ g, f ∧ g ∈ A.
Next, the hypothesis that A separates points of X (together

with the fact that A is a vector space containing the constant
functions) implies thatif x, y are distinct points in X and if
s, t ∈ R are arbitrary, then there exists f ∈ A such that f(x) =
s, f(y) = t. (Reason: first find f0 ∈ A such that f0(x) = s0 6=
t0 = f0(y); next, find constants a, b ∈ R such that as0 + b = s
and at0 + b = t, and set f = af0 + b1, where, of course, 1 denotes
the constant function 1.)

Suppose now that f ∈ CR(X) and that ε > 0. Temporarily
fix x ∈ X. For each y ∈ X, we can - by the previous paragraph
- pick fy ∈ A such that fy(x) = f(x) and fy(y) = f(y). Next,
choose an open neighbourhood Uy of y such that fy(z) > f(z)−
ε ∀ z ∈ Uy. Then, by compactness, we can find {y1, · · · , yn} ⊂ X
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such that X = ∪n
i=1Uyi

. Set gx = fy1 ∨fy2 ∨· · ·∨fyn
, and observe

that gx(x) = f(x) and that gx(z) > f(z) − ε ∀ z ∈ X.
Now, we can carry out the procedure outlined in the preced-

ing paragraph, for each x ∈ X. If gx is as in the last paragraph,
then, for each x ∈ X, find an open neighbourhood Vx of x such
that gx(z) < f(z) + ε ∀ z ∈ Vx. Then, by compactness, we
may find {x1, · · · , xm} ⊂ X such that X = ∪m

j=1Vxj
; finally, set

g = gx1∧gx2∧· · ·∧gxm , and observe that the construction implies
that f(z)− ε < g(z) < f(z)+ ε ∀ z ∈ X, thereby completing the
proof of (a).

(b) This follows easily from (a), upon considering real- and
imaginary- parts. (This is where we require that A is a self-
adjoint subalgebra in the complex case.) 2

We state some useful special cases of the Stone-Weierstrass
theorem in the exercise below.

Exercise A.6.10 In each of the following cases, show that the
algebra A is dense in C(X):

(i) X = T = {z ∈ C : |z| = 1}, A =
∨{zn : n ∈ Z}; thus,

A is the class of ‘trigonometric polynomials’;
(ii) X a compact subset of Rn, and A is the set of functions of

the form f(x1, · · · , xn) =
∑N

k1,···,kn=0 αk1,···,kn
xk1

1 · · ·xkn
n , where

αk1,···,kn
∈ C;

(iii) X a compact subset of Cn, and A is the set of (polyno-
mial) functions of the form

f(z1, · · · , zn) =
N∑

k1,l1,···,kn,ln=0

αk1,l1,···,kn,lnzk1
1 z1

l1 · · · zkn

n zn
ln ;

(iv) X = {1, 2, · · · , N}IN, and A = {ωk1,···,kn
: n ∈ IN, 1 ≤

k1, · · · , kn ≤ N}, where

ωk1,···,kn
((x1, x2, · · ·)) = exp(

2πi
∑n

j=1 kjxj

N
) .

The ‘locally compact’ version of the Stone-Weierstrass theo-
rem is the content of the next exercise.

Exercise A.6.11 Let A be a self-adjoint subalgebra of C0(X),
where X is a locally compact Hausdorff space. Suppose A satis-
fies the following conditions:
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(i) if x ∈ X, then there exists f ∈ A such that f(x) 6= 0; and
(ii) A separates points.

Then show that A = C0(X). (Hint: Let B = {F + α1 : f ∈
A, α ∈ C}, where 1 denotes the constant function on the one-
point compactification X̂, and F denotes the unique continuous
extension of f to X̂; appeal to the already established compact
case of the Stone-Weierstrass theorem.)

A.7 The Riesz Representation theo-

rem

This brief section is devoted to the statement and some com-
ments on the Riesz representation theorem - which is an identifi-
cation of the Banach dual space of C(X), when X is a compact
Hausdorff space.

There are various formulations of the Riesz representation
theorem; we start with one of them.

Theorem A.7.1 (Riesz representation theorem)
Let X be a compact Hausdorff space, and let B = BX denote

the Borel σ-algebra (which is generated by the class of all open
sets in X).

(a) Let µ : B → [0,∞) be a finite measure; then the equation

φµ(f) =
∫

X
fdµ (A.7.34)

defines a bounded linear functional φµ ∈ C(X)∗ which is positive
- meaning, of course, that f ≥ 0 ⇒ φµ(f) ≥ 0.

(b) Conversely, if φ ∈ C(X)∗ is a bounded linear functional
which is positive, then there exists a unique finite measure µ :
B → [0,∞) such that φ = φµ.

Before we get to other results which are also referred to as
the Riesz representation theorem, a few words concerning general
‘complex measures’ will be appropriate. We gather some facts
concerning such ‘finite complex measures’ in the next proposi-
tion. We do not go into the proof of the proposition; it may be
found in any standard book on analysis - see [Yos], for instance.
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Proposition A.7.2 Let (X,B) be any measurable space. Sup-
pose µ : B → C is a ‘finite complex measure’ defined on B -
i.e., assume that µ(∅) = 0 and that µ is countably additive in
the sense that whenever {En : 1 ≤ n < ∞} is a sequence of
pairwise disjoint members of B, then it is the case that the se-
ries

∑∞
n=1 µ(En) of complex numbers is convergent to the limit

µ(∪∞
n=1En).
Then, the assignment

B 3 E 7→ |µ|(E) = sup{
∞∑

n=1

|µ(En)| : E =
∞∐

n=1

En, En ∈ B }

defines a finite positive measure |µ| on (X,B).

Given a finite complex measure µ on (X,B) as above, the
positive measure |µ| is usually referred to as the total variation
measure of µ, and the number ||µ|| = |µ|(X) is referred to as
the total variation of the measure µ. It is an easy exercise to
verify that the assignment µ 7→ ||µ|| satisfies all the requirements
of a norm, and consequently, the set M(X) of all finite complex
measures has a natural structure of a normed space.

Theorem A.7.3 Let X be a compact Hausdorff space. Then
the equation

φµ(f) =
∫

X
fdµ

yields an isometric isomorphism M(X) 3 µ 7→ φµ ∈ C(X)∗ of
Banach spaces.

We emphasise that a part of the above statement is the as-
serton that the norm of the bounded linear functional φµ is the
total variation norm ||µ|| of the measure µ.
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Alaoglu’s thm., 32
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almost everywhere, 278
Atkinson’s thm., 173

Baire Category thm., 21
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Banach algebra, 79

semi-simple -, 100
Banach space, 17
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linear -, 222
standard -, 10

Bessel’s inequality, 46
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bounded operator, 12
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Cantor’s intersection thm., 20
cardinal numbers, 235

finite -, 237
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Cauchy-Schwarz inequality, 39
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closable operator, 193
closed map, 250
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compact operator, 158
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compact space, 251
complete, 17
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convex set, 33, 156
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convex hull, 156

deficiency
indices, 203
spaces, 203

dense set, 244
densely defined, 189
determinant

of a matrix, 225
of a linear transformation,

231
diagonal argument, 254
dimension

of Hilbert space, 51, 240
of a vector space, 223
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disc algebra, 92
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dominated convergence thm.,
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dual group, 102
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Fatou’s lemma, 280
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Fredholm operator, 174
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indicator function, 268
inner product, 38

- space, 38
integrable function, 278
isometric operator, 13,62
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linear operator, 189
linear transformation, 8
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linearly dependent, 221

- independent, 221

matrix, 3
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measurable function, 267
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parallelogram identity, 39
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Pontrjagin duality, 102
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element of C∗-algebra, 113
functional, 123
square root, 113, 213
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seminorm, 29
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state, 123
Stone-Weierstrass thm., 297
sub-representation, 122
subspace, 3
π-stable -, 122
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symmetric operator, 197
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Tonelli’s thm., 282
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strong operator -, 67
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triangle inequality, 5
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uniform convergence, 17
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