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NCPS

Definition

A non-commutative probability space - henceforth NCPS - is a pair (A, φ) of
a unital algebra A equipped with a linear functional φ satisfying φ(1) = 1

Definition

An NCPS (A, φ) can come in various flavours; it is said to be a

1 ∗ NCPS if A is a *-algebra and φ(a∗a) ≥ 0 for all a ∈ A.

2 C∗ NCPS if it is a ∗ NCPS and A is a C∗-algebra.

3 von Neumann NCPS if it is a ∗ NCPS , A is a von Neumann algebra and φ
is normala.

ameaning appropriately continuous

We shall reserve the term random variable for a self-adjoint element a = a∗ in a
∗ NCPS .
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Examples

1 Let (Ω,B, µ) be a probability space. Then A = L∞(Ω,B, µ) is a von
Neumann NCPS.

2 With (Ω,B, µ) as above, A = ∩∞p=1Lp(Ω,B, µ) is a ∗ NCPS .

3 Let A = Mn(C) and φ(a) = tr a = 1
n

Tr a be the normalised trace. More
generally, if (A, φ) is an NCPS , then we can consider its ampliation
(Mn(A), φ(n)) where φ(n)(((aij))) = 1

n

Pn
i=1 φ(aii ). If (A, φ) is as in example

2 above, the elements of (A(n), φ(n)) are random matrices which have long
interested physicists.

4 For a unital ∗ subalgebra A ⊂ L(H) and a unit vector ξ ∈ H, define
φξ(a) = 〈aξ, ξ〉. Then (A, φξ) is a ∗ NCPS .

5 For a countable group Γ, let `2(Γ) be the Hilbert space with ortonormal
basis {ξt : t ∈ Γ}, and let λ be the left-regular (unitary) representation of
Γ on `2(Γ) given by λ(s)ξt = ξst . Then, (CΓ, φξ1 ◦ λ) is a ∗ NCPS . The
closure of λ(CΓ) in the norm topology, resp. the strong operator topology
is denoted by C∗red(Γ), resp. LΓ; these are C∗ NCPS resp.
von Neumann NCPS , when endowed with with the ‘vector state φξ1 ’.
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The isomorphism problem

The theory of free probability was created by Voiculescu as a means to
(hopefully!) solving the still unsolved problem:

Does n 6= m⇒ LFn � LFm?

Here Fn denotes the free group on n generators.

Although that problem is still open, great strides have been made in ‘Free
Probability’ theory. Just as the standard normal distribution occupies pride of
place in classical probability theory, the corresponding role is played in Free
probability by the so-called standard semi-circular distribution, which is the
compactly supported probability measure defined by

µ(E) =
1

2π

Z 2

−2

1E (t)
p

4− t2dt.

This standard semi-circular law has moments given byZ
tndµ(t) =


0 if n is odd
Cp if n = 2p

where Ck = 1
k+1

`
2k
k

´
is the k-th Catalan number.
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Free independence

A family of subalgebras Ai , i ∈ I of a NCPS (A, φ) is said to be free (or freely
independent) if whenever xj ∈ Aij , 1 ≤ j ≤ n satisfy ij 6= ij+1 ∀1 ≤ j < n and
φ(xj) = 0∀j , then necessarily also φ(x1x2 · · · xn) = 0.

Theorem

Given a family (Ai , φi ) of NCPS of the same flavour, there exists an NCPS
(A, φ) also with the same flavour and the following properties:

there exist monomorphisms πi : Ai → A such that φi = φ ◦ πi ∀i ; and

the subalgebras πi (Ai ) are freely independent in (A, φ);

the NCPS (A, φ) is unique up to isomorphism if it is required to be
generated by ∪φi (Ai ), denoted by (A, φ) = ∗i∈I (Ai , φi ), and is called the
free product of the family {(Ai , φi ) : i ∈ I}.

Example

LFn
∼= ∗nLZ
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Corollary

If a family of subalgebras Ai , i ∈ I of an NCPS (A, φ) is freely independent, and
if A0 is the subalgebra generated by ∪i Ai , then φ|A0 is determined by φ|∪i Ai .

Proof.

Any element of A0 may be written as a(1)a(2) · · · a(n), where a(j) ∈ Aij and
ij 6= ij+1 for all j . For any x ∈ A, write x = x̄ + x0, where x̄ = φ(x)1 and
φ(x0) = 0. The proof is by induction on the number ν of j for which a(j)0 6= 0.
If ν = 0, then a(j) = a(j) ∀j , and hence φ(a(1) · · · a(n)) = φ(a(1)) · · ·φ(a(n)).

Assume the lemma holds for ν < m and that a(j)0 6= 0 for exactly m j ’s.
Suppose, for convenience, that a(j)0 6= 0. Then

φ(a(1) · · · a(n)) = φ(a(1) · · · a(j − 1)(a(j) + a(j)0)a(j + 1) · · · a(n))

= φ(a(j))φ(a(1) · · · a(j − 1)a(j + 1) · · · a(n))

+ φ(a(1) · · · a(j − 1)a(j)0a(j + 1) · · · a(n)),

and both these terms are determined by φ|∪i Ai by induction hypothesis, and we
are done. 2
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Analytic distributions and moments

Definition

A probability measure µ (defined on the σ-algebra of Borel sets in R) is said to
be an analytic distribution of a random variable a in an NCPS (A, φ) if

φ(an) =

Z
R

tndµ(t)

The numbers φ(xn) (resp.,
R

R tndµ(t)) are called the moments of the random
variable a (rep., the measure µ).

Any random variable in a C∗ probability space admits a unique analytic
distribution, which is compactly supported (in fact, in its spectrum).

Our example 2 permits us to include classical random variables with finite
moments to be considered as our sort of random variable (a(t) = t) which may
possess analytic distributions which are probability measures (such as the
standard normal N(0, 1)) which are not compactly supported.

V.S. Sunder IMSc, Chennai Free Probability - classical and free CLTs ISI Bangalore, November 2009



Analytic distributions and moments

Definition

A probability measure µ (defined on the σ-algebra of Borel sets in R) is said to
be an analytic distribution of a random variable a in an NCPS (A, φ) if

φ(an) =

Z
R

tndµ(t)

The numbers φ(xn) (resp.,
R

R tndµ(t)) are called the moments of the random
variable a (rep., the measure µ).

Any random variable in a C∗ probability space admits a unique analytic
distribution, which is compactly supported (in fact, in its spectrum).

Our example 2 permits us to include classical random variables with finite
moments to be considered as our sort of random variable (a(t) = t) which may
possess analytic distributions which are probability measures (such as the
standard normal N(0, 1)) which are not compactly supported.

V.S. Sunder IMSc, Chennai Free Probability - classical and free CLTs ISI Bangalore, November 2009



Analytic distributions and moments

Definition

A probability measure µ (defined on the σ-algebra of Borel sets in R) is said to
be an analytic distribution of a random variable a in an NCPS (A, φ) if

φ(an) =

Z
R

tndµ(t)

The numbers φ(xn) (resp.,
R

R tndµ(t)) are called the moments of the random
variable a (rep., the measure µ).

Any random variable in a C∗ probability space admits a unique analytic
distribution, which is compactly supported (in fact, in its spectrum).

Our example 2 permits us to include classical random variables with finite
moments to be considered as our sort of random variable (a(t) = t) which may
possess analytic distributions which are probability measures (such as the
standard normal N(0, 1)) which are not compactly supported.

V.S. Sunder IMSc, Chennai Free Probability - classical and free CLTs ISI Bangalore, November 2009



Convergence in distribution

Definition

A sequence {an : n ∈ N} of random variables (in NCPS (An, φn)) is said to
converge in distribution to a random variable a (in an NCPS (A, φ)) if we have
‘moment convergence’, i.e., if φn(ak

n)→ φ(ak) ∀k.

Call a probability measure µ on (R,BR) moment-determined if the only
probability measure ν on (R,BR) with the same moments as µ is ν = µ.

Weierstrass implies that any compactly supported probability measure is
moment-determined. More generally, a probability measure µ is
moment-determined if its moment sequence {mn : n ∈ N} satisfies the
condition that

P∞
n=1 |(mn/n!)|εn <∞ for some ε > 0. (Reason: This will imply

that
R

R etxdµ(t) <∞ )∀x ∈ (−ε, ε), and hence that alsoR
R |e

tz |dµ(t) <∞ whenever |Re z | < ε. Some simple complex function theory
now shows that that if µ and ν have the same moment sequence, then they
must have identical Fourier transforms, and hence agree.)

In particular, the standard normal measure is moment-determined.
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Weierstrass implies that any compactly supported probability measure is
moment-determined. More generally, a probability measure µ is
moment-determined if its moment sequence {mn : n ∈ N} satisfies the
condition that

P∞
n=1 |(mn/n!)|εn <∞ for some ε > 0. (Reason: This will imply

that
R

R etxdµ(t) <∞ )∀x ∈ (−ε, ε), and hence that alsoR
R |e

tz |dµ(t) <∞ whenever |Re z | < ε. Some simple complex function theory
now shows that that if µ and ν have the same moment sequence, then they
must have identical Fourier transforms, and hence agree.)

In particular, the standard normal measure is moment-determined.
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Central Limit Theorems (CLT)

Theorem (Classical CLT)

Suppose that {Xn : n ∈ N} is a sequence of (stochastically) independent and
identically distributed classical random variables which have moments of all
ordersa, and whose distribution is moment-generated. Assume for simplicity
that the first moment is zero and that the variance is one. Then, the sequence
{X1+···+Xn√

n
: n ∈ N} converges in distribution to the standard normal

distribution.
aThe theorem is true even if only existence of first two moments is demanded of the Xn’s.

Theorem (Free CLT)

If an is a freely independent sequence of identically distributed centred random

variables, then the sequence {
“

a1+···an√
n

”
: n = 1, 2, · · · } converges in

distribution to a standard semi-circular distribution.

We shall provide proofs which are applicable to both cases up to a point.
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Now

φ(

„
a1 + · · ·+ aN√

N

«n

=
NX

r(1),r(2),··· ,r(n)=1

N−
n
2 φ(a(r(1)a(r(2) · · · a(r(n))

For r ∈ [N]n, let πr be the partition/equivalence relation on [n] defined by
i ∼πr j ⇒ r(i) = r(j). The i.i.d. assumption shows that φ(a(r(1)a(r(2) · · · a(r(n))
depends only on πr. (For instance, φ(a2a3a7a3a2) = φ(a1a5a2a5a1).) Call this
common value f (πr). Writing Pn for the set of partitions of [n], and letting
Cπ = |{r : πr = π}|, we see that

φ(

„
a1 + · · ·+ aN√

N

«n

=
X
π∈Pn

N−
n
2 Cπf (π). (1)

If π ∈ Pn has |π| classes, then

Cπ = N(N − 1) · · · (N − |π|+ 1)

for if πr = π, then ri could be any one of N (resp., N − 1, · · ·N − |π|+ 1)
numbers for i in the first (resp., second, · · · , |π|-th) class of π.
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The (stochastic or free1) independence and mean zero assumptions show that
f (π) = 0 if π has a singleton class. So we may the sum on the RHS of
equation (1) is only over π with no singleton classes; for such a π, clearly
|π| ≤ n/2, and as Cπ is a product of |π| terms, we see that

Cπ

N
n
2

= N |π|−
n
2

0@ |π|Y
k=1

(1− k − 1

N
)

1A ,

and hence limN→∞
Cπ

N
n
2

= 0 unless |π| = n
2

.

Conclude that

lim
N→∞

φ(

„
a1 + · · ·+ aN√

N

«n

=


0 if n is oddP
Pm(pair) f (π) if n = 2m

,

where Pm(pair) denotes the set of ‘pair-partitions’ of [2m] (i.e., partitions of
[2m] into m doublets).

Up to now, the proof of the two cases is the same. Now we bifurcate.

1The verification in this case follows from the fact - a good application of the proof of an earlier
corollary -that if subalgebras A and B are free, then φ(a1ba2) = φ(b)φ(a1a2) for ai ∈ A, b ∈ B.
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Classical case: Here, we find - under the mean 0 variance 1 and stochastic
independence assumptions - that f (π) = 1 for every π ∈ P2m(pair); further
|P2m(pair)| = (2m − 1)(2m − 3) · · · 5.3.1 and we find that the limit above is
nothing but the n-th moment of the standard normal distribution. In view of
our earlier comments about the standard normal distribution being dedtermined
by its moment sequence, the proof is complete in this case.

Free case: Suppose π = {{kt , lt} : 1 ≤ t ≤ m} ∈ P2m(pair) and suppose
πr = π. By the free indepedence and mean zero assumptions, notice that
f (π) = 0 if r1 6= r2 6= · · · 6= rm. So we only need to consider the case when
rs = rs+1 for some s < m, in which case, we see that

f (π) = φ(a2
rs )f (π′) ,

where π′ = {{kt , lt} : 1 ≤ t ≤ m, t 6= s} ∈ P2m−2(pair). Proceeding thus, we
find that f (π) = 0 unless π is a non-crossing pair partition of [2m]. Since the
number of such partitions is known to be the m-th Catalan number, we find
that the limit we are looking at is nothing but the n-th moment of the standard
semi-circular distribution, and the proof is complete.
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