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Approximation properties in finite von Neumann algebras

Hyperfiniteness

A von Neumann algebra M is hyperfinite if for all z1,...2z, € M
and all € > 0 there is a finite dimensional subalgebra D C M such
that dist ., (z;, D) < € (for all §), where [la]|2 = 7(a*a)'/2.

For example, the hyperfinite Il;—factor R = J,,»; M2n(C) or L(G)
for G amenable [Connes, '76].
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Approximation properties in finite von Neumann algebras

Hyperfiniteness

A von Neumann algebra M is hyperfinite if for all z1,...2z, € M
and all € > 0 there is a finite dimensional subalgebra D C M such
that dist ., (z;, D) < € (for all §), where [la]|2 = 7(a*a)'/2.

For example, the hyperfinite Il;—factor R = J,,»; M2n(C) or L(G)
for G amenable [Connes, '76].

Connes’ Embedding Problem (CEP) [1976]

Do all finite von Neumann algebras M having separable predual
embed into R, (the ultrapower of the hyperfinite Il;—factor)?
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A reformulation of Connes’ embedding problem:

We take a finite von Neumann algebra M with a fixed trace
7: M — C, with 7(1) = 1. Also, M, ={x € M |z* =z}.
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A reformulation of Connes’ embedding problem:

We take a finite von Neumann algebra M with a fixed trace
7: M — C, with 7(1) = 1. Also, M, ={x € M |z* =z}.

Connes’ Embedding Problem <

Given a finite von Neumann algebra M and x1,...,2, € M., are
there “approximating matricial microstates” for them?
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A reformulation of Connes’ embedding problem:

We take a finite von Neumann algebra M with a fixed trace
7: M — C, with 7(1) = 1. Also, M, ={x € M |z* =z}.

Connes’ Embedding Problem <

Given a finite von Neumann algebra M and x1,...,2, € M., are
there “approximating matricial microstates” for them?

l.e., given m € N and ¢ > 0, are there ay,...,a, € Mi(C)g,. for
some k € N whose mixed moments up to order m are e—close to
those of x1,...,2, ?
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A reformulation of Connes’ embedding problem:

We take a finite von Neumann algebra M with a fixed trace
7: M — C, with 7(1) = 1. Also, M, ={x € M |z* =z}.

Connes’ Embedding Problem <

Given a finite von Neumann algebra M and x1,...,2, € M., are
there “approximating matricial microstates” for them?

l.e., given m € N and ¢ > 0, are there ay,...,a, € Mi(C)g,. for
some k € N whose mixed moments up to order m are e—close to
those of z1,...,x,, i.e., such that

‘trk(ailai2 e aip) — 7(24, Ty - a:zp)‘ <7

for all p <m and all i1,...,i, € {1,...,n}? (The existence of such
matricial microstates is equivalent to M embedding in R“, written
M — R“.)
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A reformulation of Connes’ embedding problem:

We take a finite von Neumann algebra M with a fixed trace
7: M — C, with 7(1) = 1. Also, M, ={x € M |z* =z}.

Connes’ Embedding Problem <

Given a finite von Neumann algebra M and x1,...,2, € M., are
there “approximating matricial microstates” for them?

l.e., given m € N and ¢ > 0, are there ay,...,a, € Mi(C)g,. for
some k € N whose mixed moments up to order m are e—close to
those of z1,...,x,, i.e., such that

‘trk(ailaiQ e aip) — 7(24, Ty - a:zp)‘ <7

for all p <m and all i1,...,i, € {1,...,n}? (The existence of such
matricial microstates is equivalent to M embedding in R“, written
M — R“.)

In fact, CEP < the case n =2 ([Collins, D. '08]).
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Microstates free entropy dimension (Voiculescu)

Tr(x1,...,2n;m, k,7) is the set of all n—tuples (ai,...,a,) of such
approximating matricial microstates, having ||a;|| < R.
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Microstates free entropy dimension (Voiculescu)

Tr(x1,...,2n;m, k,7) is the set of all n—tuples (ai,...,a,) of such
approximating matricial microstates, having ||a;|| < R.

To save space, we will write X for the list (or set) z1,...,z,, and
also I'r(X;m, k,), etc.
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Microstates free entropy dimension (Voiculescu)

Tr(x1,...,2n;m, k,7) is the set of all n—tuples (ai,...,a,) of such

approximating matricial microstates, having ||a;|| < R.

To save space, we will write X for the list (or set) z1,...,z,, and
also I'r(X;m, k,), etc.

The free entropy dimension do(z1,...,%n) = do(X) is obtained from

asymptotics of the “sizes” of these sets.
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Microstates free entropy dimension (Voiculescu)

Tr(x1,...,2n;m, k,7) is the set of all n—tuples (ai,...,a,) of such
approximating matricial microstates, having ||a;|| < R.

To save space, we will write X for the list (or set) z1,...,z,, and
also I'r(X;m, k,), etc.

The free entropy dimension do(z1,...,%n) = do(X) is obtained from
asymptotics of the “sizes” of these sets.

By [Jung, '03]:

P.(X) =sup inf limsupk 2 log P.(Dr(X;m,k,7)).
R>0 73;>201 k—o00
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Microstates free entropy dimension (Voiculescu)

Tr(x1,...,2n;m, k,7) is the set of all n—tuples (ai,...,a,) of such
approximating matricial microstates, having ||a;|| < R.

To save space, we will write X for the list (or set) z1,...,z,, and
also I'r(X;m, k,), etc.

The free entropy dimension do(z1,...,%n) = do(X) is obtained from
asymptotics of the “sizes” of these sets.

By [Jung, '03]:

P.(X) =sup inf limsupk 2 log P.(Dr(X;m,k,7)).
R>0 73;>201 k—o00

P (X
do(X) = limsup ( )
e—0 | lOg 6|
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Microstates free entropy dimension (Voiculescu)

Tr(x1,...,2n;m, k,7) is the set of all n—tuples (ai,...,a,) of such
approximating matricial microstates, having ||a;|| < R.

To save space, we will write X for the list (or set) z1,...,z,, and
also I'r(X;m, k,), etc.

The free entropy dimension do(z1,...,%n) = do(X) is obtained from
asymptotics of the “sizes” of these sets.

By [Jung, '03]:

P.(X) =sup inf limsupk 2 log P.(Dr(X;m,k,7)).
R>0 73;>201 k—o00

P.(X
do(X) = limsup el )
e—0 |10g6|
Instead of taking supps, fixing any R > max; ||z;|| will yield the
same value for dyp(X), and we can also take R = 400, in which case
we write T'(X;m, k, 7).
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Subadditivity property
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Subadditivity property

Proof:

Tr(X UY;m, k,v) CTr(X;m, k,v) x Tr(Y;m, k, 7).

Dykema (TAMU) Amalgamation Chenai, August 2010 6 /23



Open problems about matricial microstates

Are there always approximating matricial microstates? l.e., given m
and 7, is there k such that T'(X;m, k,~) # 07
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Open problems about matricial microstates

Are there always approximating matricial microstates? l.e., given m
and 7, is there k such that T'(X;m, k,~) # 07

If “yes,” then W*(X) — R“ and, by [BDJ], §(X) > 0. Otherwise,
W*(X) ¢ R“ and §p(X) = —o0.
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Open problems about matricial microstates

Are there always approximating matricial microstates? l.e., given m
and 7, is there k such that T'(X;m, k,~) # 07

If “yes,” then W*(X) — R“ and, by [BDJ], §(X) > 0. Otherwise,
W*(X) ¢ R“ and §p(X) = —o0.

2. W*=invariance

Does W*(x1,...,xn) = W*(y1,...,yn) imply
50(%1, v ,LL’N) = 50(y1,. . .,yM)?
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Open problems about matricial microstates

Are there always approximating matricial microstates? l.e., given m
and 7, is there k such that T'(X;m, k,~y) # 0?

If “yes,” then W*(X) — R“ and, by [BDJ], §(X) > 0. Otherwise,
W*(X) ¢ R“ and §p(X) = —o0.

2. W*=invariance

Does W*(x1,...,xn) = W*(y1,...,yn) imply
50(%1, v ,{L’N) = 50(];1,. . .,yM)?

3. Regularity

If, in Jung's formula for dy, the limsup,_,., and limsup,_,, are
replaced by liminf, do we get the same number?
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Open problems about matricial microstates

Are there always approximating matricial microstates? l.e., given m
and 7, is there k such that T'(X;m, k,~y) # 0?

If “yes,” then W*(X) — R“ and, by [BDJ], §(X) > 0. Otherwise,
W*(X) ¢ R“ and §p(X) = —o0.

2. W*=invariance

Does W*(x1,...,xn) = W*(y1,...,yn) imply
50(%1, v ,{L’N) = 50(];1,. . .,yM)?

3. Regularity

If, in Jung's formula for dy, the limsup,_,., and limsup,_,, are
replaced by liminf, do we get the same number?

(If “yes,” then we say X is microstates packing regular.)
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Recalling of the formula for dy(X)

P.(X) = sup inf limsupk > logPE(FR(X;m, k,fy)).

R>0 m21 k0o
>0

P.(X
0o(X) = limsup ( )
—0  |loge|
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Regarding W *—invariance:

If B is hyperfinite, then dy agrees on all generating sets of B.
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Regarding W *—invariance:

If B is hyperfinite, then dy agrees on all generating sets of B. l

This number can be written do(B), and satisfies 0 < do(B) < 1, with
equality on the left if and only if B = C and equality on the right if
and only if B is diffuse, i.e., has no minimal projections.

Chenai, August 2010 9/
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Regarding W *—invariance:

If B is hyperfinite, then dy agrees on all generating sets of B. \

This number can be written do(B), and satisfies 0 < do(B) < 1, with
equality on the left if and only if B = C and equality on the right if
and only if B is diffuse, i.e., has no minimal projections.

«—algebra invariance [Voiculescul]

If x-alg(z1,...,xn) = x-alg(y1,...,yn), then
do(@1,...,oN) = do(y1,- -, ym).
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Regarding regularity

If 1,..., 2, are free, then do(X) = do(z1,...,2n) = D 1 do(z;).
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Regarding regularity

If 1,..., 2, are free, then do(X) = do(z1,...,2n) = D 1 do(z;).

If X ={z1,...,on}and Y = {y1,...,ym} are free and if at least
one is regular, then Jp(X UY") = do(X) + do(Y).
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If X ={z1,...,on}and Y = {y1,...,ym} are free and if at least
one is regular, then Jp(X UY") = do(X) + do(Y).

A singleton {x1} is always regular.
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Regarding regularity

If 1,..., 2, are free, then do(X) = do(z1,...,2n) = D 1 do(z;).

If X ={z1,...,on}and Y = {y1,...,ym} are free and if at least
one is regular, then Jp(X UY") = do(X) + do(Y).

A singleton {x1} is always regular.

Let M = W*(X). If either (a) M is diffuse, is embeddable in R¥
and 0p(X) =1 or (b) M is hyperfinite, then X is regular.
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Regarding Connes’ embedding problem and free products

Without a regularity assumption, we do not know if
(X UY) =680(X) + do(Y) holds whenever X and Y are free sets
of finitely many self-adjoints.
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Regarding Connes’ embedding problem and free products

Without a regularity assumption, we do not know if
(X UY) =680(X) + do(Y) holds whenever X and Y are free sets
of finitely many self-adjoints.

However, if one assumes dp(X) > 0 and do(Y') > 0, i.e., that
W*(X) — R“ and W*(Y') < R, then one can construct
sufficiently many approximating microstates for X UY to prove that
WH*(XUY)=W*X)«W*(Y)— R, ie., that Jo(X UY) > 0.
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Regarding Connes’ embedding problem and free products

Without a regularity assumption, we do not know if
(X UY) =680(X) + do(Y) holds whenever X and Y are free sets
of finitely many self-adjoints.

However, if one assumes dp(X) > 0 and do(Y') > 0, i.e., that
W*(X) — R“ and W*(Y') < R, then one can construct
sufficiently many approximating microstates for X UY to prove that
WH*(XUY)=W*X)«W*(Y)— R, ie., that Jo(X UY) > 0.

How?
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Regarding Connes’ embedding problem and free products

Without a regularity assumption, we do not know if
(X UY) =680(X) + do(Y) holds whenever X and Y are free sets
of finitely many self-adjoints.

However, if one assumes dp(X) > 0 and do(Y') > 0, i.e., that
W*(X) — R“ and W*(Y') < R, then one can construct
sufficiently many approximating microstates for X UY to prove that
WH*(XUY)=W*X)«W*(Y)— R, ie., that Jo(X UY) > 0.
How? By a fundamental result of Voiculescu, given m,~y, there are
m’, ' such that if

a=(a,...,an) € Tr(X;m' k,7)
b= (bl, ceey bM) S PR<Y; m', ]{3,’)//),
and if u € Uy is a randomly chosen k x k unitary matrix, then with

probability P(R,m,~, k), that approaches 1 as k — oo,
aUubu* € Tr(X UY;m, k,v).
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Freeness over a subalgebra [Voiculescul]

Let £ : A — B be a normal conditional expectation onto a unital
W*—subalgebra.
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Freeness over a subalgebra [Voiculescul]

Let £ : A — B be a normal conditional expectation onto a unital
W*—subalgebra.

If B C A; C A are subalgebras, then the A; are free with respect to
E (over B) if
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Freeness over a subalgebra [Voiculescul]

Let £ : A — B be a normal conditional expectation onto a unital
W*—subalgebra.

If B C A; C A are subalgebras, then the A; are free with respect to
E (over B) if

E(ay---an) = 0 whenever a; € A;;) Nker £
and i(j) #i(j + 1) for all j.
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Amalgamated free products of von Neumann algebras

[Voiculescu]

Given E; : A; — B conditional expectations (with faithful GNS
construction), then their amaglamated free product is

(A7 E) = *B(Aia El)7
i€l

with A; — A so that the A; are free over B and together generate
A, and E[Ai =FE,.
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Amalgamated free products of von Neumann algebras

[Voiculescu]

Given E; : A; — B conditional expectations (with faithful GNS
construction), then their amaglamated free product is

(A7 E) = *B(Aia El)7
i€l

with A; — A so that the A; are free over B and together generate
A, and E[Ai =FE,.

If there is a normal faithful tracial state 73 on B such that rg o E; is
a trace on A;, for all 4, then 73 o E is a normal faithful tracial state
on A.
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Amalgamated free products of von Neumann algebras

[Voiculescu]

Given E; : A; — B conditional expectations (with faithful GNS
construction), then their amaglamated free product is

(A7 E) = *B(Aia El)v
i€l

with A; — A so that the A; are free over B and together generate
A, and By, = E;.

If there is a normal faithful tracial state 73 on B such that rg o E; is
a trace on A;, for all 4, then 73 o E is a normal faithful tracial state
on A.

In this case, we say the amalgamated free product is tracial.

Dykema (TAMU) Amalgamation Chenai, August 2010 13 /23



Example of an amalgamated free product of von Neumann

algebras

Example: if H C G; and G = G *p G4 is an amalgamated free
product of groups, then

(L(G1), Er) *1.(m) (L(Ga), E) = (L(G), E),

where F; and FE are the cannonical-trace—preserving conditional
expectations onto L(H).
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Free entropy dimension in amalg. free products [BDJ]

The setting: let (M, E) = (A1, E) *p (A2, E) be a tracial
amalgamated free product, where B is hyperfinite. Suppose X; C A;
and Y C B are finite sets of self-adjoint elements, where
W*(Y)=B.
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Free entropy dimension in amalg. free products [BDJ]

The setting: let (M, E) = (A1, E) *p (A2, E) be a tracial
amalgamated free product, where B is hyperfinite. Suppose X; C A;

and Y C B are finite sets of self-adjoint elements, where
W*(Y)=B.

By [Jung, '03],

50(X1 UXoU Y) < 50(X1 U Y) + 50(X2 @] Y) — 50(Y)
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Free entropy dimension in amalg. free products [BDJ]

The setting: let (M, E) = (A1, E) *p (A2, E) be a tracial
amalgamated free product, where B is hyperfinite. Suppose X; C A;
and Y C B are finite sets of self-adjoint elements, where
W*(Y)=B.

By [Jung, '03],

50(X1 UXoU Y) < 50(X1 U Y) + 50(X2 @] Y) — 50(Y)

Theorem [BDJ]

If at least one of X; UY and Xo UY is regular, then
50(X1 U XU Y) = 50(X1 U Y) + 50(X2 U Y) = (SO(Y),

while if both are regular then also X; U Xo UY is regular.
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|dea of proof

By approximation, we can show it suffices to consider
(M, E) = (A1, E) *p (A2, E) with B finite dimensional.
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|dea of proof

By approximation, we can show it suffices to consider
(M, E) = (A1, E) *p (A2, E) with B finite dimensional.

Now fix some representations 7y : B — M} (C), for infinitely many £,
such that try o m converges to 7[g.
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|dea of proof

By approximation, we can show it suffices to consider
(M, E) = (A1, E) *p (A2, E) with B finite dimensional.

Now fix some representations 7y : B — M} (C), for infinitely many £,
such that try o m converges to 7[g.

Let aUceTp (X1 UY;m/ k,+') and
bUCd €eTr(XoUY;m/ k,+"). We may take ¢/ = ¢ = mi(Y).
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|dea of proof

By approximation, we can show it suffices to consider
(M, E) = (A1, E) *p (A2, E) with B finite dimensional.

Now fix some representations 7y : B — M} (C), for infinitely many £,
such that try o m converges to 7[g.

Let aUceTp (X1 UY;m/ k,+') and
bUCd €eTr(XoUY;m/ k,+"). We may take ¢/ = ¢ = mi(Y).

Now, choosing u randomly in Uy N 7 (B)’ we have, with probability
approaching 1 as k — oo,

aUubu*Uc el (X1 UXoUY;m, k, 7).
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Embeddings in R¥

Also, even without assuming regularity, this argument is sufficient to
construct at least some approximating microstates, enough to give
R“—embeddability.

Theorem [BDJ]

If (M, E)= (A1, E)*p(As, E) is a tracial amalgamated free product
with B hyperfinite, and if A; — R“, (i = 1,2), then M — R“.
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Hyperlinear groups

Definition [Radulescul]
A group ' is hyperlinear if for all finite sets F' C I" and all € > 0,
there is a map ¢ : I' — U, (the n X n unitary matrices) for some n,
such that

(i) Yg € F\{e}, dist(¢(g),id) > 1 —€

(ii) Vg, h € F, dist(¢(g~ "), d(g) "o (h)) <€,

where the distance is
dist(U, V) = ||U = V|2 = (tr,(U = V)*(U — V)))l/z.
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Hyperlinear groups

Definition [Radulescul]

A group ' is hyperlinear if for all finite sets F' C I" and all € > 0,
there is a map ¢ : I' — U, (the n X n unitary matrices) for some n,
such that

(i) Vg € F\{e}, dist(¢(g),id) > 1 — ¢
(i) Vg, h € F, dist(¢(g7"'R), ¢(9) "' p(h)) <,

where the distance is
dist(U, V) = ||U = V|2 = (tr,((U = V)*(U — V)))l/z.

Theorem [Radulescu]
For a group I', TFAE:
(i) T is hyperlinear

(i) T is isomorphic to a subgroup of the unitary group of R¥
(i) L(T") — R“
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Corollary [BDJ]

If I’y and I'g are hyperlinear and if I' = I'y xg I's with H amenable,
then T is hyperlinear.
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Corollary [BDJ]

If I’y and I'g are hyperlinear and if I' = I'y xg I's with H amenable,
then I is hyperlinear. Also, HNN-extensions of hyperlinear groups
over amenable groups are hyperlinear.
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Corollary [BDJ]

If I’y and I'g are hyperlinear and if I' = I'y xg I's with H amenable,
then I is hyperlinear. Also, HNN-extensions of hyperlinear groups
over amenable groups are hyperlinear.

Open Problem (part of Connes’ Embedding Problem)

Are all groups hyperlinear?
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Sofic groups

A group I is sofic if arbitrary finite sets of it can be approximated by
permutations.
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Sofic groups

A group I is sofic if arbitrary finite sets of it can be approximated by
permutations.

Defn. [Gromov, '99], [B. Weiss, '00], [Elek, Szabd, '04]

I' is sofic if for all F C T finite and all € > 0, there is a map
¢:I' — S,, for some n, such that

(i) Vg € F\{e}, dist(¢(g),id) > 1 —€
(i) ¥Yg,h € F, dist(¢(g9~"h), p(9) "' ¢(h)) < €.

where dist(o,7) = {j | 0(j) # 7(j)}/n is the Hamming distance.

Dykema (TAMU) Amalgamation Chenai, August 2010



Sofic groups

A group I is sofic if arbitrary finite sets of it can be approximated by
permutations.

Defn. [Gromov, '99], [B. Weiss, '00], [Elek, Szabd, '04]

I' is sofic if for all F C T finite and all € > 0, there is a map
¢:I' — S,, for some n, such that

(i) Vg € F\{e}, dist(¢(g),id) > 1 —€
(i) ¥Yg,h € F, dist(¢(g9~"h), p(9) "' ¢(h)) < €.

where dist(o,7) = {j | 0(j) # 7(j)}/n is the Hamming distance.
We call ¢ an (F,e)—quasi—action.
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Sofic groups

A group I is sofic if arbitrary finite sets of it can be approximated by
permutations.
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We call ¢ an (F,e)—quasi—action.

Thus, sofic groups are hyperlinear.
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Sofic groups

A group I is sofic if arbitrary finite sets of it can be approximated by
permutations.

Defn. [Gromov, '99], [B. Weiss, '00], [Elek, Szabd, '04]

I' is sofic if for all F C T finite and all € > 0, there is a map
¢:I' — S,, for some n, such that

(i) Vg € F\{e}, dist(¢(g),id) > 1 —€
(i) Vg, h € F, dist(¢(g~"R), 6(9)""6(R)) < e

where dist(o,7) = {j | 0(j) # 7(j)}/n is the Hamming distance.
We call ¢ an (F,e)—quasi—action.

Thus, sofic groups are hyperlinear.

e amenable groups e residually finite groups e residually amenable
groups e other recent examples by [A. Thom], [Y. Cornulier].

Dykema (TAMU) Amalgamation Chenai, August 2010



Sofic groups (2)

Some nice properties of every sofic group I

e satisfies Gottschalk's Surjunctivity Conjecture [Gromov '99].

e satisfies Kaplansky's Direct Finiteness Conjecture [Elek, Szabd,
'04].

e its Bernoulli shifts are classified [L. Bowen, '10], (provided I is
also Ornstein, e.g., if it has an infinite amenable subgroup).
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Sofic groups (2)

Some nice properties of every sofic group I’

e satisfies Gottschalk’'s Surjunctivity Conjecture [Gromov '99].

e satisfies Kaplansky's Direct Finiteness Conjecture [Elek, Szabd,
'04].

e its Bernoulli shifts are classified [L. Bowen, '10], (provided I is
also Ornstein, e.g., if it has an infinite amenable subgroup).

Are all groups sofic?

Caveat [Gromov]
Any statement about all countable groups is either trivial or false.
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Sofic groups (3)

The class of sofic groups is closed under taking e subgroups e direct
limits e direct products e inverse limits e extensions by amenable
groups [Elek and Szabd, '06] e free products [Elek and Szabd, '06].
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Sofic groups (3)

Constructions

The class of sofic groups is closed under taking e subgroups e direct
limits e direct products e inverse limits e extensions by amenable
groups [Elek and Szabd, '06] e free products [Elek and Szabd, '06].

v

Theorem [CD]

If 'y and I's are sofic groups and if H C I'; is a subgroup that is
either a finite group or infinite cyclic or ..., then the amalgamated
free product I'y xg I'y is sofic.
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v

Theorem [CD]

If 'y and I's are sofic groups and if H C I'; is a subgroup that is
either a finite group or infinite cyclic or ..., then the amalgamated
free product I'y xg I'y is sofic.

Our proof is group theoretic and probabilistic. It was inspired by
results in free probability theory and operator algebras.
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Sofic groups (3)

Constructions

The class of sofic groups is closed under taking e subgroups e direct
limits e direct products e inverse limits e extensions by amenable
groups [Elek and Szabd, '06] e free products [Elek and Szabd, '06].

v

Theorem [CD]

If 'y and I's are sofic groups and if H C I'; is a subgroup that is
either a finite group or infinite cyclic or ..., then the amalgamated
free product I'y xg I'y is sofic.

Our proof is group theoretic and probabilistic. It was inspired by
results in free probability theory and operator algebras.

We thought we had a proof for H amenable, but there are some

problems .. ..
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Sofic groups (4)

Idea of proof with H = {e}.
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Idea of proof with H = {e}.
Consider G1 x G9. Choose F; C G; finite subsets, € > 0. Take
¢; : G; — Sy, be an (F;, ¢,,)—quasi—action.
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Sofic groups (4)

Idea of proof with H = {e}.

Consider G1 x G9. Choose F; C G; finite subsets, € > 0. Take

¢; : G; — Sy, be an (F;, ¢,,)—quasi—action. Let U be a random,
uniformly distributed permutation (in S,). We show that as n — oo,
the expected number of fixed points of the permutation

61(91) (Uga(g2)U™1) - ¢1(g2m—1) (Ub2(g2m)U 1)

is vanishingly small, (taking godd € Fi\{e}, geven € F2\{e} and
€n — 0).
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Sofic groups (4)

Idea of proof with H = {e}.

Consider G1 x G9. Choose F; C G; finite subsets, € > 0. Take

¢; : G; — Sy, be an (F;, ¢,,)—quasi—action. Let U be a random,
uniformly distributed permutation (in S,,). We show that as n — oo,
the expected number of fixed points of the permutation

61(91) (Uga(g2)U™1) - ¢1(g2m—1) (Ub2(g2m)U 1)

is vanishingly small, (taking godd € Fi\{e}, geven € F2\{e} and
€n — 0).

This shows: from quasi—actions ¢; and ¢5 of G1 and Go, we get
sufficiently many quasi-actions ¢ * (Uga(-)U ') of Gy * Ga.
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