Amalgamated free products of embeddable von Neumann algebras and sofic groups

Ken Dykema
Department of Mathematics
Texas A\&M University
College Station, TX, USA.

Institute of Matheamtical Sciences, Chennai, India, August 2010

References

[BDJ] Nate Brown, K.D., Kenley Jung, "Free entropy dimension in amalgamated free products," Proc. London Math. Soc. (2008).
[CD] Benoit Collins, K.D., "Free products of sofic groups with amalgamation over amenable groups," preprint.

Approximation properties in finite von Neumann algebras

Hyperfiniteness

A von Neumann algebra \mathcal{M} is hyperfinite if for all $x_{1}, \ldots x_{n} \in \mathcal{M}$ and all $\epsilon>0$ there is a finite dimensional subalgebra $D \subseteq \mathcal{M}$ such that $\operatorname{dist}_{\|\cdot\|_{2}}\left(x_{j}, D\right)<\epsilon($ for all $j)$, where $\|a\|_{2}=\tau\left(a^{*} a\right)^{1 / 2}$.

For example, the hyperfinite I_{1}-factor $R=\overline{\bigcup_{n \geq 1} M_{2^{n}}(\mathbf{C})}$ or $L(G)$ for G amenable [Connes, '76].

Approximation properties in finite von Neumann algebras

Hyperfiniteness

A von Neumann algebra \mathcal{M} is hyperfinite if for all $x_{1}, \ldots x_{n} \in \mathcal{M}$ and all $\epsilon>0$ there is a finite dimensional subalgebra $D \subseteq \mathcal{M}$ such that $\operatorname{dist}_{\|\cdot\|_{2}}\left(x_{j}, D\right)<\epsilon($ for all $j)$, where $\|a\|_{2}=\tau\left(a^{*} a\right)^{1 / 2}$.

For example, the hyperfinite I_{1}-factor $R=\overline{\bigcup_{n \geq 1} M_{2^{n}}(\mathbf{C})}$ or $L(G)$ for G amenable [Connes, '76].

Connes' Embedding Problem (CEP) [1976]

Do all finite von Neumann algebras \mathcal{M} having separable predual embed into R^{ω}, (the ultrapower of the hyperfinite I_{1}-factor)?

A reformulation of Connes' embedding problem:

We take a finite von Neumann algebra \mathcal{M} with a fixed trace $\tau: \mathcal{M} \rightarrow \mathbf{C}$, with $\tau(1)=1$. Also, $\mathcal{M}_{\text {s.a. }}=\left\{x \in \mathcal{M} \mid x^{*}=x\right\}$.

A reformulation of Connes' embedding problem:

We take a finite von Neumann algebra \mathcal{M} with a fixed trace $\tau: \mathcal{M} \rightarrow \mathbf{C}$, with $\tau(1)=1$. Also, $\mathcal{M}_{\text {s.a. }}=\left\{x \in \mathcal{M} \mid x^{*}=x\right\}$.

Connes' Embedding Problem \Leftrightarrow
Given a finite von Neumann algebra \mathcal{M} and $x_{1}, \ldots, x_{n} \in \mathcal{M}_{\text {s.a., }}$, are there "approximating matricial microstates" for them?

A reformulation of Connes' embedding problem:

We take a finite von Neumann algebra \mathcal{M} with a fixed trace $\tau: \mathcal{M} \rightarrow \mathbf{C}$, with $\tau(1)=1$. Also, $\mathcal{M}_{\text {s.a. }}=\left\{x \in \mathcal{M} \mid x^{*}=x\right\}$.

Connes' Embedding Problem \Leftrightarrow

Given a finite von Neumann algebra \mathcal{M} and $x_{1}, \ldots, x_{n} \in \mathcal{M}_{\text {s.a., }}$, are there "approximating matricial microstates" for them? l.e., given $m \in \mathbf{N}$ and $\epsilon>0$, are there $a_{1}, \ldots, a_{n} \in M_{k}(\mathbb{C})_{\text {s.a. }}$ for some $k \in \mathbf{N}$ whose mixed moments up to order m are ϵ-close to those of x_{1}, \ldots, x_{n} ?

A reformulation of Connes' embedding problem:

We take a finite von Neumann algebra \mathcal{M} with a fixed trace $\tau: \mathcal{M} \rightarrow \mathbf{C}$, with $\tau(1)=1$. Also, $\mathcal{M}_{\text {s.a. }}=\left\{x \in \mathcal{M} \mid x^{*}=x\right\}$.

Connes' Embedding Problem \Leftrightarrow

Given a finite von Neumann algebra \mathcal{M} and $x_{1}, \ldots, x_{n} \in \mathcal{M}_{\text {s.a., }}$, are there "approximating matricial microstates" for them?
l.e., given $m \in \mathbf{N}$ and $\epsilon>0$, are there $a_{1}, \ldots, a_{n} \in M_{k}(\mathbb{C})_{\text {s.a. }}$ for some $k \in \mathbf{N}$ whose mixed moments up to order m are ϵ-close to those of x_{1}, \ldots, x_{n}, i.e., such that

$$
\left|\operatorname{tr}_{k}\left(a_{i_{1}} a_{i_{2}} \cdots a_{i_{p}}\right)-\tau\left(x_{i_{1}} x_{i_{2}} \cdots x_{i_{p}}\right)\right|<\gamma
$$

for all $p \leq m$ and all $i_{1}, \ldots, i_{p} \in\{1, \ldots, n\}$? (The existence of such matricial microstates is equivalent to \mathcal{M} embedding in R^{ω}, written $\mathcal{M} \hookrightarrow R^{\omega}$.)

A reformulation of Connes' embedding problem:

We take a finite von Neumann algebra \mathcal{M} with a fixed trace $\tau: \mathcal{M} \rightarrow \mathbf{C}$, with $\tau(1)=1$. Also, $\mathcal{M}_{\text {s.a. }}=\left\{x \in \mathcal{M} \mid x^{*}=x\right\}$.

Connes' Embedding Problem \Leftrightarrow

Given a finite von Neumann algebra \mathcal{M} and $x_{1}, \ldots, x_{n} \in \mathcal{M}_{\text {s.a., }}$, are there "approximating matricial microstates" for them?
l.e., given $m \in \mathbf{N}$ and $\epsilon>0$, are there $a_{1}, \ldots, a_{n} \in M_{k}(\mathbb{C})_{\text {s.a. }}$ for some $k \in \mathbf{N}$ whose mixed moments up to order m are ϵ-close to those of x_{1}, \ldots, x_{n}, i.e., such that

$$
\left|\operatorname{tr}_{k}\left(a_{i_{1}} a_{i_{2}} \cdots a_{i_{p}}\right)-\tau\left(x_{i_{1}} x_{i_{2}} \cdots x_{i_{p}}\right)\right|<\gamma
$$

for all $p \leq m$ and all $i_{1}, \ldots, i_{p} \in\{1, \ldots, n\}$? (The existence of such matricial microstates is equivalent to \mathcal{M} embedding in R^{ω}, written $\mathcal{M} \hookrightarrow R^{\omega}$.)

In fact, CEP \Leftrightarrow the case $n=2$ ([Collins, D. '08]).

Microstates free entropy dimension (Voiculescu)

$\Gamma_{R}\left(x_{1}, \ldots, x_{n} ; m, k, \gamma\right)$ is the set of all n-tuples $\left(a_{1}, \ldots, a_{n}\right)$ of such approximating matricial microstates, having $\left\|a_{i}\right\| \leq R$.

Microstates free entropy dimension (Voiculescu)

$\Gamma_{R}\left(x_{1}, \ldots, x_{n} ; m, k, \gamma\right)$ is the set of all n-tuples $\left(a_{1}, \ldots, a_{n}\right)$ of such approximating matricial microstates, having $\left\|a_{i}\right\| \leq R$.

To save space, we will write X for the list (or set) x_{1}, \ldots, x_{n}, and also $\Gamma_{R}(X ; m, k, \gamma)$, etc.

Microstates free entropy dimension (Voiculescu)

$\Gamma_{R}\left(x_{1}, \ldots, x_{n} ; m, k, \gamma\right)$ is the set of all n-tuples $\left(a_{1}, \ldots, a_{n}\right)$ of such approximating matricial microstates, having $\left\|a_{i}\right\| \leq R$.

To save space, we will write X for the list (or set) x_{1}, \ldots, x_{n}, and also $\Gamma_{R}(X ; m, k, \gamma)$, etc.
The free entropy dimension $\delta_{0}\left(x_{1}, \ldots, x_{n}\right)=\delta_{0}(X)$ is obtained from asymptotics of the "sizes" of these sets.

Microstates free entropy dimension (Voiculescu)

$\Gamma_{R}\left(x_{1}, \ldots, x_{n} ; m, k, \gamma\right)$ is the set of all n-tuples $\left(a_{1}, \ldots, a_{n}\right)$ of such approximating matricial microstates, having $\left\|a_{i}\right\| \leq R$.

To save space, we will write X for the list (or set) x_{1}, \ldots, x_{n}, and also $\Gamma_{R}(X ; m, k, \gamma)$, etc.
The free entropy dimension $\delta_{0}\left(x_{1}, \ldots, x_{n}\right)=\delta_{0}(X)$ is obtained from asymptotics of the "sizes" of these sets.

By [Jung, '03]:

$$
\mathbb{P}_{\epsilon}(X)=\sup _{R>0} \inf _{\substack{m>1 \\ \gamma>0}} \limsup _{k \rightarrow \infty} k^{-2} \log P_{\epsilon}\left(\Gamma_{R}(X ; m, k, \gamma)\right) .
$$

Microstates free entropy dimension (Voiculescu)

$\Gamma_{R}\left(x_{1}, \ldots, x_{n} ; m, k, \gamma\right)$ is the set of all n-tuples $\left(a_{1}, \ldots, a_{n}\right)$ of such approximating matricial microstates, having $\left\|a_{i}\right\| \leq R$.

To save space, we will write X for the list (or set) x_{1}, \ldots, x_{n}, and also $\Gamma_{R}(X ; m, k, \gamma)$, etc.
The free entropy dimension $\delta_{0}\left(x_{1}, \ldots, x_{n}\right)=\delta_{0}(X)$ is obtained from asymptotics of the "sizes" of these sets.
By [Jung, '03]:

$$
\begin{gathered}
\mathbb{P}_{\epsilon}(X)=\sup _{R>0} \inf _{\substack{ \\
\gamma>1}}^{\limsup _{k \rightarrow \infty}} k^{-2} \log P_{\epsilon}\left(\Gamma_{R}(X ; m, k, \gamma)\right) \\
\delta_{0}(X)=\limsup _{\epsilon \rightarrow 0} \frac{\mathbb{P}_{\epsilon}(X)}{|\log \epsilon|}
\end{gathered}
$$

Microstates free entropy dimension (Voiculescu)

$\Gamma_{R}\left(x_{1}, \ldots, x_{n} ; m, k, \gamma\right)$ is the set of all n-tuples $\left(a_{1}, \ldots, a_{n}\right)$ of such approximating matricial microstates, having $\left\|a_{i}\right\| \leq R$.

To save space, we will write X for the list (or set) x_{1}, \ldots, x_{n}, and also $\Gamma_{R}(X ; m, k, \gamma)$, etc.

The free entropy dimension $\delta_{0}\left(x_{1}, \ldots, x_{n}\right)=\delta_{0}(X)$ is obtained from asymptotics of the "sizes" of these sets.
By [Jung, '03]:

$$
\begin{gathered}
\mathbb{P}_{\epsilon}(X)=\sup _{R>0} \inf _{\substack{ \\
\gamma>1 \\
\gamma>0}}^{\limsup _{k \rightarrow \infty} k^{-2} \log P_{\epsilon}\left(\Gamma_{R}(X ; m, k, \gamma)\right)} \\
\delta_{0}(X)=\limsup _{\epsilon \rightarrow 0} \frac{\mathbb{P}_{\epsilon}(X)}{|\log \epsilon|}
\end{gathered}
$$

Instead of taking $\sup _{R>0}$, fixing any $R>\max _{i}\left\|x_{i}\right\|$ will yield the same value for $\delta_{0}(X)$, and we can also take $R=+\infty$, in which case we write $\Gamma(X ; m, k, \gamma)$.

Subadditivity property

$$
\delta_{0}(X \cup Y) \leq \delta_{0}(X)+\delta_{0}(Y)
$$

Subadditivity property

$$
\delta_{0}(X \cup Y) \leq \delta_{0}(X)+\delta_{0}(Y)
$$

Proof:

$$
\Gamma_{R}(X \cup Y ; m, k, \gamma) \subseteq \Gamma_{R}(X ; m, k, \gamma) \times \Gamma_{R}(Y ; m, k, \gamma)
$$

Open problems about matricial microstates

1. CEP

Are there always approximating matricial microstates? I.e., given m and γ, is there k such that $\Gamma(X ; m, k, \gamma) \neq \emptyset$?

Open problems about matricial microstates

1. CEP

Are there always approximating matricial microstates? I.e., given m and γ, is there k such that $\Gamma(X ; m, k, \gamma) \neq \emptyset$?

If "yes," then $W^{*}(X) \hookrightarrow R^{\omega}$ and, by [BDJ], $\delta(X) \geq 0$. Otherwise, $W^{*}(X) \nprec R^{\omega}$ and $\delta_{0}(X)=-\infty$.

Open problems about matricial microstates

1. CEP

Are there always approximating matricial microstates? I.e., given m and γ, is there k such that $\Gamma(X ; m, k, \gamma) \neq \emptyset$?

If "yes," then $W^{*}(X) \hookrightarrow R^{\omega}$ and, by [BDJ], $\delta(X) \geq 0$. Otherwise, $W^{*}(X) \nLeftarrow R^{\omega}$ and $\delta_{0}(X)=-\infty$.

2. W^{*}-invariance

Does $W^{*}\left(x_{1}, \ldots, x_{N}\right)=W^{*}\left(y_{1}, \ldots, y_{M}\right)$ imply $\delta_{0}\left(x_{1}, \ldots, x_{N}\right)=\delta_{0}\left(y_{1}, \ldots, y_{M}\right) ?$

Open problems about matricial microstates

1. CEP

Are there always approximating matricial microstates? I.e., given m and γ, is there k such that $\Gamma(X ; m, k, \gamma) \neq \emptyset$?

If "yes," then $W^{*}(X) \hookrightarrow R^{\omega}$ and, by [BDJ], $\delta(X) \geq 0$. Otherwise, $W^{*}(X) \nprec R^{\omega}$ and $\delta_{0}(X)=-\infty$.
2. W*-invariance

Does $W^{*}\left(x_{1}, \ldots, x_{N}\right)=W^{*}\left(y_{1}, \ldots, y_{M}\right)$ imply $\delta_{0}\left(x_{1}, \ldots, x_{N}\right)=\delta_{0}\left(y_{1}, \ldots, y_{M}\right)$?

3. Regularity

If, in Jung's formula for δ_{0}, the $\lim \sup _{k \rightarrow \infty}$ and $\lim \sup _{\epsilon \rightarrow 0}$ are replaced by liminf, do we get the same number?

Open problems about matricial microstates

1. CEP

Are there always approximating matricial microstates? I.e., given m and γ, is there k such that $\Gamma(X ; m, k, \gamma) \neq \emptyset$?

If "yes," then $W^{*}(X) \hookrightarrow R^{\omega}$ and, by [BDJ], $\delta(X) \geq 0$. Otherwise, $W^{*}(X) \nprec R^{\omega}$ and $\delta_{0}(X)=-\infty$.
2. W*-invariance

Does $W^{*}\left(x_{1}, \ldots, x_{N}\right)=W^{*}\left(y_{1}, \ldots, y_{M}\right)$ imply $\delta_{0}\left(x_{1}, \ldots, x_{N}\right)=\delta_{0}\left(y_{1}, \ldots, y_{M}\right) ?$

3. Regularity

If, in Jung's formula for δ_{0}, the $\lim \sup _{k \rightarrow \infty}$ and $\lim \sup _{\epsilon \rightarrow 0}$ are replaced by liminf, do we get the same number?
(If "yes," then we say X is microstates packing regular.)

Recalling of the formula for $\delta_{0}(X)$

$$
\begin{gathered}
\mathbb{P}_{\epsilon}(X)=\sup _{R>0} \inf _{\substack{ \\
\gamma>0}} \limsup _{k \rightarrow \infty} k^{-2} \log P_{\epsilon}\left(\Gamma_{R}(X ; m, k, \gamma)\right) . \\
\delta_{0}(X)=\limsup _{\epsilon \rightarrow 0} \frac{\mathbb{P}_{\epsilon}(X)}{|\log \epsilon|} .
\end{gathered}
$$

Regarding W^{*}-invariance:

[Jung]

If B is hyperfinite, then δ_{0} agrees on all generating sets of B.

Regarding W^{*}-invariance:

[Jung]

If B is hyperfinite, then δ_{0} agrees on all generating sets of B.
This number can be written $\delta_{0}(B)$, and satisfies $0 \leq \delta_{0}(B) \leq 1$, with equality on the left if and only if $B=\mathbb{C}$ and equality on the right if and only if B is diffuse, i.e., has no minimal projections.

Regarding W^{*}-invariance:

[Jung]

If B is hyperfinite, then δ_{0} agrees on all generating sets of B.
This number can be written $\delta_{0}(B)$, and satisfies $0 \leq \delta_{0}(B) \leq 1$, with equality on the left if and only if $B=\mathbb{C}$ and equality on the right if and only if B is diffuse, i.e., has no minimal projections.

*-algebra invariance [Voiculescu]

$$
\begin{aligned}
& \text { If } *-\operatorname{-alg}\left(x_{1}, \ldots, x_{N}\right)=*-\operatorname{alg}\left(y_{1}, \ldots, y_{M}\right) \text {, then } \\
& \delta_{0}\left(x_{1}, \ldots, x_{N}\right)=\delta_{0}\left(y_{1}, \ldots, y_{M}\right)
\end{aligned}
$$

Regarding regularity

Thm. [Voiculescu]

If x_{1}, \ldots, x_{n} are free, then $\delta_{0}(X)=\delta_{0}\left(x_{1}, \ldots, x_{n}\right)=\sum_{1}^{n} \delta_{0}\left(x_{j}\right)$.

Regarding regularity

Thm. [Voiculescu]

If x_{1}, \ldots, x_{n} are free, then $\delta_{0}(X)=\delta_{0}\left(x_{1}, \ldots, x_{n}\right)=\sum_{1}^{n} \delta_{0}\left(x_{j}\right)$.

Thm. [Voiculescu]

If $X=\left\{x_{1}, \ldots, x_{N}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{M}\right\}$ are free and if at least one is regular, then $\delta_{0}(X \cup Y)=\delta_{0}(X)+\delta_{0}(Y)$.

Regarding regularity

Thm. [Voiculescu]

If x_{1}, \ldots, x_{n} are free, then $\delta_{0}(X)=\delta_{0}\left(x_{1}, \ldots, x_{n}\right)=\sum_{1}^{n} \delta_{0}\left(x_{j}\right)$.

Thm. [Voiculescu]

If $X=\left\{x_{1}, \ldots, x_{N}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{M}\right\}$ are free and if at least one is regular, then $\delta_{0}(X \cup Y)=\delta_{0}(X)+\delta_{0}(Y)$.

Thm. [Voiculescu]

A singleton $\left\{x_{1}\right\}$ is always regular.

Regarding regularity

Thm. [Voiculescu]

If x_{1}, \ldots, x_{n} are free, then $\delta_{0}(X)=\delta_{0}\left(x_{1}, \ldots, x_{n}\right)=\sum_{1}^{n} \delta_{0}\left(x_{j}\right)$.

Thm. [Voiculescu]

If $X=\left\{x_{1}, \ldots, x_{N}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{M}\right\}$ are free and if at least one is regular, then $\delta_{0}(X \cup Y)=\delta_{0}(X)+\delta_{0}(Y)$.

Thm. [Voiculescu]

A singleton $\left\{x_{1}\right\}$ is always regular.

Thm. [BDJ]

Let $\mathcal{M}=W^{*}(X)$. If either (a) \mathcal{M} is diffuse, is embeddable in R^{ω} and $\delta_{0}(X)=1$ or (b) \mathcal{M} is hyperfinite, then X is regular.

Regarding Connes' embedding problem and free products

Without a regularity assumption, we do not know if $\delta_{0}(X \cup Y)=\delta_{0}(X)+\delta_{0}(Y)$ holds whenever X and Y are free sets of finitely many self-adjoints.

Regarding Connes' embedding problem and free products

Without a regularity assumption, we do not know if $\delta_{0}(X \cup Y)=\delta_{0}(X)+\delta_{0}(Y)$ holds whenever X and Y are free sets of finitely many self-adjoints.

However, if one assumes $\delta_{0}(X) \geq 0$ and $\delta_{0}(Y) \geq 0$, i.e., that $W^{*}(X) \hookrightarrow R^{\omega}$ and $W^{*}(Y) \hookrightarrow R^{\omega}$, then one can construct sufficiently many approximating microstates for $X \cup Y$ to prove that $W^{*}(X \cup Y)=W^{*}(X) * W^{*}(Y) \hookrightarrow R^{\omega}$, i.e., that $\delta_{0}(X \cup Y) \geq 0$.

Regarding Connes' embedding problem and free products

Without a regularity assumption, we do not know if $\delta_{0}(X \cup Y)=\delta_{0}(X)+\delta_{0}(Y)$ holds whenever X and Y are free sets of finitely many self-adjoints.

However, if one assumes $\delta_{0}(X) \geq 0$ and $\delta_{0}(Y) \geq 0$, i.e., that $W^{*}(X) \hookrightarrow R^{\omega}$ and $W^{*}(Y) \hookrightarrow R^{\omega}$, then one can construct sufficiently many approximating microstates for $X \cup Y$ to prove that $W^{*}(X \cup Y)=W^{*}(X) * W^{*}(Y) \hookrightarrow R^{\omega}$, i.e., that $\delta_{0}(X \cup Y) \geq 0$. How?

Regarding Connes' embedding problem and free products

Without a regularity assumption, we do not know if $\delta_{0}(X \cup Y)=\delta_{0}(X)+\delta_{0}(Y)$ holds whenever X and Y are free sets of finitely many self-adjoints.

However, if one assumes $\delta_{0}(X) \geq 0$ and $\delta_{0}(Y) \geq 0$, i.e., that $W^{*}(X) \hookrightarrow R^{\omega}$ and $W^{*}(Y) \hookrightarrow R^{\omega}$, then one can construct sufficiently many approximating microstates for $X \cup Y$ to prove that $W^{*}(X \cup Y)=W^{*}(X) * W^{*}(Y) \hookrightarrow R^{\omega}$, i.e., that $\delta_{0}(X \cup Y) \geq 0$.

How? By a fundamental result of Voiculescu, given m, γ, there are $m^{\prime}, \gamma^{\prime}$ such that if

$$
\begin{aligned}
a & =\left(a_{1}, \ldots, a_{N}\right) \in \Gamma_{R}\left(X ; m^{\prime}, k, \gamma^{\prime}\right) \\
b & =\left(b_{1}, \ldots, b_{M}\right) \in \Gamma_{R}\left(Y ; m^{\prime}, k, \gamma^{\prime}\right)
\end{aligned}
$$

and if $u \in \mathcal{U}_{k}$ is a randomly chosen $k \times k$ unitary matrix, then with probability $P(R, m, \gamma, k)$, that approaches 1 as $k \rightarrow \infty$, $a \cup u b u^{*} \in \Gamma_{R}(X \cup Y ; m, k, \gamma)$.

Freeness over a subalgebra [Voiculescu]

Let $E: A \rightarrow B$ be a normal conditional expectation onto a unital W^{*}-subalgebra.

Freeness over a subalgebra [Voiculescu]

Let $E: A \rightarrow B$ be a normal conditional expectation onto a unital W^{*}-subalgebra.

If $B \subseteq A_{i} \subseteq A$ are subalgebras, then the A_{i} are free with respect to E (over B) if

Freeness over a subalgebra [Voiculescu]

Let $E: A \rightarrow B$ be a normal conditional expectation onto a unital W^{*}-subalgebra.

If $B \subseteq A_{i} \subseteq A$ are subalgebras, then the A_{i} are free with respect to E (over B) if
$E\left(a_{1} \cdots a_{n}\right)=0$ whenever $a_{j} \in A_{i(j)} \cap \operatorname{ker} E$

$$
\text { and } i(j) \neq i(j+1) \text { for all } j \text {. }
$$

Amalgamated free products of von Neumann algebras [Voiculescu]

Given $E_{i}: A_{i} \rightarrow B$ conditional expectations (with faithful GNS construction), then their amaglamated free product is

$$
(A, E)=\underset{i \in I}{*_{B}}\left(A_{i}, E_{i}\right)
$$

with $A_{i} \hookrightarrow A$ so that the A_{i} are free over B and together generate A, and $E \upharpoonright_{A_{i}}=E_{i}$.

Amalgamated free products of von Neumann algebras [Voiculescu]

Given $E_{i}: A_{i} \rightarrow B$ conditional expectations (with faithful GNS construction), then their amaglamated free product is

$$
(A, E)=\underset{i \in I}{*_{B}}\left(A_{i}, E_{i}\right)
$$

with $A_{i} \hookrightarrow A$ so that the A_{i} are free over B and together generate A, and $E \upharpoonright_{A_{i}}=E_{i}$.

If there is a normal faithful tracial state τ_{B} on B such that $\tau_{B} \circ E_{i}$ is a trace on A_{i}, for all i, then $\tau_{B} \circ E$ is a normal faithful tracial state on A.

Amalgamated free products of von Neumann algebras [Voiculescu]

Given $E_{i}: A_{i} \rightarrow B$ conditional expectations (with faithful GNS construction), then their amaglamated free product is

$$
(A, E)=\underset{i \in I}{*_{B}}\left(A_{i}, E_{i}\right)
$$

with $A_{i} \hookrightarrow A$ so that the A_{i} are free over B and together generate A, and $E \upharpoonright_{A_{i}}=E_{i}$.

If there is a normal faithful tracial state τ_{B} on B such that $\tau_{B} \circ E_{i}$ is a trace on A_{i}, for all i, then $\tau_{B} \circ E$ is a normal faithful tracial state on A.

In this case, we say the amalgamated free product is tracial.

Example of an amalgamated free product of von Neumann algebras

Example: if $H \subseteq G_{i}$ and $G=G_{1} *_{H} G_{2}$ is an amalgamated free product of groups, then

$$
\left(L\left(G_{1}\right), E_{1}\right) *_{L(H)}\left(L\left(G_{2}\right), E_{2}\right)=(L(G), E)
$$

where E_{i} and E are the cannonical-trace-preserving conditional expectations onto $L(H)$.

Free entropy dimension in amalg. free products [BDJ]

The setting: let $(\mathcal{M}, E)=\left(A_{1}, E\right) *_{B}\left(A_{2}, E\right)$ be a tracial amalgamated free product, where B is hyperfinite. Suppose $X_{i} \subseteq A_{i}$ and $Y \subseteq B$ are finite sets of self-adjoint elements, where $W^{*}(Y)=B$.

Free entropy dimension in amalg. free products [BDJ]

The setting: let $(\mathcal{M}, E)=\left(A_{1}, E\right) *_{B}\left(A_{2}, E\right)$ be a tracial amalgamated free product, where B is hyperfinite. Suppose $X_{i} \subseteq A_{i}$ and $Y \subseteq B$ are finite sets of self-adjoint elements, where $W^{*}(Y)=B$.

By [Jung, '03],

$$
\delta_{0}\left(X_{1} \cup X_{2} \cup Y\right) \leq \delta_{0}\left(X_{1} \cup Y\right)+\delta_{0}\left(X_{2} \cup Y\right)-\delta_{0}(Y)
$$

Free entropy dimension in amalg. free products [BDJ]

The setting: let $(\mathcal{M}, E)=\left(A_{1}, E\right) *_{B}\left(A_{2}, E\right)$ be a tracial amalgamated free product, where B is hyperfinite. Suppose $X_{i} \subseteq A_{i}$ and $Y \subseteq B$ are finite sets of self-adjoint elements, where $W^{*}(Y)=B$.

By [Jung, '03],

$$
\delta_{0}\left(X_{1} \cup X_{2} \cup Y\right) \leq \delta_{0}\left(X_{1} \cup Y\right)+\delta_{0}\left(X_{2} \cup Y\right)-\delta_{0}(Y)
$$

Theorem [BDJ]

If at least one of $X_{1} \cup Y$ and $X_{2} \cup Y$ is regular, then

$$
\delta_{0}\left(X_{1} \cup X_{2} \cup Y\right)=\delta_{0}\left(X_{1} \cup Y\right)+\delta_{0}\left(X_{2} \cup Y\right)-\delta_{0}(Y),
$$

while if both are regular then also $X_{1} \cup X_{2} \cup Y$ is regular.

Idea of proof

By approximation, we can show it suffices to consider $(\mathcal{M}, E)=\left(A_{1}, E\right) *_{B}\left(A_{2}, E\right)$ with B finite dimensional.

Idea of proof

By approximation, we can show it suffices to consider $(\mathcal{M}, E)=\left(A_{1}, E\right) *_{B}\left(A_{2}, E\right)$ with B finite dimensional.

Now fix some representations $\pi_{k}: B \rightarrow M_{k}(\mathbb{C})$, for infinitely many k, such that $\operatorname{tr}_{k} \circ \pi_{k}$ converges to $\tau \upharpoonright_{B}$.

Idea of proof

By approximation, we can show it suffices to consider $(\mathcal{M}, E)=\left(A_{1}, E\right) *_{B}\left(A_{2}, E\right)$ with B finite dimensional.

Now fix some representations $\pi_{k}: B \rightarrow M_{k}(\mathbb{C})$, for infinitely many k, such that $\operatorname{tr}_{k} \circ \pi_{k}$ converges to $\tau \upharpoonright_{B}$.

Let $a \cup c \in \Gamma_{R^{\prime}}\left(X_{1} \cup Y ; m^{\prime}, k, \gamma^{\prime}\right)$ and
$b \cup c^{\prime} \in \Gamma_{R^{\prime}}\left(X_{2} \cup Y ; m^{\prime}, k, \gamma^{\prime}\right)$. We may take $c^{\prime}=c=\pi_{k}(Y)$.

Idea of proof

By approximation, we can show it suffices to consider $(\mathcal{M}, E)=\left(A_{1}, E\right) *_{B}\left(A_{2}, E\right)$ with B finite dimensional.

Now fix some representations $\pi_{k}: B \rightarrow M_{k}(\mathbb{C})$, for infinitely many k, such that $\operatorname{tr}_{k} \circ \pi_{k}$ converges to $\tau \upharpoonright_{B}$.

Let $a \cup c \in \Gamma_{R^{\prime}}\left(X_{1} \cup Y ; m^{\prime}, k, \gamma^{\prime}\right)$ and
$b \cup c^{\prime} \in \Gamma_{R^{\prime}}\left(X_{2} \cup Y ; m^{\prime}, k, \gamma^{\prime}\right)$. We may take $c^{\prime}=c=\pi_{k}(Y)$.
Now, choosing u randomly in $\mathcal{U}_{k} \cap \pi_{k}(B)^{\prime}$ we have, with probability approaching 1 as $k \rightarrow \infty$,

$$
a \cup u b u^{*} \cup c \in \Gamma_{r}\left(X_{1} \cup X_{2} \cup Y ; m, k, \gamma\right) .
$$

Embeddings in R^{ω}

Also, even without assuming regularity, this argument is sufficient to construct at least some approximating microstates, enough to give R^{ω}-embeddability.

Theorem [BDJ]

If $(\mathcal{M}, E)=\left(A_{1}, E\right) *_{B}\left(A_{2}, E\right)$ is a tracial amalgamated free product with B hyperfinite, and if $A_{i} \hookrightarrow R^{\omega},(i=1,2)$, then $\mathcal{M} \hookrightarrow R^{\omega}$.

Hyperlinear groups

Definition [Rădulescu]

A group Γ is hyperlinear if for all finite sets $F \subseteq \Gamma$ and all $\epsilon>0$, there is a map $\phi: \Gamma \rightarrow \mathcal{U}_{n}$ (the $n \times n$ unitary matrices) for some n, such that
(i) $\forall g \in F \backslash\{e\}, \operatorname{dist}(\phi(g)$, id $)>1-\epsilon$
(ii) $\forall g, h \in F$, $\operatorname{dist}\left(\phi\left(g^{-1} h\right), \phi(g)^{-1} \phi(h)\right)<\epsilon$,
where the distance is $\operatorname{dist}(U, V)=\|U-V\|_{2}=\left(\operatorname{tr}_{n}\left((U-V)^{*}(U-V)\right)\right)^{1 / 2}$.

Hyperlinear groups

Definition [Rădulescu]

A group Γ is hyperlinear if for all finite sets $F \subseteq \Gamma$ and all $\epsilon>0$, there is a map $\phi: \Gamma \rightarrow \mathcal{U}_{n}$ (the $n \times n$ unitary matrices) for some n, such that
(i) $\forall g \in F \backslash\{e\}, \operatorname{dist}(\phi(g)$, id $)>1-\epsilon$
(ii) $\forall g, h \in F$, $\operatorname{dist}\left(\phi\left(g^{-1} h\right), \phi(g)^{-1} \phi(h)\right)<\epsilon$,
where the distance is $\operatorname{dist}(U, V)=\|U-V\|_{2}=\left(\operatorname{tr}_{n}\left((U-V)^{*}(U-V)\right)\right)^{1 / 2}$.

Theorem [Rădulescu]

For a group Γ, TFAE:
(i) Γ is hyperlinear
(ii) Γ is isomorphic to a subgroup of the unitary group of R^{ω}
(iii) $L(\Gamma) \hookrightarrow R^{\omega}$

Corollary [BDJ]

If Γ_{1} and Γ_{2} are hyperlinear and if $\Gamma=\Gamma_{1} *_{H} \Gamma_{2}$ with H amenable, then Γ is hyperlinear.

Corollary [BDJ]

If Γ_{1} and Γ_{2} are hyperlinear and if $\Gamma=\Gamma_{1} *_{H} \Gamma_{2}$ with H amenable, then Γ is hyperlinear. Also, HNN-extensions of hyperlinear groups over amenable groups are hyperlinear.

Corollary [BDJ]

If Γ_{1} and Γ_{2} are hyperlinear and if $\Gamma=\Gamma_{1} *_{H} \Gamma_{2}$ with H amenable, then Γ is hyperlinear. Also, HNN-extensions of hyperlinear groups over amenable groups are hyperlinear.

Open Problem (part of Connes' Embedding Problem)

Are all groups hyperlinear?

Sofic groups

A group Γ is sofic if arbitrary finite sets of it can be approximated by permutations.

Sofic groups

A group Γ is sofic if arbitrary finite sets of it can be approximated by permutations.

Defn. [Gromov, '99], [B. Weiss, '00], [Elek, Szabó, '04]

Γ is sofic if for all $F \subseteq \Gamma$ finite and all $\epsilon>0$, there is a map
$\phi: \Gamma \rightarrow S_{n}$, for some n, such that
(i) $\forall g \in F \backslash\{e\}, \operatorname{dist}(\phi(g)$, id $)>1-\epsilon$
(ii) $\forall g, h \in F$, $\operatorname{dist}\left(\phi\left(g^{-1} h\right), \phi(g)^{-1} \phi(h)\right)<\epsilon$.
where $\operatorname{dist}(\sigma, \tau)=\{j \mid \sigma(j) \neq \tau(j)\} / n$ is the Hamming distance.

Sofic groups

A group Γ is sofic if arbitrary finite sets of it can be approximated by permutations.

Defn. [Gromov, '99], [B. Weiss, '00], [Elek, Szabó, '04]

Γ is sofic if for all $F \subseteq \Gamma$ finite and all $\epsilon>0$, there is a map
$\phi: \Gamma \rightarrow S_{n}$, for some n, such that
(i) $\forall g \in F \backslash\{e\}, \operatorname{dist}(\phi(g)$, id $)>1-\epsilon$
(ii) $\forall g, h \in F$, $\operatorname{dist}\left(\phi\left(g^{-1} h\right), \phi(g)^{-1} \phi(h)\right)<\epsilon$.
where $\operatorname{dist}(\sigma, \tau)=\{j \mid \sigma(j) \neq \tau(j)\} / n$ is the Hamming distance. We call ϕ an (F, ϵ)-quasi-action.

Sofic groups

A group Γ is sofic if arbitrary finite sets of it can be approximated by permutations.

Defn. [Gromov, '99], [B. Weiss, '00], [Elek, Szabó, '04]

Γ is sofic if for all $F \subseteq \Gamma$ finite and all $\epsilon>0$, there is a map
$\phi: \Gamma \rightarrow S_{n}$, for some n, such that
(i) $\forall g \in F \backslash\{e\}, \operatorname{dist}(\phi(g)$, id $)>1-\epsilon$
(ii) $\forall g, h \in F$, $\operatorname{dist}\left(\phi\left(g^{-1} h\right), \phi(g)^{-1} \phi(h)\right)<\epsilon$.
where $\operatorname{dist}(\sigma, \tau)=\{j \mid \sigma(j) \neq \tau(j)\} / n$ is the Hamming distance. We call ϕ an (F, ϵ)-quasi-action.

Thus, sofic groups are hyperlinear.

Sofic groups

A group Γ is sofic if arbitrary finite sets of it can be approximated by permutations.

Defn. [Gromov, '99], [B. Weiss, '00], [Elek, Szabó, '04]

Γ is sofic if for all $F \subseteq \Gamma$ finite and all $\epsilon>0$, there is a map
$\phi: \Gamma \rightarrow S_{n}$, for some n, such that
(i) $\forall g \in F \backslash\{e\}, \operatorname{dist}(\phi(g)$, id $)>1-\epsilon$
(ii) $\forall g, h \in F$, $\operatorname{dist}\left(\phi\left(g^{-1} h\right), \phi(g)^{-1} \phi(h)\right)<\epsilon$.
where $\operatorname{dist}(\sigma, \tau)=\{j \mid \sigma(j) \neq \tau(j)\} / n$ is the Hamming distance. We call ϕ an (F, ϵ)-quasi-action.

Thus, sofic groups are hyperlinear.

Examples

- amenable groups • residually finite groups • residually amenable groups • other recent examples by [A. Thom], [Y. Cornulier].

Sofic groups (2)

Some nice properties of every sofic group Γ

- satisfies Gottschalk's Surjunctivity Conjecture [Gromov '99].
- satisfies Kaplansky's Direct Finiteness Conjecture [Elek, Szabó, '04].
- its Bernoulli shifts are classified [L. Bowen, '10], (provided Γ is also Ornstein, e.g., if it has an infinite amenable subgroup).

Sofic groups (2)

Some nice properties of every sofic group Γ

- satisfies Gottschalk's Surjunctivity Conjecture [Gromov '99].
- satisfies Kaplansky's Direct Finiteness Conjecture [Elek, Szabó, '04].
- its Bernoulli shifts are classified [L. Bowen, '10], (provided Γ is also Ornstein, e.g., if it has an infinite amenable subgroup).

Question
 Are all groups sofic?

Sofic groups (2)

Some nice properties of every sofic group Γ

- satisfies Gottschalk's Surjunctivity Conjecture [Gromov '99].
- satisfies Kaplansky's Direct Finiteness Conjecture [Elek, Szabó, '04].
- its Bernoulli shifts are classified [L. Bowen, '10], (provided Γ is also Ornstein, e.g., if it has an infinite amenable subgroup).

Question

Are all groups sofic?

Caveat [Gromov]

Any statement about all countable groups is either trivial or false.

Sofic groups (3)

Constructions

The class of sofic groups is closed under taking • subgroups \bullet direct limits • direct products • inverse limits • extensions by amenable groups [Elek and Szabó, '06] • free products [Elek and Szabó, '06].

Sofic groups (3)

Constructions

The class of sofic groups is closed under taking • subgroups • direct limits • direct products • inverse limits • extensions by amenable groups [Elek and Szabó, '06] • free products [Elek and Szabó, '06].

Theorem [CD]

If Γ_{1} and Γ_{2} are sofic groups and if $H \subseteq \Gamma_{i}$ is a subgroup that is either a finite group or infinite cyclic or, then the amalgamated free product $\Gamma_{1} *_{H} \Gamma_{2}$ is sofic.

Sofic groups (3)

Constructions

The class of sofic groups is closed under taking • subgroups \bullet direct limits • direct products • inverse limits • extensions by amenable groups [Elek and Szabó, '06] • free products [Elek and Szabó, '06].

Theorem [CD]

If Γ_{1} and Γ_{2} are sofic groups and if $H \subseteq \Gamma_{i}$ is a subgroup that is either a finite group or infinite cyclic or, then the amalgamated free product $\Gamma_{1} *_{H} \Gamma_{2}$ is sofic.

Our proof is group theoretic and probabilistic. It was inspired by results in free probability theory and operator algebras.

Sofic groups (3)

Constructions

The class of sofic groups is closed under taking • subgroups • direct limits • direct products • inverse limits • extensions by amenable groups [Elek and Szabó, '06] • free products [Elek and Szabó, '06].

Theorem [CD]

If Γ_{1} and Γ_{2} are sofic groups and if $H \subseteq \Gamma_{i}$ is a subgroup that is either a finite group or infinite cyclic or then the amalgamated free product $\Gamma_{1} *_{H} \Gamma_{2}$ is sofic.

Our proof is group theoretic and probabilistic. It was inspired by results in free probability theory and operator algebras.

We thought we had a proof for H amenable, but there are some problems....

Sofic groups (4)

Idea of proof with $H=\{e\}$.

Sofic groups (4)

Idea of proof with $H=\{e\}$.

Consider $G_{1} * G_{2}$. Choose $F_{i} \subseteq G_{i}$ finite subsets, $\epsilon>0$. Take $\phi_{i}: G_{i} \rightarrow S_{n}$ be an (F_{i}, ϵ_{n})-quasi-action.

Sofic groups (4)

Idea of proof with $H=\{e\}$.
Consider $G_{1} * G_{2}$. Choose $F_{i} \subseteq G_{i}$ finite subsets, $\epsilon>0$. Take $\phi_{i}: G_{i} \rightarrow S_{n}$ be an (F_{i}, ϵ_{n})-quasi-action. Let U be a random, uniformly distributed permutation (in S_{n}).

Sofic groups (4)

Idea of proof with $H=\{e\}$.

Consider $G_{1} * G_{2}$. Choose $F_{i} \subseteq G_{i}$ finite subsets, $\epsilon>0$. Take $\phi_{i}: G_{i} \rightarrow S_{n}$ be an $\left(F_{i}, \epsilon_{n}\right)$-quasi-action. Let U be a random, uniformly distributed permutation (in S_{n}). We show that as $n \rightarrow \infty$, the expected number of fixed points of the permutation

$$
\phi_{1}\left(g_{1}\right)\left(U \phi_{2}\left(g_{2}\right) U^{-1}\right) \cdots \phi_{1}\left(g_{2 m-1}\right)\left(U \phi_{2}\left(g_{2 m}\right) U^{-1}\right)
$$

is vanishingly small, (taking $g_{\text {odd }} \in F_{1} \backslash\{e\}, g_{\text {even }} \in F_{2} \backslash\{e\}$ and $\left.\epsilon_{n} \rightarrow 0\right)$.

Sofic groups (4)

Idea of proof with $H=\{e\}$.

Consider $G_{1} * G_{2}$. Choose $F_{i} \subseteq G_{i}$ finite subsets, $\epsilon>0$. Take $\phi_{i}: G_{i} \rightarrow S_{n}$ be an $\left(F_{i}, \epsilon_{n}\right)$-quasi-action. Let U be a random, uniformly distributed permutation (in S_{n}). We show that as $n \rightarrow \infty$, the expected number of fixed points of the permutation

$$
\phi_{1}\left(g_{1}\right)\left(U \phi_{2}\left(g_{2}\right) U^{-1}\right) \cdots \phi_{1}\left(g_{2 m-1}\right)\left(U \phi_{2}\left(g_{2 m}\right) U^{-1}\right)
$$

is vanishingly small, (taking $g_{\text {odd }} \in F_{1} \backslash\{e\}, g_{\text {even }} \in F_{2} \backslash\{e\}$ and $\epsilon_{n} \rightarrow 0$).

This shows: from quasi-actions ϕ_{1} and ϕ_{2} of G_{1} and G_{2}, we get sufficiently many quasi-actions $\phi_{1} *\left(U \phi_{2}(\cdot) U^{-1}\right)$ of $G_{1} * G_{2}$.

