

V.S. Sunder
IMSc
Chennai

Braids

■ What are braids?

Braids

■ What are braids?
■ Ask your mother!

Braids

■ What are braids?

- Ask your mother!

$$
\left(=\binom{-1}{b_{1} b}^{k}\right)
$$

3-strand braid

n-strand braids

- The previous example was of a 3-strand braid.

n-strand braids

■ The previous example was of a 3-strand braid.

- Your grandmother was probably familiar with 5-strand braids!

n-strand braids

- The previous example was of a 3-strand braid.
- Your grandmother was probably familiar with 5-strand braids!

general
n-strand braid

Multiplying braids

We equip the collection B_{n} of all n-strand braids with a product structure thus:

The Braid Group

B_{n} turns out to be a group with this multiplication - provided we agree that two braids are the same if one may be continuously deformed into the other. (This is needed even for associativity.)

Braid inversion

$■$ The inverse of a braid is obtained by reflecting in a horizontal mirror placed at the level of the lower frame of the braid: for example,

The generators

Since braids can be built up 'one crossing at a time' it is clear that B_{n} is generated, as a group, by the braids $b_{1}, b_{2}, \cdots, b_{n-1}$ shown below together with their inverses:

b_{k}

The braid relations

The b_{j} 's satisfy the following relations:
$\square b_{i} b_{j}=b_{j} b_{i}$ if $|i-j| \geq 2$

The braid relations

The b_{j} 's satisfy the following relations:
■ $b_{i} b_{j}=b_{j} b_{i}$ if $|i-j| \geq 2$

■ $b_{i} b_{i+1} b_{i}=b_{i+1} b_{i} b_{i+1}$ for all $i<n-1$

Free groups

■ $G=\left\langle g_{1}, \cdots, g_{n}\right\rangle$ is said to be the free group with generators $\left\{g_{1}, \cdots, g_{n}\right\}$ if for any set $\left\{h_{1}, \cdots, h_{n}\right\}$ of elements in any group H, there exists a unique homomorphism $\phi: G \rightarrow H$ with the property that $\phi\left(g_{k}\right)=h_{k}$ for each $k=1, \cdots, n$. Such a group is unique up to isomorphism.

Free groups

■ $G=\left\langle g_{1}, \cdots, g_{n}\right\rangle$ is said to be the free group with generators $\left\{g_{1}, \cdots, g_{n}\right\}$ if for any set $\left\{h_{1}, \cdots, h_{n}\right\}$ of elements in any group H, there exists a unique homomorphism $\phi: G \rightarrow H$ with the property that $\phi\left(g_{k}\right)=h_{k}$ for each $k=1, \cdots, n$. Such a group is unique up to isomorphism.
■ For example, $\mathbb{Z}=\langle 1\rangle$ is the free group on one generator.

Presentations of groups

A group G is said to have presentation $G=\left\langle g_{1}, \cdots, g_{n} \mid r_{1}, \cdots, r_{m}\right\rangle$ if:
■ (i) it is generated by the set $\left\{g_{1}, \cdots, g_{n}\right\}$

Presentations of groups

A group G is said to have presentation $G=\left\langle g_{1}, \cdots, g_{n} \mid r_{1}, \cdots, r_{m}\right\rangle$ if:

- (i) it is generated by the set $\left\{g_{1}, \cdots, g_{n}\right\}$
- (ii) the g_{i} 's satisfy each relation r_{j} for $j=1, \cdots, m$; and

Presentations of groups

A group G is said to have presentation $G=\left\langle g_{1}, \cdots, g_{n} \mid r_{1}, \cdots, r_{m}\right\rangle$ if:

- (i) it is generated by the set $\left\{g_{1}, \cdots, g_{n}\right\}$
- (ii) the g_{i} 's satisfy each relation r_{j} for $j=1, \cdots, m$; and
\square (iii) for any set $\left\{h_{1}, \cdots, h_{n}\right\}$ of elements in any group H, which 'satisfy each of the relations r_{1}, \cdots, r_{m}, there exists a unique homomorphism $\phi: G \rightarrow H$ with the property that $\phi\left(g_{k}\right)=h_{k}$ for each $k=1, \cdots, n$.

Examples of presentations

A group G with a given presentation is unique up to isomorphism.

■ (i) $C_{n}=\left\langle g \mid g^{n}=1\right\rangle$ is the cyclic group of order n.

Examples of presentations

A group G with a given presentation is unique up to isomorphism.
\square (i) $C_{n}=\left\langle g \mid g^{n}=1\right\rangle$ is the cyclic group of order n.

- (ii) $D_{n}=\left\langle g, t \mid g^{n}=1, \operatorname{tgt}^{-1}=t^{-1}\right\rangle$ is the dihedral group of symmetries of an n-gon. (D_{n} has $2 n$ elements.)

$g=$ rotation by 120°
$t=$ reflection about an altitude

Artin's theorem

The Braid group is often referred to as Artin's Braid Group, partly because of the following theorem he proved:

- Theorem: (Artin) B_{n} has the presentation

$$
B_{n}=\left\langle b_{1}, \cdots, b_{n-1} \mid r_{1}, r_{2}\right\rangle,
$$

where

$$
\begin{aligned}
& \square\left(r_{1}\right) b_{i} b_{j}=b_{j} b_{i} \text { if }|i-j| \geq 2 \\
& -\left(r_{2}\right) b_{i} b_{i+1} b_{i}=b_{i+1} b_{i} b_{i+1} \text { for all } i<n-1
\end{aligned}
$$

The symmetric group

In the symmetric group Σ_{n}, consider the transpositions defined by

$$
t_{i}=(i, i+1), \text { for } i=1, \cdots, n-1
$$

We have the following facts:

- Σ_{n} has the presentation

$$
\Sigma_{n}=\left\langle t_{1}, \cdots, t_{n-1} \mid r_{1}, r_{2}, r_{3}\right\rangle
$$

where r_{1}, r_{2} are the braid relations encountered earlier, and

$$
\left(r_{0}\right) t^{2}-1 \text { for all } i<n
$$

The quotient map $B_{n} \mapsto \Sigma_{n}$

- Hence there exists a unique homomorphism $\phi: B_{n} \rightarrow \Sigma_{n}$ such that $\phi\left(b_{i}\right)=t_{i}$ for each i. (Since the t_{i} 's generate Σ_{n}, we see that ϕ is onto and hence Σ_{n} is a quotient of B_{n}.)

The quotient map $B_{n} \mapsto \Sigma_{n}$

■ Hence there exists a unique homomorphism $\phi: B_{n} \rightarrow \Sigma_{n}$ such that $\phi\left(b_{i}\right)=t_{i}$ for each i. (Since the t_{i} 's generate Σ_{n}, we see that ϕ is onto and hence Σ_{n} is a quotient of B_{n}.)
■ If $\phi(b)=\beta$, it is not hard to see that

Remarks

- The generators b_{i} are all pairwise conjugate in B_{n}; in fact, if $b=b_{1} b_{2} \cdots b_{n}$, then $b b_{i} b^{-1}=b_{i+1} \forall i<n-1$. (For example:

$$
b_{1} b_{2} b_{3} \cdot b_{1}=b_{1} b_{2} b_{1} b_{3}=b_{2} \cdot b_{1} b_{2} b_{3}
$$

and

$$
b_{1} b_{2} b_{3} \cdot b_{2}=b_{1} b_{2} b_{3} b_{2}=b_{1} b_{3} b_{2} b_{3}=b_{3} \cdot b_{1} b_{2} b_{3}
$$

Remarks

- The generators b_{i} are all pairwise conjugate in B_{n}; in fact, if $b=b_{1} b_{2} \cdots b_{n}$, then $b b_{i} b^{-1}=b_{i+1} \forall i<n-1$. (For example:

$$
b_{1} b_{2} b_{3} \cdot b_{1}=b_{1} b_{2} b_{1} b_{3}=b_{2} \cdot b_{1} b_{2} b_{3}
$$

and

$$
b_{1} b_{2} b_{3} \cdot b_{2}=b_{1} b_{2} b_{3} b_{2}=b_{1} b_{3} b_{2} b_{3}=b_{3} \cdot b_{1} b_{2} b_{3}
$$

- There exist 1-1 homomorphisms $B_{n} \hookrightarrow B_{n+1}$ given by $b_{k}^{(n)} \mapsto b_{k}^{(n+1)}$ for each $k<n$.

Braids to knots

- The closure of a braid $b \in B_{n}$ is obtained by sticking together the strings connected to the j-th pegs at the top and bottom. The result is a many component knot \hat{b}.

Braids to knots

- The closure of a braid $b \in B_{n}$ is obtained by sticking together the strings connected to the j-th pegs at the top and bottom. The result is a many component knot \hat{b}.

right-handed trefoil knot

Two theorems

What makes this 'closure operation' useful are:
■ Theorem (Alexander):
Every tame link is the closure of some braid (on some number of strands). and

Two theorems

What makes this 'closure operation' useful are:
■ Theorem (Alexander):
Every tame link is the closure of some braid (on some number of strands). and

- Theorem(Markov):

Two braids have equivalent closures iff you can pass from one to the other by a finite sequence of moves of one of two types.

The Markov move of type I

■ Type I Markov move:

$$
c^{(n)} b^{(n)}\left(c^{(n)}\right)^{-1} \sim b^{(n)}
$$

The Markov move of type I

■ Type I Markov move:

$$
c^{(n)} b^{(n)}\left(c^{(n)}\right)^{-1} \sim b^{(n)}
$$

The Markov move of type II

- Type II Markov move:

$$
b^{(n)} \sim b^{(n+1)}\left(b_{n}^{(n+1)}\right)^{-1}
$$

The Markov move of type II

■ Type II Markov move:

$$
b^{(n)} \sim b^{(n+1)}\left(b_{n}^{(n+1)}\right)^{-1}
$$

