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A B S T R A C T  

Let G be a semisimple algebraic Q-group, let F be an arithmetic subgroup 
of G, and let T be an R-split torus in G. We prove that if there is a 
divergent TR-orbit in F\GR, and Q-rank G ~ 2, then dim T ~ Q-rank G. 
This provides a partial answer to a question of G. Tomanov and B. Weiss. 

1. I n t r o d u c t i o n  

Let G be a semisimple algebraic ~ g r o u p ,  let F be an ar i thmetic  subgroup 

of G ,  and  let T be an  m-split torus  in G.  The  TR-orbi t  of  a point  Fx0 in 

X = F \ G ~  is d i v e r g e n t  if the na tura l  orbit  map  T R  --+ X :  t ~ Fxo t  is 

proper.  G. Tomanov  and B. Weiss [TW, p. 389] asked whether  it is possible 
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for there to be a divergent TR-orbit when dimT > Q-rank G. B. Weiss [Wl, 

Conjecture 4.11A] conjectured that the answer is negative. 

1.1. CONJECTURE: Let 

• G be a semisimple algebraic group that is defined over Q, 

• F be a subgroup of GR that is commensurable with Gz, 

• T be a connected Lie subgroup of an R-split torus in GR, and 

• Xo E GR. 

If the T-orbit of Fxo is divergent in F\GR, then dim T < Q~rank G. 

The conjecture easily reduces to the case where G is connected and ~simple. 

Furthermore, the desired conclusion is obvious if ~I~rank G = 0 (because this 

implies that F\GR is compact), and it is easy to prove if ~ r a n k  G = 1 (see §2). 

Our main result is that the conjecture is also true in the first interesting case: 

1.2. THEOREM: Suppose G, F, T, and Xo are as specified in Conjecture 1.1, 

and assume Q-rank G _< 2. I f  the T-orbit of Fx0 is divergent in F\GR, then 

dim T _< Q-rank G. 

The proof is based on the fact that if f is any continuous map from the 2- 

sphere S 2 to any simplicial complex Zk of dimension k < 2, then there exist 

two antipodal points x and y of S 2, such that f ( x )  = f (y) .  

For higher Q-ranks, we prove only the upper bound dim T < 2(Q-rank G) (see 

6.1). The factor of 2 in this bound is due to the existence of maps f: S n --+ Ek, 

with k = [(n + 1)/2], such that no two antipodal points of S n have the same 

image in F~ k (see 6.3). 

The first partial result on the conjecture was proved by G. Tomanov and 

B. Weiss [TW, Theorem 1.4], who showed that if Q-rank G < R-rank G, then 

dim T < R-rank G. After seeing a preliminary version of our work, B. Weiss 

[W2] has recently proved the conjecture in all cases. 

GEOMETRIC REFORMULATION. We remark that, by using the well-known fact 

that flats in a symmetric space of noncompact type are orbits of lR-split tori in 

its isometry group [H, Proposition 6.1, p. 209], the conjecture and our theorem 

can also be stated in the following geometric terms. 

Suppose A ~ is a symmetric space, with no Euclidean (local) factors. Recall 

that a flat in )~ is a connected, totally geodesic, flat submanifold of )(. Up to 

isometry, X = G / K ,  where K is a compact subgroup of a connected, semisimple 

Lie group G with finite center. Then I~-rank G has the following geometric 

interpretation: 
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1.3. FACT: JR-rank G is the largest natural number r, such that )( contains a 

topologically closed, simply connected, r-dimensional flat. 

Now let X = F\)~ be a locally symmetric space modeled on X ,  and assume 

that X has finite volume. Then (~rank F is a certain algebraically defined 

invariant of F [M, §9D]. It can be characterized by the following geometric 

property: 

1.4. PROPOSITION: Q-rank F is the smallest natural number r, for which there 

exists collection of finitely many r-dimensional fiats in X ,  such that all of X is 

within a bounded distance of the union of these fiats. 

It is clear from this that the Q-rank does not change if X is replaced by 

a finite cover, and that it satisfies Q-rank F _< ll~-rank G. Furthermore, the 

algebraic definition easily implies that if Q-rank F = r, then some finite cover 

of X contains a topologically closed, simply connected flat of dimension r. If 

Conjecture 1.1 is true, then there are no such flats of larger dimension. In other 

words, Q-rank should have the following geometric interpretation, analogous to 

(1.3): 

1.5. CONJECTURE: Q-rank F is the largest natural number r, such that some 

finite cover of X contains a topologically closed, simply connected, r-dimensional 

fiat. 

More precisely, Conjecture 1.1 is equivalent to the assertion that Q-rank F is 

the largest natural number r, such that )( contains a topologically closed, simply 

connected, r-dimensional flat F, for which the composition F ~ )~ --+ X is a 

proper map. 

ACKNOWLEDGEMENTS: The authors would like to thank Kevin Whyte for 

helpful discussions related to Proposition 2.2. D. W. M. was partially supported 

by a grant from the National Science Foundation (DMS-0100438). 

2. Example :  A p r o o f  for Q-rank 1 

To illustrate the ideas in our proof of Theorem 1.2, we sketch a simple proof that 

applies when Q-rank G = 1. (A similar proof appears in [Wl, Proposition 4.12].) 

Proof: Suppose G, F, T, and x0 are as specified in Conjecture 1.1. For 

convenience, let ~r: GR ~ F\GR be the natural covering map. Assume that 

Q-rankG = 1, that dimT = 2, and that the T-orbit of lr(Xo) is divergent in 
F\G. This will lead to a contradiction. 
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Let E1 = F\GR. Because Q-rank G = 1, reduction theory (the theory of 

Siegel sets) implies that there exist 

• a compact subset Eo of F\GR, and 

• a Q-representation p: G ---> GLm (for some m), 

such that, for each connected component £ of GR \ 7r -1 (Eo), there is a nonzero 

vector v E Qm, such that 

(2.1) if lim Fg,~ = ¢c in F\G~,  and {gn} C E, then lim p(gn)v = O. 

(In geometric terms, this is the fact that, because E1 \ E0 consists of disjoint 

"cusps," GR \ 7r -1 (E0) consists of disjoint "horoballs.") 

Given e > 0, let TR be a large circle (1-sphere) in T, centered at the identity 

element. Because the T-orbit of 7r(Xo) is divergent, we may assume r(xoTR) 

is disjoint from E0. Then, because TR ~-. S 1 is connected, the set xoTR must 

be contained in a single component of GR \ 7r-l(E0). Thus, there is a vector 

v E Q~, such that []p(t)v[[ < e[Iv[[ for all t E TR. 

Fix t E TR. Then t -1 also belongs to TR, so Hp(t)vl[ and Hp(t-1)v[] are both 

much smaller than [[v[[. This is impossible (see 3.2). | 

The above proof does not apply directly when Q-rank G = 2, because, in 

this case, there are arbitrarily large compact subsets C of F\G~,  such that 

G R \ r  -1 (C) is connected. Instead of only E0 and El, we consider a more refined 

stratification E0 C E1 C E2 of F\G. (It is provided by the structure of Siegel 

sets in Q-rank two.) The set Eo is compact, and, for i _> 1, each component 
of ~r -1 (Ei \ Ei-1) has a corresponding representation p and vector v, such that 

(2.1) holds. Thus, it suffices to find a component of either 7r-l(E1 \ Eo) or 

Ir-l(E2 \ El) that contains two antipodal points of TR. Actually, we replace 

E1 with a slightly larger set that is open, so that we may apply the following 

property of $2: 

2.2. PROPOSITION (see 3.1): Suppose n >_ 2, and that {V1,V2} is an open 

cover of the n-sphere S n that consists of only 2 sets. Then there is a connected 

component C of some V~, such that C contains two antipodal points of S n. 

2.3. Remark: In §5, we do not use the notation Eo C E1 C E:. The role 

of Eo is played by 7r(Q$+), the role of an open set containing E1 is played by 

~r(QSa t.J QS~), and the role of E~ \ E1 is played by u(QS,) .  
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3. P r e l i m i n a r i e s  

The classical Borsuk-Ulam Theorem implies that  if f :  S n --+ R k is a contin- 

uous map, and n > k, then there exist two antipodal points x and y of S n, 

such that  f ( x )  = f (y ) .  We use this to prove the following stronger version of 

Proposition 2.2: 

3.1. PROPOSITION: Suppose V is an open cover of  S n, with n >_ 2, such that 

no point of  S n is contained in more than two of  the sets in V. Then some V E 12 

contains two antipodal points o f  S n. 

Proof: Because S n is compact, we may assume the open cover V is finite. Let 

{ ¢ v } v c v  be a partition of unity subordinate to V. This naturally defines a 

continuous function • from S n to the simplex 

VEV 

Namely, ¢(x) = ( ¢ y ( x ) ) u e v .  Our hypothesis on 12 implies that  no more than 

two components of ~(x) are nonzero, so the image of q~ is contained in the 

1-skeleton A~ ) of Av. Because S ~ is simply connected, • lifts to a map ~ 

from S ~ to the universal cover A~ ) of A(~ ) . The universal cover is a tree, which 

can be embedded in N2, so the Borsuk-Ulam Theorem implies that  there exist 

two antipodal points x and y of S ~, such that  ~(x) = ~(y). Thus, there exists 

V e 12, such that  Cv (x) = Cv (Y) ¢ 0. So x, y E V. | 

For completeness, we also provide a proof of the following simple observation. 

3.2. LEMMA: Let T be any abelian group of  diagonalizable n × n real matrices. 

There is a constant e > O, such that i f  

• v is any vector in I~ n , and 

• t is any element o f T ,  

then either Iltvl[ _> e[lvl[ or [It-lvl[ >_ e[lv[[. 

Proof: The elements of T can be simultaneously diagonalized. Thus, after a 

change of basis (which affects norms by only a bounded factor), we may assume 

that  each standard basis vector ei is an eigenvector for every element of T. 

Write v = (Vl , . . . ,  vn), and let ti be the eigenvalue of t corresponding to the 

eigenvector ei. Because any two norms differ only by a bounded factor, we may 

assume [11[ is the sup norm on ~n; therefore, we have [Iv[[ = [vj[ for some j .  We 

may assume Itjl >_ 1, by replacing t with t -1 if necessary. Then 

Iltvll = I I ( txVl , . . . , tnvn) l l  > I t j v j l  = Itjl" Ilvll _> Ilvlh 
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as desired. | 
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4. P r o p e r t i e s  o f  S i ege l  s e t s  

We present some basic results from reduction theory that follow easily from the 

fundamental work of A. Borel and Harish-Chandra [BH] (see also [B, §13-§15]). 

Most of what we need is essentially contained in [L, §2], but we are working 

in G, rather than in .Y = G / K .  We begin by setting up the standard notation. 

4.1. Notation (cf. [L, §1]): Let 

• G be a connected, almost simple Q-group, with Q-rank G = 2, 

• G be the identity component of GR, 

• F be a finite-index subgroup of Gz n G, 

• P be a minimal parabolic Q-subgroup of G, 

• A be a maximal Q-split torus of G, 

• A be the identity component of A~, and 

• K be a maximal compact subgroup of G. 

We may assume A C P. Then we have a Langlands decomposition P = U M A ,  

where U is unipotent and M is reductive. We remark that U and A are con- 

nected, but M is not connected (because P is not connected). 

4.2. Notation (cf. [L, §1]): The choice of P determines an ordering of the 

Q-roots of G. Because Q~rank G = 2, there are precisely two simple Q-roots 

a and fl (so the base A is {a, 8})- Then a and fl are homomorphisms from A 

to ~+. 
Any element g of G can be written in the form g = pak, with p E UM,  a E A, 

and k E K. The element a is uniquely determined by g, so we may use this 

decomposition to extend a and/3 to continuous functions & and ~ defined on 

all of G: 
&(g) = a(a) i f g E U M a K a n d a E A ,  

~(g)=f l (a )  i f g E U M a K a n d a E A .  

4.3. Notation (cf. [L, §2]): 

• Fix a subset Q of GQ N G, such that 

Q is a set of representatives of F\(GQ n G)/(PQ N P). 

Note that Q is finite. 

• For v > 0, let A~ = {a e A [a(a) > 7 and ~(a) > T}. 
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• For ~- > 0 and a precompact, open subset w of UM, let S~,~ = wArK. 
This is a Siegel set  in G. 

• We fix T > 0 and a precompact, open subset w of UM, such that ,  letting 

$ = S~,w, we have 

QS is a fundamental set for P in G. 

That  is, 

• PQ8 = G, and 
• {7 E F I 7QS M pQ8 # 0} is finite, for all p E GQ M G. 

{ p, q E Q ,  T E F ,  } 
• L e t / ) =  P-17qI pSNTqSisnotprecompact  c G Q M G .  N o t e t h a t / )  

is finite. 

• Fix r > 0, such that,  for q E / ) ,  we have 

• if & is bounded on 8 N q$, then 5(8  N qS) < r, and 
• if/~ is bounded on 8 M qS, then/~(S M qS) < r. 

• Fix any r* > r. 

• Define 

• 8 ,  = {x • 8 I 5(x) > r and ~(x) > r}, 

• s .  = {x  • s 15(x) < r*} ,  

• s z  = {x  • s I ~(x) < r*} ,  and 

Note that  {$., Sa, 8~ } is an open cover of 8 (whereas [L, p. 398] defines 

{S. ,$a ,SZ} to be a partition of S, so not all sets are open). We have 

G = FQ$,  u FQS~ u FQSa. 

• Forp,  q E Q ,  let 

/)P'q = {'y E F [ pS M "TqS is precompact and nonempty}, 

I)P'q = {7 E F [ pSc~ N "Tq$c, is precompact and nonempty}, 

/)P~'q = {7 E P [ p$~ M 7qSz is precompact and nonempty}, 

T)P,q c~,Z = {7 6 F [ pSc~ gl ",/q$~ is precompact and nonempty}, 

and, using an overline to denote the closure of a set, 

S+= U (psn?qs)u U (ps. nTqs~) 
-yED~ ,q -yED~'q 

u U (ps~ n ~qs~) u U (ps. n ~qs~). 
,.yE'D~,q p,q 
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Note that  :Do p'q, T)Pa'q, /)~'q, and 7:) p'q are finite (because Q`5 is a funda- 

mental set), so `5+ is compact. And F`5 + is closed. 

• For 0 C A, we use Po  to denote the corresponding standard parabolic 

Q-subgroup of G corresponding to O. In particular, P0 = P and PA ---- G. 

There is a corresponding Langlands decomposition Po = UoMoAo. 

We now state two propositions from [L], that  we will use repeatedly in the 

proofs of the next few lemmas. These propositions hold more generally for 

semisimple Q-algebraic groups of arbitrary Q-rank. 

4.4. PROPOSITION ([L, Proposition 2.3]): Let p,q E Q and 7 E F, such that 

the intersection p,5 N 7q,5 is not precompact. Then p-l,yq E Po V) GQ where 0 
is the collection of all the roots A E A for which A(,5 (3 p-l~/q,5) is bounded. 

4.5. PROPOSITION ([L, Lemma 2.4(i)]): For all 7, 7 E F and p, q E Q, we have: 

(1) Ifp-17q E P, then p = q and p-17q E (UM)Q. 

(2) Let 0 C A. If  both p-l~/q and p-lz~q are in Po, then 

(p-17q)-1p-lZyq = q-1"I-1ZIq E (UoMo)Q- 

4.6. LEMMA: For all 7 E F and p, q E Q, we have: 

(1) pS~ (3 7qS z is precompact, and 

(2) p`5,~ (3 7q$~ C `5+. 

Proof: It suffices to prove (1), for then (2) is immediate from the definition 

of $+  (and P'q Z)a,~). Thus, let us suppose that  pSa (3 7qSz is not precompact. 
This will lead to a contradiction. 

Because 5 is bounded on Sa, but Sa (3p-17q`5 ~ is not precompact, we know 

that fl is unbounded on `5~ (3 p-17q8~ (and, hence, on ,5 (3 p-17q,5). Therefore, 

Proposition 4.4 implies that  
p-l~/q E Pa. 

Similarly (replacing -y with ./-1 and interchanging p with q and a with ~), 

because 7-1pS~ (3 q,sz = 7-1(PS~ f3 ~/q,5z) is not precompact, we see that 

q-X?-lp E P~. 

Noting that q-l../-lp = (p-l~/q)-l ,  we conclude that p-l.yq E P~ n P~ = Po ,  so 

Proposition 4.5 (1) tells us that p = q and p-17q E UM. Therefore 

a(`sa np-l~'qSlJ) c 5(,-,c~) 
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and 

~($~ M p-l~/qS~) C ~(p-aTqS~) C ~(UMSz) = ~(Sf~) 

are precompact. So So Mp -1 ~,qSz is precompact, which contradicts our assump- 

tion that pS~ A 7qS~ is not precompact. I 

4.7. LEMMA: f f  "~ • F and p, q • Q, such that pS, M ~/qS, ~ S +, then p = q 

and p-17q • (UM)Q. 

Proof: It suffices to show that both 0 and/3 are unbounded on S M p-LyqS, 

for then the desired conclusion is obtained from Proposition 4.4 and Proposi- 

tion 4.5 (1). Thus, let us suppose (without loss of generality) that 

5 is bounded on S Mp-17qS. 

This will lead to a contradiction. 

CASE 1: Assume /3 is also bounded on S M p-17qS. Then pS N ~/qS = 
p(S M p-17qS) is precompact, so, by definition, pS M ~/qS C $+. Therefore 

p$, M ~qS, C p$ M 7aS C S+A. 

This contradicts the hypothesis of the lemma. 

CASE 2: Assume /3 is not bounded on S M p-17q$. As & is bounded on 

S M p-17q$, from the definition of $~, we see that pS M 7qS C pSa. Therefore 

pS, M 7q8, C p8, A p$a -- 0 C 8 +. 

This contradicts the hypothesis of the lemma. I 

4.8. COROLLARY: I[x and y are two points in the same connected component 
o fFQS,  \ FS +, then there exist 7o,~ • F and q • Q, such that x • 9oqS,, 

Y • ~o~q$,, and q-X~q • (UM)Q. 

4.9. LEMMA: 

(1) I f~  e F and p, q • Q, such that pS~ N ~/qS~ ~ S +, then p - ~ q  • (P~)Q. 

(2) For each p,q • Q, there exists hp,q • (Pa)Q, such that p-lFqM (Pa)Q C 

hp,q(UaMa)Q. 

Proof: (1) Because p$~ M ~qS~ ~ $+, we know from the definition of S + 

(and Dp, q) that pS~ M ~/qS~ is not precompact. Since 5 is bounded on S~, we 
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conclude that /~ is no t  bounded on Sa fl p-17qSa (and, hence, on S N p-17qS ). 

Then Proposition 4.4 asserts that  p-l~/q E (Po)Q, for O = {a} or 0. Because 

P0 C P , ,  we conclude that  p-l~/q E (Pa)Q. 

(2) Prom Proposition 4.5 (2), we see that  the coset (p-I~/q)(U~Ma)Q does 

not depend on the choice of % if we require ~ to be an element of F, such that  

p-17q E (Pa)Q. . 

4.10. COROLLARY: fiX and y are two points in the same connected component 

o fFQS .  \ FS +, then there exist "yo,~/ E F and p,q E Q, such that x E "yopS~, 

y E ~/oTqSa, and P-~Tq E hp,q(UaMa)Q. 

5. P r o o f  of  the  Main  T h e o r e m  

Let G, F, T and Xo be as described in the hypotheses of Theorem 1.2, and assume 

d i m T  >_ 3. (This will lead to a contradiction.) Let {Rn} be an increasing 

sequence of positive real numbers, such that  lim,~_,~ R~ = oo. For every n, 

let TR~ be the sphere in T with radius R~ (centered at the identity element). 

Because S + is compact and the T-orbit  of Fxo is divergent in F \G ,  we may 

assume that  

(5.1) 

Let 

and 

(XoTR~) n (FS +) -- 0 for all n. 

W~ = {t E TR,~ I xot E r Q S . }  

wn = {t I xot r Q s .  u ros ). 

Prom Proposition 2.2, we know that  for all n there exists tn E TRy, and a 

connected component Cn of either W* or Wn, such that  tn and tn 1 both belong 

to C~. 

CASE 1: Assume that there are infinitely many n for which Cn is a component 

of W*. By passing to a subsequence, if necessary, we may assume that  Cn 

is a connected component of W* for all n. Prom Corollary 4.8, we see that 

for each n there exist 7o~,% E F and qn E Q, such that  xotn E 7onqn$*, 

xot-~ 1 E "YOn?nqn$*, and q~1%qn E (UM)Q. Because limn-+ooFxotn = co and 

limn_+ooFX0t~ 1 = co in F \G,  by passing to a subsequence if necessary, we must 

have 

(1) either 

lim (~(q~l~/onl Xotn) = co 
n - - ~  o o  
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o r  

and 

(2) either 

o r  

l i m  ~(q;'7o-~xotn) = c¢, 

lira ~ -i -i -i -i a(q~ % %~ xot~ )= oo 
n --~ oo 

lim - - 1  - 1  - 1  - 1  ~(qn % %nx0t~ ) =  ~ .  
n---+ oo 

Since qnlTnq,~ E (UM)Q is sent to the identity element by both 5 and ~ for all 

n, we have 

(2') either 

o r  

~ i m  (~( q;  ~ Zo2 Xot ; ~ ) = 

lim - - 1  - 1  -1 ~-~/3(q,~ "ro~ xotn ) = ~ .  

and 

p(g-1)vu = ~(g)-el~(g)-e2vu, 

for some positive integers 6i and 62 (because the sum of the positive Q-roots 

of G is 6ia + 62fl). Therefore, from (1) and (2'), we see that  

lim p(t~i)Vu,n lim - i  -1 -1 = p((qn ~On zotn)  )v~ = 0 
n --+ o o  n - +  o o  

l i r a  p(tn)Vu,n l i m  - 1  - 1  - 1  - 1  = P((qn 7onXotn ) )vu = 0. 
n --~ O0 1~ -'4" 0 0  

This contradicts Lemma 3.2. 

Let 

• V = A  d g, where d = dim U, 

• p: G -~ GL(V) be the d TM exterior power of the adjoint representation 

of G on V, 

• vu be a nonzero element of Vz in the one-dimensional subspace A d U, and 

• Vu,n = P(Xol~onqn)vu for all n. 

It is important  to note that  IIvu,nl[ is bounded away from 0, independent of the 

choice of qn, "Yon and n. (The key point is that,  for each qn, the vector p(qn)vu 
is a Q-element of V, so its Gz-orbi t  is bounded away from 0. There are only 

finitely many choices of qn, so qn is not really an issue.) 

On the other hand, for any g E Pc, we have 
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CASE 2: Assume that there are infinitely many n for which Ca is a component 
of Wn. By passing to a subsequence, if necessary, we may assume that  C,~ is a 

connected component of Wn for all n. From Lemma 4.6(2), we see that  xoCn is 

contained in either FQSa or FQS~ for all n. Assume, without loss of generality, 

tha t  xoCn C FQSa,  for all n. From Corollary 4.10, we see that  for all n there 

exist 7o~,~n E F and Pn,qn E Q, such that  

xot~ E ~o~pnS~, xot-~ 1 E ~o~ ~/~qnS~, and p~l~/nqn E hp.~,q. (U~Ma)Q. 

Let us be the Lie algebra of Ua, let Va = A d° 1~, where da = dimua,  and let 

Pa: G -+ GL(Va) be the d th exterior power of the adjoint representation of G. 

We can obtain a contradiction by arguing as in Case 1, with the representa- 

tion pa in the place of p. To see this, note that: 

• For a E kera ,  we have p~(a-1)vu. = ~(a)-~vu~, for some positive 

integer e. Since pa(UM) C pa(UaM~) fixes vu., and pa(K) is compact, 

there exist constants A, B > 0 such that  

A~(g)-ellv~.ll <_ IIp.(g-~)v.oll < B~(g)-ellv~°ll for g e s o .  

• Because limn-+ooFxotn = oc and l i m n ~ F x o t ~  1 = c~ in F \G,  and & is 

bounded on 8~, we must have 

(1) limn-~oo~(p~'%~xotn) = e~, and 

(2) limn_~oo~(q~13~l'~o~ Xot~ 1) = oo. 
Therefore, letting vu.,n = pa(Xol~/onPn)Vu, for all n, we have 

(1") lim p~(t~l)vu°,n = O. 
n - - + o o  

Because hp.,q~ E P~ normalizes U~, we have 

p~ (hp~ ,q,~ )v~° = cp,,,q~ v~. ,  

for some scalar Cp~,q. Since -1 -1 (Pn 7nqn)hp,,,q,~ E (U~M~)Q fixes vu~, and 

{cp,,,q,, }, being finite, is bounded away from 0, we see that  

pa(tn)vu.,n = pa(tnXol~OnPn)Vu. 

= p.(tnxol~fonPn(p~l~/nqn)hp,,,q~-1)vu. 

= Cp~,q~p,(tnXol~/o,~%qn)vu,. 

Therefore we have 

(2*) ~ im p° (t.)v.o,n = ~ im c;lq.~ p~ (tnxol~o~'y~q~)Vuo = O. 

This contradicts Lemma 3.2 and the proof of Theorem 1.2 is completed. 
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6. Resu l t s  for higher  Q-rank 

The proof of Theorem 1.2 generalizes to establish the following result: 

6.1. THEOREM: Suppose G, F, T, and Xo are as specitled in Conjecture 1.1, 

and assume Q-rank G _> 1. I[ the T-orbit of Fx0 is divergent in F\GR, then 

dimT _< 2(Q-rank G) - 1. 

Sketch of proo£" As in [L, §1 and§2], let A be the set of simple Q-roots, 

construct a fundamental set QS, define the finite set / ) ,  and choose r > 0, such 

that, for q • / )  and a • A, we have 

if & is bounded on S N q$, then 5(S  N qS) < r. 

Fix an increasing sequence r = r0 < r~ < rl < r~ < .-. < rd < r~ of real 

numbers. For each subset 0 of A, let 

so  = {x • s I a(x) < r;~o, w • o} 

and 

So = {x • s I a(x) <_ r#o, w • 0} ,  

and choose h°p,q such that p - l r q  n (Po)Q C h°q(UoMo)Q for p,q e Q. Set 
d = Q-rank G, and, for i = 0 , . . . ,  d, let 

Ei= U So and E~-= U S~. 
OC z' O C t .  
# O = ,  # O = ,  

Then {Q(Eo \ E~), Q(E1 \ E 2 ) , . . . ,  Q(Ed-1 \ Ed),  QEd} is an open cover of 
F\G, and E~ is precompact. 

For p,q E Q and 01 ,02  C A, let 

Define 

I)P'q = {'7 E F I pSo~ n ~/qSo2 is precompact and nonempty}. 01,02 

s+ = U (pse~ nTqSe~). 
p,qEQ 

O 1 , O 2 C ~  

Suppose dim T _> 2d. Then we may choose a ( 2 d -  1)-sphere TR in T, so large 

that FxoTn is disjoint from Ed U S +. Proposition 6.2 below implies that there 

exists t E Tn and a component C of some Ei-1 \ E~- (with 1 < i < d), such 

that xot and xot -I  belong to C. Since xoTR is disjoint from FS +, then there 
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exist O C A (with # O  = i - 1), ")'0,'~ C F, and p,q E Q, such that  xot E "y0P,So, 

Xot -1 E "~oTqSo, and p-l.~q • hOp,q(UoMo)Q. We obtain a contradiction as in 

Case 1 of §5, using uo in the place of u. | 

The following result is obtained from the proof of Proposition 3.1, by using 

the fact that  any simplicial complex of dimension d - 1 can be embedded in 
~2d--1. 

6.2. PROPOSITION: Suppose n >_ 2 d -  1, and that {V1,V2,... ,Vd} is an open 

cover of the n-sphere S n that consists of only d sets. Then there is a connected 

component C of some Vi, such that C contains two antipodal points o[ S n. 

6.3. Remark: For k >_ 1, it is known IS, IJ] that  there exist a simplicial 

complex E k of dimension k and a continuous map f :  S :k-1 ~ Z k, such that  no 

two antipodal points of S 2k-1 map to the same point of E k. This implies that  

the constant 2d - 1 in Proposition 6.2 cannot be improved to 2d - 3. 

6.3. Remark: If (~-rank G = 2, then the conclusion of Theorem 1.2 is stronger 
than that  of Theorem 6.1. The improved bound in (1.2) results from the fact 
that  if d = 2, then the universal cover of any (d - 1)-dimensional simplicial 
complex embeds in l~ 2 = R 2d-2 . (See the proof of Proposition 3.1.) When 
d > 2, there are examples of (simply connected) (d - 1)-dimensional simplicial 
complexes that  embed only in R2d-1, not ~2d-2. 
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