Amalgamated free products of embeddable von Neumann algebras and sofic groups

Ken Dykema

Department of Mathematics Texas A&M University College Station, TX, USA.

Institute of Matheamtical Sciences, Chennai, India, August 2010

[BDJ] Nate Brown, K.D., Kenley Jung, "Free entropy dimension in amalgamated free products," *Proc. London Math. Soc.* (2008).

[CD] Benoit Collins, K.D., "Free products of sofic groups with amalgamation over amenable groups," preprint.

Hyperfiniteness

A von Neumann algebra \mathcal{M} is *hyperfinite* if for all $x_1, \ldots x_n \in \mathcal{M}$ and all $\epsilon > 0$ there is a finite dimensional subalgebra $D \subseteq \mathcal{M}$ such that $\operatorname{dist}_{\|\cdot\|_2}(x_j, D) < \epsilon$ (for all j), where $\|a\|_2 = \tau (a^*a)^{1/2}$.

For example, the hyperfinite II₁-factor $R = \overline{\bigcup_{n \ge 1} M_{2^n}(\mathbf{C})}$ or L(G) for G amenable [Connes, '76].

Hyperfiniteness

A von Neumann algebra \mathcal{M} is *hyperfinite* if for all $x_1, \ldots x_n \in \mathcal{M}$ and all $\epsilon > 0$ there is a finite dimensional subalgebra $D \subseteq \mathcal{M}$ such that $\operatorname{dist}_{\|\cdot\|_2}(x_j, D) < \epsilon$ (for all j), where $\|a\|_2 = \tau (a^*a)^{1/2}$.

For example, the hyperfinite II₁-factor $R = \overline{\bigcup_{n \ge 1} M_{2^n}(\mathbf{C})}$ or L(G) for G amenable [Connes, '76].

Connes' Embedding Problem (CEP) [1976]

Do all finite von Neumann algebras \mathcal{M} having separable predual embed into R^{ω} , (the ultrapower of the hyperfinite II₁-factor)?

We take a finite von Neumann algebra \mathcal{M} with a fixed trace $\tau : \mathcal{M} \to \mathbf{C}$, with $\tau(1) = 1$. Also, $\mathcal{M}_{s.a.} = \{x \in \mathcal{M} \mid x^* = x\}$.

We take a finite von Neumann algebra \mathcal{M} with a fixed trace $\tau : \mathcal{M} \to \mathbf{C}$, with $\tau(1) = 1$. Also, $\mathcal{M}_{s.a.} = \{x \in \mathcal{M} \mid x^* = x\}$.

Connes' Embedding Problem ⇔

Given a finite von Neumann algebra \mathcal{M} and $x_1, \ldots, x_n \in \mathcal{M}_{s.a.}$, are there "approximating matricial microstates" for them?

We take a finite von Neumann algebra \mathcal{M} with a fixed trace $\tau : \mathcal{M} \to \mathbf{C}$, with $\tau(1) = 1$. Also, $\mathcal{M}_{s.a.} = \{x \in \mathcal{M} \mid x^* = x\}$.

Connes' Embedding Problem \Leftrightarrow

Given a finite von Neumann algebra \mathcal{M} and $x_1, \ldots, x_n \in \mathcal{M}_{s.a.}$, are there "approximating matricial microstates" for them? I.e., given $m \in \mathbb{N}$ and $\epsilon > 0$, are there $a_1, \ldots, a_n \in M_k(\mathbb{C})_{s.a.}$ for some $k \in \mathbb{N}$ whose mixed moments up to order m are ϵ -close to those of x_1, \ldots, x_n ?

We take a finite von Neumann algebra \mathcal{M} with a fixed trace $\tau : \mathcal{M} \to \mathbf{C}$, with $\tau(1) = 1$. Also, $\mathcal{M}_{s.a.} = \{x \in \mathcal{M} \mid x^* = x\}$.

Connes' Embedding Problem ⇔

Given a finite von Neumann algebra \mathcal{M} and $x_1, \ldots, x_n \in \mathcal{M}_{s.a.}$, are there "approximating matricial microstates" for them? I.e., given $m \in \mathbf{N}$ and $\epsilon > 0$, are there $a_1, \ldots, a_n \in M_k(\mathbb{C})_{s.a.}$ for some $k \in \mathbf{N}$ whose mixed moments up to order m are ϵ -close to those of x_1, \ldots, x_n , i.e., such that

$$\left|\operatorname{tr}_k(a_{i_1}a_{i_2}\cdots a_{i_p}) - \tau(x_{i_1}x_{i_2}\cdots x_{i_p})\right| < \gamma$$

for all $p \leq m$ and all $i_1, \ldots, i_p \in \{1, \ldots, n\}$? (The existence of such matricial microstates is equivalent to \mathcal{M} embedding in R^{ω} , written $\mathcal{M} \hookrightarrow R^{\omega}$.)

We take a finite von Neumann algebra \mathcal{M} with a fixed trace $\tau : \mathcal{M} \to \mathbf{C}$, with $\tau(1) = 1$. Also, $\mathcal{M}_{s.a.} = \{x \in \mathcal{M} \mid x^* = x\}$.

Connes' Embedding Problem ⇔

Given a finite von Neumann algebra \mathcal{M} and $x_1, \ldots, x_n \in \mathcal{M}_{s.a.}$, are there "approximating matricial microstates" for them? I.e., given $m \in \mathbf{N}$ and $\epsilon > 0$, are there $a_1, \ldots, a_n \in M_k(\mathbb{C})_{s.a.}$ for some $k \in \mathbf{N}$ whose mixed moments up to order m are ϵ -close to those of x_1, \ldots, x_n , i.e., such that

$$\left|\operatorname{tr}_k(a_{i_1}a_{i_2}\cdots a_{i_p}) - \tau(x_{i_1}x_{i_2}\cdots x_{i_p})\right| < \gamma$$

for all $p \leq m$ and all $i_1, \ldots, i_p \in \{1, \ldots, n\}$? (The existence of such matricial microstates is equivalent to \mathcal{M} embedding in R^{ω} , written $\mathcal{M} \hookrightarrow R^{\omega}$.)

In fact, CEP \Leftrightarrow the case n = 2 ([Collins, D. '08]).

 $\Gamma_R(x_1, \ldots, x_n; m, k, \gamma)$ is the set of all *n*-tuples (a_1, \ldots, a_n) of such approximating matricial microstates, having $||a_i|| \leq R$.

 $\Gamma_R(x_1, \ldots, x_n; m, k, \gamma)$ is the set of all *n*-tuples (a_1, \ldots, a_n) of such approximating matricial microstates, having $||a_i|| \leq R$.

To save space, we will write X for the list (or set) x_1, \ldots, x_n , and also $\Gamma_R(X; m, k, \gamma)$, etc.

 $\Gamma_R(x_1, \ldots, x_n; m, k, \gamma)$ is the set of all *n*-tuples (a_1, \ldots, a_n) of such approximating matricial microstates, having $||a_i|| \leq R$.

To save space, we will write X for the list (or set) x_1, \ldots, x_n , and also $\Gamma_R(X; m, k, \gamma)$, etc.

The free entropy dimension $\delta_0(x_1, \ldots, x_n) = \delta_0(X)$ is obtained from asymptotics of the "sizes" of these sets.

 $\Gamma_R(x_1, \ldots, x_n; m, k, \gamma)$ is the set of all *n*-tuples (a_1, \ldots, a_n) of such approximating matricial microstates, having $||a_i|| \leq R$.

To save space, we will write X for the list (or set) x_1,\ldots,x_n , and also $\Gamma_R(X;m,k,\gamma)$, etc.

The free entropy dimension $\delta_0(x_1, \ldots, x_n) = \delta_0(X)$ is obtained from asymptotics of the "sizes" of these sets.

By [Jung, '03]:

$$\mathbb{P}_{\epsilon}(X) = \sup_{R>0} \inf_{\substack{m\geq 1\\\gamma>0}} \limsup_{k\to\infty} k^{-2} \log P_{\epsilon} \big(\Gamma_R(X;m,k,\gamma) \big).$$

 $\Gamma_R(x_1, \ldots, x_n; m, k, \gamma)$ is the set of all *n*-tuples (a_1, \ldots, a_n) of such approximating matricial microstates, having $||a_i|| \leq R$.

To save space, we will write X for the list (or set) x_1, \ldots, x_n , and also $\Gamma_R(X; m, k, \gamma)$, etc.

The free entropy dimension $\delta_0(x_1, \ldots, x_n) = \delta_0(X)$ is obtained from asymptotics of the "sizes" of these sets.

By [Jung, '03]:

$$\mathbb{P}_{\epsilon}(X) = \sup_{R>0} \inf_{\substack{m \ge 1 \\ \gamma > 0}} \limsup_{k \to \infty} k^{-2} \log P_{\epsilon} \big(\Gamma_R(X; m, k, \gamma) \big).$$
$$\delta_0(X) = \limsup_{k \to \infty} \frac{\mathbb{P}_{\epsilon}(X)}{|X| - 1}.$$

$$h(X) = \limsup_{\epsilon \to 0} \frac{\frac{1}{\epsilon} e(X)}{|\log \epsilon|}.$$

 $\Gamma_R(x_1, \ldots, x_n; m, k, \gamma)$ is the set of all *n*-tuples (a_1, \ldots, a_n) of such approximating matricial microstates, having $||a_i|| \leq R$.

To save space, we will write X for the list (or set) x_1,\ldots,x_n , and also $\Gamma_R(X;m,k,\gamma)$, etc.

The free entropy dimension $\delta_0(x_1, \ldots, x_n) = \delta_0(X)$ is obtained from asymptotics of the "sizes" of these sets.

By [Jung, '03]:

$$\mathbb{P}_{\epsilon}(X) = \sup_{R>0} \inf_{\substack{m \ge 1\\ \gamma > 0}} \limsup_{k \to \infty} k^{-2} \log P_{\epsilon} \big(\Gamma_R(X; m, k, \gamma) \big).$$

$$\delta_0(X) = \limsup_{\epsilon \to 0} \frac{\mathbb{P}_{\epsilon}(X)}{|\log \epsilon|}.$$

Instead of taking $\sup_{R>0}$, fixing any $R > \max_i ||x_i||$ will yield the same value for $\delta_0(X)$, and we can also take $R = +\infty$, in which case we write $\Gamma(X; m, k, \gamma)$.

Dykema (TAMU)

Subadditivity property

$$\delta_0(X \cup Y) \le \delta_0(X) + \delta_0(Y).$$

Subadditivity property

$$\delta_0(X \cup Y) \le \delta_0(X) + \delta_0(Y).$$

Proof:

 $\Gamma_R(X \cup Y; m, k, \gamma) \subseteq \Gamma_R(X; m, k, \gamma) \times \Gamma_R(Y; m, k, \gamma).$

Are there always approximating matricial microstates? I.e., given m and γ , is there k such that $\Gamma(X; m, k, \gamma) \neq \emptyset$?

Are there always approximating matricial microstates? I.e., given m and γ , is there k such that $\Gamma(X; m, k, \gamma) \neq \emptyset$?

If "yes," then $W^*(X) \hookrightarrow R^{\omega}$ and, by [BDJ], $\delta(X) \ge 0$. Otherwise, $W^*(X) \not\hookrightarrow R^{\omega}$ and $\delta_0(X) = -\infty$.

Are there always approximating matricial microstates? I.e., given m and γ , is there k such that $\Gamma(X; m, k, \gamma) \neq \emptyset$?

If "yes," then $W^*(X) \hookrightarrow R^{\omega}$ and, by [BDJ], $\delta(X) \ge 0$. Otherwise, $W^*(X) \not\hookrightarrow R^{\omega}$ and $\delta_0(X) = -\infty$.

2. W*-invariance

Does
$$W^*(x_1, ..., x_N) = W^*(y_1, ..., y_M)$$
 imply $\delta_0(x_1, ..., x_N) = \delta_0(y_1, ..., y_M)$?

Are there always approximating matricial microstates? I.e., given m and γ , is there k such that $\Gamma(X; m, k, \gamma) \neq \emptyset$?

If "yes," then $W^*(X) \hookrightarrow R^{\omega}$ and, by [BDJ], $\delta(X) \ge 0$. Otherwise, $W^*(X) \not\hookrightarrow R^{\omega}$ and $\delta_0(X) = -\infty$.

2. W*-invariance

Does
$$W^*(x_1,...,x_N) = W^*(y_1,...,y_M)$$
 imply $\delta_0(x_1,...,x_N) = \delta_0(y_1,...,y_M)$?

3. Regularity

If, in Jung's formula for δ_0 , the $\limsup_{k\to\infty}$ and $\limsup_{\epsilon\to0}$ are replaced by \liminf , do we get the same number?

Are there always approximating matricial microstates? I.e., given m and γ , is there k such that $\Gamma(X; m, k, \gamma) \neq \emptyset$?

If "yes," then $W^*(X) \hookrightarrow R^{\omega}$ and, by [BDJ], $\delta(X) \ge 0$. Otherwise, $W^*(X) \not\hookrightarrow R^{\omega}$ and $\delta_0(X) = -\infty$.

2. W*-invariance

Does
$$W^*(x_1,...,x_N) = W^*(y_1,...,y_M)$$
 imply $\delta_0(x_1,...,x_N) = \delta_0(y_1,...,y_M)$?

3. Regularity

If, in Jung's formula for δ_0 , the $\limsup_{k\to\infty}$ and $\limsup_{\epsilon\to0}$ are replaced by \liminf , do we get the same number?

(If "yes," then we say X is microstates packing regular.)

Dykema (TAMU)

$$\mathbb{P}_{\epsilon}(X) = \sup_{R>0} \inf_{\substack{m\geq 1\\\gamma>0}} \limsup_{k\to\infty} k^{-2} \log P_{\epsilon} \big(\Gamma_R(X;m,k,\gamma) \big).$$
$$\delta_0(X) = \limsup_{\epsilon\to0} \frac{\mathbb{P}_{\epsilon}(X)}{|\log \epsilon|}.$$

[Jung]

If B is hyperfinite, then δ_0 agrees on all generating sets of B.

[Jung]

If B is hyperfinite, then δ_0 agrees on all generating sets of B.

This number can be written $\delta_0(B)$, and satisfies $0 \le \delta_0(B) \le 1$, with equality on the left if and only if $B = \mathbb{C}$ and equality on the right if and only if B is diffuse, i.e., has no minimal projections.

[Jung]

If B is hyperfinite, then δ_0 agrees on all generating sets of B.

This number can be written $\delta_0(B)$, and satisfies $0 \le \delta_0(B) \le 1$, with equality on the left if and only if $B = \mathbb{C}$ and equality on the right if and only if B is diffuse, i.e., has no minimal projections.

*-algebra invariance [Voiculescu] If *-alg (x_1, \ldots, x_N) = *-alg (y_1, \ldots, y_M) , then $\delta_0(x_1, \ldots, x_N) = \delta_0(y_1, \ldots, y_M)$.

Regarding regularity

Thm. [Voiculescu]

If x_1, \ldots, x_n are free, then $\delta_0(X) = \delta_0(x_1, \ldots, x_n) = \sum_{j=1}^n \delta_0(x_j)$.

Thm. [Voiculescu]

If x_1, \ldots, x_n are free, then $\delta_0(X) = \delta_0(x_1, \ldots, x_n) = \sum_{j=1}^n \delta_0(x_j)$.

Thm. [Voiculescu]

If $X = \{x_1, \ldots, x_N\}$ and $Y = \{y_1, \ldots, y_M\}$ are free and if at least one is regular, then $\delta_0(X \cup Y) = \delta_0(X) + \delta_0(Y)$.

Thm. [Voiculescu]

If x_1, \ldots, x_n are free, then $\delta_0(X) = \delta_0(x_1, \ldots, x_n) = \sum_{j=1}^n \delta_0(x_j)$.

Thm. [Voiculescu]

If $X = \{x_1, \ldots, x_N\}$ and $Y = \{y_1, \ldots, y_M\}$ are free and if at least one is regular, then $\delta_0(X \cup Y) = \delta_0(X) + \delta_0(Y)$.

Thm. [Voiculescu]

A singleton $\{x_1\}$ is always regular.

Thm. [Voiculescu]

If x_1, \ldots, x_n are free, then $\delta_0(X) = \delta_0(x_1, \ldots, x_n) = \sum_{j=1}^n \delta_0(x_j)$.

Thm. [Voiculescu]

If $X = \{x_1, \ldots, x_N\}$ and $Y = \{y_1, \ldots, y_M\}$ are free and if at least one is regular, then $\delta_0(X \cup Y) = \delta_0(X) + \delta_0(Y)$.

Thm. [Voiculescu]

A singleton $\{x_1\}$ is always regular.

Thm. [BDJ]

Let $\mathcal{M} = W^*(X)$. If either (a) \mathcal{M} is diffuse, is embeddable in R^{ω} and $\delta_0(X) = 1$ or (b) \mathcal{M} is hyperfinite, then X is regular.

Without a regularity assumption, we do not know if $\delta_0(X \cup Y) = \delta_0(X) + \delta_0(Y)$ holds whenever X and Y are free sets of finitely many self-adjoints.

Without a regularity assumption, we do not know if $\delta_0(X \cup Y) = \delta_0(X) + \delta_0(Y)$ holds whenever X and Y are free sets of finitely many self-adjoints.

However, if one assumes $\delta_0(X) \ge 0$ and $\delta_0(Y) \ge 0$, i.e., that $W^*(X) \hookrightarrow R^{\omega}$ and $W^*(Y) \hookrightarrow R^{\omega}$, then one can construct sufficiently many approximating microstates for $X \cup Y$ to prove that $W^*(X \cup Y) = W^*(X) * W^*(Y) \hookrightarrow R^{\omega}$, i.e., that $\delta_0(X \cup Y) \ge 0$.

Without a regularity assumption, we do not know if $\delta_0(X \cup Y) = \delta_0(X) + \delta_0(Y)$ holds whenever X and Y are free sets of finitely many self-adjoints.

However, if one assumes $\delta_0(X) \ge 0$ and $\delta_0(Y) \ge 0$, i.e., that $W^*(X) \hookrightarrow R^{\omega}$ and $W^*(Y) \hookrightarrow R^{\omega}$, then one can construct sufficiently many approximating microstates for $X \cup Y$ to prove that $W^*(X \cup Y) = W^*(X) * W^*(Y) \hookrightarrow R^{\omega}$, i.e., that $\delta_0(X \cup Y) \ge 0$. How?

Without a regularity assumption, we do not know if $\delta_0(X \cup Y) = \delta_0(X) + \delta_0(Y)$ holds whenever X and Y are free sets of finitely many self-adjoints.

However, if one assumes $\delta_0(X) \ge 0$ and $\delta_0(Y) \ge 0$, i.e., that $W^*(X) \hookrightarrow R^{\omega}$ and $W^*(Y) \hookrightarrow R^{\omega}$, then one can construct sufficiently many approximating microstates for $X \cup Y$ to prove that $W^*(X \cup Y) = W^*(X) * W^*(Y) \hookrightarrow R^{\omega}$, i.e., that $\delta_0(X \cup Y) \ge 0$.

How? By a fundamental result of Voiculescu, given $m,\gamma,$ there are m',γ' such that if

$$a = (a_1, \dots, a_N) \in \Gamma_R(X; m', k, \gamma')$$

$$b = (b_1, \dots, b_M) \in \Gamma_R(Y; m', k, \gamma'),$$

and if $u \in \mathcal{U}_k$ is a randomly chosen $k \times k$ unitary matrix, then with probability $P(R, m, \gamma, k)$, that approaches 1 as $k \to \infty$, $a \cup ubu^* \in \Gamma_R(X \cup Y; m, k, \gamma)$.

Let $E:A\to B$ be a normal conditional expectation onto a unital W*–subalgebra.

Let $E:A\to B$ be a normal conditional expectation onto a unital W*–subalgebra.

If $B\subseteq A_i\subseteq A$ are subalgebras, then the A_i are free with respect to E (over B) if

Let $E:A\to B$ be a normal conditional expectation onto a unital W*–subalgebra.

If $B \subseteq A_i \subseteq A$ are subalgebras, then the A_i are *free* with respect to E (over B) if $E(a_1 \cdots a_n) = 0 \text{ whenever } a_j \in A_{i(j)} \cap \ker E$ and $i(j) \neq i(j+1)$ for all j.

Amalgamated free products of von Neumann algebras [Voiculescu]

Given $E_i : A_i \rightarrow B$ conditional expectations (with faithful GNS construction), then their amaglamated free product is

$$(A, E) = \underset{i \in I}{*}_B(A_i, E_i),$$

with $A_i \hookrightarrow A$ so that the A_i are free over B and together generate $A_{\rm i}$ and $E\!\upharpoonright_{A_i}=E_i.$

Amalgamated free products of von Neumann algebras [Voiculescu]

Given $E_i : A_i \rightarrow B$ conditional expectations (with faithful GNS construction), then their amaglamated free product is

$$(A, E) = \underset{i \in I}{*}_B(A_i, E_i),$$

with $A_i \hookrightarrow A$ so that the A_i are free over B and together generate A, and $E{\upharpoonright}_{A_i} = E_i$.

If there is a normal faithful tracial state τ_B on B such that $\tau_B \circ E_i$ is a trace on A_i , for all i, then $\tau_B \circ E$ is a normal faithful tracial state on A.

Amalgamated free products of von Neumann algebras [Voiculescu]

Given $E_i : A_i \rightarrow B$ conditional expectations (with faithful GNS construction), then their amaglamated free product is

$$(A, E) = \underset{i \in I}{*}_B(A_i, E_i),$$

with $A_i \hookrightarrow A$ so that the A_i are free over B and together generate A, and $E{\upharpoonright}_{A_i} = E_i$.

If there is a normal faithful tracial state τ_B on B such that $\tau_B \circ E_i$ is a trace on A_i , for all i, then $\tau_B \circ E$ is a normal faithful tracial state on A.

In this case, we say the amalgamated free product is *tracial*.

Example of an amalgamated free product of von Neumann algebras

Example: if $H \subseteq G_i$ and $G = G_1 *_H G_2$ is an amalgamated free product of groups, then

$$(L(G_1), E_1) *_{L(H)} (L(G_2), E_2) = (L(G), E),$$

where E_i and E are the cannonical-trace-preserving conditional expectations onto L(H).

Free entropy dimension in amalg. free products [BDJ]

The setting: let $(\mathcal{M}, E) = (A_1, E) *_B (A_2, E)$ be a tracial amalgamated free product, where B is hyperfinite. Suppose $X_i \subseteq A_i$ and $Y \subseteq B$ are finite sets of self-adjoint elements, where $W^*(Y) = B$.

Free entropy dimension in amalg. free products [BDJ]

The setting: let $(\mathcal{M}, E) = (A_1, E) *_B (A_2, E)$ be a tracial amalgamated free product, where B is hyperfinite. Suppose $X_i \subseteq A_i$ and $Y \subseteq B$ are finite sets of self-adjoint elements, where $W^*(Y) = B$.

By [Jung, '03],

 $\delta_0(X_1 \cup X_2 \cup Y) \le \delta_0(X_1 \cup Y) + \delta_0(X_2 \cup Y) - \delta_0(Y).$

Free entropy dimension in amalg. free products [BDJ]

The setting: let $(\mathcal{M}, E) = (A_1, E) *_B (A_2, E)$ be a tracial amalgamated free product, where B is hyperfinite. Suppose $X_i \subseteq A_i$ and $Y \subseteq B$ are finite sets of self-adjoint elements, where $W^*(Y) = B$.

By [Jung, '03],

 $\delta_0(X_1 \cup X_2 \cup Y) \le \delta_0(X_1 \cup Y) + \delta_0(X_2 \cup Y) - \delta_0(Y).$

Theorem [BDJ]

If at least one of $X_1\cup Y$ and $X_2\cup Y$ is regular, then

$$\delta_0(X_1 \cup X_2 \cup Y) = \delta_0(X_1 \cup Y) + \delta_0(X_2 \cup Y) - \delta_0(Y),$$

while if both are regular then also $X_1 \cup X_2 \cup Y$ is regular.

Now fix some representations $\pi_k : B \to M_k(\mathbb{C})$, for infinitely many k, such that $\operatorname{tr}_k \circ \pi_k$ converges to $\tau \upharpoonright_B$.

Now fix some representations $\pi_k : B \to M_k(\mathbb{C})$, for infinitely many k, such that $\operatorname{tr}_k \circ \pi_k$ converges to $\tau \upharpoonright_B$.

Let $a \cup c \in \Gamma_{R'}(X_1 \cup Y; m', k, \gamma')$ and $b \cup c' \in \Gamma_{R'}(X_2 \cup Y; m', k, \gamma')$. We may take $c' = c = \pi_k(Y)$.

Now fix some representations $\pi_k : B \to M_k(\mathbb{C})$, for infinitely many k, such that $\operatorname{tr}_k \circ \pi_k$ converges to $\tau \upharpoonright_B$.

Let $a \cup c \in \Gamma_{R'}(X_1 \cup Y; m', k, \gamma')$ and $b \cup c' \in \Gamma_{R'}(X_2 \cup Y; m', k, \gamma')$. We may take $c' = c = \pi_k(Y)$.

Now, choosing u randomly in $\mathcal{U}_k \cap \pi_k(B)'$ we have, with probability approaching 1 as $k \to \infty$,

$$a \cup ubu^* \cup c \in \Gamma_r(X_1 \cup X_2 \cup Y; m, k, \gamma).$$

Also, even without assuming regularity, this argument is sufficient to construct at least some approximating microstates, enough to give R^{ω} -embeddability.

Theorem [BDJ]

If $(\mathcal{M}, E) = (A_1, E) *_B (A_2, E)$ is a tracial amalgamated free product with B hyperfinite, and if $A_i \hookrightarrow R^{\omega}$, (i = 1, 2), then $\mathcal{M} \hookrightarrow R^{\omega}$.

Definition [Rădulescu]

A group Γ is hyperlinear if for all finite sets $F \subseteq \Gamma$ and all $\epsilon > 0$, there is a map $\phi : \Gamma \to \mathcal{U}_n$ (the $n \times n$ unitary matrices) for some n, such that

(i) $\forall g \in F \setminus \{e\}$, $\operatorname{dist}(\phi(g), \operatorname{id}) > 1 - \epsilon$ (ii) $\forall g, h \in F$, $\operatorname{dist}(\phi(g^{-1}h), \phi(g)^{-1}\phi(h)) < \epsilon$,

where the distance is $dist(U, V) = ||U - V||_2 = (tr_n((U - V)^*(U - V)))^{1/2}.$

Definition [Rădulescu]

A group Γ is hyperlinear if for all finite sets $F \subseteq \Gamma$ and all $\epsilon > 0$, there is a map $\phi : \Gamma \to \mathcal{U}_n$ (the $n \times n$ unitary matrices) for some n, such that

(i)
$$\forall g \in F \setminus \{e\}$$
, $\operatorname{dist}(\phi(g), \operatorname{id}) > 1 - \epsilon$
(ii) $\forall g, h \in F$, $\operatorname{dist}(\phi(g^{-1}h), \phi(g)^{-1}\phi(h)) < \epsilon$

where the distance is $dist(U, V) = ||U - V||_2 = (tr_n((U - V)^*(U - V)))^{1/2}.$

Theorem [Rădulescu]

For a group Γ , TFAE:

(i) Γ is hyperlinear

(ii) Γ is isomorphic to a subgroup of the unitary group of R^{ω}

(iii) $L(\Gamma) \hookrightarrow R^{\omega}$

Dykema (TAMU)

Corollary [BDJ]

If Γ_1 and Γ_2 are hyperlinear and if $\Gamma = \Gamma_1 *_H \Gamma_2$ with H amenable, then Γ is hyperlinear.

Corollary [BDJ]

If Γ_1 and Γ_2 are hyperlinear and if $\Gamma = \Gamma_1 *_H \Gamma_2$ with H amenable, then Γ is hyperlinear. Also, HNN–extensions of hyperlinear groups over amenable groups are hyperlinear.

Corollary [BDJ]

If Γ_1 and Γ_2 are hyperlinear and if $\Gamma = \Gamma_1 *_H \Gamma_2$ with H amenable, then Γ is hyperlinear. Also, HNN–extensions of hyperlinear groups over amenable groups are hyperlinear.

Open Problem (part of Connes' Embedding Problem)

Are all groups hyperlinear?

A group Γ is sofic if arbitrary finite sets of it can be approximated by permutations.

A group Γ is sofic if arbitrary finite sets of it can be approximated by permutations.

Defn. [Gromov, '99], [B. Weiss, '00], [Elek, Szabó, '04] Γ is sofic if for all $F \subseteq \Gamma$ finite and all $\epsilon > 0$, there is a map $\phi : \Gamma \to S_n$, for some n, such that (i) $\forall g \in F \setminus \{e\}$, $\operatorname{dist}(\phi(g), \operatorname{id}) > 1 - \epsilon$ (ii) $\forall g, h \in F$, $\operatorname{dist}(\phi(g^{-1}h), \phi(g)^{-1}\phi(h)) < \epsilon$.

where $dist(\sigma, \tau) = \{j \mid \sigma(j) \neq \tau(j)\}/n$ is the Hamming distance.

A group Γ is sofic if arbitrary finite sets of it can be approximated by permutations.

Defn. [Gromov, '99], [B. Weiss, '00], [Elek, Szabó, '04] Γ is sofic if for all $F \subseteq \Gamma$ finite and all $\epsilon > 0$, there is a map $\phi : \Gamma \to S_n$, for some n, such that (i) $\forall g \in F \setminus \{e\}$, $\operatorname{dist}(\phi(g), \operatorname{id}) > 1 - \epsilon$

(ii) $\forall g, h \in F$, $\operatorname{dist}(\phi(g^{-1}h), \phi(g)^{-1}\phi(h)) < \epsilon$.

where dist $(\sigma, \tau) = \{j \mid \sigma(j) \neq \tau(j)\}/n$ is the Hamming distance. We call ϕ an (F, ϵ) -quasi-action.

A group Γ is sofic if arbitrary finite sets of it can be approximated by permutations.

Defn. [Gromov, '99], [B. Weiss, '00], [Elek, Szabó, '04]

 Γ is sofic if for all $F \subseteq \Gamma$ finite and all $\epsilon > 0$, there is a map $\phi: \Gamma \to S_n$, for some n, such that

(i)
$$\forall g \in F \setminus \{e\}, \operatorname{dist}(\phi(g), \operatorname{id}) > 1 - \epsilon$$

(ii)
$$\forall g, h \in F$$
, $\operatorname{dist}(\phi(g^{-1}h), \phi(g)^{-1}\phi(h)) < \epsilon$.

where dist $(\sigma, \tau) = \{j \mid \sigma(j) \neq \tau(j)\}/n$ is the Hamming distance. We call ϕ an (F, ϵ) -quasi-action.

Thus, sofic groups are hyperlinear.

A group Γ is sofic if arbitrary finite sets of it can be approximated by permutations.

Defn. [Gromov, '99], [B. Weiss, '00], [Elek, Szabó, '04]

 Γ is sofic if for all $F \subseteq \Gamma$ finite and all $\epsilon > 0$, there is a map $\phi: \Gamma \to S_n$, for some n, such that

(i)
$$\forall g \in F \setminus \{e\}, \operatorname{dist}(\phi(g), \operatorname{id}) > 1 - \epsilon$$

(ii)
$$\forall g, h \in F$$
, $\operatorname{dist}(\phi(g^{-1}h), \phi(g)^{-1}\phi(h)) < \epsilon$.

where dist $(\sigma, \tau) = \{j \mid \sigma(j) \neq \tau(j)\}/n$ is the Hamming distance. We call ϕ an (F, ϵ) -quasi-action.

Thus, sofic groups are hyperlinear.

Examples

• amenable groups • residually finite groups • residually amenable groups • other recent examples by [A. Thom], [Y. Cornulier].

Dykema (TAMU)

20 / 23

Some nice properties of every sofic group Γ

- satisfies Gottschalk's Surjunctivity Conjecture [Gromov '99].
- satisfies Kaplansky's Direct Finiteness Conjecture [Elek, Szabó, '04].
- its Bernoulli shifts are classified [L. Bowen, '10], (provided Γ is also Ornstein, e.g., if it has an infinite amenable subgroup).

Some nice properties of every sofic group Γ

- satisfies Gottschalk's Surjunctivity Conjecture [Gromov '99].
- satisfies Kaplansky's Direct Finiteness Conjecture [Elek, Szabó, '04].
- its Bernoulli shifts are classified [L. Bowen, '10], (provided Γ is also Ornstein, e.g., if it has an infinite amenable subgroup).

Question

Are all groups sofic?

Some nice properties of every sofic group Γ

- satisfies Gottschalk's Surjunctivity Conjecture [Gromov '99].
- satisfies Kaplansky's Direct Finiteness Conjecture [Elek, Szabó, '04].
- its Bernoulli shifts are classified [L. Bowen, '10], (provided Γ is also Ornstein, e.g., if it has an infinite amenable subgroup).

Question

Are all groups sofic?

Caveat [Gromov]

Any statement about all countable groups is either trivial or false.

Constructions

The class of sofic groups is closed under taking • subgroups • direct limits • direct products • inverse limits • extensions by amenable groups [Elek and Szabó, '06] • free products [Elek and Szabó, '06].

Constructions

The class of sofic groups is closed under taking • subgroups • direct limits • direct products • inverse limits • extensions by amenable groups [Elek and Szabó, '06] • free products [Elek and Szabó, '06].

Theorem [CD]

If Γ_1 and Γ_2 are sofic groups and if $H \subseteq \Gamma_i$ is a subgroup that is either a finite group or infinite cyclic or ..., then the amalgamated free product $\Gamma_1 *_H \Gamma_2$ is sofic.

Constructions

The class of sofic groups is closed under taking • subgroups • direct limits • direct products • inverse limits • extensions by amenable groups [Elek and Szabó, '06] • free products [Elek and Szabó, '06].

Theorem [CD]

If Γ_1 and Γ_2 are sofic groups and if $H \subseteq \Gamma_i$ is a subgroup that is either a finite group or infinite cyclic or ..., then the amalgamated free product $\Gamma_1 *_H \Gamma_2$ is sofic.

Our proof is group theoretic and probabilistic. It was inspired by results in free probability theory and operator algebras.

Constructions

The class of sofic groups is closed under taking • subgroups • direct limits • direct products • inverse limits • extensions by amenable groups [Elek and Szabó, '06] • free products [Elek and Szabó, '06].

Theorem [CD]

If Γ_1 and Γ_2 are sofic groups and if $H \subseteq \Gamma_i$ is a subgroup that is either a finite group or infinite cyclic or ..., then the amalgamated free product $\Gamma_1 *_H \Gamma_2$ is sofic.

Our proof is group theoretic and probabilistic. It was inspired by results in free probability theory and operator algebras.

We thought we had a proof for ${\cal H}$ amenable, but there are some problems \ldots

Dykema (TAMU)

Consider $G_1 * G_2$. Choose $F_i \subseteq G_i$ finite subsets, $\epsilon > 0$. Take $\phi_i : G_i \to S_n$ be an (F_i, ϵ_n) -quasi-action.

Consider $G_1 * G_2$. Choose $F_i \subseteq G_i$ finite subsets, $\epsilon > 0$. Take $\phi_i : G_i \to S_n$ be an (F_i, ϵ_n) -quasi-action. Let U be a random, uniformly distributed permutation (in S_n).

Consider $G_1 * G_2$. Choose $F_i \subseteq G_i$ finite subsets, $\epsilon > 0$. Take $\phi_i : G_i \to S_n$ be an (F_i, ϵ_n) -quasi-action. Let U be a random, uniformly distributed permutation (in S_n). We show that as $n \to \infty$, the expected number of fixed points of the permutation

$$\phi_1(g_1) (U \phi_2(g_2) U^{-1}) \cdots \phi_1(g_{2m-1}) (U \phi_2(g_{2m}) U^{-1})$$

is vanishingly small, (taking $g_{\text{odd}} \in F_1 \setminus \{e\}$, $g_{\text{even}} \in F_2 \setminus \{e\}$ and $\epsilon_n \to 0$).

Consider $G_1 * G_2$. Choose $F_i \subseteq G_i$ finite subsets, $\epsilon > 0$. Take $\phi_i : G_i \to S_n$ be an (F_i, ϵ_n) -quasi-action. Let U be a random, uniformly distributed permutation (in S_n). We show that as $n \to \infty$, the expected number of fixed points of the permutation

$$\phi_1(g_1) (U \phi_2(g_2) U^{-1}) \cdots \phi_1(g_{2m-1}) (U \phi_2(g_{2m}) U^{-1})$$

is vanishingly small, (taking $g_{\text{odd}} \in F_1 \setminus \{e\}$, $g_{\text{even}} \in F_2 \setminus \{e\}$ and $\epsilon_n \to 0$).

This shows: from quasi-actions ϕ_1 and ϕ_2 of G_1 and G_2 , we get sufficiently many quasi-actions $\phi_1 * (U\phi_2(\cdot)U^{-1})$ of $G_1 * G_2$.