

SECOND COHOMOLOGY OF COMPACT HOMOGENEOUS SPACES

INDRANIL BISWAS

School of Mathematics, Tata Institute of Fundamental Research Homi Bhabha Road, Mumbai 400005, India indranil@math.tifr.res.in

PRALAY CHATTERJEE

The Institute of Mathematical Sciences C.I.T. Campus, Taramani, Chennai 600113, India pralay@imsc.res.in

> Received 13 May 2013 Accepted 13 August 2013 Published 12 September 2013

In Theorem 3.3 of [I. Biswas and P. Chatterjee, On the exactness of Kostant-Kirillov form and the second cohomology of nilpotent orbits, *Int. J. Math.* **23**(8) (2012)], the second cohomology of a quotient of a compact semisimple real Lie group was computed. In this addendum to the above paper, we give a simple topological proof of this theorem.

Keywords: Semisimple group; compact homogeneous space; second cohomology.

Mathematics Subject Classification 2010: 57T15, 17B20

1. Introduction

Let M be a compact connected semisimple real Lie group, and let $K \subset M$ be a closed subgroup. The connected component of K containing the identity element will be denoted by K^0 . The center of the Lie algebra of K will be denoted by $\mathfrak{z}(\mathfrak{k})$. The adjoint action of K on $\mathfrak{z}(\mathfrak{k})$ clearly factors through the quotient K/K^0 . Consider the action of K/K^0 on the dual vector space $\mathfrak{z}(\mathfrak{k})^*$ corresponding to the adjoint action of K/K^0 on $\mathfrak{z}(\mathfrak{k})$. Let

 $[\mathfrak{z}(\mathfrak{k})^*]^{K\!/\!K^0} \subset \mathfrak{z}(\mathfrak{k})^*$

be the space of invariants for this action.

The following theorem was proved in [1] (see [1, Theorem 3.3]).

Theorem 1.1. The cohomology $H^2(M/K, \mathbb{R})$ is canonically isomorphic to $[\mathfrak{z}(\mathfrak{k})^*]^{K/K^0}$.

Our aim in this addendum to [1] is to give a simple topological proof of Theorem 1.1.

A geometric interpretation of the isomorphism in Theorem 1.1 is described in Remark 2.1.

2. Proof of Theorem 1.1

We can reduce to the case where M is simply connected by the following argument.

Let M be the universal cover on M; it is compact because M being semisimple its fundamental group is a finite one. The kernel of the projection

$$\alpha:\widetilde{M}\to M$$

lies in the center of \widetilde{M} . Let \widetilde{K}_0 be the connected component of $\widetilde{K} := \alpha^{-1}(K)$ containing the identity element. Since kernel(α) is contained in the center of \widetilde{M} , we have

$$[\mathfrak{z}(\mathfrak{k})^*]^{K\!/\!K^0} = [\mathfrak{z}(\mathfrak{k})^*]^{\widetilde{K}\!/\!\widetilde{K}_0}.$$

Also, $M/K = \widetilde{M}/\widetilde{K}$. Therefore, it is enough to prove Theorem 1.1 after substituting $(\widetilde{M}, \widetilde{K})$ for (M, K).

Hence we will assume that M is simply connected.

Consider the long exact sequence of homotopy groups for the quotient map

$$f: M \to M/K^0.$$

Since M is simply connected and K^0 is connected, we have $\pi_1(M/K^0) = 0$. As $\pi_2(M) = 0 = \pi_1(M)$, the same long exact sequence gives that $\pi_2(M/K^0) = \pi_1(K^0)$. Therefore, by Hurewicz' theorem

$$H_2(M/K^0,\mathbb{R}) = H_1(K^0,\mathbb{R}).$$

This implies that

$$H^{2}(M/K^{0},\mathbb{R}) = H_{2}(M/K^{0},\mathbb{R})^{*} = H_{1}(K^{0},\mathbb{R})^{*} = H^{1}(K^{0},\mathbb{R}).$$

But $H^1(K^0, \mathbb{R}) = \mathfrak{z}(\mathfrak{k})^*$. Indeed, for any $\omega \in \mathfrak{z}(\mathfrak{k})^*$, the 1-form on K^0 obtained by translating $\omega \in T_e^* K^0$ (right and left translations coincide) is *d*-closed, and the resulting homomorphism

$$\mathfrak{z}(\mathfrak{k})^* \to H^1(K^0,\mathbb{R})$$

is an isomorphism. Consequently, we have

$$H^2(M/K^0, \mathbb{R}) = \mathfrak{z}(\mathfrak{k})^*.$$
(2.1)

Now, consider the natural projection

$$\phi: M/K^0 \rightarrow M/K.$$

It is a Galois covering map with Galois group $K\!/\!K^0$. Therefore,

$$H^2(M/K,\mathbb{R}) = H^2(M/K^0,\mathbb{R})^{\operatorname{Gal}(\phi)} \subset H^2(M/K^0,\mathbb{R}),$$
(2.2)

where $H^2(M/K^0, \mathbb{R})^{\text{Gal}(\phi)}$ is the space of invariants for the natural action of $\text{Gal}(\phi)$ on $H^2(M/K^0, \mathbb{R})$. The isomorphism in (2.1) takes the action of $\text{Gal}(\phi)$ on

 $H^2(M/K^0,\mathbb{R})$ to the adjoint action of K/K^0 on $\mathfrak{z}(\mathfrak{k})^*$. Therefore, from (2.2) we get an isomorphism

$$H^2(M/K,\mathbb{R}) = [\mathfrak{z}(\mathfrak{k})^*]^{K/K^0}.$$
(2.3)

Remark 2.1. Take any homomorphism $\chi : K \to \mathbb{C}^*$. The group K acts on $M \times \mathbb{C}$ as follows: the action of any $g \in K$ sends any $(m, \lambda) \in M \times \mathbb{C}$ to $(mg, \chi(g^{-1}) \cdot \lambda)$. The projection $(M \times \mathbb{C})/K \to M/K$ is a line bundle, which we will denote by L^{χ} . Now, $\chi \mapsto c_1(L^{\chi})$ produces a homomorphism

$$\operatorname{Char}(K) \otimes_{\mathbb{Z}} \mathbb{R} \to H^2(M/K, \mathbb{R}),$$

where $\operatorname{Char}(K)$ is the group of characters of K. On the other hand,

$$\operatorname{Char}(K)\otimes_{\mathbb{Z}}\mathbb{R}=[\mathfrak{z}(\mathfrak{k})^*]^{K/K^0}.$$

The resulting homomorphism

$$[\mathfrak{z}(\mathfrak{k})^*]^{K/K^0} \to H^2(M/K,\mathbb{R})$$

coincides with the isomorphism constructed in (2.3).

Acknowledgments

The first author acknowledges the support of the J. C. Bose Fellowship.

Reference

 I. Biswas and P. Chatterjee, On the exactness of Kostant-Kirillov form and the second cohomology of nilpotent orbits, *Int. J. Math.* 23(8) (2012) article ID: 1250086.