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Overview of the lecture

• Introduce non-commutative 2-spheres as crossed products
Aθ ⋊ F of the irrational rotation algebra Aθ by finite
subgroup F ⊆ SL(2,Z).
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Overview of the lecture

• Introduce non-commutative 2-spheres as crossed products
Aθ ⋊ F of the irrational rotation algebra Aθ by finite
subgroup F ⊆ SL(2,Z).

• Realize these algebras as twisted group algebras
C∗(Z2 ⋊ F, ωθ).

• Compute K-theory (with generators) with the help of the
Baum-Connes conjecture.

• Obtain complete classification of these algebras.

This lecture is based on the paper

The structure of crossed products of irrational rotation algebras
by finite subgroups of SL(2,Z).
J. reine angew. Math. (Crelle’s Journal) 639 (2010), 173–221.
by S. E. , Wolfgang Lück, Chris Phillips, Sam Walters.
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The commutative 2-sphere (as orbifold)

Consider the standard action of N = ( n11 n12

n21 n22
) ∈ SL(2,Z) on T2

given by
(

n11 n12

n21 n22

)

·

(

u

v

)

=

(

un11vn12

un21vn22

)

.
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n21 n22
) ∈ SL(2,Z) on T2

given by
(

n11 n12

n21 n22

)

·

(

u

v

)

=

(

un11vn12

un21vn22

)

.

Restrict this action to the finite subgroups F ⊆ SL(2,Z).
Up to conjugacy, these are Z2,Z3,Z4,Z6 with generators

(

−1 0
0 −1

)

,
(

−1 −1
1 0

)

,
(

0 −1
1 0

)

,
(

0 −1
1 1

)

.
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The commutative 2-sphere (as orbifold)

Consider the standard action of N = ( n11 n12

n21 n22
) ∈ SL(2,Z) on T2

given by
(

n11 n12

n21 n22

)

·

(

u

v

)

=

(

un11vn12

un21vn22

)

.

Restrict this action to the finite subgroups F ⊆ SL(2,Z).
Up to conjugacy, these are Z2,Z3,Z4,Z6 with generators

(

−1 0
0 −1

)

,
(

−1 −1
1 0

)

,
(

0 −1
1 0

)

,
(

0 −1
1 1

)

.

Then for all choices of F = Z2,Z3,Z4,Z6 one gets

F\T2 ∼= S2 hence C(T2)F ∼= C(F\T2) ∼= C(S2).
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Noncommutative 2-spheres

Let Aθ = C∗(uθ, vθ) the non-commutative 2-torus generated by
unitaries uθ, vθ with relation uθvθ = e2πiθvθuθ. Then
N = ( n11 n12

n21 n22
) ∈ SL(2,Z) acts on Aθ by

N · uθ := eπin11n21θun11

θ vn21

θ N · vθ := eπin12n22θun12

θ vn22

θ
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Noncommutative 2-spheres

Let Aθ = C∗(uθ, vθ) the non-commutative 2-torus generated by
unitaries uθ, vθ with relation uθvθ = e2πiθvθuθ. Then
N = ( n11 n12

n21 n22
) ∈ SL(2,Z) acts on Aθ by

N · uθ := eπin11n21θun11

θ vn21

θ N · vθ := eπin12n22θun12

θ vn22

θ

Restrict this action to any of the finite subgroups
F = Z2,Z3,Z4,Z6 ⊆ SL(2,Z). We define the non-commutative
2-sphere as

AF
θ := {a ∈ Aθ : N · a = a ∀N ∈ F}.
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Noncommutative 2-spheres

Let Aθ = C∗(uθ, vθ) the non-commutative 2-torus generated by
unitaries uθ, vθ with relation uθvθ = e2πiθvθuθ. Then
N = ( n11 n12

n21 n22
) ∈ SL(2,Z) acts on Aθ by

N · uθ := eπin11n21θun11

θ vn21

θ N · vθ := eπin12n22θun12

θ vn22

θ

Restrict this action to any of the finite subgroups
F = Z2,Z3,Z4,Z6 ⊆ SL(2,Z). We define the non-commutative
2-sphere as

AF
θ := {a ∈ Aθ : N · a = a ∀N ∈ F}.

If θ ∈ [0, 1] \ Q, then: AF
θ ∼M Aθ ⋊ F .

Hence in this case we may also regard Aθ ⋊ F as a
non-commutative version of S2!
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Noncommutative 2-spheres

Non-commutative 2-spheres have been studied (among others)
by: Bratteli, Elliott, Evans, Farsi, Kishimoto, Kumjian, C. Ph illips,
Polishchuk, Walters, Watling
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Noncommutative 2-spheres

Non-commutative 2-spheres have been studied (among others)
by: Bratteli, Elliott, Evans, Farsi, Kishimoto, Kumjian, C. Ph illips,
Polishchuk, Walters, Watling

Theorem (Kumjian 90)

K0(Aθ ⋊ Z2) ∼= Z6 and K1(Aθ ⋊ Z2) = {0} ∀θ
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Theorem (Bratteli-Kishimoto 92)

AZ2

θ ∼M Aθ ⋊ Z2 is an AF-algebra for all θ ∈ [0, 1]\Q.
Farsi-Watling 92–93

K-theory groups of Aθ ⋊ F for rational θ and all F .
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Theorem (Kumjian 90)

K0(Aθ ⋊ Z2) ∼= Z6 and K1(Aθ ⋊ Z2) = {0} ∀θ

Theorem (Bratteli-Kishimoto 92)

AZ2

θ ∼M Aθ ⋊ Z2 is an AF-algebra for all θ ∈ [0, 1]\Q.
Farsi-Watling 92–93

K-theory groups of Aθ ⋊ F for rational θ and all F .
Theorem (S. Walters 04)

AZ4

θ ∼M Aθ ⋊ Z4 is an AF-algebra for “almost all” θ ∈ [0, 1]\Q.
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Noncommutative 2-spheres

Non-commutative 2-spheres have been studied (among others)
by: Bratteli, Elliott, Evans, Farsi, Kishimoto, Kumjian, C. Ph illips,
Polishchuk, Walters, Watling

Theorem (Kumjian 90)

K0(Aθ ⋊ Z2) ∼= Z6 and K1(Aθ ⋊ Z2) = {0} ∀θ

Theorem (Bratteli-Kishimoto 92)

AZ2

θ ∼M Aθ ⋊ Z2 is an AF-algebra for all θ ∈ [0, 1]\Q.
Farsi-Watling 92–93

K-theory groups of Aθ ⋊ F for rational θ and all F .
Theorem (S. Walters 04)

AZ4

θ ∼M Aθ ⋊ Z4 is an AF-algebra for “almost all” θ ∈ [0, 1]\Q.

Question: Is it true that Aθ ⋊ F is an AF-Algebra for all F and all
irrational θ? Can we give a complete classification?

Classification of noncommutative 2-spheres joint with Wolfgang Lück, Chris Phillips, Samuel Walters – p.5/18



Problems (for irrational θ)

Problem 1 Show that Aθ ⋊ F is simple and classifiable with
respect to the Elliott-programme!

Problem 2 Compute all relevant invariants (ordered K0-groups,
the K1-group, traces).
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respect to the Elliott-programme!

Problem 2 Compute all relevant invariants (ordered K0-groups,
the K1-group, traces).

Theorem (ELPW, but due to Phillips) The action of F on Aθ satsifies
the tracial Rokhlin property and (therefore) Aθ ⋊ F is simple with
unique normalized trace τ and it is tracially AF.
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Problems (for irrational θ)

Problem 1 Show that Aθ ⋊ F is simple and classifiable with
respect to the Elliott-programme!

Problem 2 Compute all relevant invariants (ordered K0-groups,
the K1-group, traces).

Theorem (ELPW, but due to Phillips) The action of F on Aθ satsifies
the tracial Rokhlin property and (therefore) Aθ ⋊ F is simple with
unique normalized trace τ and it is tracially AF.

Theorem ELPW (based on ideas of Tu) Aθ ⋊ F is KK-equivalent to a
type I C*-algebra and therefore satisfies the UCT.

Theorem (Huaxin Lin 2005) The above results imply that Aθ ⋊ F is
classifiable.
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Strategy for the solution of Problem 2

• Show that Aθ ⋊ F is isomorphic to a twisted group algebra
C∗(Z2 ⋊ F, ωθ).
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only depends on the homotopy class of the cocycle.
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• Show that Aθ ⋊ F is isomorphic to a twisted group algebra
C∗(Z2 ⋊ F, ωθ).

• Show that the K-theory of these twisted group algebras
only depends on the homotopy class of the cocycle.

• Show that all cocycles ωθ are homotopic to the trivial
cocycle.

• Compute K-theory groups of C∗(Z2 ⋊ F ) ∼= C(T2) ⋊ F with
generators.

• Use a refined version of item 2 to get generators for the
K-theory groups of C∗(Z2 ⋊ F, ωθ).
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Strategy for the solution of Problem 2

• Show that Aθ ⋊ F is isomorphic to a twisted group algebra
C∗(Z2 ⋊ F, ωθ).

• Show that the K-theory of these twisted group algebras
only depends on the homotopy class of the cocycle.

• Show that all cocycles ωθ are homotopic to the trivial
cocycle.

• Compute K-theory groups of C∗(Z2 ⋊ F ) ∼= C(T2) ⋊ F with
generators.

• Use a refined version of item 2 to get generators for the
K-theory groups of C∗(Z2 ⋊ F, ωθ).

• Compute the image of K0(C
∗(Z2 ⋊ F, ωθ)) by the unique

trace τ .
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Twisted group algebras

A 2-cocycle on the (discrete) group G is a map ω : G×G→ T

such that
ω(s, t)ω(st, r) = ω(s, tr)ω(t, r) ∀s, t, r ∈ G.
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Twisted group algebras

A 2-cocycle on the (discrete) group G is a map ω : G×G→ T

such that
ω(s, t)ω(st, r) = ω(s, tr)ω(t, r) ∀s, t, r ∈ G.

Define a representation Lω : l1(G) → B(l2(G)) via twisted
convolution

(Lω(f)ξ)(g) = (f ∗ω ξ)(g) =
∑

h∈G

f(h)g(h−1g)ω(h, h−1g)
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Twisted group algebras

A 2-cocycle on the (discrete) group G is a map ω : G×G→ T

such that
ω(s, t)ω(st, r) = ω(s, tr)ω(t, r) ∀s, t, r ∈ G.

Define a representation Lω : l1(G) → B(l2(G)) via twisted
convolution

(Lω(f)ξ)(g) = (f ∗ω ξ)(g) =
∑

h∈G

f(h)g(h−1g)ω(h, h−1g)

The (reduced) twisted group algebra of G with respect to ω is
defined as

C∗
r (G,ω) = Lω(l1(G)) ⊆ B(l2(G)).
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Twisted group algebras

A 2-cocycle on the (discrete) group G is a map ω : G×G→ T

such that
ω(s, t)ω(st, r) = ω(s, tr)ω(t, r) ∀s, t, r ∈ G.

Define a representation Lω : l1(G) → B(l2(G)) via twisted
convolution

(Lω(f)ξ)(g) = (f ∗ω ξ)(g) =
∑

h∈G

f(h)g(h−1g)ω(h, h−1g)

The (reduced) twisted group algebra of G with respect to ω is
defined as

C∗
r (G,ω) = Lω(l1(G)) ⊆ B(l2(G)).

(A similar construction works for locally compact groups G.)
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Noncommutative Tori (the case G = Z2)

For θ ∈ R define ωθ : Z2 × Z2 → T by

ωθ

(

(n,m), (n′,m′)
)

= exp(πiθ(nm′ −mn′)),

Classification of noncommutative 2-spheres joint with Wolfgang Lück, Chris Phillips, Samuel Walters – p.9/18



Noncommutative Tori (the case G = Z2)

For θ ∈ R define ωθ : Z2 × Z2 → T by

ωθ

(

(n,m), (n′,m′)
)

= exp(πiθ(nm′ −mn′)),

Write δn,m ∈ l1(Z2) for the Dirac-function at (n,m). Then

δ(1,0) ∗ωθ
δ(0,1) = e2πiθ(δ(0,1) ∗ωθ

δ(1,0))
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Noncommutative Tori (the case G = Z2)

For θ ∈ R define ωθ : Z2 × Z2 → T by

ωθ

(

(n,m), (n′,m′)
)

= exp(πiθ(nm′ −mn′)),

Write δn,m ∈ l1(Z2) for the Dirac-function at (n,m). Then

δ(1,0) ∗ωθ
δ(0,1) = e2πiθ(δ(0,1) ∗ωθ

δ(1,0))

Therefore C∗
r (Z2, ωθ) = Aθ (non-commutative 2-torus)
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For θ ∈ R define ωθ : Z2 × Z2 → T by

ωθ
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(n,m), (n′,m′)
)

= exp(πiθ(nm′ −mn′)),

Write δn,m ∈ l1(Z2) for the Dirac-function at (n,m). Then

δ(1,0) ∗ωθ
δ(0,1) = e2πiθ(δ(0,1) ∗ωθ

δ(1,0))

Therefore C∗
r (Z2, ωθ) = Aθ (non-commutative 2-torus)

For θ = 0, we get A0
∼= C∗

r (Z2) ∼= C(T2)!
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Noncommutative Tori (the case G = Z2)

For θ ∈ R define ωθ : Z2 × Z2 → T by

ωθ

(

(n,m), (n′,m′)
)

= exp(πiθ(nm′ −mn′)),

Write δn,m ∈ l1(Z2) for the Dirac-function at (n,m). Then

δ(1,0) ∗ωθ
δ(0,1) = e2πiθ(δ(0,1) ∗ωθ

δ(1,0))

Therefore C∗
r (Z2, ωθ) = Aθ (non-commutative 2-torus)

For θ = 0, we get A0
∼= C∗

r (Z2) ∼= C(T2)!

(Analogously for n > 2: C∗
r (Zn, ω) = non-commutative n-torus.)
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Noncommutative 2-spheres as twisted group algebras

Consider the canonical action of SL(2,Z) on Z2. For any (finite)
subgroup F ⊆ SL(2,Z) form the semidirect product Z2 ⋊ F with
respect to this action. Then we get
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Noncommutative 2-spheres as twisted group algebras

Consider the canonical action of SL(2,Z) on Z2. For any (finite)
subgroup F ⊆ SL(2,Z) form the semidirect product Z2 ⋊ F with
respect to this action. Then we get

Lemma For each θ ∈ R we get a cocycle ω̃θ of Z2 ⋊ F by

ω̃θ

((

( n
m ), N

)

,
(

( n′

m′ ), N ′
))

= ωθ

(

( n
m ), N · ( n′

m′ )
)

and then C∗
r (Z2 ⋊ F, ω̃θ) ∼= C∗

r (Z2, ωθ) ⋊ F ∼= Aθ ⋊ F .
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Noncommutative 2-spheres as twisted group algebras

Consider the canonical action of SL(2,Z) on Z2. For any (finite)
subgroup F ⊆ SL(2,Z) form the semidirect product Z2 ⋊ F with
respect to this action. Then we get

Lemma For each θ ∈ R we get a cocycle ω̃θ of Z2 ⋊ F by

ω̃θ

((

( n
m ), N

)

,
(

( n′

m′ ), N ′
))

= ωθ

(

( n
m ), N · ( n′

m′ )
)

and then C∗
r (Z2 ⋊ F, ω̃θ) ∼= C∗

r (Z2, ωθ) ⋊ F ∼= Aθ ⋊ F .

Of course, if θ = 0, we get the trivial cocycle ω̃0 ≡ 1 and
therefore

C∗
r (Z2 ⋊ F, ω̃0) = C∗

r (Z2 ⋊ F ) ∼= C(T2) ⋊ F
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Homotopy of cocycles

Definition: Two cocycles ω0, ω1 ∈ Z2(G,T) are homotopic, if there
exists a cocycle Ω : G×G→ C([0, 1],T) such that

ω0(g, h) = Ω(g, h)(0) and ω1(g, h) = Ω(g, h)(1) ∀s, t ∈ G
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Homotopy of cocycles

Definition: Two cocycles ω0, ω1 ∈ Z2(G,T) are homotopic, if there
exists a cocycle Ω : G×G→ C([0, 1],T) such that

ω0(g, h) = Ω(g, h)(0) and ω1(g, h) = Ω(g, h)(1) ∀s, t ∈ G

Example:

• Ω : Z2 × Z2 → C([0, 1],T); Ω(·, ·)(s) = ωs·θ is homotopy
between 1 = ω0 and ωθ.

• Similarly Ω̃ : (Z2 ⋊ F ) × Z2 ⋊ F ) → C([0, 1],T) given by
Ω̃(·, ·)(s) := ω̃s·θ is a homotopy between 1 = ω̃0 and ω̃θ
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The Baum-Connes conjecture

We say that G satisfies the Baum-Connes conjecture with
coefficients if for every G-algebra A a certain map

K
top
∗ (G;A) = limX⊂EGKK

G
∗ (C0(X), A) → K∗(A⋊r G)

is an isomorphism.
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The Baum-Connes conjecture

We say that G satisfies the Baum-Connes conjecture with
coefficients if for every G-algebra A a certain map

K
top
∗ (G;A) = limX⊂EGKK

G
∗ (C0(X), A) → K∗(A⋊r G)

is an isomorphism.

Theorem (Higson-Kasparov, 2001) Every a-T -menable (hence every
amenable) group G satisfies the conjecture for all G-algebras A.
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The Baum-Connes conjecture

We say that G satisfies the Baum-Connes conjecture with
coefficients if for every G-algebra A a certain map

K
top
∗ (G;A) = limX⊂EGKK

G
∗ (C0(X), A) → K∗(A⋊r G)

is an isomorphism.

Theorem (Higson-Kasparov, 2001) Every a-T -menable (hence every
amenable) group G satisfies the conjecture for all G-algebras A.

Theorem (E-Chabert-Oyono-Oyono, 2004) Suppose that G satisfies
the conjecture for all G-algebras A. Then, if α : A→ B is a
G-equivariant ∗-homomorphism which induces an isomorphism

(α⋊ L)∗ : K∗(A⋊ L) → K∗(B ⋊ L)

for all compact subgroups L ⊆ G, then we also have

(α⋊G)∗ : K∗(A⋊G)
∼=
→ K∗(B ⋊G).
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Homotopy-invariance of K-theory

Let ω : G×G→ T be a cocycle on G. Then we get an action
αω : G→ Aut(K(l2(G)));αω(g)(T ) = Lω(δg)TLω(δg)

∗ and

C∗
r (G,ω) ⊗K ∼= K ⋊αω,r G; f ⊗ T 7→ (g 7→ TLω(δg)

∗) ∈ Cc(G,A).
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Homotopy-invariance of K-theory

Let ω : G×G→ T be a cocycle on G. Then we get an action
αω : G→ Aut(K(l2(G)));αω(g)(T ) = Lω(δg)TLω(δg)

∗ and

C∗
r (G,ω) ⊗K ∼= K ⋊αω,r G; f ⊗ T 7→ (g 7→ TLω(δg)

∗) ∈ Cc(G,A).

Similarly: A homotopy Ω : G×G→ C([0, 1],T) between
cocycles induces a fiber-wise action

αΩ : G→ Aut(C[0, 1],K);αΩ(ϕ)(s) = αΩ(s)(ϕ(s)).
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Homotopy-invariance of K-theory

Let ω : G×G→ T be a cocycle on G. Then we get an action
αω : G→ Aut(K(l2(G)));αω(g)(T ) = Lω(δg)TLω(δg)

∗ and

C∗
r (G,ω) ⊗K ∼= K ⋊αω,r G; f ⊗ T 7→ (g 7→ TLω(δg)

∗) ∈ Cc(G,A).

Similarly: A homotopy Ω : G×G→ C([0, 1],T) between
cocycles induces a fiber-wise action

αΩ : G→ Aut(C[0, 1],K);αΩ(ϕ)(s) = αΩ(s)(ϕ(s)).

Theorem (E.-Williams, 98) Any fiber-wise action of a compact group
L on C([0, 1],K) is equivalent to a constant action, i.e., there
exists a single action β : G→ Aut(K) such that α ∼ idC[0,1] ⊗β.
As a consequence, evaluation at any θ ∈ [0, 1] induces an
isomorphism

evθ : K∗(C([0, 1],K) ⋊α L)
∼=
→ K∗(K ⋊αθ

L).

(use K∗(C
(

[0, 1],K) ⋊αθ
L) ∼= K∗(C([0, 1],K ⋊β L))
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Homotopy invariance of K-theory

Theorem (E-L-P-W): Suppose that G satisfies the Baum-Connes
conjecture (with coefficients). Then K∗(C

∗
r (G,ω)) only depends

on the homotopy class of ω.
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Homotopy invariance of K-theory

Theorem (E-L-P-W): Suppose that G satisfies the Baum-Connes
conjecture (with coefficients). Then K∗(C

∗
r (G,ω)) only depends

on the homotopy class of ω.

Corollary: For all θ ∈ [0, 1], F = Z2,Z3,Z4,Z6, we have

K∗(C
∗
r (Z2 ⋊ F, ω̃θ) ∼= K∗(C

∗
r (Z2 ⋊ F ))

(

∼= K∗(C(T2) ⋊ F )
)

.
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Homotopy invariance of K-theory

Theorem (E-L-P-W): Suppose that G satisfies the Baum-Connes
conjecture (with coefficients). Then K∗(C

∗
r (G,ω)) only depends

on the homotopy class of ω.

Corollary: For all θ ∈ [0, 1], F = Z2,Z3,Z4,Z6, we have

K∗(C
∗
r (Z2 ⋊ F, ω̃θ) ∼= K∗(C

∗
r (Z2 ⋊ F ))

(

∼= K∗(C(T2) ⋊ F )
)

.

K0(C
∗
r (Z2 ⋊ F )) =



















Z6 for F = Z2

Z8 for F = Z3

Z9 for F = Z4

Z10 for F = Z6



















, K1(C
∗
r (Z2 ⋊ F )) = 0
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Homotopy invariance of K-theory

Theorem (E-L-P-W): Suppose that G satisfies the Baum-Connes
conjecture (with coefficients). Then K∗(C

∗
r (G,ω)) only depends

on the homotopy class of ω.

Corollary: For all θ ∈ [0, 1], F = Z2,Z3,Z4,Z6, we have

K∗(C
∗
r (Z2 ⋊ F, ω̃θ) ∼= K∗(C

∗
r (Z2 ⋊ F ))

(

∼= K∗(C(T2) ⋊ F )
)

.

K0(C
∗
r (Z2 ⋊ F )) =



















Z6 for F = Z2

Z8 for F = Z3

Z9 for F = Z4

Z10 for F = Z6



















, K1(C
∗
r (Z2 ⋊ F )) = 0

There is an alternative proof for the corollary by Skandalis !
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The generators of K0(Aθ ⋊ F )

Let Ω : G×G→ C([0, 1],T) be a cocycle homotopy and write
ωθ := Ω(·, ·)(θ). Put l1(G,Ω) := l1(G,C([0, 1])) with convolution

ϕ ∗ ψ(g, θ) :=
∑

h∈G

ϕ(h, θ)ψ(h−1g, θ)Ω(h, h−1g)(θ)

Define C∗
r (G,Ω) := l1(G,Ω)

C∗

. One checks that
C([0, 1],K) ⋊αΩ

G ∼= K ⊗ C∗
r (G,Ω)
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The generators of K0(Aθ ⋊ F )

Let Ω : G×G→ C([0, 1],T) be a cocycle homotopy and write
ωθ := Ω(·, ·)(θ). Put l1(G,Ω) := l1(G,C([0, 1])) with convolution

ϕ ∗ ψ(g, θ) :=
∑

h∈G

ϕ(h, θ)ψ(h−1g, θ)Ω(h, h−1g)(θ)

Define C∗
r (G,Ω) := l1(G,Ω)

C∗

. One checks that
C([0, 1],K) ⋊αΩ

G ∼= K ⊗ C∗
r (G,Ω)

Therefore, if G satsisfies the Baum-Connes conjecture, the
canonical evaluation maps

qθ : C∗
r (G,Ω) → C∗

r (G,ωθ);ϕ 7→ ϕ(·, θ)

induce isomorphisms in K-theory.
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Generators for K0(C
∗
r (Z

2 ⋊ F )) for F = Z3.
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Generators for K0(C
∗
r (Z

2 ⋊ F )) for F = Z3.

Z2 ⋊ Z3 is generated by three elements u, v, w subject to

uv = vu, w3 = 1, wuw−1 = u−1v, wvw−1 = u−1.
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Generators for K0(C
∗
r (Z

2 ⋊ F )) for F = Z3.

Z2 ⋊ Z3 is generated by three elements u, v, w subject to

uv = vu, w3 = 1, wuw−1 = u−1v, wvw−1 = u−1.

There are three conjugacy classes of maximal finite subgroups:

M1 =< w >, M2 :=< uw >, M3 :=< u2w >
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Generators for K0(C
∗
r (Z

2 ⋊ F )) for F = Z3.

Z2 ⋊ Z3 is generated by three elements u, v, w subject to

uv = vu, w3 = 1, wuw−1 = u−1v, wvw−1 = u−1.

There are three conjugacy classes of maximal finite subgroups:

M1 =< w >, M2 :=< uw >, M3 :=< u2w >

They provide 7 projections: 1, p0, p1, q0, q1, r0, r1 ∈ C∗(Z2 ⋊ Z3)

p0 = 1

3
(1 + w + w2) q0 = 1

3
(1 + uw + (uw)2) r0 = 1

3
(1 + u2w + (u2w)2)

p1 = 1

3
(1 + ζw + (ζw)2) q0 = 1

3
(1 + ζuw + (ζuw)2) r0 = 1

3
(1 + ζu2w + (ζu2w)2)

ζ = e(1
3) when e(t) = exp(2πit).
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Generators for K0(C
∗
r (Z

2 ⋊ F )) for F = Z3.

Z2 ⋊ Z3 is generated by three elements u, v, w subject to

uv = vu, w3 = 1, wuw−1 = u−1v, wvw−1 = u−1.

There are three conjugacy classes of maximal finite subgroups:

M1 =< w >, M2 :=< uw >, M3 :=< u2w >

They provide 7 projections: 1, p0, p1, q0, q1, r0, r1 ∈ C∗(Z2 ⋊ Z3)

p0 = 1

3
(1 + w + w2) q0 = 1

3
(1 + uw + (uw)2) r0 = 1

3
(1 + u2w + (u2w)2)

p1 = 1

3
(1 + ζw + (ζw)2) q0 = 1

3
(1 + ζuw + (ζuw)2) r0 = 1

3
(1 + ζu2w + (ζu2w)2)

ζ = e(1
3) when e(t) = exp(2πit). Bott class: E = S(R) w.r.t

action

(ξ ·u)(s) = ξ(s+1), (ξ ·v)(s) = e(s)ξ(s), (ξ ·w)(s) = e(
6s2 − π

12
)

Z

∞

−∞

ξ(x)e(sx) dx.
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Application to non-commutative 2-spheres (F = Z3)

Let a > 0, Ω̃ ∈ Z2(Z2 ⋊ F,C([a, 1],T)), Ω̃(·, ·)(θ) = ω̃θ.
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Application to non-commutative 2-spheres (F = Z3)

Let a > 0, Ω̃ ∈ Z2(Z2 ⋊ F,C([a, 1],T)), Ω̃(·, ·)(θ) = ω̃θ.
Consider

(θ 7→ uθ, vθ, wθ) ∈ C∗
r (Z2 ⋊ F, Ω̃)

images of the generators u, v, w of Z2 ⋊ F in C∗
r (Z2 ⋊ F, ω̃θ).
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Application to non-commutative 2-spheres (F = Z3)

Let a > 0, Ω̃ ∈ Z2(Z2 ⋊ F,C([a, 1],T)), Ω̃(·, ·)(θ) = ω̃θ.
Consider

(θ 7→ uθ, vθ, wθ) ∈ C∗
r (Z2 ⋊ F, Ω̃)

images of the generators u, v, w of Z2 ⋊ F in C∗
r (Z2 ⋊ F, ω̃θ).

K0(C
∗
r (Z2 ⋊ F, ω̃θ)) =< [1], [pθ

0], [p
θ
1], [q

θ
0 ], [q

θ
1 ], [r

θ
0], [r

θ
1], [E(θ)] >

pθ
0

= 1

3
(1 + wθ + w2

θ), pθ
1

= 1

3
(1 + e( 2

3
)wθ + (e( 2

3
)wθ)2),

qθ
0

= 1

3
(1 + e( 2+θ

6
)uθwθ + (e( 2+θ

6
)uθwθ)2), qθ

1
= 1

3
(1 + e( θ

6
)uθtθ + (e( θ

6
)uθtθ)2),

rθ
0

= 1

3
(1 + u2

θtθ + (u2
θtθ)2), rθ

1
= 1

3
(1 + e( 2

3
)u2

θtθ + (e( 2

3
)u2

θtθ)2),
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Let a > 0, Ω̃ ∈ Z2(Z2 ⋊ F,C([a, 1],T)), Ω̃(·, ·)(θ) = ω̃θ.
Consider

(θ 7→ uθ, vθ, wθ) ∈ C∗
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images of the generators u, v, w of Z2 ⋊ F in C∗
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K0(C
∗
r (Z2 ⋊ F, ω̃θ)) =< [1], [pθ

0], [p
θ
1], [q

θ
0 ], [q

θ
1 ], [r

θ
0], [r

θ
1], [E(θ)] >

pθ
0

= 1

3
(1 + wθ + w2

θ), pθ
1

= 1

3
(1 + e( 2

3
)wθ + (e( 2

3
)wθ)2),

qθ
0

= 1

3
(1 + e( 2+θ

6
)uθwθ + (e( 2+θ

6
)uθwθ)2), qθ

1
= 1

3
(1 + e( θ

6
)uθtθ + (e( θ

6
)uθtθ)2),

rθ
0

= 1

3
(1 + u2

θtθ + (u2
θtθ)2), rθ

1
= 1

3
(1 + e( 2

3
)u2

θtθ + (e( 2

3
)u2

θtθ)2),

E(θ) = S(R) with actions of generators

(ξ·uθ)(s) = ξ(s+θ), (ξ·vθ)(s) = e(s)ξ(s) (ξ·wθ)(s) =
i−1/6

√
θ

e(
s2

2θ
)

Z

∞

−∞

ξ(x)e(
sx

θ
) dx.
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The main theorem

Theorem (E., Lück, Phillips, Walters) Suppose θ ∈ (0, 1] is an
irrational number and that F ⊆ SL(2,Z) is finite subgroup. Then
Aθ ⋊ F is always an AF-algebra. For all θ ∈ R we have

K0(Aθ ⋊ Z2) ∼= Z6, K0(Aθ ⋊ Z3) ∼= Z8

K0(Aθ ⋊ Z4) ∼= Z9, and K0(Aθ ⋊ Z6) ∼= Z10

If F = Zk, k = 2, 3, 4, 6, then the image of K0(Aθ ⋊ Zk) under the
canonical (and unique) trace is 1

k
(Z + θZ). As a consequence,

Aθ ⋊ Zk
∼= Aθ′ ⋊ Zl ⇔ k = l and θ = ±θ′ mod Z

.
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