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MAPS OF DISCONNECTED GROUPS
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Abstract. We extend a well-known result of R. Steinberg on the existence of an invariant
maximal torus under a semisimple automorphism of an algebraic group over an algebraically
closed field. We show that the same result holds when the underlying field is of characteristic
zero, but not necessarily algebraically closed. We next study surjectivity of the power maps
g 7→ gn of disconnected algebraic groups of characteristic zero. In the case of disconnected
real algebraic groups we apply our generalisation of Steinberg’s result to obtain results on the
surjectivity of the power maps. We also extend a result of A. Borel on weak exponentiality in
real Lie groups by relating it with the surjectivity of the square map.

1. Introduction and the main results

The purpose of this paper is two-fold. The first one is to prove that if an algebraic group

is defined over a field F of characteristic zero, not necessarily algebraically closed, then any

semisimple F-automorphism keeps invariant a F-Cartan subgroup and the maximal F-torus

contained in it (see Theorem 1.1). This extends a well-known result of R. Steinberg on the

existence of an invariant maximal torus under a semisimple automorphism of an algebraic group

over an algebraically closed field. The second goal is to obtain results on the surjectivity of the

n-th power maps, g → gn, on algebraic groups which are not necessarily Zariski-connected (see

Theorems 1.4 and 1.5) and on real algebraic groups which are not necessarily connected (see

Theorems 1.7, 1.8, 1.9). One of our main motivations in investigating automorphism invariant

Cartan subgroups is its application to the power maps of real algebraic groups (see Section 5).

Obtaining results on power maps is the primary goal of the earlier papers [Ch1], [Ch2] and

[Ch3] and the part of the present article that deals with power maps is a natural continuation

of these earlier works. We briefly recall the results obtained before in order to give a proper

perspective to the present article. In [Ch2] the author has given a necessary and sufficient

condition for the surjectivity of the n-th power maps for Zariski-connected algebraic groups over

algebraically closed fields of characteristic zero; as an application a complete characterization

was found of the set of integers n for which the n-th power maps are surjective for semisimple

algebraic groups over algebraically closed fields of characteristic zero. The author in [Ch3] and

R. Steinberg in [St] independently extended the latter results of [Ch2] to semisimple algebraic

groups over algebraically closed fields of arbitrary characteristic. The reader is further referred
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to [Ch1] for the results proved on the surjectivity of power maps on real solvable Lie groups and

to [Ch4] and [Ch5] for more recent results on p-adic and real algebraic groups, respectively.

An automorphism ψ of an algebraic group G is called semisimple if the derivative dψ is

a semisimple linear map on its Lie algebra (see [St1] Section 7, pages 27-28). A crucial fact

needed in Steinberg’s paper [St], is his well-known result on the existence of a (semisimple)

automorphism-invariant maximal torus in an algebraic group over an algebraically closed field

(Theorem 7.5, [St1]). In order to prove results on the power maps of real algebraic groups, as

done in Section 5, we require an analogue of the above result for such groups and in the following

theorem we show that this holds in a much more general context, namely, for arbitrary algebraic

groups defined over fields of characteristic zero.

For an algebraic group G, let G0 denote the Zariski-connected component of the identity

element. A group Γ is called super-solvable if there are normal subgroups, (e) = Γ0 ⊂ · · · ⊂

Γk = Γ such that the quotient Γi/Γi−1 is cyclic, for all i. We now state the first main result of

this paper, the proof of which appears in Section 3.

Theorem 1.1. Let G be an algebraic group defined over a field F of characteristic zero, not nec-

essarily algebraically closed, and let Γ be a super-solvable group of semisimple F-automorphisms

of G. Then there exists a Cartan subgroup H of G0, defined over F, which remains invariant

under Γ i.e. ψ(H) = H, for all ψ ∈ Γ. In particular, there is a maximal torus T , defined over

F, with ψ(T ) = T , for all ψ ∈ Γ.

Remark 1.2. In Theorem 1.1, G is an arbitrary algebraic group and F is any field of character-

istic zero. If G is further assumed to be reductive then the above result remains valid for F of

arbitrary characteristic, with the additional assumption that Γ is a finite group of order prime

to the characteristic of F, as proved by Gopal Prasad in [P] and J.-P. Serre in [S] (see Theorem

3′′, Section 3.3. in [S]). Thus the result of Prasad and Serre, and Theorem 1.1 complement each

other.

Remark 1.3. It is proved in [B-S] that if G is a compact real Lie group and Γ is a super-solvable

subgroup of G then there is a Γ-stable maximal (compact) torus in G. One may view Theorem

1.1 as an analogue of the above result of [B-S] in the algebraic group set-up. On the other hand,

Theorem 1.1 can also be thought of as a generalisation of the above result in [B-S] because any

compact real Lie group G is of the form H(R) for some algebraic group H, defined over R and

if T is a maximal torus over R in H then T (R) is a maximal (compact) torus of G.

Let G be a group and let Pn be the n-th power map defined by Pn(g) = gn, for all g ∈ G. The

following theorem, which we prove using certain results of [St], extends Theorem A of [Ch2] on

power maps of Zariski-connected algebraic groups.

Theorem 1.4. Let G be an algebraic group defined over an algebraically closed field of character-

istic zero, which is not necessarily Zariski-connected, and let n be an integer. Then Pn : G→ G

is surjective if and only if n is prime to the order of the finite group G/G0 and Pn : G0 → G0

is surjective.
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See Section 4 for a proof of the above theorem. In the light of Theorem A of [Ch2] we may

rephrase Theorem 1.4 as follows.

Theorem 1.5. Let G be an algebraic group defined over an algebraically closed field of char-

acteristic zero, which is not necessarily Zariski-connected, and let n be an integer. Let T be a

maximal torus in G0. Then Pn : G → G is surjective if and only if n is relatively prime to the

orders of the finite groups G/G0 and ZT (X)/ZT (X)0, for all nilpotent elements X in the Lie

algebra L(G) of G.

In the above theorem ZT (X) denotes the subgroup of elements of T which fix X ∈ L(G),

through the adjoint action of T on L(G). We note that the orders of groups ZT (X)/ZT (X)0,

as above, can be computed using the finite number of characters on T that appear as roots in

G (see [Ch2]). This completes our understanding of the surjectivity problem for power maps on

algebraic groups over an algebraically closed field of characteristic zero.

By a real algebraic group we mean the group of real points, G(R) where G is an algebraic

group defined over R. The connected component of G(R) in the real topology is denoted by

G(R)∗. A real Lie group H is said to be weakly exponential if the image exp(L(H)), of the Lie

algebra L(H) under the exponential map, exp : L(H) → H is dense in H (in the real topology

of H). Our next results are related to the power maps of real algebraic groups, the main theme

of which circles around Theorem 1.7. In the course of the proof of this result we also obtain

Theorem 1.6 on weak exponentiality of real algebraic groups, which is of independent interest.

Recall A. Borel’s classification of weakly exponential real Lie groups which says that a con-

nected real Lie group G is weakly exponential if and only if all the Cartan subgroups of G

are connected (see [Ho-M] and [Dj-Ho]). The Theorem 1.6 may be regarded as an extension

of Borel’s result restricted to the class of groups G(R)∗ and on the other hand it clarifies the

dependence of weak-exponentiality of such groups to the surjectivity of the square map P2,

on the set of semisimple elements. Note that any Cartan subgroup H of G(R)∗ is of the form

H = G(R)∗ ∩ ZG0(T ) for some maximal torus T of G0 which is defined over R. For a subgroup

A of the algebraic group G we denote the set of semisimple elements in A by S(A).

Theorem 1.6. Let G be an algebraic group defined over R. Then the following are equivalent.

(1) P2 : S(G(R)∗) → S(G(R)∗) is surjective.

(2) All the Cartan subgroups of G(R)∗ are connected.

(3) If T is any maximal torus in G, defined over R, then T (R)∗ = G(R)∗ ∩ T (R).

(4) G(R)∗ is weakly exponential i.e., the set, exp(L(G(R))) is dense in G(R)∗ in the real

topology.

Consequently, if P2 : G(R)∗ → G(R)∗ is surjective then G(R)∗ is weakly exponential.

See Section 5 for a proof of the above result. It should be noted that the converse of the last

part of the above theorem does not hold in general (see Remark 5.4).
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In [Ch5] we have obtained various conditions for surjectivity of Pn on Zariski connected maxi-

mal (C)-rank subgroups of real algebraic groups. Our next Theorem 1.7 yields a characterization

of the surjectivity of the n-th power maps for real points of a real algebraic group which is not

necessarily Zariski-connected. The proof of Theorem 1.7 is based on Theorem 5.5 which is

established by applying Theorem 1.1 specifically to the case when F = R.

Theorem 1.7. Let G be an algebraic group defined over R, which is not necessarily Zariski-

connected, and let n be an integer. Let A be a subgroup of G(R) with G(R)∗ ⊂ A ⊂ G(R).

Then Pn : A → A is surjective if and only if for every unipotent element u ∈ G(R)∗, n is

relatively prime to the order of the finite group ZA(u)/ZA(u)∗ and Pn : S(ZA(u)∗) → S(ZA(u)∗)

is surjective.

In other words,

(1) If n is odd then Pn : A → A is surjective if and only if for every unipotent element

u ∈ G(R)∗, n is relatively prime to the order of the finite group ZA(u)/ZA(u)∗.

(2) P2 : A→ A is surjective if and only if for every unipotent element u ∈ G(R)∗, the order

of the finite group ZA(u)/ZA(u)∗ is odd and ZA(u)∗ is weakly exponential.

As shown in Corollary 5.7, the above theorem generalises a result of Djoković and Thang,

(see Theorem 2.2 of [Dj-T]) on the characterization of exponentiality of G(R)∗.

As a consequence of Theorem 1.7 we obtain Theorem 1.8 which can be viewed as an analogue

of Theorem 1.4 in the realm of real algebraic groups.

Theorem 1.8. Let G be an algebraic group over R and let n be an integer. Then Pn : G(R) →

G(R) is surjective if and only if n is relatively prime to the order of G(R)/G(R)∗ and Pn :

G(R)∗ → G(R)∗ is surjective.

A similar result is also proved in Corollary 5.8, regarding the power maps on G(R)∗, where

G is a Zariski-connected algebraic group over R.

S.G. Dani and M. McCrudden in Theorem 2.4, [D-M] show that a real Lie group G, of the

form G = K⋉N (semidirect product) where K is a (connected) compact subgroup and N is a

normal simply connected nilpotent subgroup, is exponential if and only if the centralizer ZK(v)

is connected for all elements v in N . As an application of Theorem 1.7 and Theorem 1.8 we

prove Theorem 1.9 which generalises the above result of Dani and McCrudden.

Theorem 1.9. Let K be a compact real Lie group (not necessarily connected) and N be a

simply connected nilpotent Lie group. Let G = K⋉N and n be an integer. Then Pn : G→ G is

surjective if and only if n is coprime to the number of connected components of K and ZK∗(v)

for all v ∈ N .

The Theorems 1.7, 1.8, 1.9 and Corollary 5.8 are proved in Section 5.
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2. Notations

The algebraic closure of a field F is denoted by F.

For an algebraic group (or a real Lie group) E let L(E) denote its Lie algebra. The Zariski

connected component of identity in an algebraic group G is denoted by G0. If H is a real Lie

group the connected component of identity of H, in the real topology, is denoted by H∗.

For a group G and a subset A ⊂ G we denote the subgroup of elements commuting with all

the elements of A, by ZG(A). In case G is an algebraic group (or a Lie group) and A ⊂ L(G)

then we denote the subgroup of elements of G which fix all the elements of A via the adjoint

representation, by ZG(A).

If G is an algebraic group defined over a field F then the Lie algebra L(G) acquires a F-

structure compatible with the F-structure of G; the group of F-rational points in G and in L(G)

are denoted by G(F) and L(G)(F), respectively. For a subgroup H of an algebraic group G we

denote the set of semisimple elements in H by S(H).

3. Existence of automorphism invariant cartan subgroups in characteristic zero

In this section we prove Theorem 1.1. We first need to recall certain basic definitions and facts.

Recall that a Cartan subalgebra of a Lie algebra is a self normalizing nilpotent Lie subalgebra

and according to C. Chevalley, a Cartan subgroup of an abstract group G is a maximal nilpotent

subgroup H of G so that any finite index normal subgroup of H is of finite index in its own

normalizer. It is well-known that Cartan subgroups of a Zariski-connected algebraic group are

Zariski-closed, Zariski-connected, nilpotent groups and they are precisely the centralizers of some

maximal torus in the ambient algebraic group. The next theorem is a collection of standard

facts on algebraic groups.

Theorem 3.1. (Propositions 24.3.6, 24.3.5,29.2.5, [T-Y]) Let G be a Zariski connected algebraic

group (over an algebraically closed field of characteristic zero).

(1) Let A be a Zariski connected algebraic subgroup of G. Then ZG(A) = ZG(L(A)). Further,

if v ∈ L(G) then L(ZA(v)) = ZL(A)(v).

(2) Let h ⊂ L(G) be a Cartan subalgebra. Then there exists a unique Cartan subgroup H ⊂ G

such that L(H) = h.

Lemma 3.2. Let G be an algebraic group defined over a field F, which is not necessarily alge-

braically closed. Let h be a F-Cartan subalgebra of L(G)(F). Then there exists a unique Cartan

subgroup H ⊂ G, defined over F, so that L(H) = h ⊗F F.

Proof. Let L(G) = g and h = h⊗F F. Then h is a F-Cartan subalgebra of L(G). We recall that

the subset of h, consisting of points z with the property that h = {y ∈ g |(adz)dim gy = 0 }, is a

nonempty Zariski open set in h.
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By Theorem 3.1 (2), there is a Zariski closed subgroup H of G such that L(H) = h. Clearly

L(H) is defined over F. Note that L(H)(F) = h and hence h is Zariski dense in L(H) = h. Thus

there exists α ∈ h such that h = {y ∈ g |(adα)dim gy = 0 }. Let α = αs + αn be the additive

Jordan decomposition of α. Note that αs, αn ∈ h. It is easy to verify that

h = {y ∈ g |(adα)dim gy = 0 }

= {y ∈ g |(adαs)y = 0 }.

Let H ′ be the Zariski connected component of the algebraic subgroup {g ∈ G | Adg(αs) =

αs }. As αs ∈ h = L(H)(F) we observe that H ′ is defined over F. But by Theorem 3.1 (1), it

follows that H = H ′. Thus H is defined over F. This completes the proof. 2

We next state a theorem due to Borel and Mostow (see Theorem 7.6 of [B-M]), which is one

of the main ingredients in our proof of Theorem 1.1.

Theorem 3.3. (A. Borel and G.D. Mostow) Let g be a Lie algebra over a characteristic zero

field and Γ be a super-solvable group of semisimple automorphisms of g. Then Γ leaves a Cartan

subalgebra of g invariant.

We now prove Theorem 1.1.

Proof of Theorem 1.1. By the hypothesis ψ : G → G is a semisimple F-automorphism, for

all ψ ∈ Γ. Hence the F-Lie algebra L(G)(F) remains invariant under the derivative dψ, for all

ψ ∈ Γ. Let Γ̃ be the group generated by the semisimple automorphism dψ, for all ψ ∈ Γ. As Γ̃

is super-solvable, by Theorem 3.3, there is a F-Cartan subalgebra h of L(G)(F) which remains

invariant under dψ, for all ψ ∈ Γ. By Lemma 3.2 there is a Cartan subgroup H of G0 which is

defined over F so that L(H) = h⊗F F. Clearly, L(H) remains invariant under dψ, for all ψ ∈ Γ.

Hence, by the uniqueness in Theorem 3.1 (2), ψ(H) = H, for all ψ ∈ Γ.

To prove the last part of Theorem 1.1 we recall that as H is Zariski connected and nilpotent,

there is a unique maximal torus T ⊂ H which is central in H. As H is a Cartan subgroup of

G it follows that T is a maximal torus in G. Moreover as H is defined over F, so is T . Clearly

ψ(T ) = T , for all ψ ∈ Γ. 2

Corollary 3.4. Let G be an algebraic group defined over a field F of characteristic zero, which

is not necessarily algebraically closed. Let s ∈ G(F) be a semisimple element. Then there exists

a maximal F-torus T of G0 so that sTs−1 = T .

Proof. The proof is immediate from Theorem 1.1 if we consider conjugation by s as a F-

automorphism of G0. 2

We conclude this section with some remarks and questions which are relevant to Theorem

1.1.
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Remark 3.5. Let F be an arbitrary field, not necessarily algebraically closed and let G be an

algebraic group over F which is F-isotropic i.e., G admits a F-split torus. Let ψ be a semisimple

F-automorphism of G. Then it is not always true that ψ will keep a F-split torus of G invariant.

Following Gopal Prasad’s suggestion, we can construct examples by considering an algebraic

group G which is F-isotropic and which contains a maximal torus T defined over F which is

F-anisotropic. A naive example of such a situation may be obtained by considering F = R

and T = SO2(C) and G = SL2(C). Note that SO2(C) is a R-anisotropic maximal torus of

the R-algebraic group SL2(C). More generally, if F is an arbitrary field with a finite separable

extension K of degree n, then the group, {x ∈ K
∗ | NK/F(x) = 1} of norm one elements in K

∗

embeds in the F-algebraic group G = SLn(F) as the group of F-rational points of a certain

maximal F-torus T (called norm torus) which is F-anisotropic in G. Being equipped with a

F-isotropic group G with a maximal F-torus T ⊂ G which is F-anisotropic, we first consider an

element α ∈ T (F) such that the subgroup, 〈α〉, generated by α, is Zariski dense in T . We claim

that T is the unique maximal torus stable under ψα, where ψα is the semisimple F-automorphism

of G defined by ψα(g) = αgα−1, g ∈ G. To see this, let T1 be another maximal torus such that

ψα(T1) = T1. As 〈α〉 is Zariski dense in T it follows that T ⊂ NG(T1), where NG(T1) is the

normalizer of T1 in G. As T is connected and G is reductive T ⊂ ZG(T1) = T1. Since both T1, T

are maximal we have T = T1.

Remark 3.6. The above remark leads us to ask the following natural questions in the context

of Prasad’s and Serre’s result ([P] and Theorem 3′′, Section 3.3. of [S], respectively), Steinberg’s

result (Theorem 7.5, [St1]), and Theorem 1.1. Let G be an algebraic group over F and ψ : G→ G

be a semisimple F-automorphism. It is of interest to know under what conditions ψ will keep

invariant a maximal F-split torus of G. More generally, under what conditions on ψ, a minimal

parabolic over F and a maximal F-split torus contained in it, will remain ψ-invariant.

4. Power maps on disconnected algebraic groups over algebraically closed

fields of characteristic zero

This section is devoted to proving Theorem 1.4. In the proof we do not use results from

the previous section. However, we need the following theorem of R. Steinberg in [St], which is

proved for algebraic groups over algebraically closed fields of arbitrary characteristic, but for

our purpose we state it only for groups over algebraically closed fields of characteristic zero.

Theorem 4.1. (R. Steinberg) Let H be an algebraic group over an algebraically closed field of

characteristic zero and let n be an integer. Then Pn : S(H) → S(H) is surjective if and only if

n is prime to the order of H/H0.

We also need the following result; see Lemma 2.3 of [Ch2] for a proof.

Lemma 4.2. Let G be an algebraic group. An element g ∈ G is contained in Pn(G) if and only

if gs ∈ Pn(ZG(gu)). The map Pn : G→ G is surjective if and only if for every unipotent element

u ∈ G the map Pn : S(ZG(u)) → S(ZG(u)) is surjective.
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Proof of Theorem 1.4. Let Pn : G→ G be surjective. It is immediate that Pn : G/G0 → G/G0

is surjective and hence n is relatively prime to the order of G/G0. Now let g ∈ G0. Let h ∈ G be

such that g = hn. This implies that in the group G/G0 the element (hG0)n = e. As the order

of G/G0 is relatively prime to n, it follows that hG0 = e and hence h ∈ G0. Thus Pn : G0 → G0

is surjective.

We now prove the converse. Suppose that n is relatively prime to the order of G/G0 and

that Pn : G0 → G0 is surjective. To prove that Pn : G → G is surjective, by Lemma 4.2, it

is enough to show that Pn : S(ZG(u)) → S(ZG(u)) is surjective, for every unipotent element

u ∈ G. If u ∈ G is unipotent then it lies in G0. In view of Theorem 4.1 it is now enough to

show that n is prime to the order of the group ZG(u)/ZG(u)0. Since Pn : G0 → G0 is surjective

it follows by using Lemma 4.2 and Theorem 4.1 that n is prime to the order of the finite group

ZG0(u)/ZG0(u)0. We have the inclusions

ZG0(u)0 ⊂ ZG0(u) ⊂ ZG(u) and ZG(u)0 ⊂ ZG(u).

Note that the connected groups ZG0(u)0 and ZG(u)0 have the same Lie subalgebra in the Lie

algebra of G and hence ZG0(u)0 = ZG(u)0. So we have

ZG0(u)0 = ZG(u)0 ⊂ ZG0(u) ⊂ ZG(u).

Note also that the group ZG(u)/ZG0(u) embeds in the group G/G0. Hence n is relatively prime

to the order of ZG(u)/ZG0(u). Thus n is relatively prime to the order of ZG(u)/ZG(u)0. This

completes the proof of the theorem. 2

5. Power maps on disconnected real algebraic groups

In this section we prove Theorems 1.6 and 1.8. To prove Theorem 1.8 we use Theorem 5.5,

which can be thought of as an analogue of Theorem 4.1. We further remark that Corollary 3.4

in Section 3 is applied to deduce Theorem 5.5.

It can be easily verified that, for a group G, Pn : G→ G is surjective if and only if Pm : G→ G

is surjective for all the factors m of n. In view of this it is important to note that the surjectivity

of power maps on groups can be divided into two cases, namely, surjectivity of Pn, when n is

odd and surjectivity of P2.

We next state a result due to Borel and Tits (see [B-T], Theorem 14.4, page 146) which is

particular to algebraic groups defined over R.

Theorem 5.1. (A. Borel and J. Tits) Let G be a Zariski connected algebraic group defined over

R. Then either G(R) = G(R)∗ or G(R)/G(R)∗ is a direct product of cyclic groups of order two.

We note that if T ⊂ G is a torus of G defined over R then T (R)∗ ⊂ T (R)∩G(R)∗ . Hence by

Theorem 5.1, either T (R)∗ = T (R)∩G(R)∗ or T (R)∩G(R)∗/T (R)∗ is a direct product of cyclic

groups of order two. We also need the following result.
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Lemma 5.2. Let G be a Zariski connected algebraic group defined over R. Let T be a maximal

torus of G which is defined over R. Suppose T (R)∩G(R)∗ is not connected (in the real topology).

Then any non-trivial coset in the group T (R) ∩ G(R)∗/T (R)∗ contains an element β such that

ZG(β) = ZG(T ).

Proof. We first observe that if H is a Zariski connected algebraic group over R and S is a torus

in H which is defined over R, then S(R)∗ is Zariski dense in S. This follows from the fact that

S(R) is Zariski dense in S and S(R)∗ is a finite index subgroup of S(R).

Now we get back to the proof of the lemma. Recall that, there exist finitely many non-trivial

algebraic characters χ1, · · · , χn of T with the property that, if t ∈ T satisfies χ(t) 6= 1 for all

i = 1, · · · , n, then ZG(t) = ZG(T ) (see [Sp], Lemma 6.4.3, page 109). Let hT (R)∗ be a non-

trivial coset in T (R) ∩ G(R)∗. Choose any α ∈ hT (R)∗. Consider the subset A ⊂ T defined

by,

A = { t ∈ T | χ−1
i (t) 6= χi(α), for all i = 1, · · · , n }.

Clearly A is non-empty and Zariski open in T . By the above observation T (R)∗ is Zariski

dense in T and hence we have a t0 ∈ T (R)∗ so that χi(αt0) 6= 1 for all i. Thus ZG(αt0) = ZG(T )

with αt0 ∈ hT (R)∗. Setting β = αt0 we see that β has the desired properties . 2

Before giving a proof of Theorem 1.6, we state a result due to A. Borel on the classification

of weakly exponential real Lie groups (see [Ho-M] and [Dj-Ho]).

Theorem 5.3. (A. Borel) A connected real Lie group G is weakly exponential if and only if all

the Cartan subgroups of G are connected.

Proof of Theorem 1.6. We begin by proving the implications (2) ⇔ (3). We recall that, if

T is a maximal torus of G over R then ZG0(T )(R) ∩G(R)∗ is a Cartan subgroup of G(R)∗ and

any Cartan subgroup of G(R)∗ is of this form for some maximal torus T of G, which is defined

over R. We further note that, ZG0(T )(R)∩G(R)∗ = (T (R)∩G(R)∗)×U(R) for some unipotent

subgroup U of G and that T (R)∗ is of finite index in T (R)∩G(R)∗. Clearly U(R) is connected.

Hence ZG0(T )(R) ∩G(R)∗ is connected if and only if T (R) ∩G(R)∗ is connected. This in turn

implies that, ZG0(T )(R) ∩ G(R)∗ is connected if and only if T (R)∗ = T (R) ∩ G(R)∗, proving

(2) ⇔ (3).

Implications (2) ⇔ (4) follows immediately from Theorem 5.3.

We now prove (2) ⇒ (1). Let s ∈ G(R)∗ be a semisimple element. Hence s lies in a Cartan

subgroup C of G(R)∗. Now C is a connected nilpotent Lie group and hence exp(L(C)) = C. So

P2 : C → C is surjective. Thus there exists r ∈ C so that s = r2.

We now show (1) ⇒ (2). We assume that P2 : S(G(R)∗) → S(G(R)∗) is surjective. Let

C ⊂ G(R)∗ be a Cartan subgroup. Then C = ZG0(T )(R) ∩ G(R)∗ for some maximal torus T ,

defined over R. We will arrive at a contradiction by assuming that C = ZG0(T )(R)∩G(R)∗ is not

connected in the real topology. By the implications (2) ⇔ (3) we have that T (R)∩G(R)∗ is not
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connected in the real topology. Choose any non-trivial coset in the group T (R)∩G(R)∗/T (R)∗.

By Lemma 5.2, this non-trivial coset contains an element β such that ZG(β) = ZG(T ). We

will show that β has no 2-th root in G(R)∗. If γ ∈ G(R)∗ is such that γ2 = β then γ ∈

ZG(β) = ZG(T ). As γ is semisimple we have that γ ∈ T (R) ∩ G(R)∗. But as γ2 = β, it

follows that β ∈ T (R)∗. This is contradiction to the fact that β lies in a non-trivial coset of

T (R) ∩G(R)∗/T (R)∗. This completes the proof of the theorem. 2

Remark 5.4. The Theorem 1.6 says that surjectivity of P2 : G(R)∗ → G(R)∗ implies weak-

exponentiality of G(R)∗. However, the converse is not true. If G is the Weil restriction

RC/R(SOn(C)), then G is a group over R with G(R)∗ = G(R) = SOn(C). By Theorem

C of [Ch2], for every n ≥ 3, the map P2 : SOn(C) → SOn(C) is not surjective. Thus

P2 : G(R)∗ → G(R)∗ is not surjective. But, as G(R)∗ is a connected complex Lie group,

the Cartan subgroups of G(R)∗ are connected and hence by Theorem 5.3, G(R)∗ is weakly

exponential.

In the proof of the following theorem we will apply Corollary 3.4 to algebraic groups over R.

The technique of our proof of this theorem is inspired by R. Steinberg’s proof of Theorem 4.1

in [St]. A subgroup A of an algebraic group G is said to be closed under Jordan-decomposition

if for all g ∈ A, both the semisimple part gs and the unipotent part gu lie in A. Note that if G

is an algebraic group over R then G(R) ⊂ G is closed under Jordan decomposition (see [Sp]).

Moreover, as any unipotent element u ∈ G(R) lies in G(R)∗, it follows that if A is a subgroup

of G with G(R)∗ ⊂ A ⊂ G(R) then A is closed under Jordan decomposition.

Theorem 5.5. Let H be an algebraic group over R, A be a subgroup of H with H(R)∗ ⊂ A ⊂

H(R) and let n be an integer. Then Pn : S(A) → S(A) is surjective if and only if n is relatively

prime to the order of the finite group A/H(R)∗ and Pn : S(H(R)∗) → S(H(R)∗) is surjective.

In other words,

(1) If n is an odd integer. Then Pn : S(A) → S(A) is surjective if and only if n is relatively

prime to the order of the finite group A/H(R)∗.

(2) P2 : S(A) → S(A) is surjective if and only if the order of the finite group A/H(R)∗ is

odd and P2 : S(H(R)∗) → S(H(R)∗) surjective. Furthermore, this happens if and only

if the order of the finite group A/H(R)∗ is odd and H(R)∗ is weakly exponential.

Proof. The proof will be given in three steps. The Step 1 is of general interest. In Steps 2 and

3 we prove the first part of the theorem. The last two (numbered) parts, the proofs of which

we skip, are essentially a restatement of the first part of the theorem and they can be readily

proved using the first part and Step 1.

Step 1: Observe that if n is an odd integer and H is an algebraic group over R then Pn :

S(H(R)∗) → S(H(R)∗) is surjective. To see this first note that H(R)∗ ⊂ H0. Let x be a

semisimple element in H(R)∗. Then there is a maximal R-torus T ⊂ H0 such that x ∈ T (R).

Clearly, T (R)∗ is a finite index subgroup of T (R) ∩ H(R)∗ with the index being a power of 2.
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As n is odd, T (R) is abelian and T (R)∗ is connected, it follows that there is a y ∈ T (R)∩H(R)∗

such that x = yn. Thus Pn : S(H(R)∗) → S(H(R)∗) is surjective if n is odd.

Step 2: Note that it is enough to prove the theorem when n is a prime number. We first prove

the “if” part. Suppose n is relatively prime to the order of the finite group A/H(R)∗ and

Pn : S(H(R)∗) → S(H(R)∗) is surjective. In view of Step 1 this is equivalent to assuming that

n is relatively prime to the order of A/H(R)∗ when n is an odd prime and further, when n = 2

the order of A/H(R)∗ is odd and P2 : S(H(R)∗) → S(H(R)∗) is surjective.

Let s ∈ A be a semisimple element and suppose that the order of sH(R)∗ in the finite group

A/H(R)∗ is m. Clearly m is relatively prime to n. Now as sm ∈ H(R)∗ it follows that sm ∈ H0.

Hence sm ∈ ZH(sm)0. Let H ′ = ZH(sm). Then H ′ is an algebraic group defined over R and

s ∈ H ′(R) and sm ∈ (H ′)0(R). We now apply Corollary 3.4 to the situation when the underlying

field is R and get that there is a maximal R-torus T ⊂ H ′ so that sTs−1 = T .

Claim: Pn : ZT (R)∗(s) → ZT (R)∗(s) is surjective.

Note that sT (R)s−1 = T (R) and hence sT (R)∗s−1 = T (R)∗. As sm ∈ (H ′)0 and sm is central

in H ′ we get that sm ∈ T . Let α : T (R)∗ → T (R)∗ denote the conjugation in T (R)∗ defined

by α(y) = sys−1, y ∈ T (R)∗. Let x ∈ ZT (R)∗ . As T (R)∗ is a connected abelian group there

is t0 ∈ T (R)∗ so that t0
n = x. Now consider the element t1 = t0α(t0) · · ·α

m−1(t0). Clearly

α(t1) = t1 and hence t1 ∈ ZT (R)∗(s). Moreover t1
n = xm. As m and n are relatively prime

there are integers a and b so that am + bn = 1. As t1 and x commute, we have x = xamxbn =

t1
anxbn = (t1

axb)n. Clearly t1
axb ∈ ZT (R)∗(s). This completes the proof of the claim.

We now consider two cases.

Case 1: Assume that n is an odd prime. Note that sm ∈ T (R) and the group T (R)/T (R)∗ is a

product of cyclic groups of order two. Thus, s2m ∈ T (R)∗ and consequently s2m ∈ ZT (R)∗(s).

By the above claim there is a t ∈ ZT (R)∗(s) so that tn = s2m. Moreover as n is odd and m,n are

relatively prime, the integers 2m,n are also relatively prime. Hence there are integers c, d with

c(2m) + dn = 1. Now s = s2mcsdn = tcnsdn = (tcsd)n.

Case 2: Assume that n = 2. By the assumption we have that P2 : S(H(R)∗) → S(H(R)∗) is

surjective and the order of the finite group H(R)/H(R)∗ is an odd integer. Hence by Theorem

1.6, T (R)∗ = T (R) ∩ H(R)∗. We note that sm ∈ T (R) ∩ H(R)∗ = T (R)∗ and hence sm ∈

ZT (R)∗(s). Now the proof follows on the same lines as in the Case 1. By the above claim there

is a t ∈ ZT (R)∗(s) so that t2 = sm. Moreover, as the order of the finite group A/H(R)∗ is odd,

the integer m is also odd. Hence there is an integers d with m + 2d = 1. Now s = sms2d =

t2s2d = (tsd)2.

Step 3: To prove the “only if” part we observe that every coset of A/H(R)∗ is represented by

semisimple elements in S(A). Thus the surjectivity of Pn : S(A) → S(A) implies the surjectivity

of Pn : A/H(R)∗ → A/H(R)∗ and hence the order of A/H(R)∗ is relatively prime to n. It also

follows easily that Pn : S(H(R)∗) → S(H(R)∗) is surjective. 2
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Lemma 5.6. Let G be an algebraic group defined over R. Let A be a subgroup of G(R) with

G(R)∗ ⊂ A ⊂ G(R). Then Pn : A → A is surjective if and only if for every unipotent element

u ∈ G(R)∗ the map Pn : S(ZA(u)) → S(ZA(u)) is surjective.

Proof. Note that any unipotent element u in G(R) belongs to a one parameter subgroup of

G(R), which is in turn contained in ZG(R)∗(u). Thus any unipotent element u admits a n-th

root in ZG(R)∗(u). Now recall that A ⊂ G(R) is closed under Jordan decomposition. The proof

is now similar to that of Lemma 2.3 in [Ch2] and hence we omit the details. 2

Proof of Theorem 1.7. The proof follows immediately from Theorem 5.5 and Lemma 5.6. 2

The result of Djoković and Thang (see Theorem 2.2 of [Dj-T]) on the characterization of

exponentiality of G(R)∗ can be reproved using Theorem 1.7.

Corollary 5.7. (D. Z. Djoković and N. Q. Thang) Let G be an algebraic group over R. Then

exp : L(G(R)) → G(R)∗ is surjective if and only if ZG(R)∗(u) is weakly exponential for every

unipotent element u ∈ G(R)∗.

Proof. It follows from [M] that exp : L(G(R)) → G(R)∗ is surjective if and only if Pn :

G(R)∗ → G(R)∗ is surjective for all n. Using Theorem 1.7, we conclude that this happens if and

only if ZG(R)∗(u) = ZG(u)(R)∗ and ZG(u)(R)∗ is weakly exponential for all unipotent elements

u ∈ G(R)∗. This completes the proof. 2

We now prove Theorem 1.8

Proof of Theorem 1.8. We first prove the “if” part. Suppose n is relatively prime to the order

of G(R)/G(R)∗ and Pn : G(R)∗ → G(R)∗ is surjective. Let u ∈ G(R) be unipotent. Clearly

u ∈ G(R)∗. Let Hu = ZG(R)∗(u). By assumption, Pn : G(R)∗ → G(R)∗ is surjective. Hence by

Lemma 5.6, the map Pn is surjective on the semisimple elements of ZG(R)∗(u) = Hu. Observe

that as all the unipotent elements of Hu lie in H∗

u, every coset of the finite group Hu/H
∗

u is

represented by semisimple elements in Hu. So it follows that the map Pn is surjective on the

group Hu/H
∗

u. Hence n is relatively prime to the order of Hu/H
∗

u. Moreover, it also follows that

Pn : S(H∗

u) → S(H∗

u) is surjective. As H∗

u = ZG(u)(R)∗, we have that Pn : S(ZG(u)(R)∗) →

S(ZG(u)(R)∗) is surjective. Recall that H∗

u = ZG(u)(R)∗ ⊂ ZG(R)∗(u) = Hu ⊂ ZG(R)(u). Note

that the group ZG(R)(u)/ZG(R)∗(u) embeds in the group G(R)/G(R)∗ and hence n is relatively

prime to the order of the group ZG(R)(u)/ZG(R)∗(u). We have shown above that n is relatively

prime to the order of Hu/H
∗

u = ZG(R)∗(u)/ZG(u)(R)∗. Hence n is relatively prime to the order

of the group ZG(R)∗(u)/ZG(u)(R)∗. Now by Theorem 1.7 we see that Pn is surjective on G(R).

The proof of the “only if” part is straightforward and we omit it. 2

Corollary 5.8. Let G be a Zariski connected algebraic group over R. Let n be an odd integer.

Then Pn : G(R) → G(R) is surjective if and only if Pn : G(R)∗ → G(R)∗ is surjective.
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Proof. The proof follows immediately from Theorem 1.8 and the fact that for a Zariski-

connected complex algebraic group G over R, the group G(R)/G(R)∗ is a product of cyclic

groups of order two (see Theorem 5.1). 2

Remark 5.9. We keep the notations as in Theorem 1.7. In view of Theorem 1.8 the question

of surjectivity of Pn on G(R) reduces to that of G(R)∗. For each unipotent element u ∈ G(R)∗

we choose a maximal compact subgroup Cu of ZG(R)∗(u). Then it follows from Theorem 3.1,

page 180-181, [H] that the groups ZG(u)∗(R)/ZG(u)(R)∗ and Cu/C
∗

u are isomorphic. Thus, by

Theorem 1.7, if n is odd then Pn : G(R)∗ → G(R)∗ is surjective if and only if n is coprime to the

orders of groups Cu/C
∗

u for all unipotent elements u ∈ G(R)∗. Further, P2 : G(R)∗ → G(R)∗ is

surjective if and only if order of Cu/C
∗

u is odd and ZG(u)∗(R)∗ is weakly exponential for unipotent

elements u ∈ G(R)∗.

Further, if G is a semisimple group over R one can say more using the theory of real nilpotent

orbits as in Chapter 9, [Co-M]. Let θ be a Cartan involution ofG(R)∗ andK be the corresponding

maximal compact subgroup, i.e. K = {g ∈ G(R)∗ | θ(g) = g }. A triple {H,X, Y } ⊂ L(G(R))

is called a Cayley triple if it is a sl2-triple i.e. [H,X] = 2X, [H,Y ] = −2Y, [X,Y ] = H and

moreover, if θ(H) = −H, θ(X) = −Y . Then it follows from Remark 9.5.2, page 148, [Co-M]

that the collection of finite groups Cu/C
∗

u with u varying over the unipotent elements in G(R)∗

is the same as the collection of finite groups ZK(H,X, Y )/ZK(H,X, Y )∗ with {H,X, Y } varying

over the set of Cayley triples of L(G(R)). Thus if n is odd then Pn : G(R)∗ → G(R)∗ is surjective

if and only if n is coprime to the orders of the finite groups ZK(H,X, Y )/ZK(H,X, Y )∗ for all

Cayley triples {H,X, Y } of L(G(R)).

We now proceed towards the proof of Theorem 1.9. We need the following lemma.

Lemma 5.10. Let G be a real Lie group with a compact subgroup K and a simply connected

nilpotent normal subgroup N such that G = K⋉N . Then, for every v ∈ N the subgroup ZK(v)

is a maximal compact subgroup of ZG(v).

Proof. We first consider the case when N is abelian. Let K1 be a maximal compact subgroup

of ZG(v) where v ∈ N . Then, as G has finitely many connected components, by Theorem 3.1,

page 180-181, [H] there is an α ∈ G such that αK1α
−1 ⊂ K. We may choose α ∈ N . Now, as

N is abelian, we have,

αK1α
−1 ⊂ αZG(v)α−1 = ZG(v).

Thus αK1α
−1 is another maximal compact subgroup of ZG(v) and further αK1α

−1 ⊂ ZK(v) ⊂

ZG(v). Hence ZK(v) is a maximal compact subgroup of ZG(v).

We next consider the case when N is not necessarily abelian. Let N ′ = N/[N,N ]. Now

consider the group G′ = K⋉N ′. Let π : G → G′ be the natural quotient homomorphism.

Let v ∈ N , as before, and let K2 ⊂ ZG(v) be a maximal compact subgroup of ZG(v) such

that ZK(v) ⊂ K2. We will show that ZK(v) = K2. Let v′ = π(v). As N ′ is abelian, using

the first case, we see that ZK(v′) is a maximal compact subgroup of ZG′(v′) and consequently
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π(K2) = π(ZK(v)). Now as [N,N ] is simply connected nilpotent, [N,N ] ∩K2 is trivial. This,

together with the equality π(K2) = π(ZK(v)), implies that K2 = ZK(v). 2

Proof of Theorem 1.9. We first note a standard fact that if G = K⋉N then there is an

algebraic group H over R and a Lie group isomorphism φ : G → H(R). It also follows that

there is a Levi subgroup L of H such that φ(K) = L(R) and φ(N) = RuH(R). Clearly, as L(R)

is compact, any unipotent element u ∈ H(R) is contained in RuH(R).

We next observe that if H is as above and if H1 is any algebraic subgroup of H, defined over

R, then H1(R)∗ is weakly exponential. This can be seen as follows. Let M be a Levi subgroup

of H1 which is defined over R. Note that H1(R)∗ = M(R)∗RuH1(R). As L is a maximal

reductive subgroup of H defined over R, there is a g ∈ H(R), such that gMg−1 ⊂ L. Thus

gM(R)g−1 ⊂ L(R). Thus M(R) is a compact group. Recall that RuH1(R) is a simply connected

nilpotent Lie group. Thus both M(R)∗ and RuH1(R) are exponential group. Now by, Corollary

2.1A, [Ho-M], the group H(R)∗ is weakly exponential.

Now, using Theorem 1.8 we conclude that Pn : H(R) → H(R) is surjective if and only if

Pn : H(R)∗ → H(R)∗ is surjective and n is coprime to the order of the finite group H(R)/H(R)∗.

It follows from the above that for any unipotent element u ∈ H(R)∗ the group ZH(R)(u)∗ is

weakly exponential. Thus we apply Theorem 1.7 to see that Pn : H(R)∗ → H(R)∗ is surjective if

and only if n is coprime to the order of the finite groups ZH(R)∗(u)/ZH(R)(u)∗ for all unipotent

elements u ∈ H(R)∗. Under isomorphism φ, reinterpreting the above observations we get that,

Pn : G→ G is surjective if and only if n is coprime to the orders of the finite groups G/G∗ and

ZG∗(v)/ZG(v)∗ for all v ∈ N . Note that K is a maximal compact group of G and further, using

Lemma 5.10, ZK∗(v) is a maximal compact subgroup of ZG∗(v). Appealing to Theorem 3.1,

page 180-181, [H] we see that G/G∗ is isomorphic to K/K∗ and that, for all unipotent element

u ∈ N , the group ZG(v)/ZG(v)∗ is isomorphic to ZK∗(v)/ZK(v)∗. This completes the proof. 2

Corollary 5.11. Let H be a compact real Lie group, which is not necessarily connected and let

n be an integer. Then Pn : H → H is surjective if and only if n is relatively prime to the order

of H/H∗. Moreover, if h ∈ H is such that the order of hH∗ in H/H∗ is relatively prime to n

then h has a n-th root in H.

Proof. The first part follows immediately from Theorem 1.9. To prove the last part we consider

the subgroup H1 generated by h and H∗, and then apply the first part of this corollary. 2

Remark 5.12. The above corollary generalises a classical theorem of Heinz Hopf which says

that for a compact connected real Lie group all the n-th power maps are surjective (see [Hop]).

The Corollary 5.11 also follows from Proposition 3.1 in [Br] due to R. Brown. The proof of

Proposition 3.1 in [Br] depends on the cohomology theory of compact Lie groups, but our proof

is very different and is a natural consequence of the results on the power maps of real algebraic

groups proved in this paper.
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[B-T] A. Borel and J. Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math., 27 : 55–150, 1965.
[Br] Robert F. Brown, On the power map in compact groups, Quart. J. Math. Oxford Ser. (2), 22 : 395-400,

1971.
[Ch1] Pralay Chatterjee, On the surjectivity of power maps of solvable Lie groups, J. Algebra, 248 : 669-687,

2002.
[Ch2] Pralay Chatterjee, On the surjectivity of the power maps of algebraic groups in characteristic zero, Math.

Res. Letters, 9 : 741-756, 2002.
[Ch3] Pralay Chatterjee, On the surjectivity of the power maps of semisimple algebraic groups, Math. Res.

Letters, 10 : 625-633, 2003.
[Ch4] Pralay Chatterjee, On the power maps, orders and exponentiality of p-adic algebraic groups, J. Reine

Angew. Math., 629 : 201-220, 2009.
[Ch5] Pralay Chatterjee, Surjectivity of power maps of real algebraic groups, preprint.
[Co-M] D.H. Collingwood and W.M. McGovern, Nilpotent orbits in semisimple Lie algebras. Van Nostrand

Reinhold Co., New York, 1993.
[D-M] S.G. Dani and M. McCrudden, A criterion for exponentiality in certain Lie groups, J. Algebra, 238 :

82-98, 2001.
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