SECOND COHOMOLOGY OF COMPACT HOMOGENEOUS SPACES

INDRANIL BISWAS
School of Mathematics, Tata Institute of Fundamental Research Homi Bhabha Road, Mumbai 400005, India
indranil@math.tifr.res.in
PRALAY CHATTERJEE
The Institute of Mathematical Sciences
C.I.T. Campus, Taramani, Chennai 600113, India
pralay@imsc.res.in

Received 13 May 2013
Accepted 13 August 2013
Published 12 September 2013

Abstract

In Theorem 3.3 of [I. Biswas and P. Chatterjee, On the exactness of Kostant-Kirillov form and the second cohomology of nilpotent orbits, Int. J. Math. 23(8) (2012)], the second cohomology of a quotient of a compact semisimple real Lie group was computed. In this addendum to the above paper, we give a simple topological proof of this theorem.

Keywords: Semisimple group; compact homogeneous space; second cohomology.
Mathematics Subject Classification 2010: 57T15, 17B20

1. Introduction

Let M be a compact connected semisimple real Lie group, and let $K \subset M$ be a closed subgroup. The connected component of K containing the identity element will be denoted by K^{0}. The center of the Lie algebra of K will be denoted by $\mathfrak{z}(\mathfrak{k})$. The adjoint action of K on $\mathfrak{z}(\mathfrak{k})$ clearly factors through the quotient K / K^{0}. Consider the action of K / K^{0} on the dual vector space $\mathfrak{z}(\mathfrak{k})^{*}$ corresponding to the adjoint action of K / K^{0} on $\mathfrak{z}(\mathfrak{k})$. Let

$$
\left[\mathfrak{z}(\mathfrak{k})^{*}\right]^{K / K^{0}} \subset \mathfrak{z}(\mathfrak{k})^{*}
$$

be the space of invariants for this action.
The following theorem was proved in [1] (see [1, Theorem 3.3]).
Theorem 1.1. The cohomology $H^{2}(M / K, \mathbb{R})$ is canonically isomorphic to $\left[\mathfrak{z}(\mathfrak{k})^{*}\right]^{K / K^{0}}$.

Our aim in this addendum to [1] is to give a simple topological proof of Theorem 1.1.

A geometric interpretation of the isomorphism in Theorem 1.1 is described in Remark 2.1.

2. Proof of Theorem 1.1

We can reduce to the case where M is simply connected by the following argument.
Let \widetilde{M} be the universal cover on M; it is compact because M being semisimple its fundamental group is a finite one. The kernel of the projection

$$
\alpha: \widetilde{M} \rightarrow M
$$

lies in the center of \widetilde{M}. Let \widetilde{K}_{0} be the connected component of $\widetilde{K}:=\alpha^{-1}(K)$ containing the identity element. Since $\operatorname{kernel}(\alpha)$ is contained in the center of \widetilde{M}, we have

$$
\left[\mathfrak{z}(\mathfrak{k})^{*}\right]^{K / K^{0}}=\left[\mathfrak{z}(\mathfrak{k})^{*}\right]^{\widetilde{K} / \widetilde{K}_{0}} .
$$

Also, $M / K=\widetilde{M} / \widetilde{K}$. Therefore, it is enough to prove Theorem 1.1 after substituting $(\widetilde{M}, \widetilde{K})$ for (M, K).

Hence we will assume that M is simply connected.
Consider the long exact sequence of homotopy groups for the quotient map

$$
f: M \rightarrow M / K^{0}
$$

Since M is simply connected and K^{0} is connected, we have $\pi_{1}\left(M / K^{0}\right)=0$. As $\pi_{2}(M)=0=\pi_{1}(M)$, the same long exact sequence gives that $\pi_{2}\left(M / K^{0}\right)=\pi_{1}\left(K^{0}\right)$. Therefore, by Hurewicz' theorem

$$
H_{2}\left(M / K^{0}, \mathbb{R}\right)=H_{1}\left(K^{0}, \mathbb{R}\right)
$$

This implies that

$$
H^{2}\left(M / K^{0}, \mathbb{R}\right)=H_{2}\left(M / K^{0}, \mathbb{R}\right)^{*}=H_{1}\left(K^{0}, \mathbb{R}\right)^{*}=H^{1}\left(K^{0}, \mathbb{R}\right)
$$

But $H^{1}\left(K^{0}, \mathbb{R}\right)=\mathfrak{z}(\mathfrak{k})^{*}$. Indeed, for any $\omega \in \mathfrak{z}(\mathfrak{k})^{*}$, the 1 -form on K^{0} obtained by translating $\omega \in T_{e}^{*} K^{0}$ (right and left translations coincide) is d-closed, and the resulting homomorphism

$$
\mathfrak{z}(\mathfrak{k})^{*} \rightarrow H^{1}\left(K^{0}, \mathbb{R}\right)
$$

is an isomorphism. Consequently, we have

$$
\begin{equation*}
H^{2}\left(M / K^{0}, \mathbb{R}\right)=\mathfrak{z}(\mathfrak{k})^{*} \tag{2.1}
\end{equation*}
$$

Now, consider the natural projection

$$
\phi: M / K^{0} \rightarrow M / K
$$

It is a Galois covering map with Galois group K / K^{0}. Therefore,

$$
\begin{equation*}
H^{2}(M / K, \mathbb{R})=H^{2}\left(M / K^{0}, \mathbb{R}\right)^{\operatorname{Gal}(\phi)} \subset H^{2}\left(M / K^{0}, \mathbb{R}\right) \tag{2.2}
\end{equation*}
$$

where $H^{2}\left(M / K^{0}, \mathbb{R}\right)^{\operatorname{Gal}(\phi)}$ is the space of invariants for the natural action of $\operatorname{Gal}(\phi)$ on $H^{2}\left(M / K^{0}, \mathbb{R}\right)$. The isomorphism in (2.1) takes the action of $\operatorname{Gal}(\phi)$ on
$H^{2}\left(M / K^{0}, \mathbb{R}\right)$ to the adjoint action of K / K^{0} on $\mathfrak{z}(\mathfrak{k})^{*}$. Therefore, from (2.2) we get an isomorphism

$$
\begin{equation*}
H^{2}(M / K, \mathbb{R})=\left[\mathfrak{z}(\mathfrak{k})^{*}\right]^{K / K^{0}} \tag{2.3}
\end{equation*}
$$

Remark 2.1. Take any homomorphism $\chi: K \rightarrow \mathbb{C}^{*}$. The group K acts on $M \times \mathbb{C}$ as follows: the action of any $g \in K$ sends any $(m, \lambda) \in M \times \mathbb{C}$ to $\left(m g, \chi\left(g^{-1}\right) \cdot \lambda\right)$. The projection $(M \times \mathbb{C}) / K \rightarrow M / K$ is a line bundle, which we will denote by L^{χ}. Now, $\chi \mapsto c_{1}\left(L^{\chi}\right)$ produces a homomorphism

$$
\operatorname{Char}(K) \otimes_{\mathbb{Z}} \mathbb{R} \rightarrow H^{2}(M / K, \mathbb{R})
$$

where $\operatorname{Char}(K)$ is the group of characters of K. On the other hand,

$$
\operatorname{Char}(K) \otimes_{\mathbb{Z}} \mathbb{R}=\left[\mathfrak{z}(\mathfrak{k})^{*}\right]^{K / K^{0}}
$$

The resulting homomorphism

$$
\left[\mathfrak{z}(\mathfrak{k})^{*}\right]^{K / K^{0}} \rightarrow H^{2}(M / K, \mathbb{R})
$$

coincides with the isomorphism constructed in (2.3).

Acknowledgments

The first author acknowledges the support of the J. C. Bose Fellowship.

Reference

[1] I. Biswas and P. Chatterjee, On the exactness of Kostant-Kirillov form and the second cohomology of nilpotent orbits, Int. J. Math. 23(8) (2012) article ID: 1250086.

