A characterization of freeness by invariance under quantum spreading

Stephen Curran

UCLA

Satellite Conference on Operator Algebras IMSc August 9, 2010

Distributional symmetries

Definition

- A sequence (X_1, \ldots, X_n) of random variables is called
 - *Exchangeable* if their joint distribution is invariant under permutations:

$$(X_1,\ldots,X_n)\sim_d (X_{\omega(1)},\ldots,X_{\omega(n)}), \qquad (\omega\in S_n).$$

• *Spreadable* if their joint distribution is invariant under taking subsequences:

$$(X_1, \ldots, X_k) \sim_d (X_{l_1}, \ldots, X_{l_k}), \qquad (1 \le l_1 < \cdots < l_k \le n).$$

- Note that independent and identically distributed (i.i.d) \Rightarrow exchangeable \Rightarrow spreadable.
- Reverse implications fail for finite sequences.

Theorem (de Finetti '30s)

Any infinite exchangeable sequence of random variables is conditionally *i.i.d.*

Theorem (Ryll-Nardzewski '57)

Any infinite spreadable sequence of random variables is conditionally i.i.d.

- So for infinite sequences, the conditions of being exchangeable, spreadable and conditionally i.i.d. are all equivalent.
- For finite exchangeable sequences, Diaconis and Freedman have obtained approximate de Finetti type results.

Noncommutative context

- We will consider sequences (x₁,..., x_n) of (self-adjoint) elements of a von Neumann algebra M with a fixed tracial state τ.
- The *joint distribution* of such a sequence is the collection of *noncommutative joint moments*

 $au(x_{i_1}\cdots x_{i_k}), \qquad (k\in\mathbb{N}, 1\leq i_1,\ldots,i_k\leq n)$

- Alternative notions of "independence" in this context, most notably Voiculescu's *free independence*.
- Exchangeability is no longer strong enough to single out one type of independence. In particular freely independent and identically distributed (f.i.d.) sequences are exchangeable.
- Spreadability also no longer implies exchangeability in this context (Köstler '10).
- More on spreadability and exchangeability in the noncommutative context in the talks of Köstler and Gohm tomorrow.

Stephen Curran (UCLA)

A characterization of freeness

Quantum exchangeability and the free de Finetti theorem

- S_n is characterized as the automorphism group of $\{1, \ldots, n\}$.
- Wang ('98) showed that $\{1, ..., n\}$ also has a "quantum" automorphism group, denoted $A_s(n)$.

Definition (Köstler-Speicher '08)

A sequence $(x_i)_{i \in \mathbb{N}}$ is quantum exchangeable if for each $n \in \mathbb{N}$ the joint distribution of (x_1, \ldots, x_n) is invariant under "quantum permutations" coming from $A_s(n)$.

Theorem (Köstler-Speicher '08)

An infinite sequence $(x_i)_{i \in \mathbb{N}}$ in (M, τ) is quantum exchangeable if and only if it is free and identically distributed with respect to a conditional expectation.

• Fails for finite quantum exchangeable sequences (Köstler-Speicher), but still holds in an approximate sense (C. '08).

Stephen Curran (UCLA)

A characterization of freeness

The goals in this talk:

- Introduce "quantum increasing sequence spaces" $A_i(k, n)$.
- Develop an appropriate notion of "quantum spreadability".
- Sketch the following free Ryll-Nardzewski theorem:

Theorem (Köstler-Speicher '08, C. '10)

For an infinite sequence $(x_i)_{i \in \mathbb{N}}$ in (M, τ) , the following are equivalent:

- **(**) $(x_i)_{i \in \mathbb{N}}$ is quantum exchangeable.
- 2 $(x_i)_{i \in \mathbb{N}}$ is quantum spreadable.
- Solution (x_i)_{i∈N} is free and identically distributed with respect to a conditional expectation.

Let G be a compact group.

- C(G) captures the topological structure of G (Gelfand duality).
- The group structure of G can be encoded by the morphisms:

$$egin{aligned} \Delta &: C(G) o C(G) \otimes C(G), & \Delta(f)(x,y) = f(xy) \ \epsilon &: C(G) o \mathbb{C}, & \epsilon(f) = f(e_G) \ S &: C(G) o C(G)^{op}, & S(f)(x) = f(x^{-1}). \end{aligned}$$

- A C^{*}-Hopf algebra is a unital C^{*}-algebra A together with morphisms Δ : A → A ⊗ A, ε : A → C and S : A → A^{op} (satisfying various compatibilities).
- Heuristic formula: "A = C(G)" where G is a compact quantum group.

Wang's $A_s(n)$

- View S_n as consisting of permutation matrices. $C(S_n)$ is generated by the coordinate functions f_{ij} , which satisfy the relations
 - *f_{ij}* is a self-adjoint projection.
 - For $1 \le i, j \le n$,

$$\sum_{k=1}^{n} f_{ik} = 1 = \sum_{k=1}^{n} f_{kj}.$$

The Hopf algebra structure is determined by

$$egin{aligned} \Delta(f_{ij}) &= \sum f_{ik} \otimes f_{kj} \ \epsilon(f_{ij}) &= \delta_{ij} \ S(f_{ij}) &= f_{ji}. \end{aligned}$$

- $A_s(n)$ is defined to be the universal C^* -algebra generated by "coordinates" $\{u_{ij} : 1 \le i, j \le n\}$ satisfying the relations above.
- $A_s(n)$ is a C*-Hopf algebra with morphisms defined by the above equations. We sometimes use the notation " $A_s(n) = C(S_n^+)$ ", where S_n^+ is the *free permutation group*.

Stephen Curran (UCLA)

Quantum increasing sequence spaces

- For $1 \le k \le n$, let $I_{kn} = \{(l_1, \ldots, l_k) : 1 \le l_1 < \cdots < l_k \le n\}$. View as $n \times k$ matrices with (i, j) entry δ_{il_j} .
- $C(I_{kn})$ is generated by coordinates $\{f_{ij} : 1 \le i \le n, 1 \le j \le k\}$ which satisfy

n

- *f_{ij}* is a self-adjoint projection.
- For $1 \le j \le k$,

$$\sum_{i=1}^n f_{ij} = 1.$$

• If j < m and $i \ge l$ then $f_{ij}f_{lm} = 0$.

- Define $A_i(k, n)$ to be the universal C*-algebra generated by $\{u_{ij} : 1 \le i \le n, 1 \le j \le k\}$ satisfying the above relations.
- $A_i(k, n)$ can be viewed as a "quantum family of maps" from $\{1, \ldots, k\}$ to $\{1, \ldots, n\}$, in the sense of (Sołtan '09).

Quantum exchangeability

Define α_n : C⟨t₁,..., t_n⟩ → C⟨t₁,..., t_n⟩ ⊗ A_s(n) to be the unital homomorphism determined by

$$\alpha_n(t_j) = \sum_{i=1}^n t_i \otimes u_{ij}.$$

 α_n is a *coaction* of $A_s(n)$, which can be thought of as "quantum permuting" t_1, \ldots, t_n .

Definition

 (x_1, \ldots, x_n) is called *quantum exchangeable* if

$$(\tau \otimes \mathrm{id}) lpha_n(p(x)) = \tau(p(x)) \cdot 1_{\mathcal{A}_s(n)}, \qquad (p \in \mathbb{C} \langle t_1, \ldots, t_n \rangle).$$

Explicitly,

$$\sum_{1\leq i_1,\ldots,i_k\leq n}\tau(x_{i_1}\cdots x_{i_k})u_{i_1j_1}\cdots u_{i_kj_k}=\tau(x_{j_1}\cdots x_{j_k})\cdot 1_{\mathcal{A}_s(n)}$$

Stephen Curran (UCLA)

Quantum spreadability

For 1 ≤ k ≤ n define β_{k,n} : C⟨t₁,...,t_k⟩ → C⟨t₁,...,t_n⟩ ⊗ A_i(k, n) to be the unital homomorphism determined by

$$\beta_{k,n}(t_j) = \sum_{i=1}^n t_i \otimes u_{ij}.$$

Definition

 (x_1, \ldots, x_n) is called *quantum spreadable* if

$$(au\otimes \mathrm{id})eta_{k,n}(p(x)) = au(p(x))\cdot 1_{A_i(k,n)}, \qquad (1\leq k\leq n,p\in\mathbb{C}\langle t_1,\ldots,t_k
angle).$$

Explicitly,

$$\sum_{1\leq i_1,\ldots,i_m\leq n}\tau(x_{i_1}\cdots x_{i_m})u_{i_1j_1}\cdots u_{i_mj_m}=\tau(x_{j_1}\cdots x_{j_m})\cdot 1_{\mathcal{A}_i(k,n)}$$

for $1 \leq k \leq n$ and $1 \leq j_1, \ldots, j_m \leq k$

Quantum exchangeability implies quantum spreadability

- Spreadability is clearly weaker than exchangeability, as it requires invariance under fewer transformations.
- Indeed any increasing sequence 1 ≤ l₁ < · · · < l_k ≤ n can be extended to a permutation ω ∈ S_n with ω(j) = l_j for 1 ≤ j ≤ k.
- ω is unique if one requires additionally that $\omega(k+1) < \cdots < \omega(n)$.
- For example:

$$\begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

• Dualizing $I_{kn} \hookrightarrow S_n$ gives $C(S_n) \twoheadrightarrow C(I_{k,n})$.

Extending quantum increasing sequences to quantum permutations

Proposition

Let $\{u_{ij}: 1 \le i, j \le n\}$ and $\{v_{ij}: 1 \le i \le n, 1 \le j \le k\}$ be the coordinates on $A_s(n)$ and $A_i(k, n)$, respectively. There is a unital *-homomorphism $A_s(n) \to A_i(k, n)$ which sends u_{ij} to v_{ij} for $1 \le i \le n, 1 \le j \le k$.

- Idea of proof: Compute $C(S_n) \rightarrow C(I_{kn})$ in terms of their coordinates, and check that this formula still works in the quantum case.
- At k = 2, n = 4 the map is given by

$$(u_{ij}) \rightarrow \begin{pmatrix} v_{11} & 0 & 1 - v_{11} & 0 \\ v_{21} & v_{22} & v_{11} - v_{22} & 1 - (v_{11} + v_{21}) \\ v_{31} & v_{32} & v_{22} & (v_{11} + v_{21}) - (v_{22} + v_{32}) \\ 0 & v_{42} & 0 & v_{22} + v_{32} \end{pmatrix}$$

Moment-cumulant formula for f.i.d. sequences

NC(k) is the collection of noncrossing partitions of {1,...,k}.
Given σ ∈ NC(k) and indices j₁,..., j_k, define

$$\delta_{\sigma}(\mathbf{j}) = \begin{cases} 1, & s \sim_{\sigma} t \Rightarrow j_s = j_t \\ 0, & \text{otherwise} \end{cases}$$

Theorem (Speicher)

A sequence $(x_1, \ldots x_n)$ in (M, τ) is f.i.d. if and only if

$$\tau(x_{j_1}\cdots x_{j_k}) = \sum_{\sigma\in \mathsf{NC}(k)} \delta_{\sigma}(\mathbf{j}) \sum_{\substack{\pi\in\mathsf{NC}(k)\\\pi\leq\sigma}} \mu(\pi,\sigma) \prod_{V\in\pi} \tau(x_1^{|V|}),$$

where μ is the Möbius function on NC(k).

Classical i.i.d. sequences are characterized by the same formula with NC(k) replaced by P(k), the set of all partitions of {1,...,k}.

Stephen Curran (UCLA)

A characterization of freeness

14 / 22

Representation theory of S_n^+

• For
$$\pi \in NC(k)$$
 define $p_{\pi} \in (\mathbb{C}^n)^{\otimes k}$ by
 $p_{\pi} = \sum_{1 \leq j_1, \dots, j_k \leq n} \delta_{\pi}(\mathbf{j}) e_{j_1} \otimes \dots \otimes e_{j_k}.$
Example:
 $\pi =$, $p_{\pi} = \sum_{i,j,k} e_i \otimes e_j \otimes e_j \otimes e_i \otimes e_i \otimes e_k$

Theorem (Banica)

Let $u : \mathbb{C}^n \to \mathbb{C}^n \otimes A_s(n)$ be the fundamental corepresentation. Then

$$\operatorname{Fix}(u^{\otimes k}) = \operatorname{span}\{p_{\pi} : \pi \in NC(k)\}.$$

• For S_n the theorem holds with NC(k) replaced by P(k), more in Roland's talk this afternoon.

Stephen Curran (UCLA)

F.i.d. sequences are quantum exchangeable

 Follows from definitions that (x₁,..., x_n) is quantum exchangeable if and only if

$$\sum_{1 \leq i_1, \dots, i_k \leq n} \tau(x_{i_1} \cdots x_{i_k}) \cdot (e_{i_1} \otimes \cdots \otimes e_{i_k}) \in \operatorname{Fix}(u^{\otimes k})$$

for each $k \in \mathbb{N}$.

• Moment-cumulant formula for f.i.d. sequences:

$$\sum_{1 \leq i_1, \dots, i_k \leq n} \tau(x_{i_1} \cdots x_{i_k}) \cdot (e_{i_1} \otimes \cdots \otimes e_{i_k}) \\ = \sum_{\sigma \in NC(k)} \left(\sum_{\substack{\pi \in NC(k) \\ \pi \leq \sigma}} \mu(\pi, \sigma) \prod_{V \in \pi} \tau(x_1^{|V|}) \right) \cdot p_{\sigma} \in \operatorname{Fix}(u^{\otimes k}).$$

• Define Gram matrix

$${\mathcal G}_{kn}(\pi,\sigma)=\langle {\mathcal p}_\pi,{\mathcal p}_\sigma
angle={\mathsf n}^\# ext{ of blocks of }\piartime\sigma,\qquad(\pi,\sigma\in{\mathsf NC}(k)).$$

• G_{kn} is invertible for $n \ge 4$, let W_{kn} denote it's inverse

Theorem (Banica-Collins)

For $1 \leq i_1, j_1, \ldots, i_k, j_k \leq n$,

$$\int_{S_n^+} u_{i_1 j_1} \cdots u_{i_k j_k} = \sum_{\sigma, \pi \in NC(k)} \delta_{\pi}(\mathbf{i}) \delta_{\sigma}(\mathbf{j}) W_{kn}(\pi, \sigma),$$

where \int denotes the Haar state on $A_s(n) = C(S_n^+)$.

- Difficulty is in understanding the entries of W_{kn} .
- Partial description of leading order as n→∞ given by Möbius function on NC(k) (C. '08).

Theorem

For
$$1 \leq i_1, j_1, \dots, i_k, j_k \leq n$$
,
$$\int_{S_n^+} u_{i_1 j_1} \cdots u_{i_k j_k} = \sum_{\sigma \in NC(k)} \delta_{\sigma}(\mathbf{j}) \sum_{\pi \in NC(k)} \delta_{\pi}(\mathbf{i}) n^{-|\pi|} (\mu(\pi, \sigma) + O(n^{-1})).$$

Sketch of free de Finetti

Let $(x_i)_{i \in \mathbb{N}}$ be a quantum exchangeable sequence in (M, τ) .

• Define tail algebra

$$B=\bigcap_{n\geq 1}W^*(x_n,x_{n+1},\dots).$$

For simplicity we will assume $B = \mathbb{C}$, so expectation onto B is τ .

• Ergodic theorem:

$$\lim_{n\to\infty} n^{-1} \sum_{i=1}^n x_i^k = \tau(x_1^k)$$

with convergence in the strong topology. By induction on number of blocks of $\pi \in NC(k)$:

$$\lim_{n\to\infty} n^{-|\pi|} \sum_{1\leq i_1,\ldots,i_k\leq n} \delta_{\pi}(\mathbf{i}) x_{i_1}\cdots x_{i_k} = \prod_{V\in\pi} \tau(x_1^{|V|})$$

with convergence in the strong topology.

Stephen Curran (UCLA)

Sketch of free de Finetti

Let $(x_i)_{i \in \mathbb{N}}$ be a quantum exchangeable sequence in (M, τ) . • For $1 \leq j_1, \ldots, j_k \leq n$ we have

$$\tau(x_{j_1}\cdots x_{j_k})=\sum_{1\leq i_1,\ldots,i_k\leq n}\tau(x_{i_1}\cdots x_{i_k})\int_{\mathcal{S}_n^+}u_{i_1j_1}\cdots u_{i_kj_k}.$$

• Apply Weingarten formula and rearrange terms:

$$\sum_{\sigma \in NC(k)} \delta_{\sigma}(\mathbf{j}) \sum_{\pi \in NC(k)} W_{kn}(\pi, \sigma) \sum_{1 \leq i_1, \dots, i_k \leq n} \delta_{\pi}(\mathbf{i}) \tau(x_{i_1} \cdots x_{i_k}).$$

• Apply Weingarten asymptotics and take $n \to \infty$:

$$\sum_{\sigma \in NC(k)} \delta_{\sigma}(\mathbf{j}) \sum_{\pi \in NC(k)} (\mu(\pi, \sigma) + O(n^{-1})) n^{-|\pi|} \sum_{1 \le i_1, \dots, i_k \le n} \delta_{\pi}(\mathbf{i}) \tau(x_{i_1} \cdots x_{i_k})$$
$$\xrightarrow{n \to \infty} \sum_{\sigma \in NC(k)} \delta_{\sigma}(\mathbf{j}) \sum_{\substack{\pi \in NC(k) \\ \pi \le \sigma}} \mu(\pi, \sigma) \prod_{V \in \pi} \tau(x_1^{|V|}).$$

Sketch of free Ryll-Nardzewski

- Use a similar "averaging" technique, what state to average against?
- Let {p_{ij} : 1 ≤ i ≤ n, 1 ≤ j ≤ k} be projections in a C*-probability space (A, φ) such that
 - The families ({p_{i1} : 1 ≤ i ≤ n},..., {p_{ik} : 1 ≤ i ≤ n}) are freely independent.
 - 2 For $j = 1, \ldots, k$, we have

$$\sum_{i=1}^n p_{ij} = 1,$$

and $\varphi(p_{ij}) = n^{-1}$ for $1 \le i \le n$.

• Use representation of $A_i(k, k \cdot n)$ given by

$$\begin{pmatrix} p_{11} & \cdots & p_{n1} & 0 & \cdots & 0 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & \cdots & 0 & p_{12} & \cdots & p_{n2} & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 0 & 0 & \cdots & p_{1k} & \cdots & p_{nk} \end{pmatrix}^{T}$$

Stephen Curran (UCLA)

August 9, 2010 21 / 2

- Representation on previous slide induces state $\psi_{k,n} : A_i(k, k \cdot n) \to \mathbb{C}$.
- $\psi_{k,n}$ is determined by

$$\psi_{k,n}(u_{(j_1-1)\cdot n+i_1,j_1}\cdots u_{(j_m-1)\cdot n+i_m,j_m}) = \sum_{\sigma\in NC(m)} \delta_{\sigma}(\mathbf{j}) \sum_{\substack{\pi\in NC(m)\\\pi\leq\sigma}} \delta_{\pi}(\mathbf{i}) n^{-|\pi|} \mu(\pi,\sigma)$$

for $1 \leq j_1, \ldots, j_m \leq k$ and $1 \leq i_1, \ldots, i_m \leq n$, and all other expectations are zero.