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Abstract. In this paper we study the question of surjectivity of the power maps
g 7! gn on p-adic algebraic groups. We give a complete solution of this question in terms
of the orders of certain compact analytic subgroups. We next study the p-adic one para-
meter subgroups of p-adic algebraic groups and find conditions, when the union of all
such one parameter groups fills up the entire group. We show that there is a close relation
between the above two problems. We also obtain similar results on groups defined over
rational numbers.

1. Introduction and statements of the main results

Let K denote either Qp or R. Let G be an analytic group over K. A one parameter

group f in G is the image of a continuous (hence analytic) group homomorphism
f : K! G. The union of all such one parameter groups in G is denoted by EKðGÞ.
Note that if K ¼ R then ERðGÞ ¼ exp

�
LðGÞ

�
, where LðGÞ is the Lie algebra of G and

exp : LðGÞ ! G is the usual exponential map. In view of this, an analytic group G over K
is said to be exponential if G ¼ EKðGÞ. Let Pn denote the n-th power map defined by
PnðgÞ ¼ gn for g A G. It is well known, through the work of M. McCrudden, that a real
Lie group is exponential if and only if all the n-th power maps are surjective; for more de-
tails the reader is referred to the paper by McCrudden [M] and Section 5 of this article,
especially to Theorem 5.2. A considerable amount of work has been done on the so called
‘‘exponentiality problem’’ on real groups, the main theme of which is finding a criterion to
decide which real Lie groups are exponential; see [Dj-H] for a survey. We also recall that
many real Lie groups fail to be exponential. Thus in view of McCrudden’s work it is now
natural to ask for a characterization of real Lie groups for which an individual n-th power
map is surjective. On the other hand an answer to this question on the power maps on real
Lie groups will have immediate implications on the exponentiality problem of such groups.

To put the present work in proper perspective we briefly mention the work that has
been done on the n-th power maps and its ramifications to the exponentiality problem. In
[Ch1] we have given a necessary and su‰cient condition for the surjectivity of the n-th
power maps for connected solvable real Lie groups in terms of Cartan subgroups. The the-
orem has many applications which includes strengthening of Dixmier’s characterization of



solvable simply connected real Lie groups which are exponential. In [Ch2] we have given a
characterization for the surjectivity of the n-th power maps for general connected algebraic
groups over algebraically closed fields of characteristic zero in terms of a maximal torus
and its weights, which in turn yields a solution of the exponentiality problem, for this class
of groups. As another application we have explicitly determined, for all simple algebraic
groups over algebraically closed fields of characteristic zero, the set of integers n for which
the n-th power map is surjective. In [Ch3] the author and in [St] R. Steinberg independently
extended some of the results of [Ch2] which leads to a complete classification of exponents
n for which Pn is surjective for semisimple groups over algebraically closed fields of arbi-
trary characteristic. More recently, in [Ch4] we have studied n-th power maps of the real
points of algebraic groups defined over R and in [Ch5] we have obtained results for groups,
which are not necessarily (Zariski) connected.

Although a criterion to decide which real Lie groups are exponential or which real Lie
groups admit surjective n-th power map, is still not available, a lot of work has been done
in this direction. But there is hardly any literature on the analogous questions on p-adic
analytic groups. In this paper we contribute to the questions regarding Pn, exponentiality
and the relation between them, on general p-adic algebraic groups, proving a characteriza-
tion of surjectivity of Pn and exponentiality on such groups (see Theorems 1.2, 1.4, 1.5 and
Corollary 1.7). See also Theorem 1.1, Corollaries 1.3, 1.6 and Section 6 for other results.

We now describe the main results of this paper.

An algebraic group G over a field K (not necessarily algebraically closed field) is said
to be K-isotropic if it contains a K-split torus of positive dimension (see [B]); otherwise G is
called K-anisotropic. If G is defined over K then the subgroup of K-rational points is de-
noted by GðKÞ. The following theorem is our first main result and it deals with Qp-isotropic
algebraic groups. The technique of our proof is inspired by M. Ratner’s proof of Theorem
5.1 (see [R1], Theorem 1.1, and [R2], Theorem 3.3), which was proved originally by A. Lu-
botzky and G. Prasad.

Theorem 1.1. Let G be an algebraic group defined over Qp. If G is Qp-isotropic then

for any n3 1 the map Pn : GðQpÞ ! GðQpÞ is not surjective.

The next theorem is a characterization result on the surjectivity of Pn. We need the
notion of the order Ord

�
HðQpÞ

�
associated to an Qp-anisotropic reductive group H; the

reader is referred to Section 2.

Theorem 1.2. Let G be an algebraic group over Qp and RuðGÞ be the unipotent radical

of G. Let n3 1 be an integer. Then the following are equivalent:

(1) Pn : GðQpÞ ! GðQpÞ is surjective.

(2) Pn : G=RuðGÞðQpÞ ! G=RuðGÞðQpÞ is surjective.

(3) G=RuðGÞ is Qp-anisotropic (hence G=RuðGÞðQpÞ is compact) and n is coprime to

Ord
�
G=RuðGÞðQpÞ

�
.

Consequently, Pp : GðQpÞ ! GðQpÞ is surjective if and only if G=RuðGÞðQpÞ is a finite

group and Ord
�
G=RuðGÞðQpÞ

�
is coprime to p.
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The above theorem says that if an algebraic group over Qp admits a Qp-anisotropic
Levi subgroup then the Qp-anisotropic Levi subgroup decides which n-th power maps are
surjective for the entire group of Qp-rational points. Thus the question of surjectivity of
n-th power maps for the group of Qp-rational points of a general connected algebraic group
over Qp reduces to looking at the same question for groups that are Qp-anisotropic and
reductive. In other words the unipotent radical of a Qp-algebraic group does not play any
role. It may be noted that when the underlying groups are R-points of groups defined over
R or algebraic groups over algebraically closed fields of characteristic zero then the unipo-
tent radical does play an important role in deciding which n-th power maps are surjective,
exhibiting a striking di¤erence from the p-adic case (see [Ch2], [Ch4]).

As above, the following corollary again shows a surprising di¤erence with the analo-
gous situation in the case of algebraic groups defined over R or algebraic groups over alge-
braically closed fields of characteristic zero (compare with the results of [Ch2], [Ch4]).

Corollary 1.3. Let G be an algebraic group over Qp. Let H be an algebraic sub-

group over Qp. Let n be an integer. Suppose that Pn : GðQpÞ ! GðQpÞ is surjective. Then

Pn : HðQpÞ ! HðQpÞ is surjective.

In view of Theorem 1.2 we see that the question of surjectivity of Pn on the groups of
Qp-rational points of algebraic groups over Qp finally boils down to finding out the orders
of groups of Qp-rational points of Qp-anisotropic reductive groups. We use the well known
classification of absolutely simple simply connected groups over non-archimedean local
fields of characteristic zero to obtain results on the orders of Qp-rational points of Qp-
anisotropic semisimple groups; see Propositions 4.4, 4.6 and Corollary 4.7. We associate
integers MðGÞ and NðGÞ to a Qp-anisotropic semisimple group G using certain data arising
in the classification of such groups in terms of central division algebras; see Definition 4.11.
In addition if G is simply connected, then it may be noted that prime divisors of the integer
MðGÞ and the super natural number Ord

�
GðQpÞ

�
are the same. The following theorem

may be regarded as a companion of Theorem 1.2. The first part of the following result com-
pletes our understanding of the surjectivity of n-th power map for the class of p-adic alge-
braic groups which admit simply connected semisimple Levi subgroups.

Theorem 1.4. Let G be a connected algebraic group over Qp. Let n3 1 be an integer.

Then we have the following:

(1) If G=RuðGÞ is semisimple simply connected then Pn : GðQpÞ ! GðQpÞ is surjective

if and only if G=RuðGÞ is Qp-anisotropic and n is coprime to M
�
G=RuðGÞ

�
.

(2) If G=RuðGÞ is semisimple (not necessarily simply connected ) and Qp-anisotropic

then Pn : GðQpÞ ! GðQpÞ is surjective if n is coprime to N
�
G=RuðGÞ

�
.

See Example 4.12 for an illustration on the computation of MðGÞ.

Our final results are on the question of exponentiality for p-adic algebraic groups.
The result of Lubotzky and Prasad (see Theorem 5.1), which inspired the proof of Theorem
1.1, implies that if G is an algebraic group over Qp then GðQpÞ is exponential if and only
if G is unipotent. In the case of a real Lie group G, M. McCrudden proved that

ERðGÞ ¼
Ty

n¼2

PnðGÞ (see [M] and Theorem 5.2) which in turn implies that G is exponential if
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and only if Pn : G ! G is surjective for all n. The following theorem can be thought of as a
generalization, of the above result on p-adic algebraic groups due to Lubotzky and Prasad.
On the other hand it also can be thought of as a p-adic analogue of the latter result of
McCrudden. If G is an algebraic group, we denote the variety of unipotent elements of G

by UG.

Theorem 1.5. Let G be an algebraic group over Qp. Let a A GðQpÞ be a semisimple

element with a A
Ty

n¼1

Ppn

�
GðQpÞ

�
. Then the cyclic group generated by a is finite and OrdðaÞ is

coprime to p. Further, we have the following equality of sets:

EQp

�
GðQpÞ

�
¼

Ty
n¼2

Pn

�
GðQpÞ

�
¼ UGðQpÞ:

We have the following corollary which is a strengthening of Theorem 5.1 due to Lu-
botzky and Prasad.

Corollary 1.6. Let G be an algebraic group over Qp. Let f : Q! GðQpÞ be an

abstract homomorphism. Then there is a nilpotent element X in LðGÞðQpÞ such that

fðtÞ ¼ expðtXÞ for all t A Q.

As a consequence of Theorem 1.2 and Theorem 1.5 we can draw the following corol-
lary.

Corollary 1.7. Let G be a Zariski connected algebraic group over Qp. Then the fol-

lowing are equivalent:

(1) Pn : GðQpÞ ! GðQpÞ is surjective for all n.

(2) Pp : GðQpÞ ! GðQpÞ is surjective.

(3) G is unipotent.

(4) GðQpÞ is exponential.

The paper is organised as follows. In the following section we fix some standard no-
tations and recall some preliminaries. In Section 3 we prove Theorems 1.1, 1.2 and Corol-
lary 1.3. Section 4 deals with the detailed analysis of the order of anisotropic p-adic alge-
braic groups and Theorem 1.4 is proved. In Section 5 we prove Theorem 1.5, Corollary 1.6
and Corollary 1.7. In the final Section 6 we draw similar conclusions on groups defined
over rational numbers. We also make few remarks and pose a question in this section.

2. Notations and preliminaries

In this section we fix some notations and recall some known results. For basic results
on the theory of algebraic groups we refer to [B], [B-T] and [P-R]. Let K be a perfect field,
not necessarily algebraically closed. We denote by K the algebraic closure of K. Let G be an
algebraic group defined over K. The center and the unipotent radical of an algebraic group
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G will be denoted by ZðGÞ and RuðGÞ respectively. We denote the group of K-rational
points of G by GðKÞ. If g A GðKÞ and if g ¼ gsgu is the Jordan decomposition of g then
gs; gu A GðKÞ. A non-abelian connected algebraic group defined over a field K is said to
be absolutely simple (resp. K-simple) if it does not admit any Zariski closed normal con-
nected subgroup of positive dimension (resp. defined over K). It is well known that if G is
a reductive group defined over a local field K then G is K-anisotropic if and only if the
group GðKÞ is compact in the topology induced by the topology on K. If G is an algebraic
group defined over Qp then GðQpÞ is an analytic p-adic group.

We need certain notions related to central division algebras over local fields. Let D be
a finite dimensional central division algebra over a local field F. Note that dimF D is always
the square of an integer. This integer is called the degree of D over F. Let NrdD=F : D! F

be the usual reduced norm of D (see [P-R], Section 1.4, page 27). We define the subgroup
SL1ðDÞ of the multiplicative group D� by SL1ðDÞ ¼ fx : NrdD=FðxÞ ¼ 1g. Let SL1ðDÞ de-
note the algebraic group over F such that SL1ðDÞðFÞ ¼ SL1ðDÞ.

We also need some facts associated to profinite groups. See [R-Z], [S] and [W] for de-
tails. A topological group G is called profinite if it is compact and totally disconnected. Such
a group is topologically isomorphic to a projective limit of finite groups. A supernatural

number is a formal infinite product
Q

pnðpÞ, over all primes p, where nðpÞ is a non-negative
integer or infinity. Product, divisibility, l.c.m and g.c.d of a set (possibly infinite) of super-
natural numbers are defined in the natural way. In particular, l.c.m of an infinite set of in-
tegers is a supernatural number. If G is a finite group its order is denoted by OrdðGÞ. We
now define the order, OrdðGÞ of a profinite group G by,

OrdðGÞ ¼ l:c:mfOrdðG=UÞ : U is an open subgroup of Gg:

It can be easily seen that in the above definition of order, the term ‘open subgroup’ can be
replaced by ‘open normal subgroup’. Note that if G is a profinite group then OrdðGÞ is a
supernatural number. Let x A G and let hxi denote the subgroup generated by x. First note
that the closure of the group generated by x is again a profinite group in its own right. Then
we define OrdðxÞ to be the order of the profinite group hxi. Lagrange’s theorem holds for
profinite groups (see [W], Proposition 2.1.2) i.e. if H is a closed subgroup of G then OrdðHÞ
divides OrdðGÞ. In particular, if x A G then OrdðxÞ divides OrdðGÞ. A profinite group is
said to be finitely generated if there is a finite set AHG such that the topological closure
of the group generated by A is all of G. Let p be a prime number. A profinite group G is
called a pro-p group if p is the only prime which divides OrdðGÞ. If G is a compact p-adic
analytic group then it is a profinite group and in this case G admits an open maximal pro-p
subgroup. Hence OrdðGÞ ¼ mpnðpÞ where m A N, g:c:dðm; pÞ ¼ 1 and nðpÞ A NW fyg (see
[S], Section 1.4). Note that if G is an Qp-anisotropic reductive algebraic group then GðQpÞ
is a profinite group and hence we can talk of Ord

�
GðQpÞ

�
.

3. Surjectivity of n-th power maps and orders of anisotropic groups

In this section we prove Theorems 1.1, 1.2, 1.4 and Corollary 1.3.

Proof of Theorem 1.1. We first fix a positive integer m and consider the general lin-
ear group GLmðQpÞ, where Qp denotes an algebraic closure of Qp. Let D be the closed
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subgroup of GLmðQpÞ consisting of diagonal matrices, and B be the closed subgroup of
GLmðQpÞ consisting of upper-triangular matrices. We equip GLmðQpÞ, B and D with the
usual Qp-structure so that they become algebraic groups defined over Qp. For every
1e iem we define the character (over Qp) mi : B! Q�p by

mi

x1

. .
.

�
xi

0 . .
.

xm

0
BBBBBBB@

1
CCCCCCCA
¼ xi:

Let k � kQp
: Qp ! R be the usual p-adic valuation on Qp. For a finite extension L of Qp, let

k � kL : L! R be the unique extension of k � kQp
.

Claim. Let a A DðQpÞ such that kmlðaÞkQp
3 1 for some l, 1e l em. We claim that

there is no sequence fgigif1 HGLmðQpÞ with g1 ¼ a and gi ¼ gn
iþ1 for all if 1.

We will arrive at a contradiction assuming the existence of such a sequence fgigif1.
Consider the group GHGLmðQpÞ generated by the set fgigif1. Clearly the group G is an
abelian subgroup of GLmðQpÞ. Further note that the degree of the characteristic polyno-
mial of g for g A GLmðQpÞ is m. It is well-known that the number of algebraic extensions
of Qp in Qp of a given degree is finite (see [P-R], Section 6.4). Let F be a finite extension of
Qp in Qp so that for every g A GLmðQpÞ, all the eigen-values of g lie in F. Since G is abelian
we can do simultaneous upper triangulation of the matrices fgigif1 as elements of GLmðFÞ
i.e. we can choose a basis of Fm with respect to which the matrices of fgigif1 are all upper-
triangular. Thus there exists A A GLmðFÞ so that AgiA

�1 A B for all if 1. As gi ¼ gn
iþ1 we

have AgiA
�1 ¼ ðAgiþ1A�1Þn for all i f 1. Hence

kmrðAgiþ1A�1Þkn
F ¼ kmrðAgiA

�1ÞkF; for if 1 and 1e rem:

As the valuation k � kF : F! R is discrete we conclude that

kmrðAgiA
�1ÞkF ¼ 1 for if 1 and 1e rem:

Hence for every if 1 if y A F is an eigenvalue of gi then kykF ¼ 1. In particular this holds
for a. But mlðaÞ is an eigenvalue of a with kmlðaÞkF ¼ kmlðaÞkQp

3 1. This is a contradiction.
This completes the proof of the claim.

Now we get back to the proof of the theorem. Let G be an algebraic group over Qp

which is Qp-isotropic. We assume that for some nf 1, the power map

Pn : GðQpÞ ! GðQpÞ

is surjective. We will then arrive at a contradiction. As G is Qp-isotropic, G has a Qp-torus
S with dim S f 1, which is split over Qp. It is well known that there is a faithful (algebraic)
representation of G into GLmðQpÞ, defined over Qp, for some integer m. We identify G with
its image in GLmðQpÞ. Note that as D is a maximal Qp-split torus of GLmðQpÞ we can get
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b A GLmðQpÞ so that bSb�1 HD. As dim S f 1 there exists g A SðQpÞ and a character
ml : B! Q�p so that kmlðbgb�1ÞkQp

3 1. Now as Pn : GðQpÞ ! GðQpÞ is surjective there is
a sequence fgigif1 HGðQpÞ with g1 ¼ g and gi ¼ gn

iþ1 for all if 1. Set gi ¼ bgib
�1. Then

fgigif1 is a sequence in GLmðQpÞ as in the above claim. This is a contradiction. This com-
pletes the proof of the theorem. r

Our next goal is to deal with the surjectivity questions of n-th power maps of groups
which are Qp-rational points of an anisotropic algebraic group defined over Qp. Such
groups turn out to be profinite groups. This directs us to first consider the surjectivity ques-
tions of n-th power maps of profinite groups.

We need the following well known result in the proof of the next lemma.

Theorem 3.1 ([R-Z], Proposition 2.5.1). Let G be a finitely generated profinite group.

Then the identity element of G admits a countable base consisting of a decreasing sequence of

open normal subgroups.

The following lemma is not di‰cult to prove (see [S]). For the sake of completeness
we include a proof here.

Lemma 3.2. Let G be a profinite group. Then Pn : G ! G is surjective if and only if n

is coprime to OrdðGÞ. In particular, if x A G then Pn : hxi! hxi is surjective if and only if n

is coprime to OrdðxÞ.

Proof. We will prove the first part of the lemma. The second part follows immedi-
ately from the first part.

Let us first assume that n is coprime to OrdðGÞ. We will show that Pn : G ! G is sur-
jective. Since every element of G lies in a finitely generated closed subgroup, it is enough to
show that Pn : H ! H is surjective, where H is a finitely generated closed subgroup of G.
Note that, by Lagrange’s theorem, n is coprime to OrdðHÞ. As H is finitely generated, by
Theorem 3.1 it follows that H will admit a base fUigyi¼1 at the identity e A H where Ui is
open normal subgroup of H and Uiþ1 HUi, for all if 1. Further note that H is topologi-
cally isomorphic to lim � H=Ui and

OrdðHÞ ¼ l:c:mfOrdðH=UiÞ : i f 1g:

Note that since H is compact and Ui is open normal in H, OrdðH=UiÞ is finite. For sim-
plicity we write Hi ¼ H=Ui, for all i. We have the natural map fiþ1 : Hiþ1 ! Hi for all i.
Let ðaiÞ A lim � Hi H

Q
Hi. We will prove the existence of an n-th root of ðaiÞ using the

compactness of H. As n is coprime to OrdðHÞ it follows that n is coprime to OrdðHiÞ for
all if 1. Hence Pn : Hi ! Hi is surjective for all i. For each natural number k we define a
subset Sk of lim � Hi in the following way:

Sk ¼ fðxiÞ A lim � Hi : a1 ¼ xn
1 ; . . . ; ak ¼ xn

kg:

It is easy to see that Sk H lim � Hi is a closed set for every k. First, we will show that Sk 3j
for all k. We are going to exhibit an element ðyiÞ A Sk inductively; more precisely, we first
define the ðk þ lÞ-th coordinate ykþl inductively for all l f 0. As n is coprime to OrdðHkÞ it
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will remain coprime to Ord
�
fkþ1ðHkþ1Þ

�
. So Pn : fkþ1ðHkþ1Þ ! fkþ1ðHkþ1Þ is surjective.

Note that as ðaiÞ A lim � Hi we have ak A fkþ1ðHkþ1Þ. Choose yk A fkþ1ðHkþ1Þ so that
ak ¼ yn

k . Suppose we have chosen ykþl A Hkþl . We now choose ykþlþ1 A f�1
kþlþ1ðykþlÞ. We

need to define elements yi for 1e i e k � 1. Define yk�1 ¼ fkðykÞ; . . . ; y1 ¼ f2ðy2Þ. It is
immediate that ðyiÞ A Sk. Thus Sk 3j for all k. It is clear that Skþ1 HSk for all k. So in-
tersection of any finite collection of such (closed) sets is nonempty. As lim � Hi is compact we
conclude that

T
kf1

Sk 3j. It is easy to see that any element of
T

kf1

Sk is an n-th root of ðaiÞ.

We now show the converse. Suppose Pn : G ! G is surjective. Then

Pn : G=U ! G=U

is surjective for all open normal subgroups U of G. Hence n is coprime to the integer
OrdðG=UÞ for all such U . As

OrdðGÞ ¼ l:c:mfOrdðG=UÞ: U is an open normal subgroup of Gg;

we conclude that n is coprime to OrdðGÞ. r

It is well known that for a compact connected real Lie group G the exponential map
from the Lie algebra to G is surjective and consequently Pn : G ! G is surjective for all n.
Using certain results of [Ch5] one can further deduce that if G is a compact real Lie group,
not necessarily connected, then Pn : G ! G is surjective if and only if n is coprime to the
order OrdðG=G0Þ of the finite group, G=G0, where G0 is the connected component of the
identity. Since compact p-adic groups are totally disconnected, the following theorem may
be regarded as a p-adic analogue of the above result.

Theorem 3.3. Let G be a compact p-adic analytic group over Qp. Then the following

holds:

(1) Pn : G ! G is surjective if and only if n is coprime to OrdðGÞ.

(2) Pq : G ! G is surjective for all but finitely many primes q.

(3) If G is not a finite group then Pp : G ! G is not surjective.

Proof. Since G is a compact p-adic analytic group, it is a profinite group. The first
statement follows from Lemma 3.2. The second statement follows from the first statement
and the fact that if G is a compact p-adic analytic group then OrdðGÞ ¼ mpnðpÞ where
m A N and nðpÞ A NW fyg (see Section 2). Further recall that if G is a compact p-adic an-
alytic group then it admits an open pro-p subgroup U such that the integer OrdðG=UÞ is
coprime to p. Now if G is not finite then U is also not finite. Hence nðpÞ ¼y. Hence if G is
not finite then p divides OrdðGÞ. Thus by Lemma 3.2 it follows that Pp : G ! G is not sur-
jective. r

Corollary 3.4. Let G be a reductive algebraic group defined over Qp (G is not nec-

essarily Zariski connected ). Suppose dim G f 1. Then Pp : GðQpÞ ! GðQpÞ is not surjec-

tive.
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Proof. If G is Qp-isotropic then by Theorem 1.1, Pp : GðQpÞ ! GðQpÞ is not surjec-
tive. Now if the Zariski connected component of identity, G0 is anisotropic over Qp then
GðQpÞ is a compact p-adic analytic group. Further as dim G f 1 the group GðQpÞ is not
finite. Hence by Theorem 3.3 it follows that Pp : GðQpÞ ! GðQpÞ is not surjective. r

We now give proofs of Theorem 1.2 and Corollary 1.3. We need the following defini-
tion. An element x in a p-adic analytic group G is said to be a compact element if hxi is a
compact subgroup of G.

Proof of Theorem 1.2. Note that if G is an algebraic group over Qp then G=RuðGÞ is
a reductive algebraic group over Qp. Hence the implication ð2, 3Þ follows immediately
from Theorem 1.1 and Lemma 3.2. Next, the group G=RuðGÞðQpÞ is a quotient of the
group GðQpÞ and hence ð1) 2Þ follows.

We now prove ð2) 1Þ. Let us assume that Pn : G=RuðGÞðQpÞ ! G=RuðGÞðQpÞ is
surjective. Let L be a Levi subgroup of G defined over Qp. Then G ¼ LRuðGÞ (as a semi-
direct product) and GðQpÞ ¼ LðQpÞRuðGÞðQpÞ. Clearly L is anisotropic over Qp and hence
LðQpÞ is compact. Let g A GðQpÞ. Consider the Jordan decomposition g ¼ gsgu where
gs; gu A GðQpÞ. Now observe that there is a c A GðQpÞ so that cgsc

�1 A LðQpÞ. Also as
Pn : G=RuðGÞðQpÞ ! G=RuðGÞðQpÞ is surjective it follows that Pn : LðQpÞ ! LðQpÞ is sur-
jective and hence by Lemma 3.2, n is coprime to Ord

�
LðQpÞ

�
. Hence cgsc

�1 is a compact
element. This implies that gs is a compact element and OrdðgsÞ ¼ Ordðcgsc

�1Þ is coprime to
n. By Lemma 3.2 it follows that Pn : hgsi! hgsi is surjective, where the closure hgsi is
taken in the p-adic topology of GðQpÞ. Hence there is h A hgsi so that hn ¼ gs. Also note
that h A hgsiHZGðguÞ. Now as gu is unipotent we can extract an n-th root of gu in the
Zariski closure of the group generated by gu. Hence g has an n-th root in GðQpÞ.

The last part follows immediately from the three equivalent statements in the theorem
and from (3) of Theorem 3.3. r

Proof of Corollary 1.3. Let G be an algebraic group over Qp and H be an algebraic
Qp-subgroup of G. Let L and M be Qp-Levi subgroups of G and H respectively. Then
by [P-R], Theorem 2.3, page 58, there exists b A RuðGÞðQpÞ so that bMb�1 HL. Hence
bMðQpÞb�1 HLðQpÞ. Now let n3 1 be an integer so that Pn : GðQpÞ ! GðQpÞ is surjec-
tive. Then, by Theorem 1.2, L is Qp-anisotropic (hence LðQpÞ is compact) and n is coprime
to Ord

�
LðQpÞ

�
. Hence it follows that M is Qp-anisotropic and Ord

�
MðQpÞ

�
divides

Ord
�
LðQpÞ

�
. We again apply Theorem 1.2 to conclude that Pn : HðQpÞ ! HðQpÞ is surjec-

tive. r

4. Determination of orders of anisotropic groups

As mentioned in the introduction, by Theorem 1.2, the problem of explicit determi-
nation of the integers n for which Pn : GðQpÞ ! GðQpÞ is surjective for a general connected
Qp-algebraic group G reduces to finding orders Ord

�
HðQpÞ

�
for Qp-anisotropic reductive

groups H. Since a large class of Qp-anisotropic reductive groups are semisimple ones, which
in turn are made of Qp-simple simply connected groups using almost direct products, it is
necessary that we set out our first goal to obtain results on Ord

�
GðQpÞ

�
where G is a Qp-

simple simply connected Qp-anisotropic group.
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We begin by recalling the following well known classification of absolutely simple
simply connected anisotropic groups over non-archimedean local fields of characteristic
zero.

Theorem 4.1 ([P-R], Theorem 6.5). Let G be a simply connected absolutely simple

anisotropic group over a non-archimedean local field F of characteristic zero. Then as F

groups, G is isomorphic to SL1ðDÞ for some finite dimensional central division algebra D

over F.

Let K be a field, not necessarily algebraically closed, of characteristic zero and let F
be a finite extension of K. Let RF=K denote the Weil restriction functor from the category of
F-algebraic groups to the category of K-algebraic groups. The following result is again well
known.

Theorem 4.2 ([Sp], Section 6.2.1, and [T], Section 3.1.2). Let K be a field, not neces-

sarily algebraically closed, of characteristic zero. Let G be a K-simple simply connected alge-

braic group. Then there exists a finite extension F (unique up to K-isomorphism of fields) of K

and a simply connected absolutely simple F-group H (unique up to F-isomorphism of alge-

braic groups) so that G is K-isomorphic to RF=KðHÞ. Moreover, if G is K-anisotropic then

H is F-anisotropic.

Let G be a Qp-simple simply connected Qp-anisotropic group. Then by Theorem 4.2,
there exists a finite extension F of Qp and a simply connected absolutely simple anisotropic
F-group H so that G is Qp-isomorphic to RF=Qp

ðHÞ. Hence as p-adic groups GðQpÞ is iso-
morphic to RF=Qp

ðHÞðQpÞ ¼ HðFÞ. On the other hand, by Theorem 4.1, H is isomorphic to
SL1ðDÞ as F-algebraic group, for some finite dimensional central division algebra D over F.
Hence as (compact) p-adic group GðQpÞ is isomorphic to SL1ðDÞðFÞ ¼ SL1ðDÞ. Thus in
order to find Ord

�
GðQpÞ

�
for an arbitrary Qp-simple simply connected anisotropic group

G it is enough to find Ord
�
SL1ðDÞ

�
where D is a central division algebra over a finite ex-

tension F of Qp. We next determine the orders of such groups.

In the proof of the next result we need some facts and terminologies which we borrow
from [P-R], Section 1.4, page 27–33 (it may be noted that our notations are slightly di¤erent
from that of [P-R], Section 1.4).

As above let F be a finite extension of Qp. If D is a finite dimensional central division
algebra over F, the dimension, dimF D ¼ d 2 for some integer d. Let v be the valuation on F

which is obtained by the unique extension of the usual p-adic valuation, considered addi-
tively, on Qp. Moreover note that the valuation v uniquely extends to a valuation ~vv on D by
the formula

~vvðxÞ ¼ 1

d
v
�
NrdD=FðxÞ

�
; for x A D:

Since F is complete it follows that D is complete in the metric given by the valuation. Let

OD ¼ fx A D : ~vvðxÞf 0g and BD ¼ fx A D : ~vvðxÞ > 0g:

Note that BD ¼ fx A D : ~vvðxÞ > 0g is a maximal right and left ideal of OD. Let D ¼ OD=BD

be the residue division algebra of D. We first identify the residue field of Qp with the finite
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field Fp, consisting of p elements. Note that the residue field of F is a finite extension of Fp.
We identify the residue field of F with the finite field Fpr , consisting of pr elements where r is
the degree of the extension of the residue field of F over Fp. Now observe that D is a finite
dimensional extension of Fpr . Being a division algebra consisting of finitely many elements,
D is a field extension of the field Fpr . Consequently D ¼ FprðaÞ for some a A D. We may
choose b A OD so that b þBD ¼ a. Let L ¼ FðbÞ and let L be the corresponding residue
field. Clearly L is a finite dimensional field extension of the finite field Fpr . Moreover it is
shown in [P-R], Section 1.4.2, that

dimFp r L ¼ d where dimF D ¼ d 2:

We also need the following fact from the theory of profinite groups, which follows
from well known results in [R-Z] and [W].

Lemma 4.3 ([R-Z] and [W]). Let G be a profinite group. Let fUigyi¼0 be a base con-

sisting of open normal subgroups with U0 ¼ G and Uiþ1 HUi, for all if 0. Then

OrdðGÞ ¼
Q
if0

OrdðUi=Uiþ1Þ:

With the above facts and notations in mind we will prove Proposition 4.4.

Proposition 4.4. Let F be a finite extension of Qp. Let r be the degree of the residue

field of F over the residue field of Qp. Let D be a finite dimensional central division algebra

over F with dimF D ¼ d 2. Then

Ord
�
SL1ðDÞ

�
¼

�
1þ pr þ � � � þ ðprÞd�1�

py:

Proof. Let dimF D ¼ d 2. We first get a filtration of SL1ðDÞ as follows. We set

Ui ¼ ð1þB i
DÞX SL1ðDÞ; for if 1

and U0 ¼ SL1ðDÞ. Note that fUigy1¼0 are normal subgroups of D� and they form a base of
SL1ðDÞ consisting of open subgroups (see [P-R], Section 1.4.4 and note that our notations
are slightly di¤erent from theirs). Clearly Uiþ1 HUi, for all if 0. Using [P-R], Proposition
1.8, we get isomorphisms of the following groups:

U0=U1 F fx A L� : NrL=Fp r ðxÞ ¼ 1g:

Moreover, if if 1 we have

Ui=Uiþ1 FL; if iE 0 ðmod dÞ

and

Ui=Uiþ1 F fx A L : TrL=Fp r ðxÞ ¼ 0g; if i1 0 ðmod dÞ:

We use these isomorphisms to find OrdðU0=U1Þ and OrdðUi=Uiþ1Þ for all if 1. Note
that L over Fpr is a finite Galois extension of degree d where dimF D ¼ d 2. Hence the Ga-
lois group GalðL j FprÞ is cyclic. Let GalðL j FprÞ ¼ hsi. By Hilbert Theorem 90 we have

fx A L� : NrL=Fp r ðxÞ ¼ 1g ¼
�

y
�
sðyÞ

��1
: y A L�

�

211Chatterjee, Power maps, orders and exponentiality of p-adic groups



and

fx A L : TrL=Fp r ðxÞ ¼ 0g ¼
�

y�
�
sðyÞ

�
: y A L

�
:

It follows immediately that

Ord
��

y
�
sðyÞ

��1
: y A L�

��
¼ OrdðL�=F�prÞ ¼

prd � 1

pr � 1
¼ 1þ pr þ � � � þ ðprÞd�1

and

Ord
��

y�
�
sðyÞ

�
: y A L

��
¼ OrdðL=FprÞ ¼ prd

pr
¼ prðd�1Þ:

Clearly OrdðLÞ ¼ prd . Hence

OrdðU0=U1Þ ¼ 1þ pr þ � � � þ ðprÞd�1:

Moreover, if if 1 we have

OrdðUi=Uiþ1Þ ¼ prd ; if iE 0 ðmod dÞ

and

OrdðUi=Uiþ1Þ ¼ prðd�1Þ; if i1 0 ðmod dÞ:

Now we use Lemma 4.3 to conclude the proof of the proposition. r

In the following definition we associate two integers rG and dG to a Qp-anisotropic
Qp-simple group G.

Definition 4.5. Let G be Qp-simple and Qp-anisotropic. Theorem 4.2 says that there
exists a finite degree field extension F, unique up to a Qp-isomorphism, and an absolutely
simple algebraic group H over F, unique up to F-isomorphism, so that RF=Qp

ðHÞ is the sim-
ply connected cover (over Qp) of G. Define rG to be the degree of the residue field of F over
the residue field of Qp. By Theorem 4.1, H is F-isomorphic to SL1ðDÞ for some central di-
vision algebra over F. Hence

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dim H þ 1
p

is an integer (in fact it is the degree of D over F).
We define dG to be

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dim H þ 1
p

.

Now we may reformulate the above proposition as follows.

Proposition 4.6. Let G be a simply connected Qp-simple Qp-anisotropic algebraic

group. Then

Ord
�
GðQpÞ

�
¼

�
1þ prG þ � � � þ ðprGÞdG�1�

py:

Recall that if G is an absolutely simple simply connected Qp-anisotropic group then
rG ¼ 1 and dG ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dim G þ 1
p

. Hence for such an algebraic group G we obtain the following
result which gives a transparent formula for Ord

�
GðQpÞ

�
in terms of the dimension of G.
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Corollary 4.7. Let G be an algebraic group over Qp which is absolutely simple, simply

connected and anisotropic. Then

Ord
�
GðQpÞ

�
¼ ð1þ pþ � � � þ pd�1Þpy

where d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dim G þ 1
p

.

We now prove a result on the order of GðQpÞ where G is a Qp-simple Qp-anisotropic
group, not necessarily simply connected. We need the following simple lemma.

Lemma 4.8. Let G be a compact p-adic analytic group and H be a closed subgroup.

Let m be an integer such that xm A H, for all x A G. If q is a prime dividing OrdðGÞ then q

divides m OrdðHÞ.

Proof. Follows easily from Lagrange’s theorem for profinite groups and the fact
that OrdðGÞ ¼ mpnðpÞ where m A N, g:c:dðm; pÞ ¼ 1 and nðpÞ A NW fyg. r

We need another useful lemma.

Lemma 4.9. Let G and ~GG be Qp-anisotropic reductive groups and let f : ~GG ! G be a

surjective algebraic group homomorphism defined over Qp with Ker f being a central sub-

group in ~GG. Suppose d is an integer so that xd ¼ 1 for all x A Ker f. Then prime divisors of

Ord
�
GðQpÞ

�
will divide d Ord

�
~GGðQpÞ

�
.

Proof. Consider the exact sequence of algebraic groups defined over Qp:

1! Ker f! ~GG !f G ! 1:

Note that Ker f is a central subgroup of ~GG defined over Qp.

Then using [Se], Corollary 2 of Section 5.6 and Proposition 43 of Section 5.7, we have
another exact sequence:

1! Ker fðQpÞ ! ~GGðQpÞ !
f

GðQpÞ ! H 1ðQp;Ker fÞ;

where H 1ðQp;Ker fÞ denotes the first Galois-cohomology group of the Galois group
GalðQp jQpÞ with coe‰cients in the abelian group Ker f. This implies that H 1ðQp;Ker fÞ
is a torsion group with xd ¼ 1 for all x A H 1ðQp;Ker fÞ. Hence for every g A GðQpÞ we have
gd A f

�
~GGðQpÞ

�
. Note that f

�
~GGðQpÞ

�
is closed subgroup of GðQpÞ in the p-adic topology

and consequently by Lagrange’s theorem the primes dividing the order of Ord
�
f
�
~GGðQpÞ

��
divide Ord

�
~GGðQpÞ

�
. Thus it follows from Lemma 4.8 that the primes dividing Ord

�
GðQpÞ

�
will divide d Ord

�
~GGðQpÞ

�
. r

Proposition 4.10. Let G be a Qp-simple Qp-anisotropic group. Let ~GG be the

simply connected cover of G defined over Qp. Then prime divisors of Ord
�
GðQpÞ

�
divide

dG Ord
�
~GGðQpÞ

�
.

Proof. Recall that there exists a finite extension F of Qp and a finite dimensional
central division algebra D over F such that ~GG is Qp-isomorphic to the anisotropic simple
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algebraic group RF=Qp

�
SL1ðDÞ

�
. Also recall that as Qp-groups, SL1ðDÞ is isomorphic to

SLdðQpÞ where dimF D ¼ d 2. Hence as Qp-groups the group RF=Qp

�
SL1ðDÞ

�
is isomorphic

to the direct product SLdðQpÞ½F:Qp�. Hence

Ker fHZð ~GGÞ ¼ Z
�
RF=Qp

�
SL1ðDÞ

��
¼ Z

�
SLdðQpÞ½F:Qp��:

Thus Zð ~GGÞ is a direct product of ½F : Qp� many copies of the finite cyclic group of order d.
This implies that Ker f is a torsion group with xd ¼ 1 for all x A Ker f. Thus it follows
from Lemma 4.9 that if q is a prime dividing Ord

�
GðQpÞ

�
then q divides the integer

d Ord
�
~GGðQpÞ

�
. The proof is completed by noting that d ¼ dG. r

Definition 4.11. For a semisimple connected anisotropic algebraic group H over
Qp we associate two integers MðHÞ and NðHÞ in the following way. First recall that H is
Qp-isomorphic to an almost direct product of Qp-simple simply connected groups. Each
such Qp-simple group is called factor of G. Let H1; . . . ;Hk be the non-Qp-isomorphic
Qp-simple factors of H defined over Qp. Clearly all such factors are Qp-anisotropic over
Qp. We now define

MðHÞ ¼ p
Qk
i¼1

�
1þ prHi þ � � � þ ðprHi ÞðdHi

�1Þ�

and

NðHÞ ¼MðHÞ
Qk
i¼1

dHi
:

Note that the prime factors of MðHÞ are the same as the prime factors of the super-

natural number
Qk
i¼1

Ord
�
HiðQpÞ

�
. We also note that MðHÞ ¼Mð ~HHÞ and NðHÞ ¼ Nð ~HHÞ,

where ~HH is the simply connected cover of H defined over Qp.

All the above observations now lead to the proof of Theorem 1.4.

Proof of Theorem 1.4. In view of Theorem 1.2 it is enough to assume the Qp-
algebraic group G to be semisimple. Let H1; . . . ;Hk be the Qp-simple simply connected

(anisotropic) factors of G. Then G is Qp-isomorphic to
Qk
i¼1

Hi=Z where Z is some central

subgroup of
Qk
i¼1

Hi, defined over Qp. Further, if G is simply connected then G is Qp-

isomorphic to the direct product
Qk
i¼1

Hi. So part (1) of the theorem follows from Theorem
1.2 and Proposition 4.6.

Now we prove part (2) of the theorem. We use an argument similar to the proof of
Proposition 4.10. Let G be a semisimple Qp-anisotropic group. Following the above nota-
tion we have the exact sequence of groups defined over Qp:

1! Z !
Qk
i¼1

Hi !
c

G ! 1:
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Now Z H
Qk
i¼1

ZðHiÞ. Further note that for each i, we have xdHi ¼ 1, for all x A ZðHiÞ. Thus

x
U
k

i¼1

dHi ¼ 1 for all x A Z. Thus it follows from Lemma 4.9 that if q is a prime dividing

Ord
�
GðQpÞ

�
then q divides

Qk
i¼1

dHi
�
Qk
i¼1

Ord
�
HiðQpÞ

�
. Hence q divides NðGÞ. To complete

the proof we use Theorem 1.2 and Proposition 4.6. r

We will now illustrate, using an example, the computation of MðGÞ.

Example 4.12. Let D1; . . . ;Dk be a collection of k many central division algebras
over Qp. Assume that the degree of Di over Qp is di for all i. Let us consider the direct

product G ¼
Qk
i¼1

SL1ðDiÞ. Then, by Definition 4.11, MðGÞ ¼ p
Qk
i¼1

ð1þ pþ � � � þ pðdi�1ÞÞ.

Let V be a finite dimensional Qp-vector space defined over Qp. By Theorem 1.4 it follows
that, for any Qp-representation f : G ! GLðVÞ, the n-th power map Pn on the group

GðQpÞyf VðQpÞ is surjective if and only if n is coprime to p
Qk
i¼1

ð1þ pþ � � � þ pðdi�1ÞÞ.

Using Corollary 1.3 it also follows that if H is any Qp-subgroup of G yf V and if n is

coprime to p
Qk
i¼1

ð1þ pþ � � � þ pðdi�1ÞÞ then Pn : HðQpÞ ! HðQpÞ is surjective.

5. Exponentiality of p-adic algebraic groups

In this section we prove Theorem 1.5. We begin by recalling the two interesting re-
sults which motivate Theorem 1.5. The first one is Theorem 5.1 and it is proved by A. Lu-
botzky and G. Prasad independently; see also [R1], Theorem 1.1, and [R2], Theorem 3.3,
for a proof of this result given by M. Ratner. The second one is Theorem 5.2 which is due
to M. McCrudden (see [M]).

Theorem 5.1 (A. Lubotzky, G. Prasad). Let f : Qp ! GLnðQpÞ be a continuous

(hence analytic) group homomorphism. Then there exists a nilpotent X A glnðQpÞ so that

fðtÞ ¼ expðtXÞ for all t A Qp. Consequently, if G is an algebraic group over Qp then

EQp

�
GðQpÞ

�
¼ UGðQpÞ.

The above result implies that for an algebraic group G over Qp, the subgroup GðQpÞ
is exponential if and only if the group G is unipotent. This feature is very special to p-adic
algebraic groups and does not happen in the case of real Lie groups.

Theorem 5.2 (M. McCrudden). Let G be a real Lie group. Then ERðGÞ ¼
T

nf2

PnðGÞ.

Hence it follows immediately that a real Lie group G is exponential if and only if
Pn : G ! G is surjective for all n.

We need the following lemmas to prove Theorem 1.5. For x A G, let ZclðxÞ denote
the Zariski closure of the group hxi, generated by x. A sequence of integers fangyn¼1 HN

is said to be multiplicatively closed if aiaj A fangyn¼1 for all i, j.
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Lemma 5.3. Let G be an algebraic group over Qp and a A GðQpÞ. Let fangyn¼1 HN be

a multiplicatively closed sequence of integers. Assume that for every n there exists bn A GðQpÞ
so that a ¼ ban

n . Then for every integer n there exists gn A ZclðaÞðQpÞ so that a ¼ gan
n .

Proof. We first recall that for any positive integer m there exists a positive integer r

so that if F HGLmðQpÞ any finite group then OrdðFÞ divides r. This follows immediately
from the fact that the corresponding statement holds if GLnðQpÞ is replaced by GLnðZpÞ
(see [S1], Theorem 1, page 124) and the fact that any compact subgroup of GLnðQpÞ is con-
jugate to a subgroup of GLnðZpÞ which is a maximal compact subgroup of GLnðQpÞ (see
[S1], Theorems 1 and 2, page 122). From the above fact it follows that if H is an Qp-
algebraic group then there is an integer l so that if F HHðQpÞ is a finite subgroup then
OrdðFÞ divides l. Thus we observe that if H is as above then there is an integer l so that if
x A HðQpÞ with OrdðxÞ < y then OrdðxÞ divides l.

Now suppose a A GðQpÞ is as in the statement of the theorem. Consider the Qp-
algebraic group ZGðaÞ=ZclðaÞ. Let l be the integer for which the contention of the above
observation holds for the group ZGðaÞ=ZclðaÞ. By the assumption of the theorem, for every
integer n there exists b A GðQpÞ so that a ¼ ban

n . Clearly bn A ZGðaÞðQpÞ and the coset

bnZclðaÞ is a finite order element in ZGðaÞ=ZclðaÞ. Hence b l
n A ZclðaÞ. Also observe that

the set fg:c:dðan; lÞ j nf 1g is a finite set and let it be fd1; . . . ; dkg. We set d ¼
Qk
i¼1

di. Clearly

bd
n A ZclðaÞ. Now as fang is multiplicatively closed, we may choose ak in fang such that d

divides ak. Again applying the same property of the sequence fang, there exists dn A GðQpÞ
so that a ¼ dakan

n . Clearly as d divides al it follows that dak

n A ZclðaÞ. If we set gn ¼ dak

n then
gn A ZclðaÞ and a ¼ gan

n and we are done. r

Lemma 5.4. Let H be a profinite group with OrdðHÞ ¼ mpnðpÞ where m A N,
g:c:dðm; pÞ ¼ 1 and nðpÞ A NW fyg. Let a A H. Assume that for all k, there exists b A H

so that a ¼ bpk

. Then a is an element of finite order and OrdðaÞ divides m. In particular,
OrdðaÞ is coprime to p.

Proof. If H is a finite group then the proof is easy and we omit it. Now if H is infi-
nite then nðpÞ ¼y and there is an open normal subgroup U of H which is pro-p. We now
see that the coset aU has pk-th root in the finite group H=U . Hence, using the finite group
case at hand, we conclude that OrdðaUÞ divides m. In other words am A U . Let V HU be
any open normal subgroup of H. We claim that am A V . Observe that OrdðH=VÞ ¼ mpl

for some integer l. By assumption, there exists b A H such that a ¼ bpl

. Then am ¼ bmpl

.
But bmpl

A V and hence am A V . Thus for every open subgroup V of U , which is normal
in H, am lies in V . This forces the equality am ¼ e. r

Proof of Theorem 1.5. We start with the proof of the first part of the theorem. Let

a A GðQpÞ be a semisimple element with a A
Ty

n¼1

Ppn

�
GðQpÞ

�
. Considering the multiplica-

tively closed sequence fpngyn¼1, we use Lemma 5.3 to see that a A
Ty

n¼1

Ppn

�
ZclðaÞðQpÞ

�
. Let

us denote by T the Zariski connected component of ZclðaÞ. Then T is a torus defined over
Qp.

Recall that there exists a Qp-split subtorus Ts and an Qp-anisotropic subtorus Ta of T

such that T ¼ TsTa with OrdðTa XTsÞ < y. Let F ¼ ðTa XTsÞðQpÞ. We further recall that

216 Chatterjee, Power maps, orders and exponentiality of p-adic groups



TaðQpÞTsðQpÞ is a finite index subgroup of TðQpÞ. Note that TðQpÞ is also a finite index
subgroup of ZclðaÞðQpÞ. Thus TaðQpÞTsðQpÞ is a finite index subgroup ZclðaÞðQpÞ; let this
finite index be k.

Recall that, for every n there exists b A ZclðaÞðQpÞ so that a ¼ bpn

. This implies that
ak ¼ ðbkÞp

n

. Clearly there exist ga; da A TaðQpÞ and gs; ds A TaðQpÞ so that ak ¼ gsga and
bk ¼ dsda. This implies that dpn

s A gsF . Now as Ts is a Qp-split torus, the subgroup F and
the elements gs, ds can be regarded as lying in the direct product ðQ�p Þ

dim Ts . Let us denote
by K the compact analytic subgroup UnitsðZpÞdim Ts of ðQ�pÞ

dim Ts . Clearly F HK and as,
for every n one has dpn

s A gsF , it follows that ds; gs A K. Thus ak A KTaðQpÞ has pn-th root
in the group KTaðQpÞ. But the group KTaðQpÞ is a compact analytic p-adic group. We now
apply Lemma 5.4 to conclude that ak is of finite order. Thus a is of finite order and conse-

quently, ZclðaÞðQpÞ is the group generated by a. Further, a A
Ty

n¼1

Ppn

�
ZclðaÞðQpÞ

�
. Hence

OrdðaÞ is coprime to p.

To prove the second part of the theorem we observe that the following containments
can be easily proved:

UGðQpÞHEQp

�
GðQpÞ

�
H

Ty
n¼2

Pn

�
GðQpÞ

�
:

In view of this it now remains to prove that
Ty

n¼2

Pn

�
GðQpÞ

�
HUGðQpÞ. It is enough to show

that if g A GðQpÞ is semisimple and g A
Ty

n¼2

Pn

�
GðQpÞ

�
, then g ¼ e. By the first part of the

theorem it follows that g is of finite order. Hence ZclðgÞðQpÞ ¼ hgi and further by Lemma
5.3, Pn : hgi! hgi is surjective, for all n. This forces g ¼ e. r

Proof of Corollary 1.6. Let NG be the variety of nilpotent elements in LðGÞ. Note
that both UG and NG are defined over Qp and there is a Qp-isomorphism of varieties,
exp : NG ! UG. Thus exp : NGðQpÞ ! UGðQpÞ is a bijection of the sets of Qp-rational
points.

Let f : Q! GðQpÞ be an abstract homomorphism. Observe that

fðQÞH
Ty

n¼1

Pn

�
GðQpÞ

�
¼ UGðQpÞ:

Thus there exists X A NGðQpÞ such that fð1Þ ¼ expðXÞ. Let k 3 0 be a positive integer.
For the same reason as above, there exists Y A NGðQpÞ such that fð1=kÞ ¼ expðYÞ. But
then expðXÞ ¼

�
fð1=kÞ

�k ¼ expðkY Þ. Hence Y ¼ X=k. Thus we have shown

fð1=kÞ ¼ expðX=kÞ:

This implies that fðtÞ ¼ expðtXÞ, for all t A Q. r

Proof of Corollary 1.7. The implication ð1) 2Þ is obvious. The implications
ð1, 3, 4Þ follow immediately from Theorem 1.5.
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We now prove the implication ð2) 3Þ. Let G be an algebraic group over Qp. Now as
Pp : GðQpÞ ! GðQpÞ is surjective it follows that Pp : G=RuðGÞðQpÞ ! G=RuðGÞðQpÞ is sur-
jective. As G=RuðGÞ is Zariski connected, to show that G=RuðGÞ is trivial we need
dim G=RuðGÞ ¼ 0. Now appeal to the last part of Theorem 1.2 to complete the proof. r

Remark 5.5. In [Mo], M. Moskowitz defined an algebraic group G to be exponen-
tial if each point of G is contained in a Zariski connected abelian algebraic subgroup of G;
see also related results in [Ch2], [Ch3] and [Wu]. For a complex algebraic group G if we
define the set EC

�
GðCÞ

�
as in the introduction, then G is exponential in the sense of Mos-

kowitz if and only if EC

�
GðCÞ

�
¼ GðCÞ. However, if K is either Qp or R and if G is an al-

gebraic group over K then it is not true in general that the condition GðKÞ ¼ EK

�
GðKÞ

�
is

equivalent to saying that every point of GðKÞ lies in a Zariski connected abelian (K-) sub-
group of G. For instance, if G is a split torus over R then clearly P2 : GðRÞ ! GðRÞ is not
surjective and hence ER

�
GðRÞ

�
3GðRÞ. Also, if G is any torus over Qp then it follows from

Corollary 1.7 that EQp

�
GðQpÞ

�
3GðQpÞ. Whereas, in both the above cases, G itself is ob-

viously a Zariski connected abelian algebraic group over K.

6. Groups over Q and concluding remarks

The first half of this section is devoted to obtaining results on n-th power maps on
GðQÞ where G is an algebraic group defined over Q. The proof of some of the results fol-
lows a similar path as in the case of groups over Qp (hence we omit such proofs) while
the proof of the other results are direct applications of results obtained in the earlier
sections.

Theorem 6.1. Let G be an algebraic group over Q which is Q-isotropic and let n3 1.

Then Pn : GðQÞ ! GðQÞ is not surjective.

Proof. The proof of this theorem is similar to that of Theorem 1.1 and we omit it.
r

Theorem 6.2. Let G be an algebraic group over Q. Then we have the following:

(1) Let a A
Ty

k¼1

Pmk

�
GðQÞ

�
be a semisimple element. Then a is a finite order element

and OrdðaÞ is coprime to m.

(2)

Ty
n¼1

Pn

�
GðQÞ

�
¼ UGðQÞ;

in particular, Pn : GðQÞ ! GðQÞ surjective for all n if and only if G is unipotent.

(3) Let f : Q! GðQÞ be an abstract group homomorphism then there exists a nilpo-

tent X A LðGÞðQÞ so that fðtÞ ¼ expðtXÞ for all t A Q. In particular, if G is reductive and

Q-anisotropic then any such abstract homomorphism is trivial.
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Proof. We will take advantage of the fact that if G is an algebraic group over Q

then GðQÞHGðQÞHGðQpÞ for every prime p. Further, the Jordan decomposition of an
element in GðQÞ coincides with that in the group GðQpÞ, for every p.

Proof of (1). Let a be as in the first statement. Let p be a prime divisor of m. Then

from the fact that a A
Ty

k¼1

Pmk

�
GðQÞ

�
it follows easily that

a A
Ty

k¼1

Ppk

�
GðQÞ

�
H

Ty
k¼1

Ppk

�
GðQpÞ

�
:

Now by Theorem 1.5 it follows that a is of finite order and OrdðaÞ is coprime to p. Thus
OrdðaÞ is coprime to m.

Proof of (2). It is easy to see that UGðQÞH
Ty

n¼1

Pn

�
GðQÞ

�
. By (1), if

a A
Ty

n¼1

Pn

�
GðQÞ

�

is semisimple then a is of finite order and OrdðaÞ is coprime to all integers. Hence a ¼ e.

Thus
Ty

n¼1

Pn

�
GðQÞ

�
HUGðQÞ.

Proof of (3). The proof of the first part is similar to that of Corollary 1.6 and we
omit it. The second part follows from the fact that a Q-anisotropic reductive group G does
not admit nontrivial nilpotent elements in LðGÞðQÞ. r

We conclude with the following remarks.

Remark 6.3. We note that all of our results in the previous sections can be extended
to the groups which are K-rational points of an algebraic group defined over K, where K is
a finite extension of Qp. After suitable modification of the proofs one may see that orders of
relevant groups in Proposition 4.4 will involve the ramification index of K over Qp (or the
degree of the residue field of K over the residue field of Qp). Consequently, the associated
integers in Definition 4.11 and Theorem 1.4 too will involve the ramification index of K

over Qp.

Remark 6.4. We end the paper with a question. If T is an anisotropic torus over Qp

(of positive dimension) then TðQpÞ is a compact p-adic analytic group. It follows easily
that the prime p divides the Ord

�
TðQpÞ

�
. It will be interesting to find out a method to

know the other prime divisors of Ord
�
TðQpÞ

�
.
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