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In this paper we study surjectivity of the map g �→ gn on an arbitrary connected
solvable Lie group and describe certain necessary and sufficient conditions for sur-
jectivity to hold. The results are applied also to study the exponential maps of the
Lie groups.  2002 Elsevier Science (USA)
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1. INTRODUCTION

There has been a considerable amount of work on the structure of the
exponential maps of Lie groups and in particular on criteria for surjectivity
of the maps. A detailed account of what was known on the topic until a
few years ago may be found in the survey article of Djoković and Hofmann
[DH]; see also [DM] for some more recent results. It is also known that
the exponential map of a connected Lie group is surjective if (and only if)
the nth power map g �→ gn is surjective for all n ≥ 2 (see [HL] and [M]).
Nevertheless, surprisingly there seems to be hardly any literature on the
question of the surjectivity of the individual power maps. In this paper we
study the question for solvable Lie groups. We obtain a characterisation of
surjectivity for the power maps, analogous to the results of Wüstner for the
exponential map (see Theorem A below). Using this result we describe a
class of Lie groups for which the pth power map g �→ gp is surjective for
all but finitely many prime numbers p (see Theorems B and B′). As an
application of Theorem A we also prove an analogue of Dixmier’s theorem
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for the exponential map of simply connected solvable groups and relate it
to the latter (see Theorem C).
Let G be a connected solvable Lie group and for any natural number n

let Pn�G→ G be the nth power map, defined by Pn�g� = gn, for any g ∈ G.
The following theorem, which may be regarded as the main result in the
paper, characterises surjectivity of Pn in terms of the conjugation actions of
Cartan subgroups. We note that for connected solvable Lie groups, Cartan
subgroups are precisely the connected Lie subgroups such that the associ-
ated Lie subalgebras are Cartan subalgebras. A point g ∈ G is said to be
Pn-regular if the map Pn is a local diffeomorphism at g. For an element
X in the Lie algebra of G and a subgroup H of G, we denote by ZH�X�
the subgroup 
h ∈ H � Ad�h�X = X� (see the next section for various
definitions).

Theorem A. Let G be a connected solvable Lie group and H be a Cartan
subgroup. Then the following conditions are equivalent.

1. The power map Pn� G→ G is surjective.

2. For any h ∈ H there exists h̃ ∈ H such that h̃ is Pn-regular and
Pn�h̃� = h.

3. For any g ∈ G there exists g̃ ∈ G such that g̃ is Pn-regular and
Pn�g̃� = g.

4. Pn� ZH�X� → ZH�X� is surjective, for any ad-nilpotent X ∈ L�G�.
5. Pn� ZH�X� → ZH�X� is surjective, for any X ∈ L�G�.

The theorem of Wüstner (cf. [W, Theorem 3.17]), giving necessary and
sufficient conditions for surjectivity of the exponential map, can be deduced
from the above theorem, in light of the interrelation between the nth power
maps and the exponential map recalled in the beginning (see Corollary 3.7).
On the other hand, the technique of our proof is inspired by Wüstner’s
paper.
Using Theorem A we show that if G is as above and Pn is surjective then

the restriction of Pn to the center of G is also surjective (see Corollary 3.9).
We note that if G is any connected Lie group (not necessarily solvable) and
if Pn� G → G is surjective for some n ≥ 2, then the exponentiality index
of every element is finite; this therefore holds whenever any of the five
conditions as in Theorem A is satisfied (see Corollary 3.11).
For the class of solvable Lie groups which are semidirect products of a

torus with a simply connected exponential solvable Lie group, by applying
Theorem A we identify the set of natural numbers n for which the nth
power map is surjective (see Theorems B and B′ below); a Lie group is
said to be exponential if the exponential map is surjective. We recall here
that a simply connected solvable Lie group G is exponential if and only if
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for any g ∈ G, Ad(g) has no eigenvalue λ such that �λ� = 1 and λ �= 1 (see
Theorem 5.1, [D], and [DH]) and that, in particular, all connected nilpotent
Lie groups are exponential.

Theorem B. Let G be a connected solvable Lie group, which is a semidi-
rect product of a (compact) torus T and a (normal) simply connected solvable
exponential Lie group R. Then, for n ≥ 2 the power map Pn is surjective if and
only if for all X ∈ L�R� the integer n is coprime to the number of connected
components of ZT �X�. Furthermore, there exists an integer mG such that the
map Pn� G→ G is surjective, for all n coprime to mG.

The set of natural numbers involved in the conclusion of Theorem B
can also be described in terms of the characters that appear in the adjoint
action of T on the complexification of the Lie algebra L�R�.
Given a representation ρ� T → GL�V � of a torus T , where V is a finite-

dimensional vector space over �, we associate an integer mρ as follows.
Consider the associated representation of T on the complexification of V
and identify V with its canonical embedding in the complexification of V .
Let V = V0 +

∑
χ∈S Vχ be the decomposition where V0 denotes the set of

fixed points of ρ�T �, S is a set of nontrivial characters on T , and Vχ = 
v ∈
V � Ad�t�v = χ�t�v� for all t ∈ T�, such that Vχ �= 0, for all χ ∈ S. We
identify the group of characters of T with �d where d is the dimension of
T . For any subset Q of S, consisting of linearly independent elements, let
M�Q� denote d× l integral matrix with elements of Q as its columns, where
l = �Q�, the cardinality of Q. Also, for any Q as above let m�Q� denote the
g.c.d. of the determinant of all possible l × l minors of the matrix M�Q�.
We define mρ to be the smallest positive integer divisible by all m�Q�, for
all subsets Q of S as above.

Theorem B′. Let G be a Lie group as in Theorem B and let ρ denote the
adjoint representation restricted to T on L�R�. Then Pn� G→ G is surjective
if and only if n is coprime to the integer mρ.

Theorem B in particular implies the following result for groups which
are not necessarily solvable.

Corollary B. Let G be a connected Lie group. Suppose there exist
finitely many solvable Lie subgroups G1�G2� � � � �Gk, such that each Gj has
the structure of a semidirect product as in the hypothesis of Theorem B, and
for every element g ∈ G, there exists a Lie automorphism α of G such that
α�g� ∈ Gj , for some j. Then there exists an integer mG such that the map
Pn� G→ G is surjective, for all n coprime to mG.

We note that the condition in the hypothesis is satisfied if G is a semidi-
rect product of a compact connected (not necessarily abelian) Lie group
C with a simply connected solvable exponential Lie group R, or if G is a
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complex algebraic group; in fact, with k = 1, we can choose G1 to be TR,
where T is a maximal torus in C, in the former case, and in the latter case
to be any Borel subgroup.
We shall also use Theorem A to prove the following result which on the

one hand is an analogue of Dixmier’s characterisation of simply connected
solvable exponential groups and on the other hand relates to the latter (see
Section 4 for details of Dixmier’s result).

Theorem C. Let G be a simply connected solvable Lie group and let n
be an integer with n ≥ 2. Then the following conditions are equivalent.

1. Pn� G→ G is surjective.
2. Pn� G→ G is a diffeomorphism.
3. Pn� G→ G is injective.
4. exp � L�G� → G is a diffeomorphism.

The paper is organised as follows. In the following section we collect
some preliminaries. Theorem A will be proved in Section 3, where we also
discuss some other consequences of the theorem. Theorems B and B′ will
be proved in Section 4, and Theorem C will be proved in Section 5.

2. PRELIMINARIES

In this section we fix the notation, which will be used throughout the
paper. We also recall some known facts and prove some basic results on
the power maps as above, for arbitrary connected Lie groups.

2.1. Notation

For any Lie group G, we denote by L�G� its Lie algebra; it will be
identified with the tangent space of G at the identity element. We denote
by Z�G� the center of G. For subgroups H1 and H2 of G, ZH1

�H2� will
denote the subgroup consisting of elements of H1 which commute with all
elements of H2. For X ∈ L�G� and H a subgroup of G, ZH�X� denotes
the subgroup 
h ∈ H � Ad�h�X = X�. The set of eigenvalues of a linear
operator A on a vector space will be denoted by Spec A.

2.2. Some Definitions and Facts

Here we need certain facts on the weight space decomposition of a com-
plex Lie algebra with respect to a Cartan subalgebra. The reader is referred
to [K, pp. 85–89] for the relevant facts. We recall that for a Lie algebra
�, a subalgebra � is said to be a Cartan subalgebra, if � is nilpotent and
� = 
x ∈ � � �x� �� ⊂ ��.
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Let G be a connected Lie group. Consider a Cartan subalgebra � of
L�G�. We denote the complexifications L�G� ⊗� � and �⊗� � by L�G��
and ��, respectively. Let ! be the set of weights for the weight space decom-
position of L�G��, with respect to the Cartan subalgebra ��. Let NG��� =

g ∈ G � Ad�g�� ⊂ ��. We note that L�G�λ◦Ad�g�� = Ad�g−1�L�G�λ�, for all
g ∈ G and λ ∈ !, where L�G�λ� denotes the weight space corresponding
to the weight λ. Hence the natural action of NG��� induces an action on
the set of weights !. Define CG��� to be the closed subgroup 
g ∈ NG��� �
λ ◦ �Ad�g�⊗� Id� = λ ∀λ ∈ !�. A Lie subgroup H of G is said to be a Car-
tan subgroup if L�H� is a Cartan subalgebra of L�G� and CG�L�H�� = H.
For arbitrary connected Lie groups, Cartan subgroups need not be con-
nected. However, we note that for a connected solvable Lie group all Car-
tan subgroups are connected (cf. [W]).
Using weight space decomposition of L�G�� with respect to L�H��, it is

easy to see that L�G� = L�H� + �L�G�� L�G��. This implies G = H�G�G�.
We note that by a result of Wüstner (cf. [W, Theorem 2.6]), if G is a

connected solvable Lie group and H is a Cartan subgroup, then H ∩ �G�G�
is a connected subgroup.

2.3. Some Properties of the Map Pn

Here, we prove some preliminary results which will be used crucially in
the paper.

Lemma 2.1. Let G be a Lie group. Let dPn�g0 � Tg0�G� → Tgn0 �G� be the
derivative of the power map Pn (between the tangent spaces). Then the follow-
ing are equivalent:

1. dPn�g0 is nonsingular.

2. Spec Ad�g0� ∩ 
λ ∈ � � λn = 1� λ �= 1� = �.

Proof. For a ∈ G let la denote the left translation by a on G. Then for
any X ∈ Te�G� = L�G�, we have

�dPn�g0 ◦ dlg0�e��X� = dlgn0 �e��Id +Ad�g−10 � + · · · +Ad�g−10 �n−1�X��

As lg0 and lgn0 are diffeomorphisms, dlg0�e and dlgn0 �e are nonsingular trans-
formations. Hence dPn�g0 is nonsingular if and only if Id +Ad�g−10 � + · · · +
Ad�g−10 �n−1 is nonsingular. It is clear that Id+Ad�g−10 � + · · · +Ad�g−10 �n−1
is nonsingular if and only if

Spec Ad�g−10 � ∩ 
λ ∈ � � λn = 1� λ �= 1� = ��
This completes the proof.
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Let G be a Lie group. We say that an element g0 ∈ G is Pn-regular if
dPn�g0 is a nonsingular transformation; otherwise g0 is defined to be Pn-
singular.

Lemma 2.2. Let G be a connected Lie group and x ∈ G be Pn-regular.
Then for X ∈ L�G�, Ad�xn��X� = X only if Ad�x��X� = X and, for y ∈
exp�L�G��, xn = yn only if xy = yx.

Proof. Since Ad�xn��X� = X, we have xn exp�tX�x−n = exp�tX�, for all
t ∈ �. Thus we have xn = exp�tX�xn exp�−tX� = �exp�tX�x exp�−tX��n,
for all t ∈ �. Define a function F � � → G as F�t� = exp�tX�x exp�−tX�,
for t ∈ �. We note that F � � → G is smooth, F�0� = x, and �F�t��n =
xn, for all t ∈ �. As x is Pn-regular, by the inverse function theorem there
exists a neighbourhood of x on which Pn is a diffeomorphism. Thus there
exists δ > 0 such that F�t� = x, for all t ∈ �−δ� δ�. This implies exp�tX� =
x exp�tX�x−1 = exp�Ad�x��tX�� ∀ t ∈ �−δ� δ�. Now by differentiating the
above equation at t = 0, we get X = Ad�x��X�, which proves the first part
of the lemma.
The second part of the assertion follows from the first part. In fact, as

y ∈ exp�L�G��, there is some Y ∈ L�G� such that y = exp�Y �. As xn = yn

we see that xn commutes with exp�tY � for all t ∈ �. Hence Ad�xn��Y � =
Y . As x is Pn-regular, from the first part we have Ad�x��Y � = Y . Clearly
x exp�tY �x−1 = exp�Ad�x��tY �� = exp�tY � holds for t ∈ �. Thus x com-
mutes with exp�tY � for all t ∈ � and in particular commutes with y.

Lemma 2.3. Let G be a Lie group and H a connected nilpotent Lie sub-
group of G. Let T be the unique maximal compact subgroup of H. Then,

1. P−1n 
e� ∩ T = P−1n 
e� ∩H.
2. P−1n 
e� ∩H is a finite set; in fact, �P−1n 
e� ∩H� = ndimT .
3. For α ∈ P−1n 
e� ∩H, �αx�n = xn, for any x ∈ H.

Proof. Let x ∈ P−1n 
e� ∩H. Then the subgroup generated by x is finite
and hence contained in T . The assertion (2) follows immediately from (1)
and the third statement follows from (1) and the fact that T is central
in H.

3. CHARACTERISATIONS OF SURJECTIVITY OF Pn

In this section we prove Theorem A and deduce some consequences. We
begin with the following technical lemma.

Lemma 3.1. Let G be connected solvable Lie group and H be a Cartan
subgroup. Let +n denote the set P−1n 
e� ∩H.
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1. If h, h̃ ∈ H are such that Pn�h�Pn�h̃−1� ∈ �G�G� then h̃ ∈ th�G�G�
for some t ∈ +n.

2. If h ∈ H and x ∈ �G�G� are such that Pn�h�Pn�x� = Pn�g� for
some g ∈ G then there exists t ∈ +n, and x̂ ∈ �G�G�, such that Pn�h�Pn�x� =
Pn�thx̂�.
Proof. Since G/�G�G� is abelian, we have hnh̃−n = �hh̃−1�nβ, for

some β ∈ �G�G�. Hence β ∈ �G�G� ∩ H and �hh̃−1�n ∈ �G�G� ∩ H.
Now �G�G� ∩ H is a nilpotent Lie group. Further, it is connected
(cf. [W, Theorem 2.6]) and hence exponential. Therefore, in partic-
ular, there exists k ∈ �G�G� ∩ H such that �hh̃−1�n = kn. We have,
hh̃−1 ∈ H = exp�L�H�� ⊂ exp�L�G��. We note that k is Pn-regular, as k is
in the nilpotent normal subgroup �G�G�. Hence by Lemma 2.2, hh̃−1 and
k commute with each other. Hence �hh̃−1k−1�n = e. If t = hh̃−1k−1, then
t ∈ +n. As k is in the normal subgroup �G�G� and t lies in the center of
H, we have h�G�G� = th̃�G�G�. This proves the first part of the lemma.
To prove the other assertion of the lemma, we first note that G =

H�G�G�, (cf. Section 2). Let h, x, and g be as in the hypothesis and h̃ ∈ H
and x̃ ∈ �G�G� be such that g = h̃x̃. By the first part of the lemma, this
implies that h̃ = thy for some y ∈ �G�G� and t ∈ +n. Therefore, we have,

Pn�h�Pn�x� = Pn�h̃x̃� = Pn�thyx̃� = Pn�thx̂��

where x̂ = yx̃ ∈ �G�G�. This completes the proof.

Let G be a group and N a normal subgroup G. Then for any a ∈ G and
any x ∈ N , we have a−n�ax�n ∈ N . Hence, fixing a ∈ G, we can define the
function .N

a � N → N , as .N
a �x� = a−n�ax�n, for x ∈ N . When it is clear

from the context we will write .a for .N
a .

Theorem 3.2. Let G be a connected solvable Lie group and H a Cartan
subgroup of G. If the map Pn is surjective on G, then for any h ∈ H there
exists a Pn-regular h̃ ∈ H, such that Pn�h� = Pn�h̃�.
Proof. For any a ∈ H, let .a� �G�G� → �G�G� be the map defined

by .a�x� = a−n�ax�n. We claim that a is Pn-singular if and only if
d.a� Tx��G�G�� → Ta−n�ax�n��G�G�� is singular, for all x ∈ �G�G�.
To prove the claim, we first note that, for any x0 ∈ �G�G�, d.a�x0 =

dla−n ��ax0�n ◦ dPn�ax0 ◦ dla�x0 . Hence d.a�x0 is singular if and only if dPn�ax0
is singular. Also, dPn�ax0 is singular if and only if Spec Ad�ax0� ∩ 
λ ∈ �∗ �
λn = 1� λ �= 1� �= �. Since G is solvable and x0 ∈ �G�G� it follows from
Lie’s theorem that Spec Ad�ax0� = Spec Ad�a�. This shows that the map
d.a�x0 is singular if and only if Spec Ad�a� ∩ 
λ ∈ �∗ � λn = 1� λ �= 1� �= �.
Thus the claim is proved.
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Since we assume Pn to be surjective, by Lemma 3.1(2) we have

hn�G�G� = ⋃
t∈+n

Pn�th�G�G���

where +n = P−1n �e� ∩H. As +n lies in the center of H, we have

�G�G� = ⋃
t∈+n

.th��G�G���

Let µ be a Haar measure on �G�G�. As +n is a finite set (cf. Lemma 2.3),
the above equality says that there exists t0 ∈ +n such that

µ�.t0h
��G�G��� > 0�

By the claim above and Sard’s theorem (cf. [B, p. 531]), it follows that t0h
is Pn-regular. It is easy to see that �t0h�n = hn. This completes the proof of
the theorem.

The above theorem is in fact a part of the Theorem A. To prove the
other parts we start with the following lemma.

Lemma 3.3. Let G be a connected Lie group. Let N be a connected nor-
mal abelian Lie subgroup. Fixing h ∈ G, consider the map .h� N → N ,
defined by .h�x� = h−n�hx�n. Then .h ◦ exp = exp ◦ Fh, where Fh� L�N� →
L�N� is defined by Fh = Id +Ad�h−1� + · · · +Ad�h−1�n−1.

Furthermore, if h is Pn-regular then .h is surjective.

Proof. Let X ∈ L�N�. Then we have h exp�Ad�h−1�X� = exp�X�h.
Since N is a normal abelian subgroup, the elements exp�Ad�h−i��X��, for
i = 1� � � � � n, commute with each other. Thus we have

hn exp��Id +Ad�h−1� + · · · +Ad�h−1�n−1�X� = �h exp�X��n�
This proves the first assertion of the lemma.
To prove the other assertion we first note that exp � L�N� → N is a

surjection. As h is Pn-regular, Fh is invertible. Now this together with the
preceding assertion implies that .h is surjective.

Lemma 3.4. Let G be a connected solvable Lie group and N be a con-
nected abelian normal Lie subgroup. Assume that N does not have any non-
trivial connected Lie subgroup which is normal in G. Let h ∈ G be such that
h �∈ ZG�N�. Then for any u ∈ N , there exists v ∈ N , such that vhv−1 = hu.

Proof. Consider the operator Id−Ad�h� on L�G�. Let ψ be the restric-
tion of this operator to L�N�. Since h �∈ ZG�N�, ψ is nonzero. Also, since
N has no nontrivial connected Lie subgroup which is normal in G, the Ad-
action of G on L�N� is irreducible. As G is solvable, this implies that the
action of �G�G� is trivial. This yields that the kernel of ψ is G invariant
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under the Ad-action. As ψ is nonzero, by the irreducibility of the action
kerψ is trivial. Hence ψ is invertible.
Now let u ∈ N . Then there exists X0 ∈ L�N� such that exp�X0� = u. As

ψ is invertible, there exists Y0 ∈ L�N�, such that �Id − Ad�h���Y0� = X0.
As N is abelian, we have

exp�X0� = exp�Y0 −Ad�h��Y0�� = �exp�Y0��h�exp�−Y0��h−1�
We set v = exp�Y0�. Clearly, v ∈ N and u = vhv−1h−1. This completes the
proof of the lemma.

Proposition 3.5. Let G be a solvable connected Lie group and let N be
a connected normal Lie subgroup. Let h ∈ G be Pn-regular. Then, the map
.h� N → N is surjective.

Proof. We prove the proposition by induction on the dimension of N .
In the case of dimension 1, the proposition follows from Lemma 3.3. We
now assume that the proposition holds for connected normal Lie subgroups
with dimension strictly less than the dimension of N .
First suppose that G is simply connected. Let N0 = N and N0 ⊃ N1 ⊃ · · ·

Nm ⊃ Nm+1 = �e� be connected normal subgroups of G such that for each
i, Ni+1 is the maximal connected proper normal subgroup of Ni. Then
�N�Nm� = �e� and Nm is abelian. As G is simply connected, Nm is a closed
subgroup of G (cf. [He, p. 152; OV, p. 52]). This enables us to define a
Lie group structure on G/Nm. Now as h is Pn-regular, hNm is Pn-regular
in G/Nm. As dim�Nm� > 0 and dim�N/Nm� < dim�N�, by the induction
hypothesis the map .hNm

� N/Nm → N/Nm is surjective. In other words,


h−n�hx�nNm � x ∈ N� = 
yNm � y ∈ N��
Thus, for any y ∈ N , there exist z ∈ Nm and x ∈ N such that y =
h−n�hx�nz. As Nm is an abelian normal subgroup of G, by Lemma 3.3
there exists u ∈ Nm such that z = h−n�hu�n. Thus,

y = h−n�hx�nz = h−n�hx�nh−n�hu�n� �∗�
Now if h ∈ ZG�Nm�, then as u ∈ Nm we have y = h−n�hx�nun. Since
h ∈ ZG�Nm� and N ⊂ ZG�Nm�, we have y = h−n�hxu�n.
If h �∈ ZG�Nm�, then by Lemma 3.4 there exists v ∈ Nm such that vhv−1 =

hu. Again, as x ∈ N and N is normal, we have �hx�n = w̃hn, for some
w̃ ∈ N . Since N = exp�L�N��, we have �hx�n = wnhn, for some w ∈ N .
Now from the Eq. (∗), we have

y = h−n�hx�nh−n�hu�n = h−nwnhnh−n�vhv−1�n�
Since N ⊂ ZG�Nm�, v ∈ Nm, and w ∈ N , we have

y = h−nwn�vhnv−l� = h−n�wnv�hnv−1 = h−nvwnhnv−1�
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As �hx�n = wnhn, we have

y = h−nv�hx�nv−1 = h−n�vhxv−1�n�
For v0 = h−1vh ∈ Nm, we have

y = h−n�hv0xv−1�n = h−n�hz�n�
where z = v0xv

−1 ∈ N . Thus when G is simply connected and h is Pn-
regular, for any y ∈ N there exists z ∈ N such that y = h−n�hz�n; i.e., the
map .h is surjective.
We now consider a general connected solvable Lie group G. Let G̃

be the universal covering group of G and π� G̃ → G be the covering
homomorphism. Let h ∈ G be Pn-regular. If h̃ ∈ G̃ and h = π�h̃�, then
Spec Ad�h̃� = Spec Ad�h�. Hence h is Pn-regular if and only if h̃ is Pn-
regular. Let Ñ be the connected normal nilpotent Lie subgroup such that
π�Ñ� = N . We choose an h̃ such that π�h̃� = h. By the special case con-
sidered above, the map .h̃� Ñ → Ñ is surjective. Since π ◦ .h̃ = .h ◦ π
and π is surjective, it follows that .h is surjective.

In the following paragraph we collect some facts which will be used in
the proof of Theorem 3.6.
Let G be a connected Lie group and H be a nilpotent Lie subgroup of G.

Let � = L�G� and � = L�H�. Consider the weight space decomposition of
the complexification �� = �⊗� � with respect to �� = �⊗� � (cf. [K, pp.
85–89]). Let ! = 
λ1� λ2� � � � � λm� be the set of weights. Let k� �� → ��
denote complex conjugation. Let �λ� be the weight space corresponding to
the weight λ. We recall the following facts:

1. If x ∈ �λ�, then k�x� ∈ �λ̄◦k� , where λ̄ denotes the complex conju-
gate of λ. Hence for any λ ∈ !, λ̄ ◦ k ∈ !.

2. �Ad�h� ⊗� Id��λ� ⊂ �λ�, for all h ∈ H and for all λ ∈ !. We also
have �Ad�h� ⊗� Id� ◦ k = k ◦ �Ad�h� ⊗� Id�, for all h ∈ H.

3. For each i ∈ 
1� � � � �m�, there is a group homomorphism µi� H →
�∗ and a basis for �λi� such that, for all h ∈ H, the matrix representation of
�Ad�h� ⊗� Id��

�
λi
�

, with respect to the same basis, is of the form




µi�h�
� � � ∗

µi�h�
0

� � �

µi�h�



�

for all h ∈ H. Hence Spec Ad�h� = 
1� µ1�h�� � � � � µm�h��, for every h ∈
H. It is easy to see that if λ̄i ◦ k = λl, then µ̄i = µl.
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4. For h ∈ H such that �µl�h��n = 1, for some l ∈ 
1� � � � �m�, there
exists xl ∈ ��λl� + �

λ̄l◦k
� � ∩ �, such that xl �= 0 and Ad�hn��xl� = xl.

Theorem 3.6. Let G be a solvable connected Lie group and H be a Car-
tan subgroup. Assume that the map Pn� ZH�X� → ZH�X� is surjective for all
ad-nilpotent X ∈ L�G�. Then, for every h ∈ H, there exists h̃ ∈ H, such that
h̃ is Pn-regular and Pn�h̃� = h.

Proof. In this proof we follow the same notation as in the above para-
graph. Set S = 
µ1� � � � � µm�.
Since H is a connected nilpotent Lie group, there exists u ∈ H such that

h = un. We note that Spec Ad�u� = 
1� µ1�u�� � � � � µm�u��. Let S̃ = 
µ ∈
S � �µ�u��n = 1�. We denote the elements of S̃ by µi1

� � � � � µiq
.

By (4) of the above paragraph, for every l ∈ 
1� � � � � q� there exists xil ∈
��λil� + �

λ̄il ◦k
� � ∩ �, such that xil �= 0 and Ad�un��xil� = xil . Set X =∑q

l=1 xil .
Clearly, Ad�un��X� = X and X is ad-nilpotent. Hence, un ∈ ZH�X�. By
the hypothesis of the theorem, there exists v ∈ ZH�X�, such that un = vn.
As H is connected nilpotent, by Corollary 2.2, u and v commute. Hence
�uv−1�n = e. Let Cn = 
z ∈ �∗ � zn = 1�. Then for µ ∈ S, µ�u� ∈ Cn if and
only if µ�v� ∈ Cn. We also note that as v ∈ ZH�X�, we have Ad�v��X� = X

and, hence,
∑q

l=1 Ad�v��xil� =
∑q

l=1 xil . As �
λi1
� � � � � � �

λiq
� are linearly inde-

pendent subspaces, Ad�v��xil� = xil , for every l ∈ 
1� � � � � q�.
To prove the theorem, it is enough to show that v is Pn-regular. Suppose

v is not Pn-regular. As Spec Ad�v� = 
1� µ1�v�� � � � � µm�v��, there exists
µ ∈ S such that µ�v� �= 1 but �µ�v��n = 1. Clearly, µ�u� ∈ Cn. Hence µ ∈ S̃
or, equivalently, µ = µir

, for some r ∈ 
1� � � � � q�. As xir ∈ �
λir
� + �

λ̄ir ◦k
� , we

have

�Ad�v� − µir
�v��α�Ad�v� − µ̄ir

�v��βxir = 0�

for some positive integers α and β. But �Ad�v� − Id��xir � = 0. Now as
xir �= 0, we have µir

�v� = 1. Hence µ�v� = 1, which is a contradiction. This
completes the proof of the theorem.

We now complete the proof of Theorem A.

Proof of Theorem A. The implications (2⇒ 3) and (3⇒ 1) are obvious
and (1 ⇒ 2) follows from Theorem 3.2. Hence the first three statements
are equivalent. The proof will be completed by showing that (5 ⇒ 3) and
(2⇒ 4).

(5⇒ 3). Let g ∈ G. As H is connected nilpotent and G = H�G�G�,
we have g = hnx, for some h ∈ H and x ∈ �G�G�. Now by Theorem 3.6,
Statement (4) of Theorem A implies that hn = h̃n for some Pn-regular
h̃ ∈ H. As h̃ is Pn-regular and �G�G� is a normal nilpotent Lie subgroup,
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by Proposition 3.5, there exists y ∈ �G�G� such that x = h̃−n�h̃y�n. Thus
we have

g = hnx = hnh̃−n�h̃y�n = �h̃y�n�

As y ∈ �G�G�, we have that Ad�y� is a unipotent operator and hence h̃y is
Pn-regular. Statement (3) then holds for g̃ = h̃y.

(2 ⇒ 4). Let g ∈ ZH�X�. By the hypothesis, there exists h ∈ H such
that h is Pn-regular and g = hn. Since g ∈ ZH�X�, Ad�hn��X� = X. By
Lemma 2.2, as h is Pn-regular, we have Ad�h��X� = X. This implies that
h ∈ ZH�X�, which proves (2⇒ 4).

We now show that Theorem A generalises the following result of Wüstner
(cf. [W, Theorem 3.17]).

Corollary 3.7 (Wüstner [W]). Let G be a connected solvable Lie group
and H a Cartan subgroup. Then the following conditions are equivalent.

1. exp � L�G� → G is surjective.

2. The centralizer ZH�X� is connected, for any X ∈ L�G�.
3. The centralizer ZH�X� is connected for any ad-nilpotent element

X ∈ L�G�.
Proof. In the papers [HL] and [M] it is shown that a connected Lie

group G is exponential if and only if Pn� G→ G is surjective for all positive
integers n. In the paper [HL] it is proved that any closed divisible subgroup
of a connected Lie group is connected. By definition, a group G is divisible
if and only if Pn� G→ G is surjective for all positive integers n. In view of
these results and Theorem A, the proof of the corollary is immediate.

Remark 3.8. In [W] Wüstner also describes other conditions equivalent
to surjectivity of the exponential map. Conditions in Theorem A involving
Pn-regular points are analogous to his conditions with exp-regular points.

We note also the following consequence of Theorem A.

Corollary 3.9. For a connected solvable Lie group G, if Pn� G→ G is
surjective then Pn� Z�G� → Z�G� is also surjective.

Proof. For a proof, we start with an arbitrary g ∈ Z�G�. Since Pn� G→
G is surjective, by Theorem A, there is a g̃ ∈ G such that g̃ is Pn-regular and
g̃n = g. As g̃n ∈ Z�G�, we have that Ad�g̃n��X� = X, for all X ∈ L�G�. As
g̃ is Pn-regular, by Lemma 2.2, Ad�g̃��X� = X. This is equivalent to saying
that g̃ ∈ Z�G�.
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We next show how the surjectivity of Pn (for some n ≥ 2) is related to
some properties of the index of each element of a connected Lie group.
Let G be a connected Lie group. An element g ∈ G is said to have finite
index if there exists an integer r such that gr is contained in the image of
the exponential map, and the smallest positive integer for which this holds
is called the index of g; if such an integer does not exist we say that g has
infinite index. The index of g in G will be denoted by indG�g�.
Lemma 3.10. Let G be a connected Lie group such that the power map

Pn� G→ G is surjective for some integer n ≥ 2. Then indG�g� is finite for all
g ∈ G.

Proof. In [M] it is proved that if for g ∈ G, the set 
x � xnl = g� is
nonempty for each positive integer l, then the order of the element gZG�g�0
in the quotient group ZG�g�/ZG�g�0 is finite. Since the condition is satisfied
when Pn is surjective it follows that for any g ∈ G there is a positive integer
r such that gr ∈ ZG�g�0. It is known that in a connected Lie group central
elements lie in the image of the exponential map (cf. [Ho, p. 189, Theorem
1.2]). Hence for any g ∈ G we have gr ∈ exp�L�G�� for some r and hence
indG�g� is finite.
Theorem A and Lemma 3.10 together imply the following.

Corollary 3.11. Let G be a connected solvable Lie group. If the power
map Pn, for some integer n ≥ 2, satisfies any one of the five conditions in
Theorem A then indG�g� is finite for all g ∈ G.

Remark 3.12. In general the index of every element in a connected solv-
able Lie group need not be finite. We give an example (see Example 5.7)
of a simply connected solvable Lie group for which the exponential map is
not surjective and the index of every element is either 1 or infinity.

4. SURJECTIVITY OF Pn IN SEMIDIRECT PRODUCTS

In this section we prove Theorems B and B′ stated in the Introduction;
deduction of Corollary B from Theorem B is straightforward and is left to
the reader.
We need the following lemma in the proof of Theorem B. The proof is

contained in the proof of Theorem 6 of [MW], but for the sake of com-
pleteness we include it here.

Lemma 4.1. Let G be a connected solvable Lie group, which is a semidi-
rect product of a (compact) torus T and a (normal) simply connected solv-
able Lie group R such that Spec Ad�x� ∩ 
λ ∈ � � �λ� = 1� λ �= 1� = �,
for all x ∈ R. Let H be a Cartan subgroup of G containing T . Then for any
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ad-nilpotent element X ∈ L�G�, ZH∩R�X� is a connected Lie subgroup and
ZH�X� is a direct product of the subgroups ZT �X� and ZH∩R�X�.
Proof. As T is central in H, H is a direct product of the subgroups

T and H ∩ R. In particular, H ∩ R is connected. Let h ∈ ZH�X�. As the
subgroup H is a direct product of subgroups T and H ∩ R and as H ∩ R
is connected and nilpotent, there exist t ∈ T and Y ∈ L�H ∩ R�, such
that h = t exp�Y �. Clearly, X = Ad�h��X� = Ad�t exp�Y ���X�. Hence
Ad�t−1��X� = Ad�exp�Y ���X�.
Consider the weight space decomposition of L�G� ⊗� � with respect to

the Cartan subalgebra L�H� ⊗� �. Let ! denote the set of weights and �λ

denote the weight space for the weight λ. We identify L�G� in the canon-
ical way, as a real Lie subalgebra of L�G� ⊗� �. For each λ ∈ !, there
exist Xλ ∈ �λ such that X = ∑

λ∈! Xλ. Set S = 
λ ∈ ! � Xλ �= 0�. Note
that for each λ ∈ ! the subspace �λ is H-invariant. Hence Ad�t−1��Xλ� =
Ad�exp�Y ���Xλ� for all λ ∈ S. Note that Ad�exp�Y �� − exp�λ�Y ��Id and
Ad�t−1� are respectively nilpotent and semisimple operators on �λ. As the
two operators commute, it follows that Ad�t−1��Xλ� = exp�λ�Y ��Xλ, for
all λ ∈ S. As T is a compact group, � exp�λ�Y ��� = 1, for λ ∈ S. But
exp�λ�Y �� ∈ Spec Ad�exp�Y ��. Hence by the hypothesis of the lemma,
exp�λ�Y �� = 1, for all λ ∈ S. Thus Ad�t−1��Xλ� = Xλ, for all λ ∈ S. Hence
Ad�t−1��X� = X = Ad�exp�Y ���X�. Thus we have proved that ZH�X�
is the product of ZT �X� and ZH∩R�X�. As H is a direct product of the
subgroups T and H ∩ R, the product of ZT �X� and ZH∩R�X� is a direct
product.
We now prove that ZH∩R�X� is a connected subgroup. Let w ∈ ZH∩R�X�.

As H ∩ R is a connected and nilpotent subgroup, w = exp�W �, for some
W ∈ L�H ∩ R�. Clearly, Ad�exp�W ���X� = X. Hence, for any positive
integer n we have Ad�exp�W/n�n��X� = X. It follows from the hypothesis
of the lemma that exp�W/n� is Pn-regular for all n. Thus from Lemma 2.2
we conclude that Ad�exp�W/n���X� = X. Hence Ad�exp�rW ���X� = X,
for all r ∈ �. By continuity it follows that Ad�exp�s W ���X� = X, for all
s ∈ �. Hence exp�s W � ∈ ZH∩R�X�, for all s ∈ �. This shows that w lies in
the connected component of ZH∩R�X�, and the proof is complete.

Proof of Theorem B. From Dixmier’s theorem (see Theorem 5.1) it fol-
lows that exp�L�R�� = R if and only if Spec Ad�x� ∩ 
λ ∈ � � �λ� = 1� λ �=
1� = �, for all x ∈ R. As T is abelian with all its elements being Ad-
semisimple, there exists a Cartan subgroup H of G such that T ⊂ H (cf.
[MW]). By the previous lemma, for any ad-nilpotent element X ∈ L�G�,
ZH�X� is a direct product of ZT �X� and ZH∩R�X�, where ZH∩R�X� is
a connected nilpotent Lie group. As T is abelian, ZT �X� = ZT �Y �, for
some Y ∈ L�R�. Also note that Pn� ZT �Y � → ZT �Y � is surjective if and
only if n is coprime to the number of connected components of ZT �Y �.
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Thus Pn� ZH�X� → ZH�X� is surjective if and only if n is coprime to the
number of connected components of ZT �X�.
We now appeal to Theorem A to complete the proof of the first part of

Theorem B.
To prove the second part consider the action of T on L�G� ⊗� � induced

by the adjoint action of T on L�G�. Let χ1� � � � � χl be l distinct characters
on T and V1� � � � � Vl be T invariant vector subspaces of L�G� ⊗� � such
that L�G� ⊗� � = V1 ⊕ · · · ⊕ Vl and �Ad�t� ⊗� Id��v� = χi�t�v, for all
t ∈ T and v ∈ Vi, for 1 ≤ i ≤ l. Let πi� L�G� ⊗� � → Vi be the canon-
ical i-th projection map. For a subset S of the set 
1� � � � � l�, define the
integer mS to be number of connected components of the closed subgroup⋂

i∈S ker�χi� of T . Let mG be the least common multiple of integers mS for
all subsets S of the set 
1� � � � � l�. We claim that the integer mG is the inte-
ger required in Theorem B. Let n be an integer coprime to mG. Clearly,
Pn�

⋂
i∈S ker�χi� →

⋂
i∈S ker�χi� is surjective for all subsets S of the set


1� � � � � l�. Let X ∈ L�G� be ad-nilpotent. We identify X as an element of
L�G� ⊗� �. Set S′ = 
i � πi�X� �= 0�. Clearly ZT �X� =

⋂
i∈S′ ker�χi�. We

now use the first part of Theorem B to complete the proof.

We now prove Theorem B′.

Proof of Theorem B′. In the proof we follow the same notations as
defined before the statement of the theorem in Section 1. Let S be
the set of all nontrivial characters on T that appear in the adjoint
representation ρ� T → GL�L�R�� (see Section 1). Note that for any
X ∈ L�R� there exists a subset SX of S such that ZT �X� =

⋂
χ∈SX kerχ.

Let dimT = d. We identify the character group of T with �d, as in
Section 1. For any finitely generated abelian group, we denote its
torsion part by Tor(.). We note that, under the above identification,⋂

χ∈S′ kerχ/�
⋂

χ∈S′ kerχ�0 is isomorphic to the group Tor��d/
∑

χ∈S′ �χ�,
for any subset S′ of the character group of T . It is easy to see that the
prime factors of the integer �⋂χ∈SX kerχ/�

⋂
χ∈SX kerχ�0� are the same

as the prime factors of m�SX� (notation as in Section 1); see Theorem
3.9 of [J] for a more general result in this respect. We also note that
�ZT �X�/ZT �X�0� = �⋂χ∈SX kerχ/�

⋂
χ∈SX kerχ�0�. Thus an integer n is

coprime to mρ if and only if n is coprime to �ZT �X�/ZT �X�0�, for all
X ∈ L�R�. We now appeal to Theorem B to complete the proof.

5. SIMPLY-CONNECTED SOLVABLE GROUPS

In this section we prove Theorem C (see Section 1), which is related to
the following theorem of Dixmier (cf. [D, DH]) for the exponential maps
of simply connected solvable Lie groups.
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Theorem 5.1 (Dixmier [D]). Let G be a simply connected solvable Lie
group. Then the following conditions are equivalent.

1. exp � L�G� → G is surjective.

2. exp � L�G� → G is injective.

3. exp � L�G� → G is a diffeomorphism.

4. Spec Ad�g� ∩ 
λ ∈ � � �λ� = 1� λ �= 1� = �, for all g ∈ G.

5. Spec ad�X� ∩ i� = 
0�, for all X ∈ L�G�.
We begin with the following lemma.

Lemma 5.2. Let G be a connected Lie group. If Pn is injective for some
n ≥ 2 then exp: L�G� → G is injective.

Proof. It is easy to show that the injectivity of Pn implies the injectivity
of Pnk for any natural number k. As exp � L�G� → G is a local diffeomor-
phism at 0 ∈ L�G�, there is a neighbourhood U of 0 in L�G� such that exp
is injective on U .
Let X�Y ∈ L�G� be such that exp�X� = exp�Y �. Then �exp�X/nk��nk =

�exp�Y/nk��nk , for all natural numbers k. As Pnk is injective, we have that
exp�X/nk� = exp�Y/nk�, for all natural numbers k. As n ≥ 2 we can choose
k large enough, such that both X/nk and Y/nk fall in the neighbourhood
U . As exp is injective in this neighbourhood, we have that X/nk = Y/nk

and hence X = Y . Thus the proof is completed.

Lemma 5.3. Let G be a simply connected solvable Lie group. Suppose
Pn�g� = e, for some g ∈ G. Then g = e.

Proof. In a simply connected solvable Lie group all the maximal com-
pact subgroups are trivial. In particular, there are no nontrivial finite sub-
groups. Hence gn = e implies g = e.

We shall use Theorem A to prove the following lemma.

Lemma 5.4. Let G be a simply connected solvable Lie group. If Pn� G→
G is surjective then g is Pn-regular for all g ∈ G.

Proof. Let g ∈ G. As Pn is surjective, by Theorem A there exist Pn-
regular x ∈ G such that xn = gn. This implies that �gx−1�n ∈ �G�G�. As
G/�G�G� is simply connected (cf. [OV, p. 52]), by Lemma 5.3 we have
g = xh, for some h ∈ �G�G�. As G is solvable and Ad�h� is a unipotent
operator of L�G�, by Lie’s theorem we have Spec Ad�g� = Spec Ad�x�.
Since x is Pn-regular, it follows that g is Pn-regular.

Lemma 5.5. Let G be a simply connected solvable Lie group. If Pn� G→
G is surjective then it is also injective.
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We give two proofs of this lemma. The first one does not use Theorem
5.1. The second proof uses the last condition of Theorem 5.1.

Proof 1. Consider the set S defined by S = 
x ∈ G � �P−1n 
x�� = 1�. We
claim that exp�L�G�� ⊂ S. To prove the claim we fix x in exp�L�G��. Let
x = exp�X�, where X ∈ L�G�. Let y ∈ G be such that yn = x. Clearly,
yn = �exp�X/n��n. By Lemma 5.4 we know that y is Pn-regular. Hence
by Lemma 2.2 we have that exp�X/n� and y commute with each other.
Hence �y−1 exp�X/n��n = e, and by Lemma 5.3 we have y = exp�X/n�.
This proves the claim.
As the set exp�L�G�� is dense in G (cf. [HM]), it is enough to prove that

the set S, defined above, is closed in G.
Let y be a member of the boundary ∂S, of the set S. Let us suppose that

�P−1n 
y�� > 1. This implies that there exist two points x1 and x2 in G such
that x1 �= x2 and xn1 = y = xn2 . By Lemma 5.4, x1 and x2 are Pn-regular.
Hence, by the inverse function theorem, there exist neighbourhoods V1,
V2, and U of x1� x2, and y, respectively, such that Pn�V1� = U = Pn�V2�,
V1 ∩ V2 = �, and Pn� V1 → U , Pn� V2 → U are diffeomorphisms. As y ∈ ∂S,
there is a point z ∈ U , such that z lies in S. But as z ∈ U , there are w1 ∈ V1
and w2 ∈ V2 such that wn

1 = z = wn
2 . As V1 ∩ V2 = �, we have w1 �= w2.

This says �P−1n 
z�� > 1, which is a contradiction to the fact that z ∈ S. This
completes the proof.

Proof 2. By Lemma 5.4, the surjectivity of Pn implies that g is Pn-regular
for all g ∈ G. We claim that Spec ad�X� ∩ i� = 
0�, for all X ∈ L�G�. If
possible suppose that there exists X ∈ L�G� such that Spec ad�X� ∩ i� �=

0�. This implies that 2πi/n ∈ Spec ad�rX�, for some r ∈ �. This implies
that exp�2πi/n� ∈ Spec Ad�exp�rX��. Thus exp�rX� is not Pn-regular. This
is a contradiction. Hence the claim is proved. Now by Theorem 5.1, exp:
L�G� → G is a diffeomorphism. Hence Pn� G→ G is injective.

Proof of Theorem C. The implication 4⇒ 1 is obvious. �1⇒ 3� follows
from the Lemma 5.5, and �3⇒ 4� follows from Lemma 5.2 and the theorem
of Dixmier (see Theorem 5.1). The assertion 2 ⇒ 1 is trivial and �1⇒ 2�
follows from Lemmas 5.2 and 5.4.

Corollary 5.6. Let G̃ be a simply connected solvable Lie group. Sup-
pose that the map exp�L�G̃� → G̃ is not surjective and Pn� Z�G̃� → Z�G̃� is
surjective for some integer n ≥ 2. Let G be any connected Lie group with G̃ as
its universal covering group. Then Pn�G→ G is not surjective, and in particular
exp�L�G� → G is not surjective.

Proof. Suppose that Pn� G → G is surjective. Let π� G̃ → G be the
covering homomorphism. As Pn� G→ G is surjective, for any g̃ ∈ G̃ there
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exists g ∈ G̃ such that π�g̃� = π�gn�. As Pn� Z�G̃� → Z�G̃� is surjec-
tive and kerπ ⊂ Z�G̃�, there exists h ∈ Z�G̃� such that g̃ = gnhn =
�gh�n. Therefore Pn� G̃→ G̃ is surjective. Hence, by Theorem C, the map
exp�L�G̃� → G̃ is surjective. This is a contradiction to the assumption.

Example 5.7. We give an example of a simply connected solvable Lie
group G, which is not exponential (hence Pn is not surjective, for all n ≥ 2),
and where indG�g� = 1 or∞ for all g ∈ G. Before we give the example, we
observe the following general fact. Let G be a simply connected solvable
Lie group. We denote by Regn�G� the set of Pn-regular points of G. If
G− exp�L�G�� ⊂ ⋂∞

n=2 Regn�G� then indG�g� = 1 or ∞ for all g ∈ G.

To prove this we start with an element g ∈ G such that indG�g� �= 1.
Clearly, g ∈ ⋂∞

n=2Regn�G�. If possible suppose that indG�g� < ∞. This is
the same as saying that gr ∈ exp�L�G��, for some integer r ≥ 2. Hence
gr = exp�X�, for some X ∈ L�G�. As g ∈ Regr�G�, by Lemma 2.2, it
follows that g commutes with exp�tX�, for all t ∈ �. Since G is assumed
to be simply connected solvable, we apply Lemma 5.3 to conclude that
g ∈ exp�L�G��. This is a contradiction. Thus indG�g� = ∞.
Now consider the group homomorphism ρ� � → Aut����, given by

ρt�z� = �exp�2πit��z, for all t ∈ � and for z ∈ �. Consider the simply
connected solvable group G given by the semidirect product G = ��ρ �.
It is easy to see that G− exp�L�G�� = 
�z� t� ∈ G � z �= 0� t ∈ �� t �= 0� and
Regn�G� = 
�z� t� � exp�2πit� is not a nontrivial nth root of unity�. Thus
we have G− exp�L�G�� ⊂ ⋂∞

n=2Regn�G�. Applying the above general fact,
we conclude that indG�g� = 1 or ∞, for all g ∈ G.
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