DIVERGENT TORUS ORBITS IN HOMOGENEOUS SPACES OF \mathbb{Q}-RANK TWO

BY
Pralay Chatterjee
Department of Mathematics, Oklahoma State University
Stillwater, OK 74078, USA
and
Mathematics Department, Rice University
Houston, TX 77005, USA
e-mail:pralay@math.rice.edu

AND
Dave Witte Morris
Department of Mathematics, Oklahoma State University
Stillwater, OK 74078, USA and
Department of Mathematics and Computer Science, University of Lethbridge
Lethbridge, AB T1K 3M4, Canada
e-mail: Dave.Morris@uleth.ca
URL: http://people.uleth.ca/~dave.morris/

ABSTRACT

Let \mathbf{G} be a semisimple algebraic \mathbb{Q}-group, let Γ be an arithmetic subgroup of \mathbf{G}, and let \mathbf{T} be an \mathbb{R}-split torus in \mathbf{G}. We prove that if there is a divergent $\mathbf{T}_{\mathbb{R}}$-orbit in $\Gamma \backslash \mathbf{G}_{\mathbb{R}}$, and \mathbb{Q} rank $\mathbf{G} \leq 2$, then $\operatorname{dim} \mathbf{T} \leq \mathbb{Q}$ rank \mathbf{G}. This provides a partial answer to a question of G. Tomanov and B. Weiss.

1. Introduction

Let \mathbf{G} be a semisimple algebraic \mathbb{Q}-group, let Γ be an arithmetic subgroup of \mathbf{G}, and let \mathbf{T} be an \mathbb{R}-split torus in \mathbf{G}. The $\mathbf{T}_{\mathbb{R}}$-orbit of a point Γx_{0} in $X=\Gamma \backslash \mathbf{G}_{\mathbb{R}}$ is divergent if the natural orbit map $\mathbf{T}_{\mathbb{R}} \rightarrow X: t \mapsto \Gamma x_{0} t$ is proper. G. Tomanov and B. Weiss [TW, p. 389] asked whether it is possible
for there to be a divergent $\mathbf{T}_{\mathbb{R}}$-orbit when $\operatorname{dim} \mathbf{T}>\mathbb{Q}-\operatorname{rank} \mathbf{G}$. B. Weiss $[\mathrm{W} 1$, Conjecture 4.11 A] conjectured that the answer is negative.

1.1. Conjecture: Let

- \mathbf{G} be a semisimple algebraic group that is defined over \mathbb{Q},
- Γ be a subgroup of $\mathbf{G}_{\mathbb{R}}$ that is commensurable with $\mathbf{G}_{\mathbb{Z}}$,
- T be a connected Lie subgroup of an \mathbb{R}-split torus in $\mathbf{G}_{\mathbb{R}}$, and
- $x_{0} \in \mathbf{G}_{\mathbb{R}}$.

If the T-orbit of Γx_{0} is divergent in $\Gamma \backslash \mathbf{G}_{\mathbb{R}}$, then $\operatorname{dim} T \leq \mathbb{Q} \operatorname{rank} \mathbf{G}$.
The conjecture easily reduces to the case where \mathbf{G} is connected and \mathbb{Q}-simple. Furthermore, the desired conclusion is obvious if $\mathbb{Q} \operatorname{rank} \mathbf{G}=0$ (because this implies that $\Gamma \backslash \mathbf{G}_{\mathbb{R}}$ is compact), and it is easy to prove if \mathbb{Q} rank $\mathbf{G}=1$ (see §2). Our main result is that the conjecture is also true in the first interesting case:
1.2. Theorem: Suppose G, Γ, T, and x_{0} are as specified in Conjecture 1.1, and assume \mathbb{Q}-rank $\mathbf{G} \leq 2$. If the T-orbit of Γx_{0} is divergent in $\Gamma \backslash \mathbf{G}_{\mathbb{R}}$, then $\operatorname{dim} T \leq \mathbb{Q}-\operatorname{rank} \mathbf{G}$.

The proof is based on the fact that if f is any continuous map from the 2 sphere S^{2} to any simplicial complex Σ^{k} of dimension $k<2$, then there exist two antipodal points x and y of S^{2}, such that $f(x)=f(y)$.

For higher \mathbb{Q} ranks, we prove only the upper bound $\operatorname{dim} T<2(\mathbb{Q}$-rank $\mathbf{G})$ (see 6.1). The factor of 2 in this bound is due to the existence of maps $f: S^{n} \rightarrow \Sigma^{k}$, with $k=\lceil(n+1) / 2\rceil$, such that no two antipodal points of S^{n} have the same image in Σ^{k} (see 6.3).

The first partial result on the conjecture was proved by G. Tomanov and B. Weiss [TW, Theorem 1.4], who showed that if \mathbb{Q}-rank $\mathbf{G}<\mathbb{R}$-rank \mathbf{G}, then $\operatorname{dim} T<\mathbb{R}$-rank \mathbf{G}. After seeing a preliminary version of our work, B. Weiss [W2] has recently proved the conjecture in all cases.

Geometric reformulation. We remark that, by using the well-known fact that flats in a symmetric space of noncompact type are orbits of \mathbb{R}-split tori in its isometry group [H, Proposition 6.1, p. 209], the conjecture and our theorem can also be stated in the following geometric terms.

Suppose \tilde{X} is a symmetric space, with no Euclidean (local) factors. Recall that a flat in \widetilde{X} is a connected, totally geodesic, flat submanifold of \widetilde{X}. Up to isometry, $\widetilde{X}=G / K$, where K is a compact subgroup of a connected, semisimple Lie group G with finite center. Then \mathbb{R}-rank G has the following geometric interpretation:
1.3. FACT: \mathbb{R}-rank G is the largest natural number r, such that \widetilde{X} contains a topologically closed, simply connected, r-dimensional flat.

Now let $X=\Gamma \backslash \tilde{X}$ be a locally symmetric space modeled on X, and assume that X has finite volume. Then \mathbb{Q}-rank Γ is a certain algebraically defined invariant of $\Gamma[\mathrm{M}, \S 9 \mathrm{D}]$. It can be characterized by the following geometric property:
1.4. Proposition: \mathbb{Q}-rank Γ is the smallest natural number r, for which there exists collection of finitely many r-dimensional flats in X, such that all of X is within a bounded distance of the union of these flats.

It is clear from this that the \mathbb{Q} rank does not change if X is replaced by a finite cover, and that it satisfies $\mathbb{Q} \operatorname{rank} \Gamma \leq \mathbb{R}$-rank G. Furthermore, the algebraic definition easily implies that if $\mathbb{Q}-\operatorname{rank} \Gamma=r$, then some finite cover of X contains a topologically closed, simply connected flat of dimension r. If Conjecture 1.1 is true, then there are no such flats of larger dimension. In other words, \mathbb{Q} rank should have the following geometric interpretation, analogous to (1.3):
1.5. Conjecture: \mathbb{Q}-rank Γ is the largest natural number r, such that some finite cover of X contains a topologically closed, simply connected, r-dimensional flat.

More precisely, Conjecture 1.1 is equivalent to the assertion that \mathbb{Q}-rank Γ is the largest natural number r, such that \widetilde{X} contains a topologically closed, simply connected, r-dimensional flat F, for which the composition $F \hookrightarrow \widetilde{X} \rightarrow X$ is a proper map.

Acknowledgements: The authors would like to thank Kevin Whyte for helpful discussions related to Proposition 2.2. D. W. M. was partially supported by a grant from the National Science Foundation (DMS-0100438).

2. Example: A proof for \mathbb{Q}-rank 1

To illustrate the ideas in our proof of Theorem 1.2, we sketch a simple proof that applies when \mathbb{Q}-rank $\mathbf{G}=1$. (A similar proof appears in [W1, Proposition 4.12].)

Proof: Suppose G, Γ, T, and x_{0} are as specified in Conjecture 1.1. For convenience, let $\pi: \mathbf{G}_{\mathbb{R}} \rightarrow \Gamma \backslash \mathbf{G}_{\mathbb{R}}$ be the natural covering map. Assume that \mathbb{Q} rank $\mathbf{G}=1$, that $\operatorname{dim} T=2$, and that the T-orbit of $\pi\left(x_{0}\right)$ is divergent in $\Gamma \backslash G$. This will lead to a contradiction.

Let $E_{1}=\Gamma \backslash \mathbf{G}_{\mathbf{R}}$. Because \mathbb{Q} rank $\mathbf{G}=1$, reduction theory (the theory of Siegel sets) implies that there exist

- a compact subset E_{0} of $\Gamma \backslash \mathbf{G}_{\mathbf{R}}$, and
- a \mathbb{Q}-representation $\rho: \mathbf{G} \rightarrow \mathbf{G L}_{m}$ (for some m),
such that, for each connected component \mathcal{E} of $G_{\mathbb{R}} \backslash \pi^{-1}\left(E_{0}\right)$, there is a nonzero vector $v \in \mathbb{Q}^{m}$, such that

$$
\begin{equation*}
\text { if } \lim _{n \rightarrow \infty} \Gamma g_{n}=\infty \text { in } \Gamma \backslash \mathbf{G}_{\mathbb{R}}, \text { and }\left\{g_{n}\right\} \subset \mathcal{E} \text {, then } \lim _{n \rightarrow \infty} \rho\left(g_{n}\right) v=0 . \tag{2.1}
\end{equation*}
$$

(In geometric terms, this is the fact that, because $E_{1} \backslash E_{0}$ consists of disjoint "cusps," $\mathbf{G}_{\mathbf{R}} \backslash \pi^{-1}\left(E_{0}\right)$ consists of disjoint "horoballs.")

Given $\epsilon>0$, let T_{R} be a large circle (1-sphere) in T, centered at the identity element. Because the T-orbit of $\pi\left(x_{0}\right)$ is divergent, we may assume $\pi\left(x_{0} T_{R}\right)$ is disjoint from E_{0}. Then, because $T_{R} \approx S^{1}$ is connected, the set $x_{0} T_{R}$ must be contained in a single component of $G_{\mathbb{R}} \backslash \pi^{-1}\left(E_{0}\right)$. Thus, there is a vector $v \in \mathbb{Q}^{n}$, such that $\|\rho(t) v\|<\epsilon\|v\|$ for all $t \in T_{R}$.

Fix $t \in T_{R}$. Then t^{-1} also belongs to T_{R}, so $\|\rho(t) v\|$ and $\left\|\rho\left(t^{-1}\right) v\right\|$ are both much smaller than $\|v\|$. This is impossible (see 3.2).

The above proof does not apply directly when $\mathbb{Q} \operatorname{rank} \mathbf{G}=2$, because, in this case, there are arbitrarily large compact subsets C of $\Gamma \backslash \mathbf{G}_{\mathbb{R}}$, such that $\mathbf{G}_{\mathbb{R}} \backslash \pi^{-1}(C)$ is connected. Instead of only E_{0} and E_{1}, we consider a more refined stratification $E_{0} \subset E_{1} \subset E_{2}$ of $\Gamma \backslash G$. (It is provided by the structure of Siegel sets in \mathbb{Q}-rank two.) The set E_{0} is compact, and, for $i \geq 1$, each component \mathcal{E} of $\pi^{-1}\left(E_{i} \backslash E_{i-1}\right)$ has a corresponding representation ρ and vector v, such that (2.1) holds. Thus, it suffices to find a component of either $\pi^{-1}\left(E_{1} \backslash E_{0}\right)$ or $\pi^{-1}\left(E_{2} \backslash E_{1}\right)$ that contains two antipodal points of T_{R}. Actually, we replace E_{1} with a slightly larger set that is open, so that we may apply the following property of S^{2} :
2.2. Proposition (see 3.1): Suppose $n \geq 2$, and that $\left\{V_{1}, V_{2}\right\}$ is an open cover of the n-sphere S^{n} that consists of only 2 sets. Then there is a connected component C of some V_{i}, such that C contains two antipodal points of S^{n}.
2.3. Remark: In $\S 5$, we do not use the notation $E_{0} \subset E_{1} \subset E_{2}$. The role of E_{0} is played by $\pi\left(Q S_{\Delta}^{+}\right)$, the role of an open set containing E_{1} is played by $\pi\left(Q \mathcal{S}_{\alpha} \cup Q \mathcal{S}_{\beta}\right)$, and the role of $E_{2} \backslash E_{1}$ is played by $\pi\left(Q \mathcal{S}_{*}\right)$.

3. Preliminaries

The classical Borsuk-Ulam Theorem implies that if $f: S^{n} \rightarrow \mathbb{R}^{k}$ is a continuous map, and $n \geq k$, then there exist two antipodal points x and y of S^{n}, such that $f(x)=f(y)$. We use this to prove the following stronger version of Proposition 2.2:
3.1. Proposition: Suppose \mathcal{V} is an open cover of S^{n}, with $n \geq 2$, such that no point of S^{n} is contained in more than two of the sets in \mathcal{V}. Then some $V \in \mathcal{V}$ contains two antipodal points of S^{n}.

Proof: Because S^{n} is compact, we may assume the open cover \mathcal{V} is finite. Let $\left\{\phi_{V}\right\}_{V \in \mathcal{V}}$ be a partition of unity subordinate to \mathcal{V}. This naturally defines a continuous function Φ from S^{n} to the simplex

$$
\Delta_{\mathcal{V}}=\left\{\left(x_{V}\right)_{V \in \mathcal{V}} \mid \sum_{V \in \mathcal{V}} x_{V}=1\right\} \subset[0,1]^{\mathcal{V}}
$$

Namely, $\Phi(x)=\left(\phi_{V}(x)\right)_{V \in \mathcal{V}}$. Our hypothesis on \mathcal{V} implies that no more than two components of $\Phi(x)$ are nonzero, so the image of Φ is contained in the 1 -skeleton $\Delta_{\mathcal{V}}^{(1)}$ of $\Delta_{\mathcal{V}}$. Because S^{n} is simply connected, Φ lifts to a map $\widetilde{\Phi}$ from S^{n} to the universal cover $\widetilde{\Delta_{\mathcal{V}}^{(1)}}$ of $\Delta_{\mathcal{V}}^{(1)}$. The universal cover is a tree, which can be embedded in \mathbb{R}^{2}, so the Borsuk-Ulam Theorem implies that there exist two antipodal points x and y of S^{n}, such that $\widetilde{\Phi}(x)=\widetilde{\Phi}(y)$. Thus, there exists $V \in \mathcal{V}$, such that $\phi_{V}(x)=\phi_{V}(y) \neq 0$. So $x, y \in V$.

For completeness, we also provide a proof of the following simple observation.
3.2. Lemma: Let T be any abelian group of diagonalizable $n \times n$ real matrices. There is a constant $\epsilon>0$, such that if

- v is any vector in \mathbb{R}^{n}, and
- t is any element of T,
then either $\|t v\| \geq \epsilon\|v\|$ or $\left\|t^{-1} v\right\| \geq \epsilon\|v\|$.
Proof: The elements of T can be simultaneously diagonalized. Thus, after a change of basis (which affects norms by only a bounded factor), we may assume that each standard basis vector e_{i} is an eigenvector for every element of T.

Write $v=\left(v_{1}, \ldots, v_{n}\right)$, and let t_{i} be the eigenvalue of t corresponding to the eigenvector e_{i}. Because any two norms differ only by a bounded factor, we may assume $\left\|\|\right.$ is the sup norm on \mathbb{R}^{n}; therefore, we have $\| v \|=\left|v_{j}\right|$ for some j. We may assume $\left|t_{j}\right| \geq 1$, by replacing t with t^{-1} if necessary. Then

$$
\|t v\|=\left\|\left(t_{1} v_{1}, \ldots, t_{n} v_{n}\right)\right\| \geq\left|t_{j} v_{j}\right|=\left|t_{j}\right| \cdot\|v\| \geq\|v\|
$$

as desired.

4. Properties of Siegel sets

We present some basic results from reduction theory that follow easily from the fundamental work of A. Borel and Harish-Chandra [BH] (see also [B, §13-§15]). Most of what we need is essentially contained in [L, §2], but we are working in G, rather than in $\widetilde{X}=G / K$. We begin by setting up the standard notation.

4.1. Notation (cf. [L, §1]): Let

- \mathbf{G} be a connected, almost simple \mathbb{Q}-group, with \mathbb{Q} rank $\mathbf{G}=2$,
- G be the identity component of \mathbf{G}_{R},
- Γ be a finite-index subgroup of $G_{\mathbb{Z}} \cap G$,
- P be a minimal parabolic \mathbb{Q} subgroup of G,
- A be a maximal \mathbb{Q}-split torus of \mathbf{G},
- A be the identity component of $\mathbf{A}_{\mathbb{R}}$, and
- K be a maximal compact subgroup of G.

We may assume $A \subset P$. Then we have a Langlands decomposition $P=U M A$, where U is unipotent and M is reductive. We remark that U and A are connected, but M is not connected (because P is not connected).
4.2. Notation (cf. $[\mathrm{L}, \S 1]$): The choice of P determines an ordering of the \mathbb{Q}-roots of \mathbf{G}. Because \mathbb{Q}-rank $G=2$, there are precisely two simple \mathbb{Q}-roots α and β (so the base Δ is $\{\alpha, \beta\}$). Then α and β are homomorphisms from A to \mathbb{R}^{+}.

Any element g of G can be written in the form $g=p a k$, with $p \in U M, a \in A$, and $k \in K$. The element a is uniquely determined by g, so we may use this decomposition to extend α and β to continuous functions $\tilde{\alpha}$ and $\tilde{\beta}$ defined on all of G :

$$
\begin{array}{ll}
\tilde{\alpha}(g)=\alpha(a) & \text { if } g \in U M a K \text { and } a \in A \\
\tilde{\beta}(g)=\beta(a) & \text { if } g \in U M a K \text { and } a \in A .
\end{array}
$$

4.3. Notation (cf. [L, §2]):

- Fix a subset Q of $\mathbf{G}_{\mathbb{Q}} \cap G$, such that Q is a set of representatives of $\Gamma \backslash\left(\mathbf{G}_{\mathbb{Q}} \cap G\right) /\left(\mathbf{P}_{\mathbb{Q}} \cap P\right)$.

Note that Q is finite.

- For $\tau>0$, let $A_{\tau}=\{a \in A \mid \alpha(a)>\tau$ and $\beta(a)>\tau\}$.
- For $\tau>0$ and a precompact, open subset ω of $U M$, let $\mathcal{S}_{\tau, \omega}=\omega A_{\tau} K$. This is a Siegel set in G.
- We fix $\tau>0$ and a precompact, open subset ω of $U M$, such that, letting $\mathcal{S}=\mathcal{S}_{\tau, \omega}$, we have
$Q S$ is a fundamental set for Γ in G.

That is,

- $\Gamma Q S=G$, and
- $\{\gamma \in \Gamma \mid \gamma Q \mathcal{S} \cap p Q \mathcal{S} \neq \emptyset\}$ is finite, for all $p \in G_{\mathbb{Q}} \cap G$.
 is finite.
- Fix $r>0$, such that, for $q \in \mathcal{D}$, we have
- if $\tilde{\alpha}$ is bounded on $\mathcal{S} \cap q \mathcal{S}$, then $\tilde{\alpha}(\mathcal{S} \cap q \mathcal{S})<r$, and
- if $\tilde{\beta}$ is bounded on $\mathcal{S} \cap q \mathcal{S}$, then $\tilde{\beta}(\mathcal{S} \cap q \mathcal{S})<r$.
- Fix any $r^{*}>r$.
- Define
- $\mathcal{S}_{*}=\{x \in \mathcal{S} \mid \tilde{\alpha}(x)>r$ and $\tilde{\beta}(x)>r\}$,
- $\mathcal{S}_{\alpha}=\left\{x \in \mathcal{S} \mid \tilde{\alpha}(x)<r^{*}\right\}$,
- $\mathcal{S}_{\beta}=\left\{x \in \mathcal{S} \mid \tilde{\beta}(x)<r^{*}\right\}$, and
- $\mathcal{S}_{\Delta}=\mathcal{S}_{\alpha} \cap \mathcal{S}_{\beta}$.

Note that $\left\{\mathcal{S}_{*}, \mathcal{S}_{\alpha}, \mathcal{S}_{\beta}\right\}$ is an open cover of \mathcal{S} (whereas [L, p. 398] defines $\left\{\mathcal{S}_{*}, \mathcal{S}_{\alpha}, \mathcal{S}_{\beta}\right\}$ to be a partition of \mathcal{S}, so not all sets are open). We have

$$
G=\Gamma Q \mathcal{S}_{*} \cup \Gamma Q \mathcal{S}_{\alpha} \cup \Gamma Q \mathcal{S}_{\beta}
$$

- For $p, q \in Q$, let

$$
\begin{aligned}
& \mathcal{D}_{0}^{p, q}=\{\gamma \in \Gamma \mid p \mathcal{S} \cap \gamma q \mathcal{S} \text { is precompact and nonempty }\} \\
& \mathcal{D}_{\alpha}^{p, q}=\left\{\gamma \in \Gamma \mid p \mathcal{S}_{\alpha} \cap \gamma q \mathcal{S}_{\alpha} \text { is precompact and nonempty }\right\} \\
& \mathcal{D}_{\beta}^{p, q}=\left\{\gamma \in \Gamma \mid p \mathcal{S}_{\beta} \cap \gamma q \mathcal{S}_{\beta} \text { is precompact and nonempty }\right\} \\
& \mathcal{D}_{\alpha, \beta}^{p, q}=\left\{\gamma \in \Gamma \mid p \mathcal{S}_{\alpha} \cap \gamma q \mathcal{S}_{\beta} \text { is precompact and nonempty }\right\}
\end{aligned}
$$

and, using an overline to denote the closure of a set,

$$
\begin{aligned}
\mathcal{S}_{\Delta}^{+}= & \bigcup_{\gamma \in \mathcal{D}_{0}^{p, q}}(\overline{p \mathcal{S} \cap \gamma q \mathcal{S}}) \cup \bigcup_{\gamma \in \mathcal{D}_{\alpha}^{p, q}}\left(\overline{p \mathcal{S}_{\alpha} \cap \gamma q \mathcal{S}_{\alpha}}\right) \\
& \cup \bigcup_{\gamma \in \mathcal{D}_{\beta}^{p, q}}\left(\overline{p \mathcal{S}_{\beta} \cap \gamma q \mathcal{S}_{\beta}}\right) \cup \bigcup_{\gamma \in \mathcal{D}_{\alpha, \beta}^{p, q}}\left(\overline{p \mathcal{S}_{\alpha} \cap \gamma q \mathcal{S}_{\beta}}\right) .
\end{aligned}
$$

Note that $\mathcal{D}_{0}^{p, q}, \mathcal{D}_{\alpha}^{p, q}, \mathcal{D}_{\beta}^{p, q}$, and $\mathcal{D}_{0}^{p, q}$ are finite (because $Q \mathcal{S}$ is a fundamental set), so \mathcal{S}_{Δ}^{+}is compact. And $\Gamma \mathcal{S}_{\Delta}^{+}$is closed.

- For $\Theta \subset \Delta$, we use P_{Θ} to denote the corresponding standard parabolic Q-subgroup of G corresponding to Θ. In particular, $P_{\emptyset}=P$ and $P_{\Delta}=G$. There is a corresponding Langlands decomposition $P_{\ominus}=U_{\ominus} M_{\Theta} A_{\Theta}$.

We now state two propositions from [L], that we will use repeatedly in the proofs of the next few lemmas. These propositions hold more generally for semisimple \mathbb{Q}-algebraic groups of arbitrary \mathbb{Q} rank.
4.4. Proposition ([L, Proposition 2.3]): Let $p, q \in Q$ and $\gamma \in \Gamma$, such that the intersection $p \mathcal{S} \cap \gamma q \mathcal{S}$ is not precompact. Then $p^{-1} \gamma q \in P_{\Theta} \cap G_{Q}$ where Θ is the collection of all the roots $\lambda \in \Delta$ for which $\tilde{\lambda}\left(\mathcal{S} \cap p^{-1} \gamma q \mathcal{S}\right)$ is bounded.
4.5. Proposition ([L, Lemma 2.4(i)]): For all $\gamma, \tilde{\gamma} \in \Gamma$ and $p, q \in Q$, we have:
(1) If $p^{-1} \gamma q \in P$, then $p=q$ and $p^{-1} \gamma q \in(U M)_{Q}$.
(2) Let $\Theta \subset \Delta$. If both $p^{-1} \gamma q$ and $p^{-1} \tilde{\gamma} q$ are in P_{Θ}, then

$$
\left(p^{-1} \gamma q\right)^{-1} p^{-1} \tilde{\gamma} q=q^{-1} \gamma^{-1} \tilde{\gamma} q \in\left(U_{\Theta} M_{\ominus}\right)_{\mathbb{Q}} .
$$

4.6. Lemma: For all $\gamma \in \Gamma$ and $p, q \in Q$, we have:
(1) $p S_{\alpha} \cap \gamma q \mathcal{S}_{\beta}$ is precompact, and
(2) $p \mathcal{S}_{\alpha} \cap \gamma q \mathcal{S}_{\beta} \subset \mathcal{S}_{\Delta}^{+}$.

Proof: It suffices to prove (1), for then (2) is immediate from the definition of \mathcal{S}_{Δ}^{+}(and $\mathcal{D}_{\alpha, \beta}^{p, q}$). Thus, let us suppose that $p \mathcal{S}_{\alpha} \cap \gamma q \mathcal{S}_{\beta}$ is not precompact. This will lead to a contradiction.
Because $\tilde{\alpha}$ is bounded on \mathcal{S}_{α}, but $\mathcal{S}_{\alpha} \cap p^{-1} \gamma q \mathcal{S}_{\beta}$ is not precompact, we know that $\tilde{\beta}$ is unbounded on $\mathcal{S}_{\alpha} \cap p^{-1} \gamma q \mathcal{S}_{\beta}$ (and, hence, on $\mathcal{S} \cap p^{-1} \gamma q \mathcal{S}$). Therefore, Proposition 4.4 implies that

$$
p^{-1} \gamma q \in P_{\alpha} .
$$

Similarly (replacing γ with γ^{-1} and interchanging p with q and α with β), because $\gamma^{-1} p \mathcal{S}_{\alpha} \cap q \mathcal{S}_{\beta}=\gamma^{-1}\left(p \mathcal{S}_{\alpha} \cap \gamma q \mathcal{S}_{\beta}\right)$ is not precompact, we see that

$$
q^{-1} \gamma^{-1} p \in P_{\beta} .
$$

Noting that $q^{-1} \gamma^{-1} p=\left(p^{-1} \gamma q\right)^{-1}$, we conclude that $p^{-1} \gamma q \in P_{\alpha} \cap P_{\beta}=P_{\emptyset}$, so Proposition 4.5 (1) tells us that $p=q$ and $p^{-1} \gamma q \in U M$. Therefore

$$
\tilde{\alpha}\left(\mathcal{S}_{\alpha} \cap p^{-1} \gamma q \mathcal{S}_{\beta}\right) \subset \tilde{\alpha}\left(\mathcal{S}_{\alpha}\right)
$$

and

$$
\tilde{\beta}\left(\mathcal{S}_{\alpha} \cap p^{-1} \gamma q \mathcal{S}_{\beta}\right) \subset \tilde{\beta}\left(p^{-1} \gamma q \mathcal{S}_{\beta}\right) \subset \tilde{\beta}\left(U M \mathcal{S}_{\beta}\right)=\tilde{\beta}\left(\mathcal{S}_{\beta}\right)
$$

are precompact. So $\mathcal{S}_{\alpha} \cap p^{-1} \gamma q \mathcal{S}_{\beta}$ is precompact, which contradicts our assumption that $p \mathcal{S}_{\alpha} \cap \gamma q \mathcal{S}_{\beta}$ is not precompact.
4.7. Lemma: If $\gamma \in \Gamma$ and $p, q \in Q$, such that $p \mathcal{S}_{*} \cap \gamma q \mathcal{S}_{*} \not \subset \mathcal{S}_{\Delta}^{+}$, then $p=q$ and $p^{-1} \gamma q \in(U M)_{\mathbb{Q}}$.

Proof: It suffices to show that both $\tilde{\alpha}$ and $\tilde{\beta}$ are unbounded on $\mathcal{S} \cap p^{-1} \gamma q \mathcal{S}$, for then the desired conclusion is obtained from Proposition 4.4 and Proposition 4.5 (1). Thus, let us suppose (without loss of generality) that

$$
\tilde{\alpha} \text { is bounded on } \mathcal{S} \cap p^{-1} \gamma q \mathcal{S} .
$$

This will lead to a contradiction.
CASE 1: Assume $\tilde{\beta}$ is also bounded on $\mathcal{S} \cap p^{-1} \gamma q \mathcal{S}$. Then $p \mathcal{S} \cap \gamma q \mathcal{S}=$ $p\left(\mathcal{S} \cap p^{-1} \gamma q \mathcal{S}\right)$ is precompact, so, by definition, $p \mathcal{S} \cap \gamma q \mathcal{S} \subset \mathcal{S}_{\Delta}^{+}$. Therefore

$$
p \mathcal{S}_{*} \cap \gamma q \mathcal{S}_{*} \subset p \mathcal{S} \cap \gamma q \mathcal{S} \subset \mathcal{S}_{\Delta}^{+}
$$

This contradicts the hypothesis of the lemma.
CASE 2: Assume $\tilde{\beta}$ is not bounded on $\mathcal{S} \cap p^{-1} \gamma q \mathcal{S}$. As $\tilde{\alpha}$ is bounded on $\mathcal{S} \cap p^{-1} \gamma q \mathcal{S}$, from the definition of \mathcal{S}_{α}, we see that $p \mathcal{S} \cap \gamma q \mathcal{S} \subset p \mathcal{S}_{\alpha}$. Therefore

$$
p \mathcal{S}_{*} \cap \gamma q \mathcal{S}_{*} \subset p \mathcal{S}_{*} \cap p \mathcal{S}_{\alpha}=\emptyset \subset \mathcal{S}_{\Delta}^{+}
$$

This contradicts the hypothesis of the lemma.
4.8. Corollary: If x and y are two points in the same connected component of $\Gamma Q \mathcal{S}_{*} \backslash \Gamma \mathcal{S}_{\Delta}^{+}$, then there exist $\gamma_{0}, \gamma \in \Gamma$ and $q \in Q$, such that $x \in \gamma_{0} q \mathcal{S}_{*}$, $y \in \gamma_{0} \gamma q \mathcal{S}_{*}$, and $q^{-1} \gamma q \in(U M)_{\mathbb{Q}}$.

4.9. Lemma:

(1) If $\gamma \in \Gamma$ and $p, q \in Q$, such that $p \mathcal{S}_{\alpha} \cap \gamma q \mathcal{S}_{\alpha} \not \subset \mathcal{S}_{\Delta}^{+}$, then $p^{-1} \gamma q \in\left(P_{\alpha}\right)_{Q}$.
(2) For each $p, q \in Q$, there exists $h_{p, q} \in\left(P_{\alpha}\right)_{\mathbb{Q}}$, such that $p^{-1} \Gamma q \cap\left(P_{\alpha}\right)_{\mathbb{Q}} \subset$ $h_{p, q}\left(U_{\alpha} M_{\alpha}\right)_{\mathbb{Q}}$.

Proof: (1) Because $p \mathcal{S}_{\alpha} \cap \gamma q \mathcal{S}_{\alpha} \not \subset \mathcal{S}_{\Delta}^{+}$, we know from the definition of \mathcal{S}_{Δ}^{+} (and $\mathcal{D}_{\alpha}^{p, q}$) that $p \mathcal{S}_{\alpha} \cap \gamma q \mathcal{S}_{\alpha}$ is not precompact. Since $\tilde{\alpha}$ is bounded on \mathcal{S}_{α}, we
conclude that $\tilde{\beta}$ is not bounded on $\mathcal{S}_{\alpha} \cap p^{-1} \gamma q \mathcal{S}_{\alpha}$ (and, hence, on $\mathcal{S} \cap p^{-1} \gamma q \mathcal{S}$). Then Proposition 4.4 asserts that $p^{-1} \gamma q \in\left(P_{\Theta}\right)_{\mathbb{Q}}$, for $\Theta=\{\alpha\}$ or \emptyset. Because $P_{\emptyset} \subset P_{\alpha}$, we conclude that $p^{-1} \gamma q \in\left(P_{\alpha}\right)_{\mathbb{Q}}$.
(2) From Proposition 4.5 (2), we see that the $\operatorname{coset}\left(p^{-1} \gamma q\right)\left(U_{\alpha} M_{\alpha}\right)_{\mathbb{Q}}$ does not depend on the choice of γ, if we require γ to be an element of Γ, such that $p^{-1} \gamma q \in\left(P_{\alpha}\right)_{\mathbb{Q}}$.
4.10. Corollary: If x and y are two points in the same connected component of $\Gamma Q \mathcal{S}_{\alpha} \backslash \Gamma \mathcal{S}_{\Delta}^{+}$, then there exist $\gamma_{0}, \gamma \in \Gamma$ and $p, q \in Q$, such that $x \in \gamma_{0} p \mathcal{S}_{\alpha}$, $y \in \gamma_{0} \gamma q \mathcal{S}_{\alpha}$, and $p^{-1} \gamma q \in h_{p, q}\left(U_{\alpha} M_{\alpha}\right)_{\mathbb{Q}}$.

5. Proof of the Main Theorem

Let G, Γ, T and x_{0} be as described in the hypotheses of Theorem 1.2 , and assume $\operatorname{dim} T \geq 3$. (This will lead to a contradiction.) Let $\left\{R_{n}\right\}$ be an increasing sequence of positive real numbers, such that $\lim _{n \rightarrow \infty} R_{n}=\infty$. For every n, let $T_{R_{n}}$ be the sphere in T with radius R_{n} (centered at the identity element). Because \mathcal{S}_{Δ}^{+}is compact and the T-orbit of Γx_{0} is divergent in $\Gamma \backslash G$, we may assume that

$$
\begin{equation*}
\left(x_{0} T_{R_{n}}\right) \cap\left(\Gamma \mathcal{S}_{\Delta}^{+}\right)=\emptyset \text { for all } n \tag{5.1}
\end{equation*}
$$

Let

$$
W_{n}^{*}=\left\{t \in T_{R_{n}} \mid x_{0} t \in \Gamma Q \mathcal{S}_{*}\right\}
$$

and

$$
W_{n}=\left\{t \in T_{R_{n}} \mid x_{0} t \in \Gamma Q \mathcal{S}_{\alpha} \cup \Gamma Q \mathcal{S}_{\beta}\right\} .
$$

From Proposition 2.2, we know that for all n there exists $t_{n} \in T_{R_{n}}$, and a connected component C_{n} of either W_{n}^{*} or W_{n}, such that t_{n} and t_{n}^{-1} both belong to C_{n}.

Case 1: Assume that there are infinitely many n for which C_{n} is a component of W_{n}^{*}. By passing to a subsequence, if necessary, we may assume that C_{n} is a connected component of W_{n}^{*} for all n. From Corollary 4.8, we see that for each n there exist $\gamma_{0 n}, \gamma_{n} \in \Gamma$ and $q_{n} \in Q$, such that $x_{0} t_{n} \in \gamma_{0 n} q_{n} \mathcal{S}_{*}$, $x_{0} t_{n}^{-1} \in \gamma_{0 n} \gamma_{n} q_{n} \mathcal{S}_{*}$, and $q_{n}^{-1} \gamma_{n} q_{n} \in(U M)_{\mathbb{Q}}$. Because $\lim _{n \rightarrow \infty} \Gamma x_{0} t_{n}=\infty$ and $\lim _{n \rightarrow \infty} \Gamma x_{0} t_{n}^{-1}=\infty$ in $\Gamma \backslash G$, by passing to a subsequence if necessary, we must have
(1) either

$$
\lim _{n \rightarrow \infty} \tilde{\alpha}\left(q_{n}^{-1} \gamma_{0 n}^{-1} x_{0} t_{n}\right)=\infty
$$

or

$$
\lim _{n \rightarrow \infty} \tilde{\beta}\left(q_{n}^{-1} \gamma_{0 n}^{-1} x_{0} t_{n}\right)=\infty
$$

and
(2) either

$$
\lim _{n \rightarrow \infty} \tilde{\alpha}\left(q_{n}^{-1} \gamma_{n}^{-1} \gamma_{0 n}^{-1} x_{0} t_{n}^{-1}\right)=\infty
$$

or

$$
\lim _{n \rightarrow \infty} \tilde{\beta}\left(q_{n}^{-1} \gamma_{n}^{-1} \gamma_{0 n}^{-1} x_{0} t_{n}^{-1}\right)=\infty
$$

Since $q_{n}^{-1} \gamma_{n} q_{n} \in(U M)_{\mathbb{Q}}$ is sent to the identity element by both $\tilde{\alpha}$ and $\tilde{\beta}$ for all n, we have
(2') either

$$
\lim _{n \rightarrow \infty} \tilde{\alpha}\left(q_{n}^{-1} \gamma_{0 n}^{-1} x_{0} t_{n}^{-1}\right)=\infty
$$

or

$$
\lim _{n \rightarrow \infty} \tilde{\beta}\left(q_{n}^{-1} \gamma_{0 n}^{-1} x_{0} t_{n}^{-1}\right)=\infty
$$

Let

- $V=\Lambda^{d} \mathfrak{g}$, where $d=\operatorname{dim} U$,
- $\rho: G \rightarrow \mathrm{GL}(V)$ be the $d^{\text {th }}$ exterior power of the adjoint representation of G on V,
- $v_{\mathfrak{u}}$ be a nonzero element of $V_{\mathbb{Z}}$ in the one-dimensional subspace $\Lambda^{d} \mathfrak{u}$, and - $v_{u, n}=\rho\left(x_{0}^{-1} \gamma_{0 n} q_{n}\right) v_{u}$ for all n.

It is important to note that $\left\|v_{\mathfrak{u}, n}\right\|$ is bounded away from 0 , independent of the choice of $q_{n}, \gamma_{0 n}$ and n. (The key point is that, for each q_{n}, the vector $\rho\left(q_{n}\right) v_{u}$ is a \mathbb{Q}-element of V, so its $\mathbf{G}_{\mathbb{Z}}$-orbit is bounded away from 0 . There are only finitely many choices of q_{n}, so q_{n} is not really an issue.)

On the other hand, for any $g \in P_{\square}$, we have

$$
\rho\left(g^{-1}\right) v_{\mathfrak{u}}=\tilde{\alpha}(g)^{-\ell_{1}} \tilde{\beta}(g)^{-\ell_{2}} v_{\mathfrak{u}}
$$

for some positive integers ℓ_{1} and ℓ_{2} (because the sum of the positive \mathbb{Q}-roots of \mathbf{G} is $\ell_{1} \alpha+\ell_{2} \beta$). Therefore, from (1) and (2'), we see that

$$
\lim _{n \rightarrow \infty} \rho\left(t_{n}^{-1}\right) v_{u, n}=\lim _{n \rightarrow \infty} \rho\left(\left(q_{n}^{-1} \gamma_{0 n}^{-1} x_{0} t_{n}\right)^{-1}\right) v_{\mathfrak{u}}=0
$$

and

$$
\lim _{n \rightarrow \infty} \rho\left(t_{n}\right) v_{\mathfrak{u}, n}=\lim _{n \rightarrow \infty} \rho\left(\left(q_{n}^{-1} \gamma_{0 n}^{-1} x_{0} t_{n}^{-1}\right)^{-1}\right) v_{\mathfrak{u}}=0
$$

This contradicts Lemma 3.2.

CASE 2: Assume that there are infinitely many n for which C_{n} is a component of W_{n}. By passing to a subsequence, if necessary, we may assume that C_{n} is a connected component of W_{n} for all n. From Lemma 4.6(2), we see that $x_{0} C_{n}$ is contained in either $\Gamma Q \mathcal{S}_{\alpha}$ or $\Gamma Q \mathcal{S}_{\beta}$ for all n. Assume, without loss of generality, that $x_{0} C_{n} \subset \Gamma Q \mathcal{S}_{\alpha}$, for all n. From Corollary 4.10, we see that for all n there exist $\gamma_{0 n}, \gamma_{n} \in \Gamma$ and $p_{n}, q_{n} \in Q$, such that

$$
x_{0} t_{n} \in \gamma_{0 n} p_{n} \mathcal{S}_{\alpha}, x_{0} t_{n}^{-1} \in \gamma_{0 n} \gamma_{n} q_{n} \mathcal{S}_{\alpha}, \text { and } p_{n}^{-1} \gamma_{n} q_{n} \in h_{p_{n}, q_{n}}\left(U_{\alpha} M_{\alpha}\right)_{\mathbb{Q}}
$$

Let \mathfrak{u}_{α} be the Lie algebra of U_{α}, let $V_{\alpha}=\Lambda^{d_{\alpha}} \mathfrak{g}$, where $d_{\alpha}=\operatorname{dim} \mathfrak{u}_{\alpha}$, and let $\rho_{\alpha}: G \rightarrow \mathrm{GL}\left(V_{\alpha}\right)$ be the $d_{\alpha}^{\text {th }}$ exterior power of the adjoint representation of G.

We can obtain a contradiction by arguing as in Case 1, with the representation ρ_{α} in the place of ρ. To see this, note that:

- For $a \in \operatorname{ker} \alpha$, we have $\rho_{\alpha}\left(a^{-1}\right) v_{\mathfrak{u}_{\alpha}}=\beta(a)^{-\ell} v_{\mathfrak{u}_{\alpha}}$, for some positive integer ℓ. Since $\rho_{\alpha}(U M) \subset \rho_{\alpha}\left(U_{\alpha} M_{\alpha}\right)$ fixes $v_{\mathfrak{u}_{\alpha}}$, and $\rho_{\alpha}(K)$ is compact, there exist constants $A, B>0$ such that

$$
A \tilde{\beta}(g)^{-\ell}\left\|v_{\mathfrak{u}_{\alpha}}\right\| \leq\left\|\rho_{\alpha}\left(g^{-1}\right) v_{\mathfrak{u}_{\alpha}}\right\| \leq B \tilde{\beta}(g)^{-\ell}\left\|v_{\mathfrak{u}_{\alpha}}\right\| \quad \text { for } g \in \mathcal{S}_{\alpha}
$$

- Because $\lim _{n \rightarrow \infty} \Gamma x_{0} t_{n}=\infty$ and $\lim _{n \rightarrow \infty} \Gamma x_{0} t_{n}^{-1}=\infty$ in $\Gamma \backslash G$, and $\tilde{\alpha}$ is bounded on \mathcal{S}_{α}, we must have
(1) $\lim _{n \rightarrow \infty} \tilde{\beta}\left(p_{n}^{-1} \gamma_{0 n}^{-1} x_{0} t_{n}\right)=\infty$, and
(2) $\lim _{n \rightarrow \infty} \tilde{\beta}\left(q_{n}^{-1} \gamma_{n}^{-1} \gamma_{0 n}^{-1} x_{0} t_{n}^{-1}\right)=\infty$.

Therefore, letting $v_{\mathfrak{u}_{\alpha}, n}=\rho_{\alpha}\left(x_{0}^{-1} \gamma_{0 n} p_{n}\right) v_{\mathfrak{u}_{\alpha}}$ for all n, we have

$$
\left(1^{*}\right) \lim _{n \rightarrow \infty} \rho_{\alpha}\left(t_{n}^{-1}\right) v_{u_{c}, n}=0
$$

Because $h_{p_{n}, q_{n}} \in P_{\alpha}$ normalizes U_{α}, we have

$$
\rho_{\alpha}\left(h_{p_{n}, q_{n}}\right) v_{u_{\alpha}}=c_{p_{n}, q_{n}} v_{\mathfrak{u}_{\alpha}}
$$

for some scalar $c_{p_{n}, q_{n}}$. Since $\left(p_{n}^{-1} \gamma_{n} q_{n}\right) h_{p_{n}, q_{n}}^{-1} \in\left(U_{\alpha} M_{\alpha}\right)_{\mathbb{Q}}$ fixes $v_{\mathfrak{u}_{\alpha}}$, and $\left\{c_{p_{n}, q_{n}}\right\}$, being finite, is bounded away from 0 , we see that

$$
\begin{aligned}
\rho_{\alpha}\left(t_{n}\right) v_{\mathbf{u}_{\alpha}, n} & =\rho_{\alpha}\left(t_{n} x_{0}^{-1} \gamma_{0 n} p_{n}\right) v_{\mathfrak{u}_{\alpha}} \\
& =\rho_{\alpha}\left(t_{n} x_{0}^{-1} \gamma_{0 n} p_{n}\left(p_{n}^{-1} \gamma_{n} q_{n}\right) h_{p_{n}, q_{n}}{ }^{-1}\right) v_{\mathfrak{u}_{\alpha}} \\
& =c_{p_{n}, q_{n}}^{-1} \rho_{\alpha}\left(t_{n} x_{0}^{-1} \gamma_{0 n} \gamma_{n} q_{n}\right) v_{\mathfrak{u}_{\alpha}}
\end{aligned}
$$

Therefore we have

$$
\left(2^{*}\right) \lim _{n \rightarrow \infty} \rho_{\alpha}\left(t_{n}\right) v_{u_{\alpha}, n}=\lim _{n \rightarrow \infty} c_{p_{n}, q_{n}}^{-1} \rho_{\alpha}\left(t_{n} x_{0}^{-1} \gamma_{0 n} \gamma_{n} q_{n}\right) v_{u_{\alpha}}=0
$$

This contradicts Lemma 3.2 and the proof of Theorem 1.2 is completed.

6. Results for higher \mathbb{Q}-rank

The proof of Theorem 1.2 generalizes to establish the following result:
6.1. Theorem: Suppose G, Γ, T, and x_{0} are as specified in Conjecture 1.1, and assume $\mathbb{Q} \operatorname{rank} \mathbf{G} \geq 1$. If the T-orbit of Γx_{0} is divergent in $\Gamma \backslash \mathbf{G}_{\mathbb{R}}$, then $\operatorname{dim} T \leq 2(\mathbb{Q}-\operatorname{rank} \mathbf{G})-1$.

Sketch of proof: As in $[\mathrm{L}, \S 1$ and $\S 2]$, let Δ be the set of simple \mathbb{Q}-roots, construct a fundamental set $Q \mathcal{S}$, define the finite set \mathcal{D}, and choose $r>0$, such that, for $q \in \mathcal{D}$ and $\alpha \in \Delta$, we have

$$
\text { if } \tilde{\alpha} \text { is bounded on } \mathcal{S} \cap q \mathcal{S}, \text { then } \tilde{\alpha}(\mathcal{S} \cap q \mathcal{S})<r .
$$

Fix an increasing sequence $r=r_{0}<r_{0}^{*}<r_{1}<r_{1}^{*}<\cdots<r_{d}<r_{d}^{*}$ of real numbers. For each subset Θ of Δ, let

$$
\mathcal{S}_{\Theta}=\left\{x \in \mathcal{S} \mid \tilde{\alpha}(x)<r_{\# \Theta}^{*}, \forall \alpha \in \Theta\right\}
$$

and

$$
\mathcal{S}_{\Theta}^{-}=\left\{x \in \mathcal{S} \mid \tilde{\alpha}(x) \leq r_{\# \Theta}, \forall \alpha \in \Theta\right\},
$$

and choose $h_{p, q}^{\ominus}$ such that $p^{-1} \Gamma q \cap\left(P_{\Theta}\right)_{\mathbb{Q}} \subset h_{p, q}^{\Theta}\left(U_{\Theta} M_{\Theta}\right)_{\mathbb{Q}}$ for $p, q \in Q$. Set $d=\mathbb{Q}-\operatorname{rank} \mathbf{G}$, and, for $i=0, \ldots, d$, let

$$
E_{i}=\bigcup_{\substack{\Theta \subset \Delta \\ \# \ominus=,}} \mathcal{S}_{\Theta} \text { and } E_{i}^{-}=\bigcup_{\substack{\Theta \subset \Delta \\ \# \Theta=1}} \mathcal{S}_{\Theta}^{-}
$$

Then $\left\{Q\left(E_{0} \backslash E_{1}^{-}\right), Q\left(E_{1} \backslash E_{2}^{-}\right), \ldots, Q\left(E_{d-1} \backslash E_{d}^{-}\right), Q E_{d}\right\}$ is an open cover of $\Gamma \backslash G$, and E_{d} is precompact.

For $p, q \in Q$ and $\Theta_{1}, \Theta_{2} \subset \Delta$, let

$$
\mathcal{D}_{\Theta_{1}, \Theta_{2}}^{p, q}=\left\{\gamma \in \Gamma \mid p \mathcal{S}_{\Theta_{1}} \cap \gamma q \mathcal{S}_{\Theta_{2}} \text { is precompact and nonempty }\right\}
$$

Define

Suppose $\operatorname{dim} T \geq 2 d$. Then we may choose a ($2 d-1$)-sphere T_{R} in T, so large that $\Gamma x_{0} T_{R}$ is disjoint from $E_{d} \cup \mathcal{S}_{\Delta}^{+}$. Proposition 6.2 below implies that there exists $t \in T_{R}$ and a component C of some $E_{i-1} \backslash E_{i}^{-}$(with $1 \leq i \leq d$), such that $x_{0} t$ and $x_{0} t^{-1}$ belong to C. Since $x_{0} T_{R}$ is disjoint from $\Gamma \mathcal{S}_{\Delta}^{+}$, then there
exist $\Theta \subset \Delta$ (with $\# \Theta=i-1$), $\gamma_{0}, \gamma \in \Gamma$, and $p, q \in Q$, such that $x_{0} t \in \gamma_{0} p \mathcal{S}_{\Theta}$, $x_{0} t^{-1} \in \gamma_{0} \gamma q \mathcal{S}_{\Theta}$, and $p^{-1} \gamma q \in h_{p, q}^{\ominus}\left(U_{\Theta} M_{\Theta}\right)_{\mathbb{Q}}$. We obtain a contradiction as in Case 1 of $\S 5$, using u_{Θ} in the place of u.

The following result is obtained from the proof of Proposition 3.1, by using the fact that any simplicial complex of dimension $d-1$ can be embedded in $\mathbb{R}^{2 d-1}$.
6.2. Proposition: Suppose $n \geq 2 d-1$, and that $\left\{V_{1}, V_{2}, \ldots, V_{d}\right\}$ is an open cover of the n-sphere S^{n} that consists of only d sets. Then there is a connected component C of some V_{i}, such that C contains two antipodal points of S^{n}.
6.3. Remark: For $k \geq 1$, it is known [$\mathrm{S}, \mathrm{IJ}]$ that there exist a simplicial complex Σ^{k} of dimension k and a continuous map $f: S^{2 k-1} \rightarrow \Sigma^{k}$, such that no two antipodal points of $S^{2 k-1}$ map to the same point of Σ^{k}. This implies that the constant $2 d-1$ in Proposition 6.2 cannot be improved to $2 d-3$.
6.3. Remark: If $\mathbb{Q}-\operatorname{rank} G=2$, then the conclusion of Theorem 1.2 is stronger than that of Theorem 6.1. The improved bound in (1.2) results from the fact that if $d=2$, then the universal cover of any ($d-1$)-dimensional simplicial complex embeds in $\mathbb{R}^{2}=\mathbb{R}^{2 d-2}$. (See the proof of Proposition 3.1.) When $d>2$, there are examples of (simply connected) $(d-1)$-dimensional simplicial complexes that embed only in $\mathbb{R}^{2 d-1}$, not $\mathbb{R}^{2 d-2}$.

References

[B] A. Borel, Introduction aux groupes arithmétiques, Actualités Scientifiques et Industrielles, No. 1341, Hermann, Paris, 1969.
[BH] A. Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Annals of Mathematics (2) $\mathbf{7 5}$ (1962), 485-535.
[H] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962.
[IJ] M. Izydorek and J. Jaworowski, Antipodal coincidence for maps of spheres into complexes, Proceedings of the American Mathematical Society 123 (1995), 1947-1950.
[L] E. Leuzinger, An exhaustion of locally symmetric spaces by compact submanifolds with corners, Inventiones Mathematicae 121 (1995), 389-410.
[M] D. W. Morris, Introduction to Arithmetic Groups, (preliminary version), http://arxiv.org/math/0106063.
[S] E. V. Ščepin, On a problem of L. A. Tumarkin, Soviet Mathematics Doklady 15 (1974), 1024-1026.
[TW] G. Tomanov and B. Weiss, Closed orbits for actions of maximal tori on homogeneous spaces, Duke Mathematical Journal 119 (2003), 367-392.
[W1] B. Weiss, Divergent trajectories on noncompact parameter spaces, Geometric and Functional Analysis 14 (2004), 94-149.
[W2] B. Weiss, Divergent trajectories and ©rank, Israel Journal of Mathematics, this volume.

