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Approximation properties in finite von Neumann algebras

Hyperfiniteness

A von Neumann algebra M is hyperfinite if for all x1, . . . xn ∈M
and all ε > 0 there is a finite dimensional subalgebra D ⊆M such
that dist‖·‖2(xj , D) < ε (for all j), where ‖a‖2 = τ(a∗a)1/2.

For example, the hyperfinite II1–factor R =
⋃
n≥1M2n(C) or L(G)

for G amenable [Connes, ’76].

Connes’ Embedding Problem (CEP) [1976]

Do all finite von Neumann algebras M having separable predual
embed into Rω, (the ultrapower of the hyperfinite II1–factor)?
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A reformulation of Connes’ embedding problem:

We take a finite von Neumann algebra M with a fixed trace
τ :M→ C, with τ(1) = 1. Also, Ms.a. = {x ∈M | x∗ = x}.

Connes’ Embedding Problem ⇔
Given a finite von Neumann algebra M and x1, . . . , xn ∈Ms.a., are
there “approximating matricial microstates” for them?
I.e., given m ∈ N and ε > 0, are there a1, . . . , an ∈Mk(C)s.a. for
some k ∈ N whose mixed moments up to order m are ε–close to
those of x1, . . . , xn,?i.e., such that∣∣trk(ai1ai2 · · · aip)− τ(xi1xi2 · · ·xip)

∣∣ < γ

for all p ≤ m and all i1, . . . , ip ∈ {1, . . . , n}? (The existence of such
matricial microstates is equivalent to M embedding in Rω, written
M ↪→ Rω.)

In fact, CEP ⇔ the case n = 2 ([Collins, D. ’08]).
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Microstates free entropy dimension (Voiculescu)

ΓR(x1, . . . , xn;m, k, γ) is the set of all n–tuples (a1, . . . , an) of such
approximating matricial microstates, having ‖ai‖ ≤ R.

To save space, we will write X for the list (or set) x1, . . . , xn, and
also ΓR(X;m, k, γ), etc.

The free entropy dimension δ0(x1, . . . , xn) = δ0(X) is obtained from
asymptotics of the “sizes” of these sets.

By [Jung, ’03]:

Pε(X) = sup
R>0

inf
m≥1
γ>0

lim sup
k→∞

k−2 logPε
(
ΓR(X;m, k, γ)

)
.

δ0(X) = lim sup
ε→0

Pε(X)
| log ε|

.

Instead of taking supR>0, fixing any R > maxi ‖xi‖ will yield the
same value for δ0(X), and we can also take R = +∞, in which case
we write Γ(X;m, k, γ).
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Subadditivity property

δ0(X ∪ Y ) ≤ δ0(X) + δ0(Y ).

Proof:

ΓR(X ∪ Y ;m, k, γ) ⊆ ΓR(X;m, k, γ)× ΓR(Y ;m, k, γ).
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Open problems about matricial microstates

1. CEP

Are there always approximating matricial microstates? I.e., given m
and γ, is there k such that Γ(X;m, k, γ) 6= ∅?

If “yes,” then W ∗(X) ↪→ Rω and, by [BDJ], δ(X) ≥ 0. Otherwise,
W ∗(X) 6↪→ Rω and δ0(X) = −∞.

2. W∗–invariance

Does W ∗(x1, . . . , xN ) = W ∗(y1, . . . , yM ) imply
δ0(x1, . . . , xN ) = δ0(y1, . . . , yM )?

3. Regularity

If, in Jung’s formula for δ0, the lim supk→∞ and lim supε→0 are
replaced by lim inf, do we get the same number?

(If “yes,” then we say X is microstates packing regular.)
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Recalling of the formula for δ0(X)

Pε(X) = sup
R>0

inf
m≥1
γ>0

lim sup
k→∞

k−2 logPε
(
ΓR(X;m, k, γ)

)
.

δ0(X) = lim sup
ε→0

Pε(X)
| log ε|

.
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Regarding W ∗–invariance:

[Jung]

If B is hyperfinite, then δ0 agrees on all generating sets of B.

This number can be written δ0(B), and satisfies 0 ≤ δ0(B) ≤ 1, with
equality on the left if and only if B = C and equality on the right if
and only if B is diffuse, i.e., has no minimal projections.

∗–algebra invariance [Voiculescu]

If ∗ -alg(x1, . . . , xN ) = ∗ -alg(y1, . . . , yM ), then
δ0(x1, . . . , xN ) = δ0(y1, . . . , yM ).
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Regarding regularity

Thm. [Voiculescu]

If x1, . . . , xn are free, then δ0(X) = δ0(x1, . . . , xn) =
∑n

1 δ0(xj).

Thm. [Voiculescu]

If X = {x1, . . . , xN} and Y = {y1, . . . , yM} are free and if at least
one is regular, then δ0(X ∪ Y ) = δ0(X) + δ0(Y ).

Thm. [Voiculescu]

A singleton {x1} is always regular.

Thm. [BDJ]

Let M = W ∗(X). If either (a) M is diffuse, is embeddable in Rω

and δ0(X) = 1 or (b) M is hyperfinite, then X is regular.
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Regarding Connes’ embedding problem and free products

Without a regularity assumption, we do not know if
δ0(X ∪ Y ) = δ0(X) + δ0(Y ) holds whenever X and Y are free sets
of finitely many self–adjoints.

However, if one assumes δ0(X) ≥ 0 and δ0(Y ) ≥ 0, i.e., that
W ∗(X) ↪→ Rω and W ∗(Y ) ↪→ Rω, then one can construct
sufficiently many approximating microstates for X ∪ Y to prove that
W ∗(X ∪ Y ) = W ∗(X) ∗W ∗(Y ) ↪→ Rω, i.e., that δ0(X ∪ Y ) ≥ 0.

How? By a fundamental result of Voiculescu, given m, γ, there are
m′, γ′ such that if

a = (a1, . . . , aN ) ∈ ΓR(X;m′, k, γ′)
b = (b1, . . . , bM ) ∈ ΓR(Y ;m′, k, γ′),

and if u ∈ Uk is a randomly chosen k × k unitary matrix, then with
probability P (R,m, γ, k), that approaches 1 as k →∞,
a ∪ ubu∗ ∈ ΓR(X ∪ Y ;m, k, γ).
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Freeness over a subalgebra [Voiculescu]

Let E : A→ B be a normal conditional expectation onto a unital
W∗–subalgebra.

If B ⊆ Ai ⊆ A are subalgebras, then the Ai are free with respect to
E (over B) if

E(a1 · · · an) = 0 whenever aj ∈ Ai(j) ∩ kerE

and i(j) 6= i(j + 1) for all j.
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Amalgamated free products of von Neumann algebras
[Voiculescu]

Given Ei : Ai → B conditional expectations (with faithful GNS
construction), then their amaglamated free product is

(A,E) = ∗B
i∈I

(Ai, Ei),

with Ai ↪→ A so that the Ai are free over B and together generate
A, and E�Ai

= Ei.

If there is a normal faithful tracial state τB on B such that τB ◦Ei is
a trace on Ai, for all i, then τB ◦ E is a normal faithful tracial state
on A.

In this case, we say the amalgamated free product is tracial.
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Example of an amalgamated free product of von Neumann
algebras

Example: if H ⊆ Gi and G = G1 ∗H G2 is an amalgamated free
product of groups, then

(L(G1), E1) ∗L(H) (L(G2), E2) = (L(G), E),

where Ei and E are the cannonical–trace–preserving conditional
expectations onto L(H).
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Free entropy dimension in amalg. free products [BDJ]

The setting: let (M, E) = (A1, E) ∗B (A2, E) be a tracial
amalgamated free product, where B is hyperfinite. Suppose Xi ⊆ Ai
and Y ⊆ B are finite sets of self–adjoint elements, where
W ∗(Y ) = B.

By [Jung, ’03],

δ0(X1 ∪X2 ∪ Y ) ≤ δ0(X1 ∪ Y ) + δ0(X2 ∪ Y )− δ0(Y ).

Theorem [BDJ]

If at least one of X1 ∪ Y and X2 ∪ Y is regular, then

δ0(X1 ∪X2 ∪ Y ) = δ0(X1 ∪ Y ) + δ0(X2 ∪ Y )− δ0(Y ),

while if both are regular then also X1 ∪X2 ∪ Y is regular.
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Idea of proof

By approximation, we can show it suffices to consider
(M, E) = (A1, E) ∗B (A2, E) with B finite dimensional.

Now fix some representations πk : B →Mk(C), for infinitely many k,
such that trk ◦ πk converges to τ�B.

Let a ∪ c ∈ ΓR′(X1 ∪ Y ;m′, k, γ′) and
b ∪ c′ ∈ ΓR′(X2 ∪ Y ;m′, k, γ′). We may take c′ = c = πk(Y ).

Now, choosing u randomly in Uk ∩ πk(B)′ we have, with probability
approaching 1 as k →∞,

a ∪ ubu∗ ∪ c ∈ Γr(X1 ∪X2 ∪ Y ;m, k, γ).
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Embeddings in Rω

Also, even without assuming regularity, this argument is sufficient to
construct at least some approximating microstates, enough to give
Rω–embeddability.

Theorem [BDJ]

If (M, E) = (A1, E) ∗B (A2, E) is a tracial amalgamated free product
with B hyperfinite, and if Ai ↪→ Rω, (i = 1, 2), then M ↪→ Rω.
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Hyperlinear groups

Definition [Rădulescu]

A group Γ is hyperlinear if for all finite sets F ⊆ Γ and all ε > 0,
there is a map φ : Γ→ Un (the n× n unitary matrices) for some n,
such that

(i) ∀g ∈ F\{e}, dist(φ(g), id) > 1− ε
(ii) ∀g, h ∈ F , dist(φ(g−1h), φ(g)−1φ(h)) < ε,

where the distance is
dist(U, V ) = ‖U − V ‖2 = (trn((U − V )∗(U − V )))1/2.

Theorem [Rădulescu]

For a group Γ, TFAE:

(i) Γ is hyperlinear

(ii) Γ is isomorphic to a subgroup of the unitary group of Rω

(iii) L(Γ) ↪→ Rω
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Corollary [BDJ]

If Γ1 and Γ2 are hyperlinear and if Γ = Γ1 ∗H Γ2 with H amenable,
then Γ is hyperlinear.

Also, HNN–extensions of hyperlinear groups
over amenable groups are hyperlinear.

Open Problem (part of Connes’ Embedding Problem)

Are all groups hyperlinear?
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Sofic groups

A group Γ is sofic if arbitrary finite sets of it can be approximated by
permutations.

Defn. [Gromov, ’99], [B. Weiss, ’00], [Elek, Szabó, ’04]

Γ is sofic if for all F ⊆ Γ finite and all ε > 0, there is a map
φ : Γ→ Sn, for some n, such that

(i) ∀g ∈ F\{e}, dist(φ(g), id) > 1− ε
(ii) ∀g, h ∈ F , dist(φ(g−1h), φ(g)−1φ(h)) < ε.

where dist(σ, τ) = {j | σ(j) 6= τ(j)}/n is the Hamming distance.
We call φ an (F, ε)–quasi–action.

Thus, sofic groups are hyperlinear.

Examples

• amenable groups • residually finite groups • residually amenable
groups • other recent examples by [A. Thom], [Y. Cornulier].
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Sofic groups (2)

Some nice properties of every sofic group Γ

• satisfies Gottschalk’s Surjunctivity Conjecture [Gromov ’99].

• satisfies Kaplansky’s Direct Finiteness Conjecture [Elek, Szabó,
’04].

• its Bernoulli shifts are classified [L. Bowen, ’10], (provided Γ is
also Ornstein, e.g., if it has an infinite amenable subgroup).

Question

Are all groups sofic?

Caveat [Gromov]

Any statement about all countable groups is either trivial or false.
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Sofic groups (3)

Constructions

The class of sofic groups is closed under taking • subgroups • direct
limits • direct products • inverse limits • extensions by amenable
groups [Elek and Szabó, ’06] • free products [Elek and Szabó, ’06].

Theorem [CD]

If Γ1 and Γ2 are sofic groups and if H ⊆ Γi is a subgroup that is
either a finite group or infinite cyclic or . . ., then the amalgamated
free product Γ1 ∗H Γ2 is sofic.

Our proof is group theoretic and probabilistic. It was inspired by
results in free probability theory and operator algebras.

We thought we had a proof for H amenable, but there are some
problems . . ..
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Sofic groups (4)

Idea of proof with H = {e}.

Consider G1 ∗G2. Choose Fi ⊆ Gi finite subsets, ε > 0. Take
φi : Gi → Sn be an (Fi, εn)–quasi–action. Let U be a random,
uniformly distributed permutation (in Sn). We show that as n→∞,
the expected number of fixed points of the permutation

φ1(g1)
(
Uφ2(g2)U−1

)
· · ·φ1(g2m−1)

(
Uφ2(g2m)U−1

)
is vanishingly small, (taking godd ∈ F1\{e}, geven ∈ F2\{e} and
εn → 0).

This shows: from quasi–actions φ1 and φ2 of G1 and G2, we get
sufficiently many quasi–actions φ1 ∗

(
Uφ2( · )U−1) of G1 ∗G2.
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