0.5 set

Braids

V.S. Sunder

IMSc Chennai

Braids

• What are braids?

Braids

• What are braids?

Ask your mother!

Braids

What are braids?

Ask your mother!

n-strand braids

The previous example was of a 3-strand braid.

n-strand braids

- The previous example was of a 3-strand braid.
- Your grandmother was probably familiar with 5-strand braids!

n-strand braids

- The previous example was of a 3-strand braid.
- Your grandmother was probably familiar with 5-strand braids!

general

n-strand braid

Multiplying braids

We equip the collection B_n of all *n*-strand braids with a product structure thus:

The Braid Group

 B_n turns out to be a group with this multiplication - provided we agree that two braids are the same if one may be continuously deformed into the other. (This is needed even for associativity.)

Braid inversion

The inverse of a braid is obtained by reflecting in a horizontal mirror placed at the level of the lower frame of the braid: for example,

The generators

Since braids can be built up 'one crossing at a time' it is clear that B_n is generated, as a group, by the braids b_1, b_2, \dots, b_{n-1} shown below - together with their inverses:

The braid relations

The b_j 's satisfy the following relations: $b_i b_j = b_j b_i$ if $|i - j| \ge 2$

The braid relations

The b_i 's satisfy the following relations: • $b_i b_j = b_j b_i$ if $|i - j| \ge 2$ = $b_3 b_1$ $b_1 b_3$

 $b_i b_{i+1} b_i = b_{i+1} b_i b_{i+1}$ for all i < n-1

 $b_{2}b_{1}b_{2}$

Free groups

• $G = \langle g_1, \dots, g_n \rangle$ is said to be the free group with generators $\{g_1, \dots, g_n\}$ if for any set $\{h_1, \dots, h_n\}$ of elements in any group H, there exists a unique homomorphism $\phi: G \to H$ with the property that $\phi(g_k) = h_k$ for each $k = 1, \dots, n$. Such a group is unique up to isomorphism.

Free groups

• $G = \langle g_1, \dots, g_n \rangle$ is said to be the free group with generators $\{g_1, \dots, g_n\}$ if for any set $\{h_1, \dots, h_n\}$ of elements in any group H, there exists a unique homomorphism $\phi: G \to H$ with the property that $\phi(g_k) = h_k$ for each $k = 1, \dots, n$. Such a group is unique up to isomorphism.

For example, $\mathbb{Z}=\langle 1\rangle$ is the free group on one generator.

Presentations of groups

A group G is said to have presentation $G = \langle g_1, \dots, g_n | r_1, \dots, r_m \rangle$ if: • (i) it is generated by the set $\{g_1, \dots, g_n\}$

Presentations of groups

A group G is said to have presentation $G = \langle g_1, \dots, g_n | r_1, \dots, r_m \rangle$ if: • (i) it is generated by the set $\{g_1, \dots, g_n\}$ • (ii) the g_i 's satisfy each relation r_j for $j = 1, \dots, m$; and

Presentations of groups

A group G is said to have presentation $G = \langle q_1, \cdots, q_n | r_1, \cdots, r_m \rangle$ if: (i) it is generated by the set $\{g_1, \dots, g_n\}$ (ii) the g_i 's satisfy each relation r_i for $j=1,\cdots,m$; and (iii) for any set $\{h_1, \dots, h_n\}$ of elements in any group H, which 'satisfy each of the relations r_1, \cdots, r_m ', there exists a unique homomorphism $\phi: G \to H$ with the property that $\phi(q_k) = h_k$ for each $k = 1, \dots, n$.

Examples of presentations

A group *G* with a given presentation is unique up to isomorphism.

• (i) $C_n = \langle g | g^n = 1 \rangle$ is the cyclic group of order n.

Examples of presentations

A group *G* with a given presentation is unique up to isomorphism.

- (i) $C_n = \langle g | g^n = 1 \rangle$ is the cyclic group of order n.
- (ii) $D_n = \langle g, t | g^n = 1, tgt^{-1} = t^{-1} \rangle$ is the dihedral group of symmetries of an *n*-gon. (D_n has 2n elements.)

 $g = rotation by 120^{\circ}$

t = *reflection about an altitude*

Artin's theorem

The Braid group is often referred to as *Artin's Braid Group*, partly because of the following theorem he proved:

Theorem: (Artin) B_n has the presentation

$$B_n = \langle b_1, \cdots, b_{n-1} | r_1, r_2 \rangle ,$$

where

$$(r_1)b_i b_j = b_j b_i \text{ if } |i - j| \ge 2$$
$$(r_2)b_i b_{i+1} b_i = b_{i+1}b_i b_{i+1} \text{ for all } i < n-1$$

The symmetric group

In the symmetric group Σ_n , consider the transpositions defined by

 $t_i = (i, i+1), \text{ for } i = 1, \cdots, n-1.$

We have the following facts:

• Σ_n has the presentation

$$\Sigma_n = \langle t_1, \cdots, t_{n-1} | r_1, r_2, r_3 \rangle ,$$

where r_1, r_2 are the braid relations encountered earlier, and

$$(r_2) t_1^2 = 1$$
 for all $i < n$

– p. 13

The quotient map $B_n \mapsto \Sigma_n$

• Hence there exists a unique homomorphism $\phi: B_n \to \Sigma_n$ such that $\phi(b_i) = t_i$ for each *i*. (Since the t_i 's generate Σ_n , we see that ϕ is onto and hence Σ_n is a quotient of B_n .)

The quotient map $B_n \mapsto \Sigma_n$

Hence there exists a unique homomorphism $\phi: B_n \to \Sigma_n$ such that $\phi(b_i) = t_i$ for each *i*. (Since the t_i 's generate Σ_n , we see that ϕ is onto and hence Σ_n is a quotient of B_n .)

If $\phi(b) = \beta$, it is not hard to see that

Remarks

The generators b_i are all pairwise conjugate in B_n ; in fact, if $b = b_1 b_2 \cdots b_n$, then $bb_i b^{-1} = b_{i+1} \ \forall i < n-1$. (For example:

$$b_1 b_2 b_3 \cdot b_1 = b_1 b_2 b_1 b_3 = b_2 \cdot b_1 b_2 b_3$$

and

 $b_1b_2b_3 \cdot b_2 = b_1b_2b_3b_2 = b_1b_3b_2b_3 = b_3 \cdot b_1b_2b_3$

Remarks

The generators b_i are all pairwise conjugate in B_n ; in fact, if $b = b_1 b_2 \cdots b_n$, then $bb_i b^{-1} = b_{i+1} \ \forall i < n-1$. (For example:

$$b_1 b_2 b_3 \cdot b_1 = b_1 b_2 b_1 b_3 = b_2 \cdot b_1 b_2 b_3$$

and

 $b_1b_2b_3 \cdot b_2 = b_1b_2b_3b_2 = b_1b_3b_2b_3 = b_3 \cdot b_1b_2b_3$ There exist 1-1 homomorphisms $B_n \hookrightarrow B_{n+1}$ given by $b_k^{(n)} \mapsto b_k^{(n+1)}$ for each k < n.

Braids to knots

The closure of a braid $b \in B_n$ is obtained by sticking together the strings connected to the *j*-th pegs at the top and bottom. The result is a many component knot \hat{b} .

Braids to knots

The closure of a braid $b \in B_n$ is obtained by sticking together the strings connected to the *j*-th pegs at the top and bottom. The result is a many component knot \hat{b} .

Two theorems

What makes this 'closure operation' useful are:

Theorem (Alexander): Every tame link is the closure of some braid (on some number of strands).

Two theorems

What makes this 'closure operation' useful are:

- Theorem (Alexander):
 - Every *tame* link is the closure of some braid (on some number of strands).

and

Theorem(Markov):

Two braids have equivalent closures iff you can pass from one to the other by a finite sequence of moves of one of two types.

The Markov move of type I

Type I Markov move:

 $c^{(n)}b^{(n)}(c^{(n)})^{-1} \sim b^{(n)}$

The Markov move of type I

Type I Markov move:

$$c^{(n)}b^{(n)}(c^{(n)})^{-1} \sim b^{(n)}$$

=

The Markov move of type II

Type II Markov move:

$$b^{(n)} \sim b^{(n+1)} (b_n^{(n+1)})^{-1}$$

The Markov move of type II

Type II Markov move:

$$b^{(n)} \sim b^{(n+1)} (b_n^{(n+1)})^{-1}$$

