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TL(δ)

Recall that TLn(δ) has C-basis Kn (the set of Kauffman diagrams on 2n

points). Our starting point is the observation that Kn is in bijection with the
set Nn of non-crossing partitions on a set of n points.
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TL(δ)

Recall that TLn(δ) has C-basis Kn (the set of Kauffman diagrams on 2n

points). Our starting point is the observation that Kn is in bijection with the
set Nn of non-crossing partitions on a set of n points.

We illustrate with n = 3:
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The correspondence Kn ∋ S↔S̃ ∈ Nn

Thus, the i-th point of S̃ ∈ Nn is defined as the point that is mid-way between
the (2i − 1)-th and 2i-th points of S ∈ Kn.
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The correspondence Kn ∋ S↔S̃ ∈ Nn

Thus, the i-th point of S̃ ∈ Nn is defined as the point that is mid-way between
the (2i − 1)-th and 2i-th points of S ∈ Kn.

And the i − th and j − th points of S̃ are declared to be in the same
equivalence class of S̃ if, viewed in S , the two points lie in the same connected
black region of S .
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The correspondence Kn ∋ S↔S̃ ∈ Nn

Thus, the i-th point of S̃ ∈ Nn is defined as the point that is mid-way between
the (2i − 1)-th and 2i-th points of S ∈ Kn.

And the i − th and j − th points of S̃ are declared to be in the same
equivalence class of S̃ if, viewed in S , the two points lie in the same connected
black region of S .

This correspondence (Kn ∋ S↔S̃ ∈ Nn) will be at the heart of the
isomorphism we shall establish
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The planar algebra TL(δ)

(We first recall definitions, when δ ≥ 2.)

Notice that an element of Kn may be viewed as an n-tangle without any

internal boxes - in other words, tailor-made for inserting into an internal n-box
of a planar tangle. Recall that TL(δ) is the planar algebra with

the set of TLn(δ) of n-boxes being the C-vector space with basis Kn, and

the result of feeding inputs of Kauffman diagrams of appropriate sizes into
each internal box of a tangle being defined as δc× (resulting tangle after
removing all loops obtained in this process), where c is the number of
removed loops.
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The planar algebra TL(δ)

(We first recall definitions, when δ ≥ 2.)

Notice that an element of Kn may be viewed as an n-tangle without any

internal boxes - in other words, tailor-made for inserting into an internal n-box
of a planar tangle. Recall that TL(δ) is the planar algebra with

the set of TLn(δ) of n-boxes being the C-vector space with basis Kn, and

the result of feeding inputs of Kauffman diagrams of appropriate sizes into
each internal box of a tangle being defined as δc× (resulting tangle after
removing all loops obtained in this process), where c is the number of
removed loops.

Thus, for example

S T = δ T

= δT
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The planar algebra NC (δ)

Elements of N2n will be viewed at as having n points arrayed on the top and
bottom of a square. Then NC(δ) is the planar algebra almost exacly as TL,
with

the set of NCn(δ) of n-boxes being the C-vector space with basis N2n, and

the result of feeding inputs of non-crossing partitions of appropriate even
sizes into each internal box of a tangle being defined as δc× (resulting
tangle after removing all ‘internal components’ obtained in this process),
where c is the number of removed internal components.
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The planar algebra NC (δ)

Elements of N2n will be viewed at as having n points arrayed on the top and
bottom of a square. Then NC(δ) is the planar algebra almost exacly as TL,
with

the set of NCn(δ) of n-boxes being the C-vector space with basis N2n, and

the result of feeding inputs of non-crossing partitions of appropriate even
sizes into each internal box of a tangle being defined as δc× (resulting
tangle after removing all ‘internal components’ obtained in this process),
where c is the number of removed internal components.

Thus, for example
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The main theorem

Recall that the 2-cabling of a planar algebra P is the planar algebra P (2) with
the space of n-boxes given by P

(2)
n = P2n and with the action on P (2) of a

tangle T given by

Z
P

(2)

T (x1 ⊗ · · · ⊗ xb) = Z
P

T (2)(x1 ⊗ · · · ⊗ xb)

where T (2) is the tangle obatined by 2-cabling T .

V.S. Sunder IMSc, Chennai Non-crossing partition = 2-cabled Temperley-Lieb planar algebra



The main theorem

Recall that the 2-cabling of a planar algebra P is the planar algebra P (2) with
the space of n-boxes given by P

(2)
n = P2n and with the action on P (2) of a

tangle T given by

Z
P

(2)

T (x1 ⊗ · · · ⊗ xb) = Z
P

T (2)(x1 ⊗ · · · ⊗ xb)

where T (2) is the tangle obatined by 2-cabling T .

Theorem The mapping

TL2n(δ ∋
S

τ(S)
7→

S̃

eτ(S̃)
∈ NC2n(δ

2)

induces a planar algebra isomorphism P = NC(δ2) ∼= TL(2)(δ) = P̃. (Here, τ

and eτ denote the non-normalised picture traces on the two planar algebras
which assign δ2n to the identity element in the space of n-boxes.) 2
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Reformulation of what needs to be proved

Suppose T is a k0-tangle with b internal boxes of colours k1, · · · , kb and that
Si ∈ K2bi

for 1 ≤ i ≤ b. Then by definition of the tangle operations in P, there
exist S ∈ K2k0 and some integer l ≥ 0 so that

Z
P

T (S1 ⊗ · · · ⊗ Sb) = δ
l
S .
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Reformulation of what needs to be proved

Suppose T is a k0-tangle with b internal boxes of colours k1, · · · , kb and that
Si ∈ K2bi

for 1 ≤ i ≤ b. Then by definition of the tangle operations in P, there
exist S ∈ K2k0 and some integer l ≥ 0 so that

Z
P

T (S1 ⊗ · · · ⊗ Sb) = δ
l
S .

It is not hard to see then that there must exist some integer c ≥ 0 so that

Z
eP

T (eS1 ⊗ · · · ⊗ eSb) = δ
2c eS .
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Reformulation of what needs to be proved

Suppose T is a k0-tangle with b internal boxes of colours k1, · · · , kb and that
Si ∈ K2bi

for 1 ≤ i ≤ b. Then by definition of the tangle operations in P, there
exist S ∈ K2k0 and some integer l ≥ 0 so that

Z
P

T (S1 ⊗ · · · ⊗ Sb) = δ
l
S .

It is not hard to see then that there must exist some integer c ≥ 0 so that

Z
eP

T (eS1 ⊗ · · · ⊗ eSb) = δ
2c eS .

Minor computation shows that what needs to be verified is that

τ(ZP

T (S))
Q

b

i=1 τ(Si )
=

τ̃(Z
eP

T (S̃)
Q

b

i=1 τ̃(eSi )
(0.1)
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Generating tangles

In fact, it is true that every planar tangle may be expressed as an appropriate
composition of tangles from the set

T0 = {10±, R
k

k , E
k+1
k , I

k+1
k , M

k

k : k ≥ 0} ,

where

10± are as in the next slide

Rk

k is the roatation tangle of colour k

E k+1
k

is the conditional expectation tangle

I k+1
k

is the inclusion tangle

Mk

k,k is the multiplication tangle

(Special cases are illustrated in the next slide.)
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Generating tangles

In fact, it is true that every planar tangle may be expressed as an appropriate
composition of tangles from the set

T0 = {10±, R
k

k , E
k+1
k , I

k+1
k , M

k

k : k ≥ 0} ,

where

10± are as in the next slide

Rk

k is the roatation tangle of colour k

E k+1
k

is the conditional expectation tangle

I k+1
k

is the inclusion tangle

Mk

k,k is the multiplication tangle

(Special cases are illustrated in the next slide.)

Hence it is not necessary to verify equation (0.1) for every tangle T ; it is
enough to verify this condition for tangles from T0.
This verification is fairly straightforward for all but the conditional expectation
and rotation tangles is straightforward.
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some tangles
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A topological lemma

The requisite verification for the conditional expectation and rotation tangles
depends on the following

Proposition: Consider a configuration consisting of:

a system of C disjoint closed curves in the plane

a checkerboard shading of the resulting regions

a line intersecting each of the curves (with the number P of points of
intersection being 2m).

Then,
C − 2B = m − B+ − B− , (0.2)

where B+ (resp., B−) denotes the number of black regions above (resp., below)
the line, and B = B+ + B−. 2

The proof of the proposition depends essentially on Euler characteristic
considerations.
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